Commentary

The new NOACs are generally the best bet


 

References

Conclusions

Unlike the serendipitous path leading to the discovery of the first class of oral anticoagulants (VKAs), NOACs have been specifically designed to provide targeted anticoagulation and to address the shortcomings of VKAs. To this end, NOACs are becoming increasingly important in the management of patients with specific clinical conditions such as nonvalvular atrial fibrillation and venous thromboembolism where they have been shown to provide a larger net clinical benefit relative to the available alternatives. Furthermore, with economic analyses providing evidence that NOACs are cost-effective for the health care system and clinical trial results suggesting progress in the development of antidotes for reversal, it is likely that with growing experience, these agents will replace VKAs as the mainstay for prophylactic and therapeutic oral anticoagulation in targeted patient populations.

Madhukar S. Patel, MD, and Elliot L. Chaikof, MD, are from the department of surgery, Beth Israel Deaconess Medical Center, Boston. They reported having no conflicts of interest.

References

1. J Am Vet Med Assoc 1924;64:553-575

2. J Biol Chem 1941;138:21-33

3. Hematology Am Soc Hematol Educ Program 2013;2013:464-470

4. Eur Heart J 2013;34:2094-2106

5. Stroke 2013;44:1676-1681

6. Nat Rev Cardiol 2014;11:693-703

7. Lancet 2014;383:955-962

8. N Engl J Med 2015;373:511-520

9. N Engl J Med 2014;371:2141-2142

What the doctor didn’t order: unintended consequences and pitfalls of NOACs

Recently, several new oral anticoagulants (NOACs) have gained FDA approval to replace warfarin, capturing the attention of popular media. These include dabigatran, rivaroxaban, apixaban, and edoxaban. Dabigatran targets activated factor II (factor IIa), while rivaroxaban, apixaban, and edoxaban target activated factor X (factor Xa). Easy to take with a once or twice daily pill, with no cumbersome monitoring, they represent a seemingly ideal treatment for the chronically anticoagulated patient. All agents are currently FDA approved in the United States for treatment of acute VTE and AF.

Dabigatran and edoxaban

Dr. Thomas Wakefield

Dr. Thomas Wakefield

Similar to warfarin, dabigatran and edoxaban require the use of a LMWH or UFH “bridge” when therapy is beginning, while rivaroxaban and apixaban are instituted as monotherapy without such a bridge. Dabigatran etexilate (PradaxaR, Boehringer Ingelheim) has the longest half-life of all of the NOACs at 12-17 hours, and this half-life is prolonged with increasing age and decreasing renal function.1 It is the only new agent which can be at least partially reversed with dialysis.2 Edoxaban (SavaysaR, Daiichi Sankyo) carries a boxed warning stating that this agent is less effective in AF patients with a creatinine clearance greater than 95 mL/min, and that kidney function should be assessed prior to starting treatment: Such patients have a greater risk of stroke, compared with similar patients treated with warfarin. Edoxaban is the only agent specifically tested at a lower dose in patients at significantly increased risk of bleeding complications (low body weight and/or decreased creatinine clearance).3

Rivaroxaban and apixaban

Rivaroxaban (XareltoR, Bayer and Janssen), and apixaban (EliquisR, Bristol Myers-Squibb), unique amongst the NOACs, have been tested for extended therapy of acute deep vein thrombosis after treatment of 6-12 months. They were found to result in a significant decrease in recurrent VTE without an increase in major bleeding, compared with placebo.4,5 Rivaroxaban has once-daily dosing and apixaban has twice-daily dosing; both are immediate monotherapy, making them quite convenient for patients. Apixaban is the only agent among the NOACs to have a slight decrease in gastrointestinal bleeding, compared with warfarin.6

Consequences and pitfalls with NOACs

Problems with these new drugs, which may diminish our current level of enthusiasm for these agents to totally replace warfarin, include the inability to reliably follow their levels or reverse their anticoagulant effects, the lack of data available on bridging when other procedures need to be performed, their short half-lives, and the lack of data on their anti-inflammatory effects. With regard to monitoring of anticoagulation, the International Society of Thrombosis and Hemostasis (ISTH) has published the times when it might be useful to obtain levels. These times include:

• When a patient is bleeding.

• Before surgery or an invasive procedure when the patient has taken the drug in the previous 24 hours, or longer if creatinine clearance (CrCl) is less than 50 mL min.

• Identification of subtherapeutic or supratherapeutic levels in patients taking other drugs that are known to affect pharmacokinetics.

• Identification of subtherapeutic or supratherapeutic levels in patients at body weight extremes.

• Patients with deteriorating renal function.

• During perioperative management.

• During reversal of anticoagulation.

• When there is suspicion of overdose.

• Assessment of compliance in patients suffering thrombotic events while on treatment.7

Currently, there exists no commercially available reversal agent for any of the NOACs, and existing reversal agents for traditional anticoagulants are of limited, if any, use. Drugs under development include agents for the factor Xa inhibitors and for the thrombin inhibitor. Until the time that specific reversal agents exist, supportive care is the mainstay of therapy. In cases of trauma or severe or life-threatening bleeding, administration of concentrated clotting factors (prothrombin complex concentrate) or dialysis (dabigatran only) may be utilized. However, data from large clinical trials are lacking. A recent study of 90 patients receiving an antibody directed against dabigatran has revealed that the anticoagulant effects of dabigatran were reversed safely within minutes of administration; however drug levels were not consistently suppressed at 24 hours in 20% of the cohort.8

Recommended Reading

VIDEO: STICHES trial update boosts CABG in ischemic cardiomyopathy
MDedge Family Medicine
Daptomycin beats infective endocarditis caused by several pathogens
MDedge Family Medicine
Rotor ablation for atrial fibrillation strikes out in first randomized trial
MDedge Family Medicine
Elusive evidence pervades ESC’s 2016 heart failure guidelines
MDedge Family Medicine
CABG tops PCI for nondiabetic patients with multivessel CAD
MDedge Family Medicine
FDA panel narrowly endorses empagliflozin’s cardiovascular mortality benefit
MDedge Family Medicine
Post-AMI death risk model has high predictive accuracy
MDedge Family Medicine
Gallstone disease boosts heart disease risk
MDedge Family Medicine
VIDEO: Moderate LDL, SBP reductions slash cardiovascular events 90% over time
MDedge Family Medicine
VIDEO: Functional noninvasive imaging cuts unnecessary angiography
MDedge Family Medicine