While it is increasingly apparent that
, it has not been clear what to do about it.Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.