Expert Perspective

Switching Patients From a Triptan to a Gepant for Acute Migraine Care and Effective Preventives


 

Dr. Rapoport: Most patients who come into my office today, even those whom I have
treated for the last 30 years for acute care of migraine attacks, are taking 1 of the 7
triptan medications available. They might be taking triptans as a tablet—the most
common form—as a nasal spray, or by injection; however, not all patients are suited for
triptans, and sometimes, the need arises to switch to a different class of medication for
treating migraine acutely.

What are the reasons patients switch from a triptan to a gepant?
For some patients, triptans are not working well enough or are causing adverse events.
Other patients have developed cardiac risk factors such as elevated blood pressure,
obesity, smoking, and/or lack of exercise. I am always concerned about constriction of
the coronary blood vessels. Patients who already have some cardiac risk factors and
those who have some actual cardiac disease or have had a previous heart attack
already have constriction of their blood vessels and are not candidates for triptans, as
they are contraindicated.

How do you switch a patient from a triptan to a gepant?
It is important to have some discussion with the patient before the switch. For example,
if a patient with no cardiac risk factors comes into the office asking about this new
medicine, I will ask them several questions about their triptan to ensure it works well
enough (ie, to ascertain if the patient’s migraines improve within 30 to 60 minutes and
are much better within 2 hours of taking the medication). I want to be sure that they do
not have any adverse events related to the triptan, such as chest pain, drowsiness, or
dizziness. I like to ensure that whatever they are taking works long enough—at least 24
hours, preferably 48 hours—so they no longer have a headache, especially the next
day. If the headache comes back the next day, they must re-treat. If I determine the

triptan is not working well for them or they have significant adverse events, I will move
on.

Gepants are small-molecule calcitonin gene-related peptide (CGRP) receptor
antagonists, which are pills that only last for 2 to 3 days in the body. There are 2
gepants for acute care and 2 for the prevention of migraine. The first gepant approved
by the US Food and Drug Administration (FDA) for acute care was ubrogepant
(Ubrelvy), which comes in 2 sizes, 50 mg or 100 mg tablets. I sometimes start with 50
mg, but for the more difficult migraine patient, I will start with 100 mg. If the medicine is
not doing a complete job within 2 hours, the patient may take a second dose, up to 200
mg. Some adverse events may include nausea or slight drowsiness. The patient should
avoid certain medicines such as antifungal medicines (eg, ketoconazole, itraconazole)
and certain antibiotics like clarithromycin.

Another gepant, rimegepant (Nurtec), comes in only 1 size, a 75-mg oral disintegrating
tablet, which can be used both for acute care of migraine and for prevention. Patients
can take a tablet as soon as their migraine attack begins, and they are not to repeat it
that day. If the headache does not go away in 2 hours, I want them to then take a triptan
and an anti-inflammatory drug (there is no contraindication to mix these drugs). I want
them to try it at least 1 more time, encouraging patients to take it early, right at the start
of the headache. If the medicine is still not working by the second or third time, they
should stop using it. Preventively, patients take 75 mg every other day, which can be
quite effective. Side effects are slight nausea and some abdominal pain or dyspepsia.

A third gepant is atogepant (Qulipta), which is only for migraine prevention. It comes in
10 mg, 30 mg, and 60 mg and is taken once every day as a preventive. It can cause
some drowsiness, constipation, and nausea.

Are there any other acute care drugs you recommend if triptans are not working?
Yes, there is another drug class called the ditans. These medications work very well but
have more adverse events associated with them than I like. A higher percentage of

patients seem to be pain-free in 2 hours when using a ditan; however, the only one
available, lasmiditan (Reyvow), has never been studied against a gepant, so I cannot
say if one is better than the other. Lasmitidan works similarly to a triptan by stimulating
serotonin 1F receptors but does not constrict blood vessels. Up to 15% of patients have
dizziness and up to 7% have drowsiness, so patients should not drive within 8 hours
after taking lasmiditan. This medication is available in 2 sizes, 100 mg and 200 mg. I
usually give patients a 200-mg dose, which is good enough for 24 hours. Ditans are a
Schedule V drug, meaning some patients might take more than they should because it
makes them feel good. It can be a challenging drug to get, but it is an excellent acute
care drug when none of the mentioned adverse events occur.

Which preventive drugs do you tend to prescribe your patients for migraine since
triptans are not preventive?

For many years, we have used some of the older preventives. Antidepressants can be
an option for preventive treatment of migraine. Amitriptyline, a tricyclic antidepressant, is
a pretty good medicine. However, it has a lot of adverse events associated with it,
including dry mouth, weight gain, and drowsiness, so patients who take this at night
often sleep better. The dose is 10 mg to 50 mg taken before bed. This drug is often
used, but I would not say I like to prescribe it as much as other medications, even
though amitriptyline is effective and likely to work by affecting the level of serotonin and
other chemicals in the brain. There is little evidence that other classes of
antidepressants, such as selective serotonin reuptake inhibitors and serotonin and
norepinephrine reuptake inhibitors, are effective for migraine prevention. Adverse
effects may include weight gain, fatigue, constipation, and dry mouth, making it difficult
for a patient to stick with treatment.

Beta blockers are another preventive medication option for migraine. Beta blockers are
best known as a medical treatment for cardiovascular conditions, such as hypertension,
stable or unstable angina, and congestive heart failure. Beta blockers prevent the stress
hormone adrenaline (epinephrine) from binding to beta receptors, slowing heart rate
and lowering blood pressure. A commonly used beta blocker is propranolol (Inderal),

which also comes in a long-acting preparation. Doses range from 60 mg to 180
mg. Other beta blockers effective for migraine prevention include metoprolol, nadolol,
and atenolol.

Many of my patients are young, healthy females who like to exercise. Most report that
their heart rate is slow, they get short of breath, and they cannot exercise as effectively
while on a beta blocker. It also takes about 2 months until this medication starts
working. Patients may feel as if they are having too many adverse events, so I start
them on a very low dose and build it up gradually for a month and see how they are
feeling.

Epilepsy medicines can also be used to prevent migraine. There are 2 common
epilepsy medications. Topiramate (Topamax) doses can range from 75 mg to 100 mg
and are sometimes higher. Topiramate is a good medicine, but there are many potential
adverse events: tingling in the extremities, difficulty finding words when speaking,
confusion, raised eye pressure, and others. Divalproex sodium (Depakote) is another
popular medication, available in 500 mg to 1000 mg doses. This medicine can cause
some endocrine problems in women and can also damage the spinal cords of a fetus,
so this drug should not be taken during early pregnancy.

Monoclonal antibodies against CGRP are a strong preventive medication and a new
class of drugs that were first approved by the FDA in 2018. They are designed to
prevent episodic migraine (up to 14 headache days per month), chronic migraine (15 or
more headache days per month) and seem to work when a patient has medication
overuse headaches. CGRP is a neuropeptide involved in many body processes,
including blood pressure regulation, tissue repair, wound healing, and inflammation, and
is a potent vasodilator. When CGRP is released in the brain, it affects the trigeminal
nerve, increasing pain transmission and sensitivities to touch and temperature. CGRP
also causes inflammation and pain that happen during a migraine; it makes headache
pain worse and causes headaches to last longer.

Some CGRP inhibitors block CGRP from binding to CGRP receptors, a key contributor
to the trigeminal nerve pain and inflammation of migraine, while some grab the CGRP
and prevent it from activating the receptor.

The 2 classes of these drugs are monoclonal antibodies against CGRP and small
molecule CGRP antagonists. Fortunately, CGRPs have long half-lives and work for 1 to
3 months. The CGRP monoclonal antibodies are large molecule drugs. There are 4
different types, and 2 of them are injected by the patient at home once a month. One
can be injected at home once a month or every 3 months. For the latter option, patients
need to triple up with 3 injections in one day, so they do not have to inject for 3 months.
The fourth CGRP is an intravenous infusion that can be administered in an infusion
center or at home. This one is more inconvenient, but it is a strong drug. The small
molecule CGRP antagonists are taken by mouth in pill form. All CGRPs have been
shown to decrease the number of headaches per month.

The main goal of preventive therapy is to lessen the impact of migraines on patients’
lives by reducing how often they occur, how severe they are, and how long they last.
Preventive therapy also decreases disability and improves patients’ functioning over
time. Preventive therapy can help keep the costs for migraine care down by reducing
the need for acute treatments and allowing the patient to keep working or taking care of
their kids. Furthermore, preventive medications can make acute migraine treatments
more effective and help avoid the overuse of acute medications.

Recommended Reading

Cutaneous allodynia and aura play significant roles in CGRP-induced migraine attacks
Migraine ICYMI
Triptan non-response tied to increased migraine severity
Migraine ICYMI
Chronic migraine and multiple treatment failures predict poor response to galcanezumab
Migraine ICYMI
Sleep and migraine: What is the link?
Migraine ICYMI
High dietary potassium intake may help prevent migraine
Migraine ICYMI
Meta-analysis compares different treatments for vestibular migraine
Migraine ICYMI
Increase in monthly headache days adversely affects quality of life in migraine
Migraine ICYMI
Higher prevalence of ADHD in episodic migraine
Migraine ICYMI
Commentary: Examining Inpatient Admission, Hypothyroidism, and Vestibular Migraine, November 2023
Migraine ICYMI
Avoid adding to minority stress when treating headache in LGBTQIA+ patients
Migraine ICYMI