Timing of Adverse Events Following Geriatric Hip Fracture Surgery: A Study of 19,873 Patients in the American College of Surgeons National Surgical Quality Improvement Program
Authors’ Disclosure Statement: The authors report no actual or potential conflict of interest in relation to this article.
Dr. Bohl and Dr. Basques are Orthopaedic Surgery Residents, Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois. Dr. Samuel and Dr. Ondeck are Orthopaedic Surgery Residents, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York. Dr. Webb is an Orthopaedic Surgery Resident, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania. Dr. Lukasiewicz is an Orthopaedic Surgery Resident, Mr. Anandasivam is a Research Fellow, and Dr. Grauer is a Professor, Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.
Address correspondence to: Jonathan N. Grauer, MD, Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 800 Howard Ave, New Haven, CT 06510 (tel, 203-737-7463; fax, 203-785-7132; email, jonathan.grauer@yale.edu).
Daniel D. Bohl, MD, MPH Andre M. Samuel, MD Matthew L. Webb, MDAdam M. Lukasiewicz, MD Nathaniel T. Ondeck, MD Bryce A. Basques, MD Nidharshan S. Anandasivam, BS Jonathan N. Grauer, MD . Timing of Adverse Events Following Geriatric Hip Fracture Surgery: A Study of 19,873 Patients in the American College of Surgeons National Surgical Quality Improvement Program. Am J Orthop.
September 27, 2018
References
DISCUSSION
Adverse events are extremely common following a geriatric hip fracture surgery.1-4 Despite extensive investigation regarding methods to prevent these events,5-12 there is limited published description of the timing at which such events occur. This study used a large prospectively followed up cohort of geriatric patients undergoing a hip fracture surgery to deliver a better description of the timing of adverse events than was previously available. The findings of this study should enable more targeted clinical surveillance, inform patient counseling, and help determine the duration of follow-up required for studies on adverse events.
There was wide variability in the timing at which the different postoperative adverse events were diagnosed (Figures 1, 2). Myocardial infarction was diagnosed the earliest, with more than three-fourth of diagnoses in the first postoperative week. Other relatively early-diagnosed adverse events included cardiac arrest requiring cardiopulmonary resuscitation, stroke, pneumonia, and pulmonary embolism.
The latest-diagnosed adverse event was surgical site infection (Figures 1, 2). Surgical site infection was actually the only adverse event with a rate of diagnosis during the first week that was lower than the rate of diagnosis later in the month (as can be seen by the inflection in the timing curve for surgical site infection in Figure 1). Mortality showed a relatively consistent rate of diagnosis throughout the entire first postoperative month. Other relatively late-diagnosed postoperative events, including sepsis, deep vein thrombosis, and urinary tract infection, showed varying degrees of decreased rate of diagnosis near the end of the first postoperative month. Of note, for the later-diagnosed adverse events, the estimated median and interquartile ranges (Figure 2) were presumably quite biased toward earlier diagnosis, as the 30-day follow-up period clearly failed to capture a large proportion of later-occurring adverse events (Figure 1).
Certain risk factors were independently associated with earlier occurrence of adverse events. Perhaps most strikingly, body mass index in the obese range was associated with substantially earlier occurrence of deep vein thrombosis (median of 5 vs 10 days). This finding suggests that clinical monitoring for deep vein thrombosis should be performed earlier in patients with greater body mass index. Also notable is the earlier occurrence of cardiac arrest and death among patients with end-stage renal disease than among those without. Patients with end-stage renal disease may have a greater risk for these adverse events immediately following the cardiac stresses of surgery.27 Similarly, such patients may be more prone to early electrolyte abnormalities and arrhythmia.
Continue to: In addition to its clinical implications, this study...