User login
study was published online in Alzheimer’s Research & Therapy.
, in what authors said is the first randomized controlled trial of intensive lifestyle modification for patients diagnosed with Alzheimer’s disease. Results could help physicians address patients at risk of Alzheimer’s disease who reject relevant testing because they believe nothing can forestall development of the disease, the authors added. TheAlthough technology allows probable Alzheimer’s disease diagnosis years before clinical symptoms appear, wrote investigators led by Dean Ornish, MD, of the Preventive Medicine Research Institute in Sausalito, California, “many people do not want to know if they are likely to get Alzheimer’s disease if they do not believe they can do anything about it. If intensive lifestyle changes may cause improvement in cognition and function in MCI or early dementia due to Alzheimer’s disease, then it is reasonable to think that these lifestyle changes may also help to prevent MCI or early dementia due to Alzheimer’s disease.” As with cardiovascular disease, the authors added, preventing Alzheimer’s disease might require less intensive lifestyle modifications than treating it.
Study Methodology
Investigators randomized 26 patients with Montréal Cognitive Assessment scores of 18 or higher to an intensive intervention involving nutrition, exercise, and stress management techniques. To improve adherence, the protocol included participants’ spouses or caregivers.
Two patients, both in the treatment group, withdrew over logistical concerns.
After 20 weeks, treated patients exhibited statistically significant differences in several key measures versus a 25-patient usual-care control group. Scores that improved in the intervention group and worsened among controls included the following:
- Clinical Global Impression of Change (CGIC, P = .001)
- Clinical Dementia Rating-Global (CDR-Global, -0.04, P = .037)
- Clinical Dementia Rating Sum of Boxes (CDR-SB, +0.08, P = .032)
- Alzheimer’s Disease Assessment Scale (ADAS-Cog, -1.01, P = .053)
The validity of these changes in cognition and function, and possible biological mechanisms of improvement, were supported by statistically significant improvements in several clinically relevant biomarkers versus controls, the investigators wrote. These biomarkers included Abeta42/40 ratio, HbA1c, insulin, and glycoprotein acetylation. “This information may also help in predicting which patients are more likely to show improvements in cognition and function by making these intensive lifestyle changes,” the authors added.
In primary analysis, the degree of lifestyle changes required to stop progression of MCI ranged from 71.4% (ADAS-Cog) to 120.6% (CDR-SB). “This helps to explain why other studies of less intensive lifestyle interventions may not have been sufficient to stop deterioration or improve cognition and function,” the authors wrote. Moreover, they added, variable adherence might explain why in the intervention group, 10 patients improved their CGIC scores, while the rest held static or worsened.
Caveats
Alzheimer’s Association Vice President of Medical and Scientific Relations Heather M. Snyder, PhD, said, “This is an interesting paper in an important area of research and adds to the growing body of literature on how behavior or lifestyle may be related to cognitive decline. However, because this is a small phase 2 study, it is important for this or similar work to be done in larger, more diverse populations and over a longer duration of the intervention.” She was not involved with the study but was asked to comment.
Investigators chose the 20-week duration, they explained, because control-group patients likely would not refrain from trying the lifestyle intervention beyond that timeframe. Perhaps more importantly, challenges created by the COVID-19 pandemic required researchers to cut planned enrollment in half, eliminate planned MRI and amyloid PET scans, and reduce the number of cognition and function tests.
Such shortcomings limit what neurologists can glean and generalize from the study, said Dr. Snyder. “That said,” she added, “it does demonstrate the potential of an intensive behavior/lifestyle intervention, and the importance of this sort of research in Alzheimer’s and dementia.” Although the complexity of the interventions makes these studies challenging, she added, “it is important that we continue to advance larger, longer studies in more representative study populations to develop specific recommendations.”
Further Study
The Alzheimer’s Association’s U.S. POINTER study is the first large-scale study in the United States to explore the impact of comprehensive lifestyle changes on cognitive health. About 2000 older adults at risk for cognitive decline are participating, from diverse locations across the country. More than 25% of participants come from groups typically underrepresented in dementia research, said Dr. Snyder. Initial results are expected in summer 2025.
Future research also should explore reasons (beyond adherence) why some patients respond to lifestyle interventions better than others, and the potential synergy of lifestyle changes with drug therapies, wrote Dr. Ornish and colleagues.
“For now,” said Dr. Snyder, “there is an opportunity for providers to incorporate or expand messaging with their patients and families about the habits that they can incorporate into their daily lives. The Alzheimer’s Association offers 10 Healthy Habits for Your Brain — everyday actions that can make a difference for your brain health.”
Investigators received study funding from more than two dozen charitable foundations and other organizations. Dr. Snyder is a full-time employee of the Alzheimer’s Association and in this role, serves on the leadership team of the U.S. POINTER study. Her partner works for Abbott in an unrelated field.
study was published online in Alzheimer’s Research & Therapy.
, in what authors said is the first randomized controlled trial of intensive lifestyle modification for patients diagnosed with Alzheimer’s disease. Results could help physicians address patients at risk of Alzheimer’s disease who reject relevant testing because they believe nothing can forestall development of the disease, the authors added. TheAlthough technology allows probable Alzheimer’s disease diagnosis years before clinical symptoms appear, wrote investigators led by Dean Ornish, MD, of the Preventive Medicine Research Institute in Sausalito, California, “many people do not want to know if they are likely to get Alzheimer’s disease if they do not believe they can do anything about it. If intensive lifestyle changes may cause improvement in cognition and function in MCI or early dementia due to Alzheimer’s disease, then it is reasonable to think that these lifestyle changes may also help to prevent MCI or early dementia due to Alzheimer’s disease.” As with cardiovascular disease, the authors added, preventing Alzheimer’s disease might require less intensive lifestyle modifications than treating it.
Study Methodology
Investigators randomized 26 patients with Montréal Cognitive Assessment scores of 18 or higher to an intensive intervention involving nutrition, exercise, and stress management techniques. To improve adherence, the protocol included participants’ spouses or caregivers.
Two patients, both in the treatment group, withdrew over logistical concerns.
After 20 weeks, treated patients exhibited statistically significant differences in several key measures versus a 25-patient usual-care control group. Scores that improved in the intervention group and worsened among controls included the following:
- Clinical Global Impression of Change (CGIC, P = .001)
- Clinical Dementia Rating-Global (CDR-Global, -0.04, P = .037)
- Clinical Dementia Rating Sum of Boxes (CDR-SB, +0.08, P = .032)
- Alzheimer’s Disease Assessment Scale (ADAS-Cog, -1.01, P = .053)
The validity of these changes in cognition and function, and possible biological mechanisms of improvement, were supported by statistically significant improvements in several clinically relevant biomarkers versus controls, the investigators wrote. These biomarkers included Abeta42/40 ratio, HbA1c, insulin, and glycoprotein acetylation. “This information may also help in predicting which patients are more likely to show improvements in cognition and function by making these intensive lifestyle changes,” the authors added.
In primary analysis, the degree of lifestyle changes required to stop progression of MCI ranged from 71.4% (ADAS-Cog) to 120.6% (CDR-SB). “This helps to explain why other studies of less intensive lifestyle interventions may not have been sufficient to stop deterioration or improve cognition and function,” the authors wrote. Moreover, they added, variable adherence might explain why in the intervention group, 10 patients improved their CGIC scores, while the rest held static or worsened.
Caveats
Alzheimer’s Association Vice President of Medical and Scientific Relations Heather M. Snyder, PhD, said, “This is an interesting paper in an important area of research and adds to the growing body of literature on how behavior or lifestyle may be related to cognitive decline. However, because this is a small phase 2 study, it is important for this or similar work to be done in larger, more diverse populations and over a longer duration of the intervention.” She was not involved with the study but was asked to comment.
Investigators chose the 20-week duration, they explained, because control-group patients likely would not refrain from trying the lifestyle intervention beyond that timeframe. Perhaps more importantly, challenges created by the COVID-19 pandemic required researchers to cut planned enrollment in half, eliminate planned MRI and amyloid PET scans, and reduce the number of cognition and function tests.
Such shortcomings limit what neurologists can glean and generalize from the study, said Dr. Snyder. “That said,” she added, “it does demonstrate the potential of an intensive behavior/lifestyle intervention, and the importance of this sort of research in Alzheimer’s and dementia.” Although the complexity of the interventions makes these studies challenging, she added, “it is important that we continue to advance larger, longer studies in more representative study populations to develop specific recommendations.”
Further Study
The Alzheimer’s Association’s U.S. POINTER study is the first large-scale study in the United States to explore the impact of comprehensive lifestyle changes on cognitive health. About 2000 older adults at risk for cognitive decline are participating, from diverse locations across the country. More than 25% of participants come from groups typically underrepresented in dementia research, said Dr. Snyder. Initial results are expected in summer 2025.
Future research also should explore reasons (beyond adherence) why some patients respond to lifestyle interventions better than others, and the potential synergy of lifestyle changes with drug therapies, wrote Dr. Ornish and colleagues.
“For now,” said Dr. Snyder, “there is an opportunity for providers to incorporate or expand messaging with their patients and families about the habits that they can incorporate into their daily lives. The Alzheimer’s Association offers 10 Healthy Habits for Your Brain — everyday actions that can make a difference for your brain health.”
Investigators received study funding from more than two dozen charitable foundations and other organizations. Dr. Snyder is a full-time employee of the Alzheimer’s Association and in this role, serves on the leadership team of the U.S. POINTER study. Her partner works for Abbott in an unrelated field.
study was published online in Alzheimer’s Research & Therapy.
, in what authors said is the first randomized controlled trial of intensive lifestyle modification for patients diagnosed with Alzheimer’s disease. Results could help physicians address patients at risk of Alzheimer’s disease who reject relevant testing because they believe nothing can forestall development of the disease, the authors added. TheAlthough technology allows probable Alzheimer’s disease diagnosis years before clinical symptoms appear, wrote investigators led by Dean Ornish, MD, of the Preventive Medicine Research Institute in Sausalito, California, “many people do not want to know if they are likely to get Alzheimer’s disease if they do not believe they can do anything about it. If intensive lifestyle changes may cause improvement in cognition and function in MCI or early dementia due to Alzheimer’s disease, then it is reasonable to think that these lifestyle changes may also help to prevent MCI or early dementia due to Alzheimer’s disease.” As with cardiovascular disease, the authors added, preventing Alzheimer’s disease might require less intensive lifestyle modifications than treating it.
Study Methodology
Investigators randomized 26 patients with Montréal Cognitive Assessment scores of 18 or higher to an intensive intervention involving nutrition, exercise, and stress management techniques. To improve adherence, the protocol included participants’ spouses or caregivers.
Two patients, both in the treatment group, withdrew over logistical concerns.
After 20 weeks, treated patients exhibited statistically significant differences in several key measures versus a 25-patient usual-care control group. Scores that improved in the intervention group and worsened among controls included the following:
- Clinical Global Impression of Change (CGIC, P = .001)
- Clinical Dementia Rating-Global (CDR-Global, -0.04, P = .037)
- Clinical Dementia Rating Sum of Boxes (CDR-SB, +0.08, P = .032)
- Alzheimer’s Disease Assessment Scale (ADAS-Cog, -1.01, P = .053)
The validity of these changes in cognition and function, and possible biological mechanisms of improvement, were supported by statistically significant improvements in several clinically relevant biomarkers versus controls, the investigators wrote. These biomarkers included Abeta42/40 ratio, HbA1c, insulin, and glycoprotein acetylation. “This information may also help in predicting which patients are more likely to show improvements in cognition and function by making these intensive lifestyle changes,” the authors added.
In primary analysis, the degree of lifestyle changes required to stop progression of MCI ranged from 71.4% (ADAS-Cog) to 120.6% (CDR-SB). “This helps to explain why other studies of less intensive lifestyle interventions may not have been sufficient to stop deterioration or improve cognition and function,” the authors wrote. Moreover, they added, variable adherence might explain why in the intervention group, 10 patients improved their CGIC scores, while the rest held static or worsened.
Caveats
Alzheimer’s Association Vice President of Medical and Scientific Relations Heather M. Snyder, PhD, said, “This is an interesting paper in an important area of research and adds to the growing body of literature on how behavior or lifestyle may be related to cognitive decline. However, because this is a small phase 2 study, it is important for this or similar work to be done in larger, more diverse populations and over a longer duration of the intervention.” She was not involved with the study but was asked to comment.
Investigators chose the 20-week duration, they explained, because control-group patients likely would not refrain from trying the lifestyle intervention beyond that timeframe. Perhaps more importantly, challenges created by the COVID-19 pandemic required researchers to cut planned enrollment in half, eliminate planned MRI and amyloid PET scans, and reduce the number of cognition and function tests.
Such shortcomings limit what neurologists can glean and generalize from the study, said Dr. Snyder. “That said,” she added, “it does demonstrate the potential of an intensive behavior/lifestyle intervention, and the importance of this sort of research in Alzheimer’s and dementia.” Although the complexity of the interventions makes these studies challenging, she added, “it is important that we continue to advance larger, longer studies in more representative study populations to develop specific recommendations.”
Further Study
The Alzheimer’s Association’s U.S. POINTER study is the first large-scale study in the United States to explore the impact of comprehensive lifestyle changes on cognitive health. About 2000 older adults at risk for cognitive decline are participating, from diverse locations across the country. More than 25% of participants come from groups typically underrepresented in dementia research, said Dr. Snyder. Initial results are expected in summer 2025.
Future research also should explore reasons (beyond adherence) why some patients respond to lifestyle interventions better than others, and the potential synergy of lifestyle changes with drug therapies, wrote Dr. Ornish and colleagues.
“For now,” said Dr. Snyder, “there is an opportunity for providers to incorporate or expand messaging with their patients and families about the habits that they can incorporate into their daily lives. The Alzheimer’s Association offers 10 Healthy Habits for Your Brain — everyday actions that can make a difference for your brain health.”
Investigators received study funding from more than two dozen charitable foundations and other organizations. Dr. Snyder is a full-time employee of the Alzheimer’s Association and in this role, serves on the leadership team of the U.S. POINTER study. Her partner works for Abbott in an unrelated field.
FROM ALZHEIMER’S RESEARCH & THERAPY