Article Type
Changed
Fri, 04/07/2023 - 13:11

The overnight shift in the MCU began as it does for many intensivists, by hearing about ED admissions, transfers from outside hospitals, sick floor patients, and high-risk patients in the MICU. Earlier in the day, the MICU team had admitted a 39-year-old woman with a severe asthma attack that required endotracheal intubation and mechanical ventilation in the ED for hypercarbic respiratory failure. After intubation, she had no audible air movement on chest exam, severe hypercarbic respiratory acidosis determined by an arterial blood gas, a clear chest radiograph, and negative findings on a respiratory viral panel. Her family said that she had run out of her steroid inhaler a month earlier and could not afford a refill. She had been using increasing amounts of albuterol over the past week before developing severe shortness of breath on the day of admission. The ED and MICU teams aggressively treated her with high-dose inhaled albuterol, ipratropium, and IV magnesium sulfate for bronchodilation; methylprednisolone for airway inflammation; and continuous ketamine for sedation, analgesia, and bronchodilation (Rehder KJ, et al. Respir Care. 2017;62[6]:849). Her airway pressures continued to be high despite using lung protective ventilation, so she was shifted to a permissive hypercapnia ventilation strategy using neuromuscular blockade, deep sedation, and low minute-ventilation (Laher AE, et al. J Intensive Care Med. 2018;33[9]:491).

Jonathan Zakrajsek, MS
CHEST
Jonathan Zakrajsek, MS

Two hours into the shift, the bedside nurse noted that the patient had become hypotensive. Her ventilator pressures remained stable with peak inspiratory pressures of 38-42 cm H2O, plateau pressures of 28-30 cm H2O, auto-positive end-expiratory pressure (auto-PEEP) of 10-12 cm H2O, and fractional inspiratory oxygen (FiO2) of 40%. A repeat chest radiograph showed no signs of barotrauma, but arterial blood gas values showed severe respiratory acidosis with a pH of 7.05 and a PCO2 > 100 mm Hg. Her condition stabilized when she received a continuous infusion of bicarbonate to control her acidosis and low-dose IV norepinephrine for blood pressure control. It was at that moment that the bedside nurse astutely asked whether we should consider starting ECMO for the patient, as coauthor Dr. Arun Kannappan had done for a similar patient with asthma a month earlier. Dr. Vandivier notes, “My first response was that ECMO was not needed, because our patient had stabilized, and I had taken care of many patients like this in the past. But as I considered the situation more carefully, it was clear that any further decompensation could put our patient’s life at risk by not leaving enough time to start ECMO in a controlled setting. In short, my ‘traditional’ approach left little room for error in a patient with high ventilator pressures and hemodynamic instability.”

Anun Kannappan, MD
CHEST
Anun Kannappan, MD

ECMO is a technique used to add oxygen or remove CO2 from the blood of people with different forms of respiratory failure (Fan E, et al. Intensive Care Med. 2016;2:712) that was first used by Hill and colleagues in 1966 for trauma-induced ARDS (Hill JD, et al. N Engl J Med. 1972;286:629). The ECMO circuit pumps blood from the venous system into an oxygenator that adds oxygen and removes CO2 before blood is returned to either the venous or arterial circulation (Intensive Care Med. 2016;42:712). Venovenous ECMO (vvECMO) is used in clinical scenarios where only oxygenation and/or CO2 removal is needed, whereas venoarterial ECMO (vaECMO) is reserved for situations where additional hemodynamic support is necessary. ECMO is traditionally thought of as a means to increase blood oxygenation, but it is less widely appreciated that ECMO is particularly effective at removing blood CO2. In addition to ECMO helping to normalize oxygenation or eliminate CO2, it can also be used to lower tidal volumes, decrease airway pressures, and allow “lungs to rest” with the goal of avoiding ventilator-induced lung injury (VILI).

R. William Vandivier, MD
CHEST
R. William Vandivier, MD

Standing at the bedside, it seemed to the authors that it was the right time to think about instituting a salvage therapy. But was there evidence that ECMO could improve survival? Were there clear guidelines for when to initiate ECMO, and was ECMO more effective than other salvage therapies such as inhaled volatile anesthetics?

Since McDonnell and colleagues first described the use of ECMO for a severe asthma exacerbation in 1981 (Ann Thoracic Surg. 1981;31[2]:171), about 95 articles have been published. Other than two registry studies and a recent epidemiologic study, all of these publications were case reports, case series, and reviews. Mikkelsen and colleagues (ASAIO J. 2009;55[1]:47) performed a retrospective, cohort study using the International Extracorporeal Life Support (ECLS) Organization Registry to determine whether ECMO use for status asthmaticus was associated with greater survival than the use of ECMO for other causes of respiratory failure. From 1986 through 2006, a total of 2,127 cases of respiratory failure were identified that required ECMO, including 27 for status asthmaticus and 1,233 for other causes. Their analysis showed that 83.3% of asthmatics treated with ECMO survived to hospital discharge, compared with 50.8% of people treated with ECMO for respiratory failure not due to asthma, with an odds ratio (OR) of 4.86 favoring survival of asthmatics (OR = 4.86; 95% CI, 1.65-14.31, P = .004).

Yeo and colleagues (Yeo HJ, et al. Critical Care. 2017;21:297) also used the ECLS Organization Registry to measure survival to hospital discharge, complications, and clinical factors associated with in-hospital mortality for asthmatics treated with ECMO. They included 272 people treated with ECMO for asthma between 1992 and 2016, after excluding people treated with ECMO for cardiopulmonary resuscitation or cardiac dysfunction. ECMO was associated with improvements in ventilator mechanics, including a reduction in respiratory rate, FiO2, peak inspiratory pressure, mean airway pressure, and driving pressure. Use of ECMO for status asthmaticus was also associated with an 83.5% survival to hospital discharge, similar to the study by Mikkelsen and colleagues. Hemorrhage, the most common complication, occurred in roughly a quarter of people treated with ECMO. In the multivariate analysis, age, bleeding, pre-ECMO PEEP, post-ECMO FiO2, and driving pressure were all associated with higher in-hospital mortality.

Although there are no formal criteria to guide use of ECMO for asthma exacerbations with respiratory failure, a number of physicians and a physician organization have recommended that ECMO be considered for persistently high ventilator pressures, uncontrolled respiratory acidosis, or hemodynamic instability. Because our patient qualified for ECMO based on all three suggested criteria, we consulted cardiac surgery who quickly started her on vvECMO. She remained on ECMO for 4 days until she was decannulated, extubated, and discharged home.

Despite this positive outcome, the lack of a high-quality, controlled study to help guide our decision was surprising given the ability of ECMO to efficiently remove CO2 and to decrease ventilator pressures. The lack of guidance prompted us to perform a retrospective, epidemiologic cohort study to determine whether treatment with ECMO for asthma exacerbations with respiratory failure was associated with reduced mortality, compared with people treated without ECMO (Zakrajsek JK, Chest. 2023;163[1]:38). The study included 13,714 people admitted to an ECMO-capable hospital with respiratory failure that required invasive ventilation because of an asthma exacerbation between 2010 and 2020, of which 127 were treated with ECMO and 13,587 were not. During this period, use of ECMO as a salvage therapy for severe asthma exacerbations was a rare event, but it became more common over time. With the limitation that 40% of asthma patients were transferred from an outside hospital, 74% were started on ECMO in the first 2 hospital days, and 94% were started within the first week of hospitalization. Once started, ECMO was continued for a median of 1.0 day and range of 1-49 days. Hospital mortality was 14.6% in the ECMO group versus 26.2% in the no ECMO group, which equated to an 11.6% absolute risk reduction (P = 0.03) and 52% relative risk reduction (P = 0.04) in mortality. ECMO was associated with hospital costs that were $114,000 higher per patient, compared with the no ECMO group, but did not affect intensive care unit length of stay, hospital length of stay, or time on invasive mechanical ventilation.

We were pleased that our patient had a good outcome, and were reassured by our study results. But we were left to wonder whether ECMO really was the best salvage therapy for asthma exacerbations with respiratory failure, and if it was initiated for the right indications at the best time. These are important treatment considerations that take on new urgency given that physicians are increasingly looking to ECMO as a salvage therapy for refractory asthma, and the recent FDA approval of low-flow, extracorporeal CO2 removal systems that could make CO2 removal a more available, and perhaps less expensive, strategy. Despite promising epidemiological data, it will be important that these questions are answered with well-designed clinical trials so that physicians can be armed with the knowledge needed to navigate complex clinical scenarios, and ultimately to prevent unfortunate deaths from a reversible disease.

Publications
Topics
Sections

The overnight shift in the MCU began as it does for many intensivists, by hearing about ED admissions, transfers from outside hospitals, sick floor patients, and high-risk patients in the MICU. Earlier in the day, the MICU team had admitted a 39-year-old woman with a severe asthma attack that required endotracheal intubation and mechanical ventilation in the ED for hypercarbic respiratory failure. After intubation, she had no audible air movement on chest exam, severe hypercarbic respiratory acidosis determined by an arterial blood gas, a clear chest radiograph, and negative findings on a respiratory viral panel. Her family said that she had run out of her steroid inhaler a month earlier and could not afford a refill. She had been using increasing amounts of albuterol over the past week before developing severe shortness of breath on the day of admission. The ED and MICU teams aggressively treated her with high-dose inhaled albuterol, ipratropium, and IV magnesium sulfate for bronchodilation; methylprednisolone for airway inflammation; and continuous ketamine for sedation, analgesia, and bronchodilation (Rehder KJ, et al. Respir Care. 2017;62[6]:849). Her airway pressures continued to be high despite using lung protective ventilation, so she was shifted to a permissive hypercapnia ventilation strategy using neuromuscular blockade, deep sedation, and low minute-ventilation (Laher AE, et al. J Intensive Care Med. 2018;33[9]:491).

Jonathan Zakrajsek, MS
CHEST
Jonathan Zakrajsek, MS

Two hours into the shift, the bedside nurse noted that the patient had become hypotensive. Her ventilator pressures remained stable with peak inspiratory pressures of 38-42 cm H2O, plateau pressures of 28-30 cm H2O, auto-positive end-expiratory pressure (auto-PEEP) of 10-12 cm H2O, and fractional inspiratory oxygen (FiO2) of 40%. A repeat chest radiograph showed no signs of barotrauma, but arterial blood gas values showed severe respiratory acidosis with a pH of 7.05 and a PCO2 > 100 mm Hg. Her condition stabilized when she received a continuous infusion of bicarbonate to control her acidosis and low-dose IV norepinephrine for blood pressure control. It was at that moment that the bedside nurse astutely asked whether we should consider starting ECMO for the patient, as coauthor Dr. Arun Kannappan had done for a similar patient with asthma a month earlier. Dr. Vandivier notes, “My first response was that ECMO was not needed, because our patient had stabilized, and I had taken care of many patients like this in the past. But as I considered the situation more carefully, it was clear that any further decompensation could put our patient’s life at risk by not leaving enough time to start ECMO in a controlled setting. In short, my ‘traditional’ approach left little room for error in a patient with high ventilator pressures and hemodynamic instability.”

Anun Kannappan, MD
CHEST
Anun Kannappan, MD

ECMO is a technique used to add oxygen or remove CO2 from the blood of people with different forms of respiratory failure (Fan E, et al. Intensive Care Med. 2016;2:712) that was first used by Hill and colleagues in 1966 for trauma-induced ARDS (Hill JD, et al. N Engl J Med. 1972;286:629). The ECMO circuit pumps blood from the venous system into an oxygenator that adds oxygen and removes CO2 before blood is returned to either the venous or arterial circulation (Intensive Care Med. 2016;42:712). Venovenous ECMO (vvECMO) is used in clinical scenarios where only oxygenation and/or CO2 removal is needed, whereas venoarterial ECMO (vaECMO) is reserved for situations where additional hemodynamic support is necessary. ECMO is traditionally thought of as a means to increase blood oxygenation, but it is less widely appreciated that ECMO is particularly effective at removing blood CO2. In addition to ECMO helping to normalize oxygenation or eliminate CO2, it can also be used to lower tidal volumes, decrease airway pressures, and allow “lungs to rest” with the goal of avoiding ventilator-induced lung injury (VILI).

R. William Vandivier, MD
CHEST
R. William Vandivier, MD

Standing at the bedside, it seemed to the authors that it was the right time to think about instituting a salvage therapy. But was there evidence that ECMO could improve survival? Were there clear guidelines for when to initiate ECMO, and was ECMO more effective than other salvage therapies such as inhaled volatile anesthetics?

Since McDonnell and colleagues first described the use of ECMO for a severe asthma exacerbation in 1981 (Ann Thoracic Surg. 1981;31[2]:171), about 95 articles have been published. Other than two registry studies and a recent epidemiologic study, all of these publications were case reports, case series, and reviews. Mikkelsen and colleagues (ASAIO J. 2009;55[1]:47) performed a retrospective, cohort study using the International Extracorporeal Life Support (ECLS) Organization Registry to determine whether ECMO use for status asthmaticus was associated with greater survival than the use of ECMO for other causes of respiratory failure. From 1986 through 2006, a total of 2,127 cases of respiratory failure were identified that required ECMO, including 27 for status asthmaticus and 1,233 for other causes. Their analysis showed that 83.3% of asthmatics treated with ECMO survived to hospital discharge, compared with 50.8% of people treated with ECMO for respiratory failure not due to asthma, with an odds ratio (OR) of 4.86 favoring survival of asthmatics (OR = 4.86; 95% CI, 1.65-14.31, P = .004).

Yeo and colleagues (Yeo HJ, et al. Critical Care. 2017;21:297) also used the ECLS Organization Registry to measure survival to hospital discharge, complications, and clinical factors associated with in-hospital mortality for asthmatics treated with ECMO. They included 272 people treated with ECMO for asthma between 1992 and 2016, after excluding people treated with ECMO for cardiopulmonary resuscitation or cardiac dysfunction. ECMO was associated with improvements in ventilator mechanics, including a reduction in respiratory rate, FiO2, peak inspiratory pressure, mean airway pressure, and driving pressure. Use of ECMO for status asthmaticus was also associated with an 83.5% survival to hospital discharge, similar to the study by Mikkelsen and colleagues. Hemorrhage, the most common complication, occurred in roughly a quarter of people treated with ECMO. In the multivariate analysis, age, bleeding, pre-ECMO PEEP, post-ECMO FiO2, and driving pressure were all associated with higher in-hospital mortality.

Although there are no formal criteria to guide use of ECMO for asthma exacerbations with respiratory failure, a number of physicians and a physician organization have recommended that ECMO be considered for persistently high ventilator pressures, uncontrolled respiratory acidosis, or hemodynamic instability. Because our patient qualified for ECMO based on all three suggested criteria, we consulted cardiac surgery who quickly started her on vvECMO. She remained on ECMO for 4 days until she was decannulated, extubated, and discharged home.

Despite this positive outcome, the lack of a high-quality, controlled study to help guide our decision was surprising given the ability of ECMO to efficiently remove CO2 and to decrease ventilator pressures. The lack of guidance prompted us to perform a retrospective, epidemiologic cohort study to determine whether treatment with ECMO for asthma exacerbations with respiratory failure was associated with reduced mortality, compared with people treated without ECMO (Zakrajsek JK, Chest. 2023;163[1]:38). The study included 13,714 people admitted to an ECMO-capable hospital with respiratory failure that required invasive ventilation because of an asthma exacerbation between 2010 and 2020, of which 127 were treated with ECMO and 13,587 were not. During this period, use of ECMO as a salvage therapy for severe asthma exacerbations was a rare event, but it became more common over time. With the limitation that 40% of asthma patients were transferred from an outside hospital, 74% were started on ECMO in the first 2 hospital days, and 94% were started within the first week of hospitalization. Once started, ECMO was continued for a median of 1.0 day and range of 1-49 days. Hospital mortality was 14.6% in the ECMO group versus 26.2% in the no ECMO group, which equated to an 11.6% absolute risk reduction (P = 0.03) and 52% relative risk reduction (P = 0.04) in mortality. ECMO was associated with hospital costs that were $114,000 higher per patient, compared with the no ECMO group, but did not affect intensive care unit length of stay, hospital length of stay, or time on invasive mechanical ventilation.

We were pleased that our patient had a good outcome, and were reassured by our study results. But we were left to wonder whether ECMO really was the best salvage therapy for asthma exacerbations with respiratory failure, and if it was initiated for the right indications at the best time. These are important treatment considerations that take on new urgency given that physicians are increasingly looking to ECMO as a salvage therapy for refractory asthma, and the recent FDA approval of low-flow, extracorporeal CO2 removal systems that could make CO2 removal a more available, and perhaps less expensive, strategy. Despite promising epidemiological data, it will be important that these questions are answered with well-designed clinical trials so that physicians can be armed with the knowledge needed to navigate complex clinical scenarios, and ultimately to prevent unfortunate deaths from a reversible disease.

The overnight shift in the MCU began as it does for many intensivists, by hearing about ED admissions, transfers from outside hospitals, sick floor patients, and high-risk patients in the MICU. Earlier in the day, the MICU team had admitted a 39-year-old woman with a severe asthma attack that required endotracheal intubation and mechanical ventilation in the ED for hypercarbic respiratory failure. After intubation, she had no audible air movement on chest exam, severe hypercarbic respiratory acidosis determined by an arterial blood gas, a clear chest radiograph, and negative findings on a respiratory viral panel. Her family said that she had run out of her steroid inhaler a month earlier and could not afford a refill. She had been using increasing amounts of albuterol over the past week before developing severe shortness of breath on the day of admission. The ED and MICU teams aggressively treated her with high-dose inhaled albuterol, ipratropium, and IV magnesium sulfate for bronchodilation; methylprednisolone for airway inflammation; and continuous ketamine for sedation, analgesia, and bronchodilation (Rehder KJ, et al. Respir Care. 2017;62[6]:849). Her airway pressures continued to be high despite using lung protective ventilation, so she was shifted to a permissive hypercapnia ventilation strategy using neuromuscular blockade, deep sedation, and low minute-ventilation (Laher AE, et al. J Intensive Care Med. 2018;33[9]:491).

Jonathan Zakrajsek, MS
CHEST
Jonathan Zakrajsek, MS

Two hours into the shift, the bedside nurse noted that the patient had become hypotensive. Her ventilator pressures remained stable with peak inspiratory pressures of 38-42 cm H2O, plateau pressures of 28-30 cm H2O, auto-positive end-expiratory pressure (auto-PEEP) of 10-12 cm H2O, and fractional inspiratory oxygen (FiO2) of 40%. A repeat chest radiograph showed no signs of barotrauma, but arterial blood gas values showed severe respiratory acidosis with a pH of 7.05 and a PCO2 > 100 mm Hg. Her condition stabilized when she received a continuous infusion of bicarbonate to control her acidosis and low-dose IV norepinephrine for blood pressure control. It was at that moment that the bedside nurse astutely asked whether we should consider starting ECMO for the patient, as coauthor Dr. Arun Kannappan had done for a similar patient with asthma a month earlier. Dr. Vandivier notes, “My first response was that ECMO was not needed, because our patient had stabilized, and I had taken care of many patients like this in the past. But as I considered the situation more carefully, it was clear that any further decompensation could put our patient’s life at risk by not leaving enough time to start ECMO in a controlled setting. In short, my ‘traditional’ approach left little room for error in a patient with high ventilator pressures and hemodynamic instability.”

Anun Kannappan, MD
CHEST
Anun Kannappan, MD

ECMO is a technique used to add oxygen or remove CO2 from the blood of people with different forms of respiratory failure (Fan E, et al. Intensive Care Med. 2016;2:712) that was first used by Hill and colleagues in 1966 for trauma-induced ARDS (Hill JD, et al. N Engl J Med. 1972;286:629). The ECMO circuit pumps blood from the venous system into an oxygenator that adds oxygen and removes CO2 before blood is returned to either the venous or arterial circulation (Intensive Care Med. 2016;42:712). Venovenous ECMO (vvECMO) is used in clinical scenarios where only oxygenation and/or CO2 removal is needed, whereas venoarterial ECMO (vaECMO) is reserved for situations where additional hemodynamic support is necessary. ECMO is traditionally thought of as a means to increase blood oxygenation, but it is less widely appreciated that ECMO is particularly effective at removing blood CO2. In addition to ECMO helping to normalize oxygenation or eliminate CO2, it can also be used to lower tidal volumes, decrease airway pressures, and allow “lungs to rest” with the goal of avoiding ventilator-induced lung injury (VILI).

R. William Vandivier, MD
CHEST
R. William Vandivier, MD

Standing at the bedside, it seemed to the authors that it was the right time to think about instituting a salvage therapy. But was there evidence that ECMO could improve survival? Were there clear guidelines for when to initiate ECMO, and was ECMO more effective than other salvage therapies such as inhaled volatile anesthetics?

Since McDonnell and colleagues first described the use of ECMO for a severe asthma exacerbation in 1981 (Ann Thoracic Surg. 1981;31[2]:171), about 95 articles have been published. Other than two registry studies and a recent epidemiologic study, all of these publications were case reports, case series, and reviews. Mikkelsen and colleagues (ASAIO J. 2009;55[1]:47) performed a retrospective, cohort study using the International Extracorporeal Life Support (ECLS) Organization Registry to determine whether ECMO use for status asthmaticus was associated with greater survival than the use of ECMO for other causes of respiratory failure. From 1986 through 2006, a total of 2,127 cases of respiratory failure were identified that required ECMO, including 27 for status asthmaticus and 1,233 for other causes. Their analysis showed that 83.3% of asthmatics treated with ECMO survived to hospital discharge, compared with 50.8% of people treated with ECMO for respiratory failure not due to asthma, with an odds ratio (OR) of 4.86 favoring survival of asthmatics (OR = 4.86; 95% CI, 1.65-14.31, P = .004).

Yeo and colleagues (Yeo HJ, et al. Critical Care. 2017;21:297) also used the ECLS Organization Registry to measure survival to hospital discharge, complications, and clinical factors associated with in-hospital mortality for asthmatics treated with ECMO. They included 272 people treated with ECMO for asthma between 1992 and 2016, after excluding people treated with ECMO for cardiopulmonary resuscitation or cardiac dysfunction. ECMO was associated with improvements in ventilator mechanics, including a reduction in respiratory rate, FiO2, peak inspiratory pressure, mean airway pressure, and driving pressure. Use of ECMO for status asthmaticus was also associated with an 83.5% survival to hospital discharge, similar to the study by Mikkelsen and colleagues. Hemorrhage, the most common complication, occurred in roughly a quarter of people treated with ECMO. In the multivariate analysis, age, bleeding, pre-ECMO PEEP, post-ECMO FiO2, and driving pressure were all associated with higher in-hospital mortality.

Although there are no formal criteria to guide use of ECMO for asthma exacerbations with respiratory failure, a number of physicians and a physician organization have recommended that ECMO be considered for persistently high ventilator pressures, uncontrolled respiratory acidosis, or hemodynamic instability. Because our patient qualified for ECMO based on all three suggested criteria, we consulted cardiac surgery who quickly started her on vvECMO. She remained on ECMO for 4 days until she was decannulated, extubated, and discharged home.

Despite this positive outcome, the lack of a high-quality, controlled study to help guide our decision was surprising given the ability of ECMO to efficiently remove CO2 and to decrease ventilator pressures. The lack of guidance prompted us to perform a retrospective, epidemiologic cohort study to determine whether treatment with ECMO for asthma exacerbations with respiratory failure was associated with reduced mortality, compared with people treated without ECMO (Zakrajsek JK, Chest. 2023;163[1]:38). The study included 13,714 people admitted to an ECMO-capable hospital with respiratory failure that required invasive ventilation because of an asthma exacerbation between 2010 and 2020, of which 127 were treated with ECMO and 13,587 were not. During this period, use of ECMO as a salvage therapy for severe asthma exacerbations was a rare event, but it became more common over time. With the limitation that 40% of asthma patients were transferred from an outside hospital, 74% were started on ECMO in the first 2 hospital days, and 94% were started within the first week of hospitalization. Once started, ECMO was continued for a median of 1.0 day and range of 1-49 days. Hospital mortality was 14.6% in the ECMO group versus 26.2% in the no ECMO group, which equated to an 11.6% absolute risk reduction (P = 0.03) and 52% relative risk reduction (P = 0.04) in mortality. ECMO was associated with hospital costs that were $114,000 higher per patient, compared with the no ECMO group, but did not affect intensive care unit length of stay, hospital length of stay, or time on invasive mechanical ventilation.

We were pleased that our patient had a good outcome, and were reassured by our study results. But we were left to wonder whether ECMO really was the best salvage therapy for asthma exacerbations with respiratory failure, and if it was initiated for the right indications at the best time. These are important treatment considerations that take on new urgency given that physicians are increasingly looking to ECMO as a salvage therapy for refractory asthma, and the recent FDA approval of low-flow, extracorporeal CO2 removal systems that could make CO2 removal a more available, and perhaps less expensive, strategy. Despite promising epidemiological data, it will be important that these questions are answered with well-designed clinical trials so that physicians can be armed with the knowledge needed to navigate complex clinical scenarios, and ultimately to prevent unfortunate deaths from a reversible disease.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article