Chromoblastomycosis

Article Type
Changed
Thu, 01/10/2019 - 13:26
Display Headline
Chromoblastomycosis

Chromoblastomycosis is a chronic fungal infection of the skin and subcutaneous tissues that demonstrates characteristic Medlar or sclerotic bodies that resemble copper pennies on histopathology.1 Cutaneous infection often results from direct inoculation, such as from a wood splinter. Clinically, the lesion typically is a pink papule that progresses to a verrucous plaque on the legs of farmers or rural workers in the tropics or subtropics. There usually are no associated constitutional symptoms. Several dematiaceous (darkly pigmented) fungi cause chromoblastomycosis, including Fonsecaea compacta, Cladophialophora carrionii, Rhinocladiella aquaspersa, Phialophora verrucosa, and Fonsecaea pedrosoi. Cellular division occurs by internal septation rather than budding. Skin biopsy can confirm the diagnosis.1 Chromoblastomycosis is histopathologically characterized by pseudoepitheli-
omatous hyperplasia (Figure 1) with histiocytes and neutrophils surrounding distinct copper-colored 
Medlar bodies (6–12 μm)(Figure 2), which are fungal spores.1-3 Several conditions demonstrate pseudoepitheliomatous hyperplasia with intraepidermal pustules and can be remembered by the mnemonic “here come big green leafy vegetables”: halogenoderma, chromoblastomycosis, blastomycosis, granuloma inguinale, leishmaniasis, and pemphigus vegetans.2 Treatment of chromoblastomycosis can be challenging, as no standard treatment has been established and therapy can be complicated by low cure rates and high relapse rates, especially in chronic and extensive disease. Treatment can include cryotherapy or surgical excision for small lesions in combination with systemic antifungals.4 Itraconazole (200–400 mg daily) for at least 
6 months has been reported to have up to a 
90% cure rate with mild to moderate disease and 44% with severe disease.5 Combination oral antifungal treatment with itraconazole and terbinafine has been recommended.6 There are reports of progression of chromoblastomycosis to squamous cell carcinoma, which is rare and occurred after 
long-standing, inadequately treated lesions.7

Figure 1. Chromoblastomycosis showing pseudoepitheliomatous hyperplasia with suppurative and granulomatous infiltrate (H&E, original magnification ×40).

Figure 2. Suppurative and granulomatous infiltrate surrounding distinct copper-colored Medlar bodies characteristic of chromoblastomycosis (H&E, original magnification ×600).

Blastomycosis also presents with pseudoepitheliomatous hyperplasia, as seen in chromoblastomycosis, but organisms typically are few in number 
and demonstrate a thick, asymmetrical, refractile wall and a dark nucleus. Although chromoblastomycosis and blastomycosis are similar in 
size (8–15 μm), the broad-based budding of blastomycosis (Figure 3) is a key feature and the yeast 
are not pigmented.1-3 Blastomycosis is caused by Blastomyces dermatitidis and is endemic to the Mississippi and Ohio River valleys, Great Lakes region, and Southeastern United States. Cutaneous infection typically occurs from inhalation of the dimorphic fungi into the lungs and occasional dissemination involving the skin, causing papulopustules and 
thick, crusted, warty plaques with central ulceration. 
Rarely, primary cutaneous blastomycosis can occur from direct inoculation, typically in a laboratory. Treatment of disseminated blastomycosis includes systemic antifungals.1

Figure 3. Broad-based budding characteristic of blastomycosis (H&E, original magnification ×600).

Coccidioidomycosis is characterized by large spherules (10–80 μm) with refractile walls and granular gray cytoplasm.2,3 Coccidioidomycosis spherules occasionally contain endospores2 and often are noticeably larger than surrounding histiocyte nuclei (Figure 4), whereas chromoblastomycosis, blastomycosis, cryptococcosis, and lobomycosis are more similar in size to histiocyte nuclei. Coccidioidomycosis is caused by Coccidioides immitis, a highly virulent dimorphic fungus found in the Southwestern United States, northern Mexico, and Central and South America. Pulmonary infection occurs by inhalation of arthroconidia, often from soil, and is asymptomatic in most patients; however, immunocompromised patients are predisposed to disseminated cutaneous infection. Facial lesions are most common and can present as papules, pustules, plaques, abscesses, sinus tracts, and/or ulcerations. Treatment of disseminated infection requires systemic antifungals; amphotericin B has proven most effective.1

Figure 4. Coccidioidomycosis spherules noticeably larger than surrounding histiocyte nuclei (H&E, original magnification ×600).

Cryptococcosis is characterized by vacuoles 
with small (2–20 μm), central, pleomorphic 
yeast (Figure 5). The vacuole is due to a gelati-
nous capsule that stains red with mucicarmine 
 and blue with Alcian blue.2,3 Cryptococcosis is caused by Cryptococcus neoformans and is associated with pigeon droppings. Disseminated infection in patients with human immunodefi-
ciency virus often presents as umbilicated 
molluscumlike lesions and portends a poor prognosis with a mortality rate of up to 80%.8 Disseminated 
infection necessitates aggressive treatment with systemic antifungals.1

Figure 5. Small, central, pleomorphic yeast surrounded by vacuoles characteristic of cryptococcosis (H&E, original magnification ×600).

Lobomycosis demonstrates thick-walled, refractile spherules with surrounding histiocytes and multinucleated giant cells. The yeast of lobomycosis (6–12 μm) is of similar size to chromoblastomycosis and blastomycosis, but linear chains resembling 
a child’s pop beads are characteristic of this 
condition (Figure 6).2,3 Lobomycosis is caused by Lacazia loboi and is acquired most frequently through contact with dolphins in Central 
and South America. Clinically, lesions present as slow-growing, keloidlike nodules, often on the 
face, ears, and distal extremities. Surgical treatment may be required given that oral antifungals typically are ineffective.1

Figure 6. Linear chains resembling a child’s pop beads are characteristic of lobomycosis (H&E, original magnification ×600).

References
  1. Bolognia JL, Jorizzo JL, Shaffer JV. Dermatology. 3rd ed. Philadelphia, PA: Elsevier; 2012.
  2. Elston DM, Ferringer TC, Ko C, et al. Dermatopathology: Requisites in Dermatology. 2nd ed. Philadelphia, PA: 
Saunders Elsevier; 2014.
  3. Fernandez-Flores A, Saeb-Lima M, Arenas-Guzman R. Morphological findings of deep cutaneous fungal infections. Am J Dermatopathol. 2014;36:531-556.
  4. Ameen M. Chromoblastomycosis: clinical presentation and management. Clin Exp Dermatol. 2009;34:849-854.
  5. Queiroz-Telles F, McGinnis MR, Salkin I, et al. Subcutaneous mycoses. Infect Dis Clin North Am. 2003;17:59-85.
  6. Bonifaz A, Paredes-Solís, Saúl A. Treating chromoblastomycosis with systemic antifungals. Expert Opin 
Pharmacother. 2004;5:247-254.
  7. Rojas OC, González GM, Moreno-Treviño M, et al. Chromoblastomycosis by Cladophialophora carrionii associated with squamous cell carcinoma and review of published reports. Mycopathologia. 2015;179:153-157.
  8. Durden FM, Elewski B. Cutaneous involvement with Cryptococcus neoformans in AIDS. J Am Acad Dermatol. 1994;30:844-848.
Article PDF
Author and Disclosure Information

From Geisinger Medical Center, Danville, Pennsylvania. Dr. Spiker is from the Department of Dermatology and Dr. Ferringer is from the Departments of Dermatopathology and Laboratory Medicine.

The authors report no conflict of interest.

Correspondence: Alison Spiker, MD, Department of Dermatology, Geisinger Medical Center, 115 Woodbine Ln, Danville, PA 17822 
(amspiker@geisinger.edu).

Issue
Cutis - 96(4)
Publications
Topics
Page Number
224, 267-268
Legacy Keywords
chromoblastomycosis, deep cutaneous fungal infection, subcutaneous mycoses
Sections
Author and Disclosure Information

From Geisinger Medical Center, Danville, Pennsylvania. Dr. Spiker is from the Department of Dermatology and Dr. Ferringer is from the Departments of Dermatopathology and Laboratory Medicine.

The authors report no conflict of interest.

Correspondence: Alison Spiker, MD, Department of Dermatology, Geisinger Medical Center, 115 Woodbine Ln, Danville, PA 17822 
(amspiker@geisinger.edu).

Author and Disclosure Information

From Geisinger Medical Center, Danville, Pennsylvania. Dr. Spiker is from the Department of Dermatology and Dr. Ferringer is from the Departments of Dermatopathology and Laboratory Medicine.

The authors report no conflict of interest.

Correspondence: Alison Spiker, MD, Department of Dermatology, Geisinger Medical Center, 115 Woodbine Ln, Danville, PA 17822 
(amspiker@geisinger.edu).

Article PDF
Article PDF
Related Articles

Chromoblastomycosis is a chronic fungal infection of the skin and subcutaneous tissues that demonstrates characteristic Medlar or sclerotic bodies that resemble copper pennies on histopathology.1 Cutaneous infection often results from direct inoculation, such as from a wood splinter. Clinically, the lesion typically is a pink papule that progresses to a verrucous plaque on the legs of farmers or rural workers in the tropics or subtropics. There usually are no associated constitutional symptoms. Several dematiaceous (darkly pigmented) fungi cause chromoblastomycosis, including Fonsecaea compacta, Cladophialophora carrionii, Rhinocladiella aquaspersa, Phialophora verrucosa, and Fonsecaea pedrosoi. Cellular division occurs by internal septation rather than budding. Skin biopsy can confirm the diagnosis.1 Chromoblastomycosis is histopathologically characterized by pseudoepitheli-
omatous hyperplasia (Figure 1) with histiocytes and neutrophils surrounding distinct copper-colored 
Medlar bodies (6–12 μm)(Figure 2), which are fungal spores.1-3 Several conditions demonstrate pseudoepitheliomatous hyperplasia with intraepidermal pustules and can be remembered by the mnemonic “here come big green leafy vegetables”: halogenoderma, chromoblastomycosis, blastomycosis, granuloma inguinale, leishmaniasis, and pemphigus vegetans.2 Treatment of chromoblastomycosis can be challenging, as no standard treatment has been established and therapy can be complicated by low cure rates and high relapse rates, especially in chronic and extensive disease. Treatment can include cryotherapy or surgical excision for small lesions in combination with systemic antifungals.4 Itraconazole (200–400 mg daily) for at least 
6 months has been reported to have up to a 
90% cure rate with mild to moderate disease and 44% with severe disease.5 Combination oral antifungal treatment with itraconazole and terbinafine has been recommended.6 There are reports of progression of chromoblastomycosis to squamous cell carcinoma, which is rare and occurred after 
long-standing, inadequately treated lesions.7

Figure 1. Chromoblastomycosis showing pseudoepitheliomatous hyperplasia with suppurative and granulomatous infiltrate (H&E, original magnification ×40).

Figure 2. Suppurative and granulomatous infiltrate surrounding distinct copper-colored Medlar bodies characteristic of chromoblastomycosis (H&E, original magnification ×600).

Blastomycosis also presents with pseudoepitheliomatous hyperplasia, as seen in chromoblastomycosis, but organisms typically are few in number 
and demonstrate a thick, asymmetrical, refractile wall and a dark nucleus. Although chromoblastomycosis and blastomycosis are similar in 
size (8–15 μm), the broad-based budding of blastomycosis (Figure 3) is a key feature and the yeast 
are not pigmented.1-3 Blastomycosis is caused by Blastomyces dermatitidis and is endemic to the Mississippi and Ohio River valleys, Great Lakes region, and Southeastern United States. Cutaneous infection typically occurs from inhalation of the dimorphic fungi into the lungs and occasional dissemination involving the skin, causing papulopustules and 
thick, crusted, warty plaques with central ulceration. 
Rarely, primary cutaneous blastomycosis can occur from direct inoculation, typically in a laboratory. Treatment of disseminated blastomycosis includes systemic antifungals.1

Figure 3. Broad-based budding characteristic of blastomycosis (H&E, original magnification ×600).

Coccidioidomycosis is characterized by large spherules (10–80 μm) with refractile walls and granular gray cytoplasm.2,3 Coccidioidomycosis spherules occasionally contain endospores2 and often are noticeably larger than surrounding histiocyte nuclei (Figure 4), whereas chromoblastomycosis, blastomycosis, cryptococcosis, and lobomycosis are more similar in size to histiocyte nuclei. Coccidioidomycosis is caused by Coccidioides immitis, a highly virulent dimorphic fungus found in the Southwestern United States, northern Mexico, and Central and South America. Pulmonary infection occurs by inhalation of arthroconidia, often from soil, and is asymptomatic in most patients; however, immunocompromised patients are predisposed to disseminated cutaneous infection. Facial lesions are most common and can present as papules, pustules, plaques, abscesses, sinus tracts, and/or ulcerations. Treatment of disseminated infection requires systemic antifungals; amphotericin B has proven most effective.1

Figure 4. Coccidioidomycosis spherules noticeably larger than surrounding histiocyte nuclei (H&E, original magnification ×600).

Cryptococcosis is characterized by vacuoles 
with small (2–20 μm), central, pleomorphic 
yeast (Figure 5). The vacuole is due to a gelati-
nous capsule that stains red with mucicarmine 
 and blue with Alcian blue.2,3 Cryptococcosis is caused by Cryptococcus neoformans and is associated with pigeon droppings. Disseminated infection in patients with human immunodefi-
ciency virus often presents as umbilicated 
molluscumlike lesions and portends a poor prognosis with a mortality rate of up to 80%.8 Disseminated 
infection necessitates aggressive treatment with systemic antifungals.1

Figure 5. Small, central, pleomorphic yeast surrounded by vacuoles characteristic of cryptococcosis (H&E, original magnification ×600).

Lobomycosis demonstrates thick-walled, refractile spherules with surrounding histiocytes and multinucleated giant cells. The yeast of lobomycosis (6–12 μm) is of similar size to chromoblastomycosis and blastomycosis, but linear chains resembling 
a child’s pop beads are characteristic of this 
condition (Figure 6).2,3 Lobomycosis is caused by Lacazia loboi and is acquired most frequently through contact with dolphins in Central 
and South America. Clinically, lesions present as slow-growing, keloidlike nodules, often on the 
face, ears, and distal extremities. Surgical treatment may be required given that oral antifungals typically are ineffective.1

Figure 6. Linear chains resembling a child’s pop beads are characteristic of lobomycosis (H&E, original magnification ×600).

Chromoblastomycosis is a chronic fungal infection of the skin and subcutaneous tissues that demonstrates characteristic Medlar or sclerotic bodies that resemble copper pennies on histopathology.1 Cutaneous infection often results from direct inoculation, such as from a wood splinter. Clinically, the lesion typically is a pink papule that progresses to a verrucous plaque on the legs of farmers or rural workers in the tropics or subtropics. There usually are no associated constitutional symptoms. Several dematiaceous (darkly pigmented) fungi cause chromoblastomycosis, including Fonsecaea compacta, Cladophialophora carrionii, Rhinocladiella aquaspersa, Phialophora verrucosa, and Fonsecaea pedrosoi. Cellular division occurs by internal septation rather than budding. Skin biopsy can confirm the diagnosis.1 Chromoblastomycosis is histopathologically characterized by pseudoepitheli-
omatous hyperplasia (Figure 1) with histiocytes and neutrophils surrounding distinct copper-colored 
Medlar bodies (6–12 μm)(Figure 2), which are fungal spores.1-3 Several conditions demonstrate pseudoepitheliomatous hyperplasia with intraepidermal pustules and can be remembered by the mnemonic “here come big green leafy vegetables”: halogenoderma, chromoblastomycosis, blastomycosis, granuloma inguinale, leishmaniasis, and pemphigus vegetans.2 Treatment of chromoblastomycosis can be challenging, as no standard treatment has been established and therapy can be complicated by low cure rates and high relapse rates, especially in chronic and extensive disease. Treatment can include cryotherapy or surgical excision for small lesions in combination with systemic antifungals.4 Itraconazole (200–400 mg daily) for at least 
6 months has been reported to have up to a 
90% cure rate with mild to moderate disease and 44% with severe disease.5 Combination oral antifungal treatment with itraconazole and terbinafine has been recommended.6 There are reports of progression of chromoblastomycosis to squamous cell carcinoma, which is rare and occurred after 
long-standing, inadequately treated lesions.7

Figure 1. Chromoblastomycosis showing pseudoepitheliomatous hyperplasia with suppurative and granulomatous infiltrate (H&E, original magnification ×40).

Figure 2. Suppurative and granulomatous infiltrate surrounding distinct copper-colored Medlar bodies characteristic of chromoblastomycosis (H&E, original magnification ×600).

Blastomycosis also presents with pseudoepitheliomatous hyperplasia, as seen in chromoblastomycosis, but organisms typically are few in number 
and demonstrate a thick, asymmetrical, refractile wall and a dark nucleus. Although chromoblastomycosis and blastomycosis are similar in 
size (8–15 μm), the broad-based budding of blastomycosis (Figure 3) is a key feature and the yeast 
are not pigmented.1-3 Blastomycosis is caused by Blastomyces dermatitidis and is endemic to the Mississippi and Ohio River valleys, Great Lakes region, and Southeastern United States. Cutaneous infection typically occurs from inhalation of the dimorphic fungi into the lungs and occasional dissemination involving the skin, causing papulopustules and 
thick, crusted, warty plaques with central ulceration. 
Rarely, primary cutaneous blastomycosis can occur from direct inoculation, typically in a laboratory. Treatment of disseminated blastomycosis includes systemic antifungals.1

Figure 3. Broad-based budding characteristic of blastomycosis (H&E, original magnification ×600).

Coccidioidomycosis is characterized by large spherules (10–80 μm) with refractile walls and granular gray cytoplasm.2,3 Coccidioidomycosis spherules occasionally contain endospores2 and often are noticeably larger than surrounding histiocyte nuclei (Figure 4), whereas chromoblastomycosis, blastomycosis, cryptococcosis, and lobomycosis are more similar in size to histiocyte nuclei. Coccidioidomycosis is caused by Coccidioides immitis, a highly virulent dimorphic fungus found in the Southwestern United States, northern Mexico, and Central and South America. Pulmonary infection occurs by inhalation of arthroconidia, often from soil, and is asymptomatic in most patients; however, immunocompromised patients are predisposed to disseminated cutaneous infection. Facial lesions are most common and can present as papules, pustules, plaques, abscesses, sinus tracts, and/or ulcerations. Treatment of disseminated infection requires systemic antifungals; amphotericin B has proven most effective.1

Figure 4. Coccidioidomycosis spherules noticeably larger than surrounding histiocyte nuclei (H&E, original magnification ×600).

Cryptococcosis is characterized by vacuoles 
with small (2–20 μm), central, pleomorphic 
yeast (Figure 5). The vacuole is due to a gelati-
nous capsule that stains red with mucicarmine 
 and blue with Alcian blue.2,3 Cryptococcosis is caused by Cryptococcus neoformans and is associated with pigeon droppings. Disseminated infection in patients with human immunodefi-
ciency virus often presents as umbilicated 
molluscumlike lesions and portends a poor prognosis with a mortality rate of up to 80%.8 Disseminated 
infection necessitates aggressive treatment with systemic antifungals.1

Figure 5. Small, central, pleomorphic yeast surrounded by vacuoles characteristic of cryptococcosis (H&E, original magnification ×600).

Lobomycosis demonstrates thick-walled, refractile spherules with surrounding histiocytes and multinucleated giant cells. The yeast of lobomycosis (6–12 μm) is of similar size to chromoblastomycosis and blastomycosis, but linear chains resembling 
a child’s pop beads are characteristic of this 
condition (Figure 6).2,3 Lobomycosis is caused by Lacazia loboi and is acquired most frequently through contact with dolphins in Central 
and South America. Clinically, lesions present as slow-growing, keloidlike nodules, often on the 
face, ears, and distal extremities. Surgical treatment may be required given that oral antifungals typically are ineffective.1

Figure 6. Linear chains resembling a child’s pop beads are characteristic of lobomycosis (H&E, original magnification ×600).

References
  1. Bolognia JL, Jorizzo JL, Shaffer JV. Dermatology. 3rd ed. Philadelphia, PA: Elsevier; 2012.
  2. Elston DM, Ferringer TC, Ko C, et al. Dermatopathology: Requisites in Dermatology. 2nd ed. Philadelphia, PA: 
Saunders Elsevier; 2014.
  3. Fernandez-Flores A, Saeb-Lima M, Arenas-Guzman R. Morphological findings of deep cutaneous fungal infections. Am J Dermatopathol. 2014;36:531-556.
  4. Ameen M. Chromoblastomycosis: clinical presentation and management. Clin Exp Dermatol. 2009;34:849-854.
  5. Queiroz-Telles F, McGinnis MR, Salkin I, et al. Subcutaneous mycoses. Infect Dis Clin North Am. 2003;17:59-85.
  6. Bonifaz A, Paredes-Solís, Saúl A. Treating chromoblastomycosis with systemic antifungals. Expert Opin 
Pharmacother. 2004;5:247-254.
  7. Rojas OC, González GM, Moreno-Treviño M, et al. Chromoblastomycosis by Cladophialophora carrionii associated with squamous cell carcinoma and review of published reports. Mycopathologia. 2015;179:153-157.
  8. Durden FM, Elewski B. Cutaneous involvement with Cryptococcus neoformans in AIDS. J Am Acad Dermatol. 1994;30:844-848.
References
  1. Bolognia JL, Jorizzo JL, Shaffer JV. Dermatology. 3rd ed. Philadelphia, PA: Elsevier; 2012.
  2. Elston DM, Ferringer TC, Ko C, et al. Dermatopathology: Requisites in Dermatology. 2nd ed. Philadelphia, PA: 
Saunders Elsevier; 2014.
  3. Fernandez-Flores A, Saeb-Lima M, Arenas-Guzman R. Morphological findings of deep cutaneous fungal infections. Am J Dermatopathol. 2014;36:531-556.
  4. Ameen M. Chromoblastomycosis: clinical presentation and management. Clin Exp Dermatol. 2009;34:849-854.
  5. Queiroz-Telles F, McGinnis MR, Salkin I, et al. Subcutaneous mycoses. Infect Dis Clin North Am. 2003;17:59-85.
  6. Bonifaz A, Paredes-Solís, Saúl A. Treating chromoblastomycosis with systemic antifungals. Expert Opin 
Pharmacother. 2004;5:247-254.
  7. Rojas OC, González GM, Moreno-Treviño M, et al. Chromoblastomycosis by Cladophialophora carrionii associated with squamous cell carcinoma and review of published reports. Mycopathologia. 2015;179:153-157.
  8. Durden FM, Elewski B. Cutaneous involvement with Cryptococcus neoformans in AIDS. J Am Acad Dermatol. 1994;30:844-848.
Issue
Cutis - 96(4)
Issue
Cutis - 96(4)
Page Number
224, 267-268
Page Number
224, 267-268
Publications
Publications
Topics
Article Type
Display Headline
Chromoblastomycosis
Display Headline
Chromoblastomycosis
Legacy Keywords
chromoblastomycosis, deep cutaneous fungal infection, subcutaneous mycoses
Legacy Keywords
chromoblastomycosis, deep cutaneous fungal infection, subcutaneous mycoses
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media