Diuretics that do not contain a sulfonamide group (eg, amiloride hydrochloride, eplerenone, ethacrynic acid, spironolactone, and triamterene) are safe for patients with an allergy to sulfa. The evidence is contradictory as to whether a history of allergy to sulfonamide antibiotics increases the risk of subsequent allergic reactions to commonly used sulfonamide-containing diuretics (eg, carbonic anhydrase inhibitors, loop diuretics, and thiazides) (strength of recommendation: C, based on case series and poor quality case-control and cohort studies).
Are all sulfa drugs created equal?
Brian Crownover, MD, FAAFP
96 MDG Family Medicine Residency, Eglin Air Force Base, Fla
Historical bromides commonly fall by the wayside as better evidence becomes available. Who would have thought 15 years ago that we would be promoting beta-blockers for patients with congestive heart failure?
Likewise, with closer inspection, we have learned that not all sulfa drugs are created equal. The stereospecificity due to the absence of aromatic amines in common diuretics means they are safe for patients with known sulfa antibiotic allergies. Given that diuretics are older agents and off-patent, with no company to take up their cause, no one has been willing to challenge outdated package insert warnings.
As clinicians who regularly work without a net, we are accustomed to prescribing medications in less than ideal circumstances. Thankfully, reasonable evidence is available to support what many of us are already doing—using cheap thiazides for patients despite a history of sulfa allergy.
Evidence summary
Little research has been performed on sulfonamide antibiotic and sulfonamide diuretic allergic cross-reactivity. What we do know is that there are 2 classes of sulfonamides—those with an aromatic amine (the antimicrobial sulfonamides) and those without (eg, the diuretics acetazolamide, furosemide, hydrochlorothiazide, and indapamide). Hypersensitivity reactions occur when the aromatic amine group is oxidized into hydroxylamine metabolites by the liver. Sulfonamides that do not contain this aromatic amine group undergo different metabolic pathways, suggesting that allergic reactions that do occur in this group are not due to cross-reactivity in sulfa-allergic patients. But that point is far from settled by the research.
On one side, a large cohort study shows some cross-reactivity
A large retrospective cohort study using Britain’s General Practice Research Database identified 20,226 patients seen from 1987 through March 1999 who were prescribed a systemic sulfonamide antibiotic, and then at least 60 days later received a nonantibiotic sulfonamide (eg, thiazide diuretic, furosemide, oral hypoglycemic).1 Researchers reviewed records to determine whether patients described as having an allergic reaction to a sulfonamide antibiotic were at increased risk of having a subsequent allergic reaction to a sulfonamide nonantibiotic.
Patients were identified as being allergic using both narrow definitions (anaphylaxis, bronchospasm, urticaria, laryngospasm, or angioedema) and broad ones. As only 18 patients out of the 20,226 patients were reported as having an allergic reaction using the narrow definition, analysis was based on the broad definition. Added to the broad category were asthma, eczema, and other “adverse” drug effects that were not specified by the author.
Using this broad definition, researchers identified allergies to sulfonamide antibiotics in 969 patients. Of this group, 96 patients (9.9%) had a subsequent reaction to a sulfonamide nonantibiotic, which included drugs from the loop and thiazide diuretic classes (including bumetanide, chlorothiazide, furosemide, hydrochlorothiazide, indapamide, and torsemide). It was unclear if any patients taking a carbonic anhydrase inhibitor experienced an allergic reaction. For comparison purposes, of the 19,257 patients who were not identified as having an allergy to a sulfonamide antibiotic, again using the broad definition, 315 (1.6%), had a subsequent allergic reaction to a sulfonamide nonantibiotic, for an unadjusted odds ratio of 6.6 (95% confidence interval [CI], 5.2–8.4).
When the results were adjusted for age, sex, history of asthma, use of medications for asthma or corticosteroids, the adjusted odds ratio for individuals experiencing an allergy to a nonantibiotic sulfonamide in those persons with a history of allergy to a sulfonamide antibiotic was 2.8 (95 % CI, 2.1–3.7). Of note, the adjusted odds ratio for the occurrence of a penicillin allergy in a patient with a history of sulfonamide antibiotic allergy was significantly higher at 3.9 (95% CI, 3.5–4.3).
Some limitations of the study included uncertainty of cause and effect of prescribed medications and subsequent reactions, possible inconsistency of physician diagnosis and coding, and lack of precision in the diagnosis of allergic reactions. There is also the possibility of “suspicion bias,” where patients with a history of allergies may be more closely monitored for subsequent reactions than nonallergic patients.