Conference Coverage

In childhood sickle cell disease stroke prevention is key


 

FROM CNS 2022

– Sickle cell disease is well known for its associated anemia, but patients experience a range of other complications as well. These include vision and kidney problems, delayed growth, susceptibility to infection, and pain.

Another issue, not always as well recognized, is a considerably heightened risk for childhood stroke. “Children with sickle cell disease have 100 times the risk of stroke as other children without sickle cell disease, and there’s also an elevated risk of five times the general population in adults with sickle cell disease,” said Lori Jordan, MD, PhD, in an interview.

At the 2022 annual meeting of the Child Neurology Society, Dr. Jordan spoke about stroke as a complication of sickle cell disease, and the role that neurologists can play in preventing primary or secondary strokes. “At least in children, studies have shown that if we screen and identify patients who are at highest risk of stroke, there are primary prevention therapies – usually implemented by hematologists, but that neurologists often are involved with – both monitoring for cognitive effects of silent cerebral infarct and also with treating patients who unfortunately still have an acute stroke,” said Dr. Jordan, who is an associate professor of pediatrics, neurology, and radiology at Vanderbilt University Medical Center, Nashville, Tenn. She also is director of the pediatric stroke program at Vanderbilt.

Time is of the essence

“In general, stroke in children is rare, but it’s more common in sickle cell disease, so it’s really important for providers to know that stroke risk is higher in those patients, particularly in those children, and then identify it and treat it earlier. Time is of the essence, and if we can give them the same therapeutics that we give the general stroke population, then time really becomes a factor, so it’s important that people know that it’s an issue for this population,” said Eboni Lance, MD, PhD, who coordinated the session where Dr. Jordan spoke.

Sickle cell disease is caused by a double mutation in the gene encoding the hemoglobin gene, producing the altered sickle hemoglobin (hemoglobin S). The change causes the hemoglobin proteins to tend to stick to one another, which can lead red blood cells to adopt a sickle-like shape. The sickle-shaped blood cells in turn have a tendency to aggregate and can block blood flow or lead to endothelial injury. Symptoms of stroke in children can include hemiparesis, aphasia, and seizure, but they can also be silent.

If no preventive is employed, one in nine with sickle cell disease will experience a stroke by the age of 19. Cerebrovascular symptoms are the most frequent debilitating complication of the condition. Nearly 40% of patients with sickle cell disease will have a silent cerebral infarct by age 18, as will 50% by age 30. Silent strokes have been associated with worse educational attainment and a greater need for educational special services.

Factors contributing to stroke in children with sickle cell disease include anemia and a low blood oxygen count, reduced oxygen affinity of hemoglobin variant, and cerebral vasculopathy. An estimated 10%-15% of young adults with sickle cell disease have severe intracranial stenosis.

Pages

Recommended Reading

Spinal muscular atrophy: Patient care in the age of genetically targeted therapy
MDedge Neurology
Tourette syndrome: Diagnosis is key for best care
MDedge Neurology
Dementia signs detected years before diagnosis
MDedge Neurology
Teens with diagnosed and undiagnosed ADHD report similar quality of life
MDedge Neurology
Cerebral palsy: Video clues suggest dystonia
MDedge Neurology
NICU signs hint at cerebral palsy risk
MDedge Neurology
In epilepsy, heart issues linked to longer disease duration
MDedge Neurology
Diazepam nasal spray effective in Lennox-Gastaut syndrome
MDedge Neurology
Psychiatric comorbidities in the pediatric neurology clinic
MDedge Neurology
Doctors favor euphemisms and jargon in discussions of death
MDedge Neurology