Latest News

Maternal COVID-19 May Not Harm Baby’s Neural Development


 

TOPLINE:

Fetuses exposed in utero to SARS-CoV-2 are not at an increased risk for neurodevelopmental problems in early childhood.

METHODOLOGY:

  • This prospective study aimed to assess whether in utero exposure to SARS-CoV-2, which causes COVID-19, is associated with abnormal neurodevelopment among children at ages 12, 18, and 24 months.
  • It included 2003 pregnant individuals (mean age, 33.3 years) from the ASPIRE cohort who were enrolled before 10 weeks’ gestation and followed through 24 months post partum; 10.8% of them were exposed to SARS-CoV-2 during pregnancy, as determined via self-reported data or dried blood spot cards.
  • The birth mothers were required to complete the Ages & Stages Questionnaires, Third Edition (ASQ-3), a validated screening tool for neurodevelopmental delays, at 12, 18, and 24 months postpartum.
  • Neurodevelopmental outcomes were available for 1757, 1522, and 1523 children at ages 12, 18, and 24 months, respectively.
  • The primary outcome was a score below the cutoff on the ASQ-3 across any of the following developmental domains: Communication, gross motor, fine motor, problem-solving, and social skills.

TAKEAWAY:

  • The prevalence of abnormal ASQ-3 scores did not differ between children who were exposed to SARS-CoV-2 in utero and those who were not, at ages 12 (P = .39), 18 (P = .58), and 24 (P = .45) months.
  • No association was observed between in utero exposure to SARS-CoV-2 and abnormal ASQ-3 scores among children in any of the age groups.
  • The lack of an association between exposure to SARS-CoV-2 during pregnancy and abnormal neurodevelopment remained unchanged even when factors such as preterm delivery and the sex of the infant were considered.
  • Supplemental analyses found no difference in risk based on the trimester of infection, presence of fever, or incidence of breakthrough infection following vaccination.

IN PRACTICE:

“In this prospective cohort study of pregnant individuals and offspring, in utero exposure to maternal SARS-CoV-2 infection was not associated with abnormal neurodevelopmental screening scores of children through age 24 months. These findings are critical considering the novelty of the SARS-CoV-2 virus to the human species, the global scale of the initial COVID-19 outbreak, the now-endemic nature of the virus indicating ongoing relevance for pregnant individuals,” the authors of the study wrote.

“While the scientific consensus resists a link between in utero COVID-19 exposure and impaired offspring neurodevelopment, the question remains whether societal responses to the pandemic impacted developmental trajectories,” the researchers added. “Certain studies comparing infants from a pandemic cohort with historic controls have raised concerns about lower ASQ-3 scores among children living during the pandemic. Critically, socioeconomic factors influence vulnerability, not only to infection itself but also regarding the ability to deploy resources in times of stress (eg, school closures) to mitigate sources of developmental harm. Our data support this theory, with the observed independent protective association of increasing household income with childhood ASQ-3 scores. Additional research is warranted to clarify the potential impact of societal measures on early development and the differential impact of these measures on different communities.”

SOURCE:

The study was led by Eleni G. Jaswa, MD, MSc, of the Department of Obstetrics, Gynecology & Reproductive Sciences at the University of California, San Francisco. It was published online in JAMA Network Open.

LIMITATIONS:

Limitations of the research included the use of self-reported data and dried blood spot cards for determining exposure to SARS-CoV-2, which may have led to misclassification. The ASQ-3 is a modestly sensitive tool for detecting developmental delays that may have affected the study’s power to detect associations. The sample size of this study, while larger than many, may still have been underpowered to detect small differences in neurodevelopmental outcomes.

DISCLOSURES:

The ASPIRE cohort was supported by research grants provided to the University of California, San Francisco, and by the Start Small Foundation, the California Breast Cancer Research Program, the COVID Catalyst Award, and other sources. Some authors reported receiving grants, royalties, and personal fees, serving on medical advisory boards, and having other ties with several institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Recommended Reading

AAP Shifts Stance, Updates Guidance on Breastfeeding With HIV
MDedge Pediatrics
Research Highlights From ESMO Breast Cancer
MDedge Pediatrics
Fluoride, Water, and Kids’ Brains: It’s Complicated
MDedge Pediatrics
Are Children Born Through ART at Higher Risk for Cancer?
MDedge Pediatrics
Maternal Obesity Linked to Sudden Infant Death
MDedge Pediatrics
The Mysterious Latch
MDedge Pediatrics
Why Is Mom’s Type 1 Diabetes Half as Likely as Dad’s to Pass to Child?
MDedge Pediatrics
New Biological Pathway May Explain BPA Exposure, Autism Link
MDedge Pediatrics
Metabolism Biomarkers on Newborn Screen May Help Predict SIDS
MDedge Pediatrics
Live Rotavirus Vaccine Safe for Newborns of Biologic-Treated Moms With IBD
MDedge Pediatrics