Article Type
Changed
Tue, 04/23/2024 - 15:21

 

Here’s a new direction for smartphones in healthcare. 

Researchers from the National Institute of Standards and Technology (NIST), Boulder, Colorado, say a smartphone compass could be used to analyze biomarkers in body fluids — blood, sweat, urine, or saliva — to monitor or diagnose disease.

“We’re just at this point demonstrating this new way of sensing that we hope [will be] very accessible and very portable,” said Gary Zabow, PhD, a group leader in the applied physics division at NIST who supervised the research. 

In a proof-of-concept study, the researchers measured glucose levels in sangria, pinot grigio, and champagne. The detection limit reached micromolar concentrations — on par with or better than some widely used glucose sensors, such as continuous glucose monitors. They also accurately measured the pH levels of coffee, orange juice, and root beer.

More tests are needed to confirm the method works in biological fluids, so it could be a while before it’s available for clinical or commercial use. 

Still, the prospect is “exciting,” said Aydogan Ozcan, PhD, a bioengineering professor at the University of California, Los Angeles, who was not involved in the study. “It might enable new capabilities for advanced sensing applications in field settings or even at home.”

The advance builds on growing research using smartphones to put powerful medical devices in patients’ hands. A new AI-powered app can use a smartphone camera to detect skin cancer, while other apps administer cognitive tests to detect dementia. Smartphone cameras can even be harnessed for “advanced optical microscopes and sensors to the level where we could even see and detect individual DNA molecules with inexpensive optical attachments,” Dr. Ozcan said. More than six billion people worldwide own a smartphone.

The compass inside smartphones is a magnetometer — it measures magnetic fields. Normally it detects the earth’s magnetic fields, but it can also detect small, nearby magnets and changes in those magnets’ positions. 

The researchers embedded a small magnet inside a strip of “smart hydrogel — a piece of material that expands or contracts” when immersed in a solution, said Dr. Zabow.

As the hydrogel gets bigger or smaller, it moves the magnet, Dr. Zabow explained. For example, if the hydrogel is designed to expand when the solution is acidic or contract when it’s basic, it can move the magnet closer or farther from the phone’s magnetometer, providing an indicator of pH. For glucose, the hydrogel expands or contracts depending on the concentration of sugar in the liquid.

With some calibration and coding to translate that reading into a number, “you can effectively read out glucose or pH,” Dr. Zabow said.

Only a small strip of hydrogel is needed, “like a pH test strip that you use for a pool,” said first study author Mark Ferris, PhD, a postdoctoral researcher at NIST. 

Like a pool pH test strip, this test is meant to be “easy to use, and at that kind of price,” Dr. Ferris said. “It’s supposed to be something that’s cheap and disposable.” Each pH hydrogel strip is about 3 cents, and glucose strips are 16 cents, Dr. Ferris estimated. In bulk, those prices could go down.

Next the team plans to test the strips with biological fluids. But complex fluids like blood could pose a challenge, as other molecules present could react with the strip and affect the results. “It may be that you need to tweak the chemistry of the hydrogel to make sure it is really specific to one biomolecule and there is no interference from other biomolecules,” Dr. Zabow said.

The technique could be adapted to detect other biomarkers or molecules, the researchers said. It could also be used to check for chemical contaminants in tap, lake, or stream water. 
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Here’s a new direction for smartphones in healthcare. 

Researchers from the National Institute of Standards and Technology (NIST), Boulder, Colorado, say a smartphone compass could be used to analyze biomarkers in body fluids — blood, sweat, urine, or saliva — to monitor or diagnose disease.

“We’re just at this point demonstrating this new way of sensing that we hope [will be] very accessible and very portable,” said Gary Zabow, PhD, a group leader in the applied physics division at NIST who supervised the research. 

In a proof-of-concept study, the researchers measured glucose levels in sangria, pinot grigio, and champagne. The detection limit reached micromolar concentrations — on par with or better than some widely used glucose sensors, such as continuous glucose monitors. They also accurately measured the pH levels of coffee, orange juice, and root beer.

More tests are needed to confirm the method works in biological fluids, so it could be a while before it’s available for clinical or commercial use. 

Still, the prospect is “exciting,” said Aydogan Ozcan, PhD, a bioengineering professor at the University of California, Los Angeles, who was not involved in the study. “It might enable new capabilities for advanced sensing applications in field settings or even at home.”

The advance builds on growing research using smartphones to put powerful medical devices in patients’ hands. A new AI-powered app can use a smartphone camera to detect skin cancer, while other apps administer cognitive tests to detect dementia. Smartphone cameras can even be harnessed for “advanced optical microscopes and sensors to the level where we could even see and detect individual DNA molecules with inexpensive optical attachments,” Dr. Ozcan said. More than six billion people worldwide own a smartphone.

The compass inside smartphones is a magnetometer — it measures magnetic fields. Normally it detects the earth’s magnetic fields, but it can also detect small, nearby magnets and changes in those magnets’ positions. 

The researchers embedded a small magnet inside a strip of “smart hydrogel — a piece of material that expands or contracts” when immersed in a solution, said Dr. Zabow.

As the hydrogel gets bigger or smaller, it moves the magnet, Dr. Zabow explained. For example, if the hydrogel is designed to expand when the solution is acidic or contract when it’s basic, it can move the magnet closer or farther from the phone’s magnetometer, providing an indicator of pH. For glucose, the hydrogel expands or contracts depending on the concentration of sugar in the liquid.

With some calibration and coding to translate that reading into a number, “you can effectively read out glucose or pH,” Dr. Zabow said.

Only a small strip of hydrogel is needed, “like a pH test strip that you use for a pool,” said first study author Mark Ferris, PhD, a postdoctoral researcher at NIST. 

Like a pool pH test strip, this test is meant to be “easy to use, and at that kind of price,” Dr. Ferris said. “It’s supposed to be something that’s cheap and disposable.” Each pH hydrogel strip is about 3 cents, and glucose strips are 16 cents, Dr. Ferris estimated. In bulk, those prices could go down.

Next the team plans to test the strips with biological fluids. But complex fluids like blood could pose a challenge, as other molecules present could react with the strip and affect the results. “It may be that you need to tweak the chemistry of the hydrogel to make sure it is really specific to one biomolecule and there is no interference from other biomolecules,” Dr. Zabow said.

The technique could be adapted to detect other biomarkers or molecules, the researchers said. It could also be used to check for chemical contaminants in tap, lake, or stream water. 
 

A version of this article appeared on Medscape.com.

 

Here’s a new direction for smartphones in healthcare. 

Researchers from the National Institute of Standards and Technology (NIST), Boulder, Colorado, say a smartphone compass could be used to analyze biomarkers in body fluids — blood, sweat, urine, or saliva — to monitor or diagnose disease.

“We’re just at this point demonstrating this new way of sensing that we hope [will be] very accessible and very portable,” said Gary Zabow, PhD, a group leader in the applied physics division at NIST who supervised the research. 

In a proof-of-concept study, the researchers measured glucose levels in sangria, pinot grigio, and champagne. The detection limit reached micromolar concentrations — on par with or better than some widely used glucose sensors, such as continuous glucose monitors. They also accurately measured the pH levels of coffee, orange juice, and root beer.

More tests are needed to confirm the method works in biological fluids, so it could be a while before it’s available for clinical or commercial use. 

Still, the prospect is “exciting,” said Aydogan Ozcan, PhD, a bioengineering professor at the University of California, Los Angeles, who was not involved in the study. “It might enable new capabilities for advanced sensing applications in field settings or even at home.”

The advance builds on growing research using smartphones to put powerful medical devices in patients’ hands. A new AI-powered app can use a smartphone camera to detect skin cancer, while other apps administer cognitive tests to detect dementia. Smartphone cameras can even be harnessed for “advanced optical microscopes and sensors to the level where we could even see and detect individual DNA molecules with inexpensive optical attachments,” Dr. Ozcan said. More than six billion people worldwide own a smartphone.

The compass inside smartphones is a magnetometer — it measures magnetic fields. Normally it detects the earth’s magnetic fields, but it can also detect small, nearby magnets and changes in those magnets’ positions. 

The researchers embedded a small magnet inside a strip of “smart hydrogel — a piece of material that expands or contracts” when immersed in a solution, said Dr. Zabow.

As the hydrogel gets bigger or smaller, it moves the magnet, Dr. Zabow explained. For example, if the hydrogel is designed to expand when the solution is acidic or contract when it’s basic, it can move the magnet closer or farther from the phone’s magnetometer, providing an indicator of pH. For glucose, the hydrogel expands or contracts depending on the concentration of sugar in the liquid.

With some calibration and coding to translate that reading into a number, “you can effectively read out glucose or pH,” Dr. Zabow said.

Only a small strip of hydrogel is needed, “like a pH test strip that you use for a pool,” said first study author Mark Ferris, PhD, a postdoctoral researcher at NIST. 

Like a pool pH test strip, this test is meant to be “easy to use, and at that kind of price,” Dr. Ferris said. “It’s supposed to be something that’s cheap and disposable.” Each pH hydrogel strip is about 3 cents, and glucose strips are 16 cents, Dr. Ferris estimated. In bulk, those prices could go down.

Next the team plans to test the strips with biological fluids. But complex fluids like blood could pose a challenge, as other molecules present could react with the strip and affect the results. “It may be that you need to tweak the chemistry of the hydrogel to make sure it is really specific to one biomolecule and there is no interference from other biomolecules,” Dr. Zabow said.

The technique could be adapted to detect other biomarkers or molecules, the researchers said. It could also be used to check for chemical contaminants in tap, lake, or stream water. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167752</fileName> <TBEID>0C04FA7B.SIG</TBEID> <TBUniqueIdentifier>MD_0C04FA7B</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240418T162310</QCDate> <firstPublished>20240418T162325</firstPublished> <LastPublished>20240418T162326</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240418T162325</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Christina Szalinski</byline> <bylineText>CHRISTINA SZALINSKI</bylineText> <bylineFull>CHRISTINA SZALINSKI</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Researchers from the National Institute of Standards and Technology (NIST), Boulder, Colorado, say a smartphone compass could be used to analyze biomarkers in b</metaDescription> <articlePDF/> <teaserImage/> <teaser>Proof-of-concept study able to measure glucose to micromolar concentration, similar to CGMs, researchers say.</teaser> <title>The Fascinating Way to Measure Glucose With a Phone’s Compass</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">34</term> <term>5</term> <term>21</term> <term>15</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">205</term> <term>261</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>The Fascinating Way to Measure Glucose With a Phone’s Compass</title> <deck/> </itemMeta> <itemContent> <p>Here’s a new direction for smartphones in healthcare. </p> <p><span class="tag metaDescription">Researchers from the National Institute of Standards and Technology (NIST), Boulder, Colorado, say a smartphone compass could be used to analyze biomarkers in body fluids — blood, sweat, urine, or saliva — to monitor or diagnose disease.</span><br/><br/>“We’re just at this point demonstrating this new way of sensing that we hope [will be] very accessible and very portable,” said Gary Zabow, PhD, a group leader in the applied physics division at NIST who supervised the research. <br/><br/>In a proof-of-concept <span class="Hyperlink"><a href="https://www.nature.com/articles/s41467-024-47073-2">study</a></span>, the researchers measured glucose levels in sangria, pinot grigio, and champagne. The detection limit reached micromolar concentrations — on par with or better than some widely used glucose sensors, such as continuous glucose monitors. They also accurately measured the pH levels of coffee, orange juice, and root beer.<br/><br/>More tests are needed to confirm the method works in biological fluids, so it could be a while before it’s available for clinical or commercial use. <br/><br/>Still, the prospect is “exciting,” said Aydogan Ozcan, PhD, a bioengineering professor at the University of California, Los Angeles, who was not involved in the study. “It might enable new capabilities for advanced sensing applications in field settings or even at home.”<br/><br/>The advance builds on growing <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676376/">research</a></span> using smartphones to put powerful medical devices in patients’ hands. A new AI-powered app can use a smartphone camera to detect <span class="Hyperlink"><a href="https://www.nature.com/articles/s41746-023-00831-w">skin cancer</a></span>, while other apps administer cognitive tests to detect <span class="Hyperlink"><a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2816782?utm_source=For_The_Media&amp;utm_medium=referral&amp;utm_campaign=ftm_links&amp;utm_term=040124">dementia</a></span>. Smartphone cameras can even be harnessed for “advanced optical microscopes and sensors to the level where we could even see and detect individual DNA molecules with inexpensive optical attachments,” Dr. Ozcan said. More than <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685243/">six billion</a></span> people worldwide own a smartphone.<br/><br/>The compass inside smartphones is a magnetometer — it measures magnetic fields. Normally it detects the earth’s magnetic fields, but it can also detect small, nearby magnets and changes in those magnets’ positions. <br/><br/>The researchers embedded a small magnet inside a strip of “smart hydrogel — a piece of material that expands or contracts” when immersed in a solution, said Dr. Zabow.<br/><br/>As the hydrogel gets bigger or smaller, it moves the magnet, Dr. Zabow explained. For example, if the hydrogel is designed to expand when the solution is acidic or contract when it’s basic, it can move the magnet closer or farther from the phone’s magnetometer, providing an indicator of pH. For glucose, the hydrogel expands or contracts depending on the concentration of sugar in the liquid.<br/><br/>With some calibration and coding to translate that reading into a number, “you can effectively read out glucose or pH,” Dr. Zabow said.<br/><br/>Only a small strip of hydrogel is needed, “like a pH test strip that you use for a pool,” said first study author Mark Ferris, PhD, a postdoctoral researcher at NIST. <br/><br/>Like a pool pH test strip, this test is meant to be “easy to use, and at that kind of price,” Dr. Ferris said. “It’s supposed to be something that’s cheap and disposable.” Each pH hydrogel strip is about 3 cents, and glucose strips are 16 cents, Dr. Ferris estimated. In bulk, those prices could go down.<br/><br/>Next the team plans to test the strips with biological fluids. But complex fluids like blood could pose a challenge, as other molecules present could react with the strip and affect the results. “It may be that you need to tweak the chemistry of the hydrogel to make sure it is really specific to one biomolecule and there is no interference from other biomolecules,” Dr. Zabow said.<br/><br/>The technique could be adapted to detect other biomarkers or molecules, the researchers said. It could also be used to check for chemical contaminants in tap, lake, or stream water. <br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/fascinating-way-measure-glucose-phones-compass-2024a10007ee">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article