Participants had three scans, spaced at least 2 days apart and occurring after a 12-hour overnight fast. A scan with arterial spin labeling acquisition was taken before and 10 minutes after participants drank a 300-mL beverage consisting of just water, or either a 75-g glucose solution or 2 mmol/L sucralose.
Twenty-five of the participants had blood drawn at 0, 40, and 60 minutes after drinking the study beverage, to track levels of serum insulin, ghrelin, GLP-1, and peptide YY – all hormones that help regulate appetite and satiety.
Hormone levels for individuals who had the non–glucose beverages were similar, regardless of BMI. However, there were significant differences in cerebral blood flow between obese and nonobese participants. Mr. Ge, an undergraduate student, and his collaborators looked at the contributions of the individual brain structures to the significantly higher activation seen after sucralose consumption by the high-BMI participants. Individuals with obesity had significantly more activity in the amygdala than did the lean participants (P = .0088) after drinking the sucralose beverage; also, in lean individuals, hypothalamic activity decreased after sucralose consumption, while activity increased slightly in the high-BMI participants (P = .017).
Eating behavior after drinking the various beverages also differed depending on beverage type and BMI status. After the overnight fast and study beverage consumption, participants were offered unlimited access to a buffet-style meal. The beverage type had no significant effect on calorie consumption at the buffet for the lean study participants. However, obese individuals consumed significantly more calories than did lean individuals after ingesting sucralose (1,191 kcal vs. 731 kcal; P = .01). Caloric intake was not significantly different between the high- and low-BMI groups after consumption of water or glucose.
None of the study authors reported conflicts of interest.
SOURCE: Ge B et al. ENDO 2018, Abstract SUN-070.