User login
Injury Predictors After Inpatient Falls
An estimated 2% to 15% of all hospitalized patients experience at least one fall.1 Approximately 30% of such falls result in injury and up to 6% may be serious in nature.1, 2 These injuries can result in pain, functional impairment, disability, or even death, and can contribute to longer lengths of stay, increased health care costs, and nursing home placement.25 As a result, inpatient falls have become a major priority for hospital quality assurance programs, and hospital risk management departments have begun to target inpatient falls as a source of legal liability.13, 6, 7 Recently, the Centers for Medicare and Medicaid Services announced that it will no longer pay for preventable complications of hospitalizations, including falls and fall‐related injury.8
Much of the literature on falls comes from community and long‐term care settings, and only a few studies have investigated falls during acute care hospitalization.3, 9, 10 From these studies, risk factors for inpatient falls have been identified and various models have been developed to predict an individual patient's risk of falling. However, unlike in the community setting, interventions to prevent falls in the acute care setting have not proven to be beneficial.11, 12 Commonly used approaches including restraints, alarms, bracelets, or having a volunteer sit with high‐risk patients have not been found to be effective.13, 14 Only 1 study found a multicomponent care plan that targeted specific risk factors in older inpatients to be associated with a reduced relative risk of recorded falls.15 Given this dearth of consistent evidence for the prevention of falls in hospitalized inpatients, the American Geriatrics Society has identified this as a gap area for future research.16
There are also limited data regarding predictors of injury after inpatient falls. A few small studies have identified potential risk factors for sustaining an injury after a fall in acute care, such as age >75 years, altered mental status, increased comorbidities, visual impairment, falls in the bathroom, and admission to a geriatric psychiatry floor.2, 5, 17 However, to our knowledge, there are no studies that have identified potential characteristics of inpatients found immediately after a fall that predict an injury. Providers who assess inpatients who have fallen need guidance on how to identify those in need of further evaluation and testing. This study sought to quantify the types and severity of injuries resulting from inpatient falls and to identify predictors of injury after a fall among a cohort of patients who fell at an urban academic medical center.
Patients and Methods
Patient Population
The study population included all inpatients on 13 medical and surgical units who experienced a fall between January 1, 2006 and December 31, 2006, while hospitalized at an 1171‐bed urban academic medical center. Telemetry, intensive care, pediatric, psychiatric, rehabilitation, and obstetrics or gynecology units were excluded from this analysis; the patients on these units are special populations that are qualitatively different than other acute care patients and have a different set of risk factor for falls and predictors of fall‐related injury. The study was approved by the institutional review board of the Mount Sinai School of Medicine.
Data Collection
Inpatient falls were identified retrospectively by review of hospital incident reports, which are most often completed by the unit nurses. In our institution, all falls generate an incident report. Using a standardized abstraction form, patient characteristics, circumstances surrounding falls, and fall‐related injuries were collected from the reports.
Laboratory data for anemia (hemoglobin < 12.0 g/dL), low albumin (<3.5 g/dL), elevated creatinine (>1.5 mg/dL), prolonged partial thromboplastin time (>35 seconds), and elevated international normalized ratio (INR > 1.3), were extracted from the patient's computerized medical record, if available. Number of days from admission to the fall, length of stay to the nearest hundredth of a day, and discharge disposition were also recorded for each patient.
Results of all radiographic studies, including x‐ray, ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), performed within 2 weeks after the fall were obtained. The indication for the imaging study was assessed from the order given to the radiology department and from the patient's medical record. A positive finding on an imaging study was defined as evidence of intracranial hemorrhage, fracture, joint effusion, soft‐tissue swelling, or any other injury potentially caused by trauma. Fall‐related injury was defined as positive findings on any of these imaging studies that were performed as a result of the fall. Evaluation of fall‐related injuries was conducted by a reviewer blinded to the baseline patient characteristics and laboratory data.
Statistical Analyses
Baseline characteristics and risk factors of patients with and without fall‐related injuries were compared using the chi square test or Student t test as appropriate. Univariate and multivariate logistic regression were used to calculate adjusted odds ratios (ORs) for injury after an inpatient fall. The multivariate model was developed using a manual forward method. Prior research shows that patients with recurrent falls do so in the same manner and for the same reasons.2, 3, 17 Thus, analyses were performed including only the first fall episode as the outcome of interest. Analyses were performed with SPSS statistical software (SPSS Inc., Chicago, IL) using 2‐sided P values.
Results
During the study period, 513 inpatients sustained 636 falls at the Mount Sinai Medical Center. There were 54,257 admissions to the hospital with 322,670 total patient days during this time. Therefore the fall incidence rate was 1.97 falls per 1,000 patient days. Characteristics of inpatients who fell are shown in Table 1. Most patients had 1 fall episode; however, 95 patients (19%) fell multiple times (range, 2‐6 events). There were no significant differences between recurrent fallers and those who fell once with respect to baseline characteristics, injuries sustained, or discharge disposition.
Characteristic | Number of Patients (n = 513) [number (%)] |
---|---|
| |
Age (years) | 70 (21‐104) |
Age >75 years | 202 (39) |
Male gender | 255 (50) |
Assessed at risk of falling | |
Yes | 378 (74) |
No | 2 (5) |
Unknown | 110 (21) |
Number of falls | |
1 | 418 (82) |
2 | 78 (15) |
3 | 10 (2) |
4 | 4 (1) |
5 | 2 (0.4) |
6 | 1 (0.2) |
Multiple falls | 95 (19) |
Fall Circumstances
The majority of patients who fell (74%) had been assessed by the nursing staff as being at risk for falling prior to the event. Overall, most falls (73%) occurred on medical rather than surgical units. The units with the most falls were geriatrics, neurology, and general medicine. Details about circumstances surrounding the falls are shown in Table 2. In most instances (71%) patients were found on the floor after the fall while less than 8% of falls were witnessed. Approximately 12% of patients received sedatives within 4 hours of falling (40% opioids, 30% benzodiazepines, 16% zolpidem, and 14% other). Laboratory values at the time of fall revealed that 70% of patients who fell were anemic, 62% had low albumin, and 19% had an elevated creatinine. Almost 20% of the patients had a prolonged partial thromboplastin time (PTT) and 18% had an elevated INR.
Characteristic | Number of Falls (n = 513) [number (%)]* |
---|---|
| |
Location | |
Medical unit | 374 (73) |
Surgical unit | 139 (27) |
Time | |
Day shift (7:00 AM to 6:59 PM) | 225 (44) |
Night shift (7:00 PM to 6:59 AM) | 282 (56) |
Character of fall | |
Assisted to floor | 15 (3) |
Fall alleged | 92 (18) |
Fall witnessed | 39 (8) |
Found on Floor | 363 (71) |
Unknown | 4 (<1) |
Fall‐related activity | |
Ambulation | 164 (32) |
Bathroom | 122 (24) |
Bed | 21 (4) |
Chair | 19 (4) |
Other/unknown | 187 (36) |
Mental status | |
Oriented | 274 (53) |
Confused | 151 (29) |
Unknown | 88 (17) |
Activity level ordered | |
Ambulatory | 246 (48) |
Nonambulatory | 135 (26) |
Unknown | 132 (26) |
Siderails | |
Complete | 15 (3) |
Partial | 352 (69) |
None | 15 (3) |
Unknown | 126 (25) |
Environmental obstacle | |
None | 355 (69) |
Wet | 20 (4) |
Debris | 2 (<1) |
Unknown | 136 (27) |
Restraints | |
Yes | 3 (<1) |
No | 374 (73) |
Unknown | 136 (27) |
Sedative use | |
Total | 64 (12) |
Opioids | 28 (6) |
Benzos | 21 (4) |
Antipsychotics | 7 (1) |
Other | 8 (2) |
Evidence of trauma | |
Yes | 25 (5) |
No | 285 (56) |
Unknown | 203 (40) |
The median number of days from patient admission until they fell was 4 days (range, 0‐134), with 70% of patients falling within the first week of admission. In general, there was no difference in fall rate by time of day, though slightly more falls (56%) occurred during the night shift (7 PM to 7 AM).
Fall‐related Outcomes
Twenty‐five patients (5%) had evidence of trauma on physical exam after the fall, including lacerations, swelling, and ecchymoses, as documented by the evaluating nurse. A total of 120 imaging procedures were ordered following the first fall; when all inpatient falls were included, 145 imaging procedures were ordered. Most imaging studies (87%) did not show significant findings. Among studies with positive findings, the most common abnormality was fracture, including 3 hip, 1 humeral, 1 vertebral, 1 nasal, and 1 rib fracture. Other injuries found on imaging studies included 1 subdural hematoma, 1 acute cerebral infarct, 2 soft‐tissue hematomas, and 2 knee effusions. The acute cerebral infarct was not considered to be a result of the fall. Additionally, 3 patients had soft‐tissue swelling noted on head CT and 1 had Foley catheter‐related trauma.
The average length of stay for the 513 inpatients who fell was 20 days (range, 7‐444) compared to 6 days for all patients admitted to the hospital during the same period. Among inpatients who fell, there was no statistical difference in length of stay between those who did and those who did not have a fall‐related injury found on imaging. More than one‐half (53%) of the patients who fell were discharged to home, 21% to rehabilitation facilities, 12% to nursing homes, and 9% died during the hospitalization.
Results of Univariate Analysis
Univariate predictors of injury after a fall are shown in Table 3. Patients having evidence of trauma indicated by the evaluating nurse after a fall had an increased risk for having an abnormal imaging study (OR = 14.7, P < 0.001). Having an activity level of ambulatory ordered by the provider (OR = 2.5, P = 0.09), falling during the night shift (OR = 2.5, P = 0.11), having ambulation as the fall‐related activity (OR = 2.2, P = 0.12), and older age (P = 0.19) all showed a trend toward higher rates of injury being found after a fall. There was no significant association between fall‐related injury and being an elderly patient (age > 75 years), sedative use, falling in the bathroom, or having an elevated PTT or INR.
Variable | Patients without injury (n = 497) [number (%)] | Patients with injury (n = 16) [number (%)] | OR | P Value |
---|---|---|---|---|
| ||||
Elderly | 195 (39) | 7 (44) | 1.2 | 0.72 |
Gender male | 245 (49) | 10 (63) | 1.7 | 0.30 |
Location surgical unit | 142 (29) | 6 (38) | 1.5 | 0.44 |
At risk of falling prior to event | 365 (73) | 13 (8) | 1.6 | 0.49 |
Protocol in place | 338 (68) | 11 (69) | 1.0 | 0.95 |
Activity level ambulatory | 235 (47) | 11 (69) | 2.5 | 0.09 |
Occurrence on night shift | 270 (54) | 12 (75) | 2.5 | 0.11 |
Restraint use | 3 (1) | 0 (0) | ||
Sedative within 4 hours | 61 (12) | 3 (19) | 1.6 | 0.44 |
Fall related to ambulation | 156 (31) | 8 (50) | 2.2 | 0.12 |
Evidence of trauma | 19 (4) | 6 (38) | 14.7 | <0.001 |
Prolonged PTT | 93 (19) | 5 (31) | 1.9 | 0.29 |
Elevated INR | 90 (18) | 3 (19) | 1.0 | 0.96 |
Anemia | 351 (71) | 9 (56) | 0.6 | 0.32 |
Elevated creatinine | 97 (20) | 2 (13) | 0.7 | 0.60 |
Low albumin | 309 (62) | 8 (50) | 1.6 | 0.58 |
Multivariate Predictors of Injury
In multivariate analysis, after adjusting for age and sex, evidence of trauma after a fall (OR = 24.6, P < 0.001) and having an activity level of ambulatory ordered by the provider (OR = 7.3, P = 0.01) were independent predictors of injury being found on imaging studies (Table 4). Analyses limited to the 120 patients who had imaging found that the association between evidence of trauma (OR = 6.22, P = 0.02) and having an activity level of ambulatory ordered (OR = 5.53, P = 0.04) remained statistically significant.
Variable | All Patients (n = 513) | Patients with Imaging (n = 120)* | ||
---|---|---|---|---|
OR | P Value | OR | P Value | |
| ||||
Age | 1.03 | 0.17 | 1.016 | 0.52 |
Gender | 3.19 | 0.11 | 2.843 | 0.17 |
Evidence of trauma | 24.63 | <0.001 | 6.22 | 0.02 |
Activity level ambulatory | 7.33 | 0.01 | 5.53 | 0.04 |
Discussion
Inpatient falls are common and result in significant patient morbidity and increased healthcare costs. Falls in the acute care setting have also proven to be difficult to prevent and as a result have become a priority for patient safety and hospital quality.
Our study confirms that a high percentage of patients with an initial fall will have recurrent falls.1 Additionally, the majority of patients in this cohort fell despite having been assessed as at risk for falling prior to the event. The types of injuries sustained after inpatient falls (eg, subdural hematoma, multiple fractures, joint effusions, other hematomas, and soft‐tissue swelling) are similar to those found by other authors.2, 3, 17, 18
In this study, inpatient falls were associated with an almost 2‐week increase in length of stay. Though we cannot say that this was directly due to falls, and an increased length of stay may just be a marker of severity of illness, this association warrants further study, perhaps with a matched control group of patients who did not fall, and has implications for healthcare cost containment.
We found that having evidence of trauma after a fall and having an activity level of ambulatory ordered by the provider were independent predictors of injury being found after an inpatient fall. It seems intuitive that patients who have physical evidence of trauma, such as lacerations or bruising, would be more likely to have an underlying injury. Clinically, this confirms that providers should have a high index of suspicion for injury being found on imaging studies in such patients. Similar findings have been noted in the emergency medicine literature that further support the validity of our findings.19
Less clear are the reasons for the observed association between having an activity level of ambulatory ordered and higher risk of injury after an inpatient fall. Prior studies have found that ambulatory inpatients are less likely to use assistive devices that they use at home while hospitalized and are less likely to call for help; these factors may contribute to falls.2, 3 However, the interpretation of this finding is limited by the fact that 26% of the patients who fell had an unknown activity level ordered.
Altered mental status, comorbidity, age > 75 years, visual impairment, falling in the bathroom, and being on a geriatric psychiatry floor have previously been found to be risk factors for sustaining an injury after an inpatient fall.2, 5, 17 Conversely, this study did not find altered mental status to be a significant predictor of injury. One reason may be that this was subjectively determined by the evaluating nurse and not by a standardized measure of cognitive impairment. Patients who are oriented may also be more likely to report unwitnessed falls and injuries than patients with altered mental status.3
There was also no association between age and fall‐related injury in our cohort. On univariate analysis, patients who were older in age were more likely to have an injury found after an inpatient fall but this was not statistically significant. Previous authors have suggested that today's inpatients are increasingly ill and may have risk factors for falls and injuries that are independent of age, such as multiple comorbid conditions or deconditioning.3
We hypothesized that patients who are anticoagulated and had an elevated INR or PTT would be more likely to sustain an injury. Anemic inpatients have also been found to be at increased risk of falls.20 We found no significant association between fall‐related injury being found on imaging studies and anemia, low albumin, elevated creatinine, prolonged PTT, or elevated INR. Not every patient who fell had these laboratory values available. However, even when only inpatients who fell and had laboratory tests were included in the analysis, there was still no association with fall‐related injury.
This study has several limitations. First, a low number of serious injuries was found on imaging studies after inpatient falls in this cohort; this limited the power of the study to identify predictors of fall‐related injury.
Second, fall‐related injury was defined as a positive finding on imaging studies within 2 weeks of an inpatient fall. Thus, some fall‐related injuries may have been missed in patients who did not have imaging. However, any patient who had a serious injury after a fall and remained hospitalized would likely have had symptoms such as pain or altered mental status that would have led to an imaging study. Moreover, the analysis was repeated including only inpatients who fell and had imaging, and the association between having evidence of trauma and having an activity level of ambulatory ordered and sustaining a fall‐related injury remained significant.
Third, we relied on hospital incident reports to identify inpatient falls. These reports yield a limited amount of information and may be inaccurate or incomplete. A recent study also raised concern that incident reports significantly underreport actual fall incidence.21 However, previous studies have found no indication that falls are underreported and suggest that incident reports are an established custom in hospital culture.1, 22 Medical staff are aware that administrators want to keep track of hospital fall rates for both quality improvement and documentation for risk management.1, 22 It is unlikely that severe falls or falls leading to serious injury are not reported. A different source of underreporting may actually be failure of patients to tell the medical team about an unwitnessed fall. Older patients may be concerned they will be placed in nursing homes and those with memory loss may forget to report a minor fall. Education of patients and family members could improve reporting of inpatient falls and further our understanding of contributing factors.
Finally, although the evaluation of fall‐related injuries was conducted by a blinded reviewer, the potential for bias does exist among even the best‐intentioned reviewers. Additionally, there may be some degree of variability within the reviewer's data abstraction.
This study adds valuable information about the epidemiology of inpatient falls at large, urban, tertiary‐care academic medical centers, including characteristics of patients who fell, circumstances surrounding falls, injuries sustained, and predictors of fall‐related injury found on imaging. Although additional research is essential to identify methods to effectively prevent inpatient falls, this study contributes to the limited data in this area, can guide providers who are evaluating inpatients who have fallen, and may be used to design future investigations. It is imperative that measures are identified to avoid the frequent adverse outcomes that result from inpatient falls. Insurance companies, hospital administrators, patients, and providers will be demanding that a safe environment be a key component of quality of care measures.
This study draws attention to the scope of the problem at our institution that is common to hospitals across the country. In our study, our academic medical center had a fall rate consistent with published reports, but new efforts have been focused on quality improvement in this area. An interdisciplinary fall prevention committee has been formed that includes physicians, nurses, patient care assistants, physical therapists, pharmacists, and representatives from information technology (IT). Currently, a program of a fall risk‐factor assessment with targeted interventions to reduce those risk factors is being developed for all high‐risk patients and will be piloted on inpatient units.
Acknowledgements
The authors thank Susan Emro, BS, Department of Health Policy, Susan Davis, MS, MPH, RN, CNAA, Department of Nursing, and Albert Siu, MD, MSPH, Brookdale Department of Geriatrics and Adult Development, for their review of this article. Author contributions were as followsconception and design: S.M.B, R.K., and T.M.; collection and assembly of data: S.M.B.; analysis and interpretation of the data: S.M.B, R.K., and J.W.; drafting of the article: S.M.B.; critical revision of the article for important intellectual content: R.K. and J.W.; final approval of the article: S.M.B, R.K., and J.W.; statistical expertise: J.W.; obtaining of funding: S.M.B.
- Risk of falls for hospitalized patients: a predictive model based on routinely available data.J Clin Epidemiol.2001;54(12):1258–1266. , , , .
- A case‐control study of patient, medication, and care‐related risk factors for inpatient falls.J Gen Intern Med.2005;20(2):116–122. , , , et al.
- Characteristics and circumstances of falls in a hospital setting: a prospective analysis.J Gen Intern Med.2004;19(7):732–739. , , , et al.
- Falls and consequent injuries in hospitalized patients: effects of an interdisciplinary falls prevention program.BMC Health Serv Res.2006;6:69. , , , .
- Serious falls in hospitalized patients: correlates and resource utilization.Am J Med.1995;99(2):137–143. , , , .
- Using tools to assess and prevent inpatient falls.Jt Comm J Qual Saf.2003;29(7):363–368. , .
- Incidence and risk factors for inpatient falls in an academic acute‐care hospital.J Nippon Med Sch.2006;73(5):265–270. , , .
- Nonpayment for performance? Medicare's new reimbursement rule.N Engl J Med.2007;357(16):1573–1575. .
- Clinical practice. preventing falls in elderly persons.N Engl J Med.2003;348(1):42–49. .
- Building the science of falls‐prevention research.J Am Geriatr Soc.2004;52(3):461–462. .
- Interventions for preventing falls in acute‐ and chronic‐care hospitals: a systematic review and meta‐analysis.J Am Geriatr Soc.2008;56(1):29–36. , , , , , .
- Interventions for the prevention of falls in older adults: systematic review and meta‐analysis of randomised clinical trials.BMJ.2004;328(7441):680. , , , et al.
- Acceptability of fall prevention measures for hospital inpatients.Age Ageing.2004;33(4):400–401. , , , et al.
- Can volunteer companions prevent falls among inpatients? A feasibility study using a pre‐post comparative design.BMC Geriatr.2006;6:11. , , , et al.
- Using targeted risk factor reduction to prevent falls in older in‐patients: a randomised controlled trial.Age Ageing.2004;33(4):390–395. , , , , .
- Prevention of falls in hospital inpatients: agendas for research and practice.Age Ageing.2004;33(4):328–330. .
- Patterns and predictors of inpatient falls and fall‐related injuries in a large academic hospital.Infect Control Hosp Epidemiol.2005;26(10):822–827. , , , et al.
- The relationship of falls to injury among hospital in‐patients.Int J Clin Pract.2005;59(1):17–20. , , , , .
- Indications for computed tomography in patients with minor head injury.N Engl J Med.2000;343(2):100–105. , , , , , .
- Anemia increases risk for falls in hospitalized older adults: an evaluation of falls in 362 hospitalized, ambulatory, long‐term care, and community patients.J Am Med Dir Assoc.2006;7(5):287–293. , , .
- Improving the capture of fall events in hospitals: combining a service for evaluating inpatient falls with an incident report system.J Am Geriatr Soc.2008;56(4):701–704. , , , , , .
- Attitudes and barriers to incident reporting: a collaborative hospital study.Qual Saf Health Care.2006;15(1):39–43. , , , et al.
An estimated 2% to 15% of all hospitalized patients experience at least one fall.1 Approximately 30% of such falls result in injury and up to 6% may be serious in nature.1, 2 These injuries can result in pain, functional impairment, disability, or even death, and can contribute to longer lengths of stay, increased health care costs, and nursing home placement.25 As a result, inpatient falls have become a major priority for hospital quality assurance programs, and hospital risk management departments have begun to target inpatient falls as a source of legal liability.13, 6, 7 Recently, the Centers for Medicare and Medicaid Services announced that it will no longer pay for preventable complications of hospitalizations, including falls and fall‐related injury.8
Much of the literature on falls comes from community and long‐term care settings, and only a few studies have investigated falls during acute care hospitalization.3, 9, 10 From these studies, risk factors for inpatient falls have been identified and various models have been developed to predict an individual patient's risk of falling. However, unlike in the community setting, interventions to prevent falls in the acute care setting have not proven to be beneficial.11, 12 Commonly used approaches including restraints, alarms, bracelets, or having a volunteer sit with high‐risk patients have not been found to be effective.13, 14 Only 1 study found a multicomponent care plan that targeted specific risk factors in older inpatients to be associated with a reduced relative risk of recorded falls.15 Given this dearth of consistent evidence for the prevention of falls in hospitalized inpatients, the American Geriatrics Society has identified this as a gap area for future research.16
There are also limited data regarding predictors of injury after inpatient falls. A few small studies have identified potential risk factors for sustaining an injury after a fall in acute care, such as age >75 years, altered mental status, increased comorbidities, visual impairment, falls in the bathroom, and admission to a geriatric psychiatry floor.2, 5, 17 However, to our knowledge, there are no studies that have identified potential characteristics of inpatients found immediately after a fall that predict an injury. Providers who assess inpatients who have fallen need guidance on how to identify those in need of further evaluation and testing. This study sought to quantify the types and severity of injuries resulting from inpatient falls and to identify predictors of injury after a fall among a cohort of patients who fell at an urban academic medical center.
Patients and Methods
Patient Population
The study population included all inpatients on 13 medical and surgical units who experienced a fall between January 1, 2006 and December 31, 2006, while hospitalized at an 1171‐bed urban academic medical center. Telemetry, intensive care, pediatric, psychiatric, rehabilitation, and obstetrics or gynecology units were excluded from this analysis; the patients on these units are special populations that are qualitatively different than other acute care patients and have a different set of risk factor for falls and predictors of fall‐related injury. The study was approved by the institutional review board of the Mount Sinai School of Medicine.
Data Collection
Inpatient falls were identified retrospectively by review of hospital incident reports, which are most often completed by the unit nurses. In our institution, all falls generate an incident report. Using a standardized abstraction form, patient characteristics, circumstances surrounding falls, and fall‐related injuries were collected from the reports.
Laboratory data for anemia (hemoglobin < 12.0 g/dL), low albumin (<3.5 g/dL), elevated creatinine (>1.5 mg/dL), prolonged partial thromboplastin time (>35 seconds), and elevated international normalized ratio (INR > 1.3), were extracted from the patient's computerized medical record, if available. Number of days from admission to the fall, length of stay to the nearest hundredth of a day, and discharge disposition were also recorded for each patient.
Results of all radiographic studies, including x‐ray, ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), performed within 2 weeks after the fall were obtained. The indication for the imaging study was assessed from the order given to the radiology department and from the patient's medical record. A positive finding on an imaging study was defined as evidence of intracranial hemorrhage, fracture, joint effusion, soft‐tissue swelling, or any other injury potentially caused by trauma. Fall‐related injury was defined as positive findings on any of these imaging studies that were performed as a result of the fall. Evaluation of fall‐related injuries was conducted by a reviewer blinded to the baseline patient characteristics and laboratory data.
Statistical Analyses
Baseline characteristics and risk factors of patients with and without fall‐related injuries were compared using the chi square test or Student t test as appropriate. Univariate and multivariate logistic regression were used to calculate adjusted odds ratios (ORs) for injury after an inpatient fall. The multivariate model was developed using a manual forward method. Prior research shows that patients with recurrent falls do so in the same manner and for the same reasons.2, 3, 17 Thus, analyses were performed including only the first fall episode as the outcome of interest. Analyses were performed with SPSS statistical software (SPSS Inc., Chicago, IL) using 2‐sided P values.
Results
During the study period, 513 inpatients sustained 636 falls at the Mount Sinai Medical Center. There were 54,257 admissions to the hospital with 322,670 total patient days during this time. Therefore the fall incidence rate was 1.97 falls per 1,000 patient days. Characteristics of inpatients who fell are shown in Table 1. Most patients had 1 fall episode; however, 95 patients (19%) fell multiple times (range, 2‐6 events). There were no significant differences between recurrent fallers and those who fell once with respect to baseline characteristics, injuries sustained, or discharge disposition.
Characteristic | Number of Patients (n = 513) [number (%)] |
---|---|
| |
Age (years) | 70 (21‐104) |
Age >75 years | 202 (39) |
Male gender | 255 (50) |
Assessed at risk of falling | |
Yes | 378 (74) |
No | 2 (5) |
Unknown | 110 (21) |
Number of falls | |
1 | 418 (82) |
2 | 78 (15) |
3 | 10 (2) |
4 | 4 (1) |
5 | 2 (0.4) |
6 | 1 (0.2) |
Multiple falls | 95 (19) |
Fall Circumstances
The majority of patients who fell (74%) had been assessed by the nursing staff as being at risk for falling prior to the event. Overall, most falls (73%) occurred on medical rather than surgical units. The units with the most falls were geriatrics, neurology, and general medicine. Details about circumstances surrounding the falls are shown in Table 2. In most instances (71%) patients were found on the floor after the fall while less than 8% of falls were witnessed. Approximately 12% of patients received sedatives within 4 hours of falling (40% opioids, 30% benzodiazepines, 16% zolpidem, and 14% other). Laboratory values at the time of fall revealed that 70% of patients who fell were anemic, 62% had low albumin, and 19% had an elevated creatinine. Almost 20% of the patients had a prolonged partial thromboplastin time (PTT) and 18% had an elevated INR.
Characteristic | Number of Falls (n = 513) [number (%)]* |
---|---|
| |
Location | |
Medical unit | 374 (73) |
Surgical unit | 139 (27) |
Time | |
Day shift (7:00 AM to 6:59 PM) | 225 (44) |
Night shift (7:00 PM to 6:59 AM) | 282 (56) |
Character of fall | |
Assisted to floor | 15 (3) |
Fall alleged | 92 (18) |
Fall witnessed | 39 (8) |
Found on Floor | 363 (71) |
Unknown | 4 (<1) |
Fall‐related activity | |
Ambulation | 164 (32) |
Bathroom | 122 (24) |
Bed | 21 (4) |
Chair | 19 (4) |
Other/unknown | 187 (36) |
Mental status | |
Oriented | 274 (53) |
Confused | 151 (29) |
Unknown | 88 (17) |
Activity level ordered | |
Ambulatory | 246 (48) |
Nonambulatory | 135 (26) |
Unknown | 132 (26) |
Siderails | |
Complete | 15 (3) |
Partial | 352 (69) |
None | 15 (3) |
Unknown | 126 (25) |
Environmental obstacle | |
None | 355 (69) |
Wet | 20 (4) |
Debris | 2 (<1) |
Unknown | 136 (27) |
Restraints | |
Yes | 3 (<1) |
No | 374 (73) |
Unknown | 136 (27) |
Sedative use | |
Total | 64 (12) |
Opioids | 28 (6) |
Benzos | 21 (4) |
Antipsychotics | 7 (1) |
Other | 8 (2) |
Evidence of trauma | |
Yes | 25 (5) |
No | 285 (56) |
Unknown | 203 (40) |
The median number of days from patient admission until they fell was 4 days (range, 0‐134), with 70% of patients falling within the first week of admission. In general, there was no difference in fall rate by time of day, though slightly more falls (56%) occurred during the night shift (7 PM to 7 AM).
Fall‐related Outcomes
Twenty‐five patients (5%) had evidence of trauma on physical exam after the fall, including lacerations, swelling, and ecchymoses, as documented by the evaluating nurse. A total of 120 imaging procedures were ordered following the first fall; when all inpatient falls were included, 145 imaging procedures were ordered. Most imaging studies (87%) did not show significant findings. Among studies with positive findings, the most common abnormality was fracture, including 3 hip, 1 humeral, 1 vertebral, 1 nasal, and 1 rib fracture. Other injuries found on imaging studies included 1 subdural hematoma, 1 acute cerebral infarct, 2 soft‐tissue hematomas, and 2 knee effusions. The acute cerebral infarct was not considered to be a result of the fall. Additionally, 3 patients had soft‐tissue swelling noted on head CT and 1 had Foley catheter‐related trauma.
The average length of stay for the 513 inpatients who fell was 20 days (range, 7‐444) compared to 6 days for all patients admitted to the hospital during the same period. Among inpatients who fell, there was no statistical difference in length of stay between those who did and those who did not have a fall‐related injury found on imaging. More than one‐half (53%) of the patients who fell were discharged to home, 21% to rehabilitation facilities, 12% to nursing homes, and 9% died during the hospitalization.
Results of Univariate Analysis
Univariate predictors of injury after a fall are shown in Table 3. Patients having evidence of trauma indicated by the evaluating nurse after a fall had an increased risk for having an abnormal imaging study (OR = 14.7, P < 0.001). Having an activity level of ambulatory ordered by the provider (OR = 2.5, P = 0.09), falling during the night shift (OR = 2.5, P = 0.11), having ambulation as the fall‐related activity (OR = 2.2, P = 0.12), and older age (P = 0.19) all showed a trend toward higher rates of injury being found after a fall. There was no significant association between fall‐related injury and being an elderly patient (age > 75 years), sedative use, falling in the bathroom, or having an elevated PTT or INR.
Variable | Patients without injury (n = 497) [number (%)] | Patients with injury (n = 16) [number (%)] | OR | P Value |
---|---|---|---|---|
| ||||
Elderly | 195 (39) | 7 (44) | 1.2 | 0.72 |
Gender male | 245 (49) | 10 (63) | 1.7 | 0.30 |
Location surgical unit | 142 (29) | 6 (38) | 1.5 | 0.44 |
At risk of falling prior to event | 365 (73) | 13 (8) | 1.6 | 0.49 |
Protocol in place | 338 (68) | 11 (69) | 1.0 | 0.95 |
Activity level ambulatory | 235 (47) | 11 (69) | 2.5 | 0.09 |
Occurrence on night shift | 270 (54) | 12 (75) | 2.5 | 0.11 |
Restraint use | 3 (1) | 0 (0) | ||
Sedative within 4 hours | 61 (12) | 3 (19) | 1.6 | 0.44 |
Fall related to ambulation | 156 (31) | 8 (50) | 2.2 | 0.12 |
Evidence of trauma | 19 (4) | 6 (38) | 14.7 | <0.001 |
Prolonged PTT | 93 (19) | 5 (31) | 1.9 | 0.29 |
Elevated INR | 90 (18) | 3 (19) | 1.0 | 0.96 |
Anemia | 351 (71) | 9 (56) | 0.6 | 0.32 |
Elevated creatinine | 97 (20) | 2 (13) | 0.7 | 0.60 |
Low albumin | 309 (62) | 8 (50) | 1.6 | 0.58 |
Multivariate Predictors of Injury
In multivariate analysis, after adjusting for age and sex, evidence of trauma after a fall (OR = 24.6, P < 0.001) and having an activity level of ambulatory ordered by the provider (OR = 7.3, P = 0.01) were independent predictors of injury being found on imaging studies (Table 4). Analyses limited to the 120 patients who had imaging found that the association between evidence of trauma (OR = 6.22, P = 0.02) and having an activity level of ambulatory ordered (OR = 5.53, P = 0.04) remained statistically significant.
Variable | All Patients (n = 513) | Patients with Imaging (n = 120)* | ||
---|---|---|---|---|
OR | P Value | OR | P Value | |
| ||||
Age | 1.03 | 0.17 | 1.016 | 0.52 |
Gender | 3.19 | 0.11 | 2.843 | 0.17 |
Evidence of trauma | 24.63 | <0.001 | 6.22 | 0.02 |
Activity level ambulatory | 7.33 | 0.01 | 5.53 | 0.04 |
Discussion
Inpatient falls are common and result in significant patient morbidity and increased healthcare costs. Falls in the acute care setting have also proven to be difficult to prevent and as a result have become a priority for patient safety and hospital quality.
Our study confirms that a high percentage of patients with an initial fall will have recurrent falls.1 Additionally, the majority of patients in this cohort fell despite having been assessed as at risk for falling prior to the event. The types of injuries sustained after inpatient falls (eg, subdural hematoma, multiple fractures, joint effusions, other hematomas, and soft‐tissue swelling) are similar to those found by other authors.2, 3, 17, 18
In this study, inpatient falls were associated with an almost 2‐week increase in length of stay. Though we cannot say that this was directly due to falls, and an increased length of stay may just be a marker of severity of illness, this association warrants further study, perhaps with a matched control group of patients who did not fall, and has implications for healthcare cost containment.
We found that having evidence of trauma after a fall and having an activity level of ambulatory ordered by the provider were independent predictors of injury being found after an inpatient fall. It seems intuitive that patients who have physical evidence of trauma, such as lacerations or bruising, would be more likely to have an underlying injury. Clinically, this confirms that providers should have a high index of suspicion for injury being found on imaging studies in such patients. Similar findings have been noted in the emergency medicine literature that further support the validity of our findings.19
Less clear are the reasons for the observed association between having an activity level of ambulatory ordered and higher risk of injury after an inpatient fall. Prior studies have found that ambulatory inpatients are less likely to use assistive devices that they use at home while hospitalized and are less likely to call for help; these factors may contribute to falls.2, 3 However, the interpretation of this finding is limited by the fact that 26% of the patients who fell had an unknown activity level ordered.
Altered mental status, comorbidity, age > 75 years, visual impairment, falling in the bathroom, and being on a geriatric psychiatry floor have previously been found to be risk factors for sustaining an injury after an inpatient fall.2, 5, 17 Conversely, this study did not find altered mental status to be a significant predictor of injury. One reason may be that this was subjectively determined by the evaluating nurse and not by a standardized measure of cognitive impairment. Patients who are oriented may also be more likely to report unwitnessed falls and injuries than patients with altered mental status.3
There was also no association between age and fall‐related injury in our cohort. On univariate analysis, patients who were older in age were more likely to have an injury found after an inpatient fall but this was not statistically significant. Previous authors have suggested that today's inpatients are increasingly ill and may have risk factors for falls and injuries that are independent of age, such as multiple comorbid conditions or deconditioning.3
We hypothesized that patients who are anticoagulated and had an elevated INR or PTT would be more likely to sustain an injury. Anemic inpatients have also been found to be at increased risk of falls.20 We found no significant association between fall‐related injury being found on imaging studies and anemia, low albumin, elevated creatinine, prolonged PTT, or elevated INR. Not every patient who fell had these laboratory values available. However, even when only inpatients who fell and had laboratory tests were included in the analysis, there was still no association with fall‐related injury.
This study has several limitations. First, a low number of serious injuries was found on imaging studies after inpatient falls in this cohort; this limited the power of the study to identify predictors of fall‐related injury.
Second, fall‐related injury was defined as a positive finding on imaging studies within 2 weeks of an inpatient fall. Thus, some fall‐related injuries may have been missed in patients who did not have imaging. However, any patient who had a serious injury after a fall and remained hospitalized would likely have had symptoms such as pain or altered mental status that would have led to an imaging study. Moreover, the analysis was repeated including only inpatients who fell and had imaging, and the association between having evidence of trauma and having an activity level of ambulatory ordered and sustaining a fall‐related injury remained significant.
Third, we relied on hospital incident reports to identify inpatient falls. These reports yield a limited amount of information and may be inaccurate or incomplete. A recent study also raised concern that incident reports significantly underreport actual fall incidence.21 However, previous studies have found no indication that falls are underreported and suggest that incident reports are an established custom in hospital culture.1, 22 Medical staff are aware that administrators want to keep track of hospital fall rates for both quality improvement and documentation for risk management.1, 22 It is unlikely that severe falls or falls leading to serious injury are not reported. A different source of underreporting may actually be failure of patients to tell the medical team about an unwitnessed fall. Older patients may be concerned they will be placed in nursing homes and those with memory loss may forget to report a minor fall. Education of patients and family members could improve reporting of inpatient falls and further our understanding of contributing factors.
Finally, although the evaluation of fall‐related injuries was conducted by a blinded reviewer, the potential for bias does exist among even the best‐intentioned reviewers. Additionally, there may be some degree of variability within the reviewer's data abstraction.
This study adds valuable information about the epidemiology of inpatient falls at large, urban, tertiary‐care academic medical centers, including characteristics of patients who fell, circumstances surrounding falls, injuries sustained, and predictors of fall‐related injury found on imaging. Although additional research is essential to identify methods to effectively prevent inpatient falls, this study contributes to the limited data in this area, can guide providers who are evaluating inpatients who have fallen, and may be used to design future investigations. It is imperative that measures are identified to avoid the frequent adverse outcomes that result from inpatient falls. Insurance companies, hospital administrators, patients, and providers will be demanding that a safe environment be a key component of quality of care measures.
This study draws attention to the scope of the problem at our institution that is common to hospitals across the country. In our study, our academic medical center had a fall rate consistent with published reports, but new efforts have been focused on quality improvement in this area. An interdisciplinary fall prevention committee has been formed that includes physicians, nurses, patient care assistants, physical therapists, pharmacists, and representatives from information technology (IT). Currently, a program of a fall risk‐factor assessment with targeted interventions to reduce those risk factors is being developed for all high‐risk patients and will be piloted on inpatient units.
Acknowledgements
The authors thank Susan Emro, BS, Department of Health Policy, Susan Davis, MS, MPH, RN, CNAA, Department of Nursing, and Albert Siu, MD, MSPH, Brookdale Department of Geriatrics and Adult Development, for their review of this article. Author contributions were as followsconception and design: S.M.B, R.K., and T.M.; collection and assembly of data: S.M.B.; analysis and interpretation of the data: S.M.B, R.K., and J.W.; drafting of the article: S.M.B.; critical revision of the article for important intellectual content: R.K. and J.W.; final approval of the article: S.M.B, R.K., and J.W.; statistical expertise: J.W.; obtaining of funding: S.M.B.
An estimated 2% to 15% of all hospitalized patients experience at least one fall.1 Approximately 30% of such falls result in injury and up to 6% may be serious in nature.1, 2 These injuries can result in pain, functional impairment, disability, or even death, and can contribute to longer lengths of stay, increased health care costs, and nursing home placement.25 As a result, inpatient falls have become a major priority for hospital quality assurance programs, and hospital risk management departments have begun to target inpatient falls as a source of legal liability.13, 6, 7 Recently, the Centers for Medicare and Medicaid Services announced that it will no longer pay for preventable complications of hospitalizations, including falls and fall‐related injury.8
Much of the literature on falls comes from community and long‐term care settings, and only a few studies have investigated falls during acute care hospitalization.3, 9, 10 From these studies, risk factors for inpatient falls have been identified and various models have been developed to predict an individual patient's risk of falling. However, unlike in the community setting, interventions to prevent falls in the acute care setting have not proven to be beneficial.11, 12 Commonly used approaches including restraints, alarms, bracelets, or having a volunteer sit with high‐risk patients have not been found to be effective.13, 14 Only 1 study found a multicomponent care plan that targeted specific risk factors in older inpatients to be associated with a reduced relative risk of recorded falls.15 Given this dearth of consistent evidence for the prevention of falls in hospitalized inpatients, the American Geriatrics Society has identified this as a gap area for future research.16
There are also limited data regarding predictors of injury after inpatient falls. A few small studies have identified potential risk factors for sustaining an injury after a fall in acute care, such as age >75 years, altered mental status, increased comorbidities, visual impairment, falls in the bathroom, and admission to a geriatric psychiatry floor.2, 5, 17 However, to our knowledge, there are no studies that have identified potential characteristics of inpatients found immediately after a fall that predict an injury. Providers who assess inpatients who have fallen need guidance on how to identify those in need of further evaluation and testing. This study sought to quantify the types and severity of injuries resulting from inpatient falls and to identify predictors of injury after a fall among a cohort of patients who fell at an urban academic medical center.
Patients and Methods
Patient Population
The study population included all inpatients on 13 medical and surgical units who experienced a fall between January 1, 2006 and December 31, 2006, while hospitalized at an 1171‐bed urban academic medical center. Telemetry, intensive care, pediatric, psychiatric, rehabilitation, and obstetrics or gynecology units were excluded from this analysis; the patients on these units are special populations that are qualitatively different than other acute care patients and have a different set of risk factor for falls and predictors of fall‐related injury. The study was approved by the institutional review board of the Mount Sinai School of Medicine.
Data Collection
Inpatient falls were identified retrospectively by review of hospital incident reports, which are most often completed by the unit nurses. In our institution, all falls generate an incident report. Using a standardized abstraction form, patient characteristics, circumstances surrounding falls, and fall‐related injuries were collected from the reports.
Laboratory data for anemia (hemoglobin < 12.0 g/dL), low albumin (<3.5 g/dL), elevated creatinine (>1.5 mg/dL), prolonged partial thromboplastin time (>35 seconds), and elevated international normalized ratio (INR > 1.3), were extracted from the patient's computerized medical record, if available. Number of days from admission to the fall, length of stay to the nearest hundredth of a day, and discharge disposition were also recorded for each patient.
Results of all radiographic studies, including x‐ray, ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), performed within 2 weeks after the fall were obtained. The indication for the imaging study was assessed from the order given to the radiology department and from the patient's medical record. A positive finding on an imaging study was defined as evidence of intracranial hemorrhage, fracture, joint effusion, soft‐tissue swelling, or any other injury potentially caused by trauma. Fall‐related injury was defined as positive findings on any of these imaging studies that were performed as a result of the fall. Evaluation of fall‐related injuries was conducted by a reviewer blinded to the baseline patient characteristics and laboratory data.
Statistical Analyses
Baseline characteristics and risk factors of patients with and without fall‐related injuries were compared using the chi square test or Student t test as appropriate. Univariate and multivariate logistic regression were used to calculate adjusted odds ratios (ORs) for injury after an inpatient fall. The multivariate model was developed using a manual forward method. Prior research shows that patients with recurrent falls do so in the same manner and for the same reasons.2, 3, 17 Thus, analyses were performed including only the first fall episode as the outcome of interest. Analyses were performed with SPSS statistical software (SPSS Inc., Chicago, IL) using 2‐sided P values.
Results
During the study period, 513 inpatients sustained 636 falls at the Mount Sinai Medical Center. There were 54,257 admissions to the hospital with 322,670 total patient days during this time. Therefore the fall incidence rate was 1.97 falls per 1,000 patient days. Characteristics of inpatients who fell are shown in Table 1. Most patients had 1 fall episode; however, 95 patients (19%) fell multiple times (range, 2‐6 events). There were no significant differences between recurrent fallers and those who fell once with respect to baseline characteristics, injuries sustained, or discharge disposition.
Characteristic | Number of Patients (n = 513) [number (%)] |
---|---|
| |
Age (years) | 70 (21‐104) |
Age >75 years | 202 (39) |
Male gender | 255 (50) |
Assessed at risk of falling | |
Yes | 378 (74) |
No | 2 (5) |
Unknown | 110 (21) |
Number of falls | |
1 | 418 (82) |
2 | 78 (15) |
3 | 10 (2) |
4 | 4 (1) |
5 | 2 (0.4) |
6 | 1 (0.2) |
Multiple falls | 95 (19) |
Fall Circumstances
The majority of patients who fell (74%) had been assessed by the nursing staff as being at risk for falling prior to the event. Overall, most falls (73%) occurred on medical rather than surgical units. The units with the most falls were geriatrics, neurology, and general medicine. Details about circumstances surrounding the falls are shown in Table 2. In most instances (71%) patients were found on the floor after the fall while less than 8% of falls were witnessed. Approximately 12% of patients received sedatives within 4 hours of falling (40% opioids, 30% benzodiazepines, 16% zolpidem, and 14% other). Laboratory values at the time of fall revealed that 70% of patients who fell were anemic, 62% had low albumin, and 19% had an elevated creatinine. Almost 20% of the patients had a prolonged partial thromboplastin time (PTT) and 18% had an elevated INR.
Characteristic | Number of Falls (n = 513) [number (%)]* |
---|---|
| |
Location | |
Medical unit | 374 (73) |
Surgical unit | 139 (27) |
Time | |
Day shift (7:00 AM to 6:59 PM) | 225 (44) |
Night shift (7:00 PM to 6:59 AM) | 282 (56) |
Character of fall | |
Assisted to floor | 15 (3) |
Fall alleged | 92 (18) |
Fall witnessed | 39 (8) |
Found on Floor | 363 (71) |
Unknown | 4 (<1) |
Fall‐related activity | |
Ambulation | 164 (32) |
Bathroom | 122 (24) |
Bed | 21 (4) |
Chair | 19 (4) |
Other/unknown | 187 (36) |
Mental status | |
Oriented | 274 (53) |
Confused | 151 (29) |
Unknown | 88 (17) |
Activity level ordered | |
Ambulatory | 246 (48) |
Nonambulatory | 135 (26) |
Unknown | 132 (26) |
Siderails | |
Complete | 15 (3) |
Partial | 352 (69) |
None | 15 (3) |
Unknown | 126 (25) |
Environmental obstacle | |
None | 355 (69) |
Wet | 20 (4) |
Debris | 2 (<1) |
Unknown | 136 (27) |
Restraints | |
Yes | 3 (<1) |
No | 374 (73) |
Unknown | 136 (27) |
Sedative use | |
Total | 64 (12) |
Opioids | 28 (6) |
Benzos | 21 (4) |
Antipsychotics | 7 (1) |
Other | 8 (2) |
Evidence of trauma | |
Yes | 25 (5) |
No | 285 (56) |
Unknown | 203 (40) |
The median number of days from patient admission until they fell was 4 days (range, 0‐134), with 70% of patients falling within the first week of admission. In general, there was no difference in fall rate by time of day, though slightly more falls (56%) occurred during the night shift (7 PM to 7 AM).
Fall‐related Outcomes
Twenty‐five patients (5%) had evidence of trauma on physical exam after the fall, including lacerations, swelling, and ecchymoses, as documented by the evaluating nurse. A total of 120 imaging procedures were ordered following the first fall; when all inpatient falls were included, 145 imaging procedures were ordered. Most imaging studies (87%) did not show significant findings. Among studies with positive findings, the most common abnormality was fracture, including 3 hip, 1 humeral, 1 vertebral, 1 nasal, and 1 rib fracture. Other injuries found on imaging studies included 1 subdural hematoma, 1 acute cerebral infarct, 2 soft‐tissue hematomas, and 2 knee effusions. The acute cerebral infarct was not considered to be a result of the fall. Additionally, 3 patients had soft‐tissue swelling noted on head CT and 1 had Foley catheter‐related trauma.
The average length of stay for the 513 inpatients who fell was 20 days (range, 7‐444) compared to 6 days for all patients admitted to the hospital during the same period. Among inpatients who fell, there was no statistical difference in length of stay between those who did and those who did not have a fall‐related injury found on imaging. More than one‐half (53%) of the patients who fell were discharged to home, 21% to rehabilitation facilities, 12% to nursing homes, and 9% died during the hospitalization.
Results of Univariate Analysis
Univariate predictors of injury after a fall are shown in Table 3. Patients having evidence of trauma indicated by the evaluating nurse after a fall had an increased risk for having an abnormal imaging study (OR = 14.7, P < 0.001). Having an activity level of ambulatory ordered by the provider (OR = 2.5, P = 0.09), falling during the night shift (OR = 2.5, P = 0.11), having ambulation as the fall‐related activity (OR = 2.2, P = 0.12), and older age (P = 0.19) all showed a trend toward higher rates of injury being found after a fall. There was no significant association between fall‐related injury and being an elderly patient (age > 75 years), sedative use, falling in the bathroom, or having an elevated PTT or INR.
Variable | Patients without injury (n = 497) [number (%)] | Patients with injury (n = 16) [number (%)] | OR | P Value |
---|---|---|---|---|
| ||||
Elderly | 195 (39) | 7 (44) | 1.2 | 0.72 |
Gender male | 245 (49) | 10 (63) | 1.7 | 0.30 |
Location surgical unit | 142 (29) | 6 (38) | 1.5 | 0.44 |
At risk of falling prior to event | 365 (73) | 13 (8) | 1.6 | 0.49 |
Protocol in place | 338 (68) | 11 (69) | 1.0 | 0.95 |
Activity level ambulatory | 235 (47) | 11 (69) | 2.5 | 0.09 |
Occurrence on night shift | 270 (54) | 12 (75) | 2.5 | 0.11 |
Restraint use | 3 (1) | 0 (0) | ||
Sedative within 4 hours | 61 (12) | 3 (19) | 1.6 | 0.44 |
Fall related to ambulation | 156 (31) | 8 (50) | 2.2 | 0.12 |
Evidence of trauma | 19 (4) | 6 (38) | 14.7 | <0.001 |
Prolonged PTT | 93 (19) | 5 (31) | 1.9 | 0.29 |
Elevated INR | 90 (18) | 3 (19) | 1.0 | 0.96 |
Anemia | 351 (71) | 9 (56) | 0.6 | 0.32 |
Elevated creatinine | 97 (20) | 2 (13) | 0.7 | 0.60 |
Low albumin | 309 (62) | 8 (50) | 1.6 | 0.58 |
Multivariate Predictors of Injury
In multivariate analysis, after adjusting for age and sex, evidence of trauma after a fall (OR = 24.6, P < 0.001) and having an activity level of ambulatory ordered by the provider (OR = 7.3, P = 0.01) were independent predictors of injury being found on imaging studies (Table 4). Analyses limited to the 120 patients who had imaging found that the association between evidence of trauma (OR = 6.22, P = 0.02) and having an activity level of ambulatory ordered (OR = 5.53, P = 0.04) remained statistically significant.
Variable | All Patients (n = 513) | Patients with Imaging (n = 120)* | ||
---|---|---|---|---|
OR | P Value | OR | P Value | |
| ||||
Age | 1.03 | 0.17 | 1.016 | 0.52 |
Gender | 3.19 | 0.11 | 2.843 | 0.17 |
Evidence of trauma | 24.63 | <0.001 | 6.22 | 0.02 |
Activity level ambulatory | 7.33 | 0.01 | 5.53 | 0.04 |
Discussion
Inpatient falls are common and result in significant patient morbidity and increased healthcare costs. Falls in the acute care setting have also proven to be difficult to prevent and as a result have become a priority for patient safety and hospital quality.
Our study confirms that a high percentage of patients with an initial fall will have recurrent falls.1 Additionally, the majority of patients in this cohort fell despite having been assessed as at risk for falling prior to the event. The types of injuries sustained after inpatient falls (eg, subdural hematoma, multiple fractures, joint effusions, other hematomas, and soft‐tissue swelling) are similar to those found by other authors.2, 3, 17, 18
In this study, inpatient falls were associated with an almost 2‐week increase in length of stay. Though we cannot say that this was directly due to falls, and an increased length of stay may just be a marker of severity of illness, this association warrants further study, perhaps with a matched control group of patients who did not fall, and has implications for healthcare cost containment.
We found that having evidence of trauma after a fall and having an activity level of ambulatory ordered by the provider were independent predictors of injury being found after an inpatient fall. It seems intuitive that patients who have physical evidence of trauma, such as lacerations or bruising, would be more likely to have an underlying injury. Clinically, this confirms that providers should have a high index of suspicion for injury being found on imaging studies in such patients. Similar findings have been noted in the emergency medicine literature that further support the validity of our findings.19
Less clear are the reasons for the observed association between having an activity level of ambulatory ordered and higher risk of injury after an inpatient fall. Prior studies have found that ambulatory inpatients are less likely to use assistive devices that they use at home while hospitalized and are less likely to call for help; these factors may contribute to falls.2, 3 However, the interpretation of this finding is limited by the fact that 26% of the patients who fell had an unknown activity level ordered.
Altered mental status, comorbidity, age > 75 years, visual impairment, falling in the bathroom, and being on a geriatric psychiatry floor have previously been found to be risk factors for sustaining an injury after an inpatient fall.2, 5, 17 Conversely, this study did not find altered mental status to be a significant predictor of injury. One reason may be that this was subjectively determined by the evaluating nurse and not by a standardized measure of cognitive impairment. Patients who are oriented may also be more likely to report unwitnessed falls and injuries than patients with altered mental status.3
There was also no association between age and fall‐related injury in our cohort. On univariate analysis, patients who were older in age were more likely to have an injury found after an inpatient fall but this was not statistically significant. Previous authors have suggested that today's inpatients are increasingly ill and may have risk factors for falls and injuries that are independent of age, such as multiple comorbid conditions or deconditioning.3
We hypothesized that patients who are anticoagulated and had an elevated INR or PTT would be more likely to sustain an injury. Anemic inpatients have also been found to be at increased risk of falls.20 We found no significant association between fall‐related injury being found on imaging studies and anemia, low albumin, elevated creatinine, prolonged PTT, or elevated INR. Not every patient who fell had these laboratory values available. However, even when only inpatients who fell and had laboratory tests were included in the analysis, there was still no association with fall‐related injury.
This study has several limitations. First, a low number of serious injuries was found on imaging studies after inpatient falls in this cohort; this limited the power of the study to identify predictors of fall‐related injury.
Second, fall‐related injury was defined as a positive finding on imaging studies within 2 weeks of an inpatient fall. Thus, some fall‐related injuries may have been missed in patients who did not have imaging. However, any patient who had a serious injury after a fall and remained hospitalized would likely have had symptoms such as pain or altered mental status that would have led to an imaging study. Moreover, the analysis was repeated including only inpatients who fell and had imaging, and the association between having evidence of trauma and having an activity level of ambulatory ordered and sustaining a fall‐related injury remained significant.
Third, we relied on hospital incident reports to identify inpatient falls. These reports yield a limited amount of information and may be inaccurate or incomplete. A recent study also raised concern that incident reports significantly underreport actual fall incidence.21 However, previous studies have found no indication that falls are underreported and suggest that incident reports are an established custom in hospital culture.1, 22 Medical staff are aware that administrators want to keep track of hospital fall rates for both quality improvement and documentation for risk management.1, 22 It is unlikely that severe falls or falls leading to serious injury are not reported. A different source of underreporting may actually be failure of patients to tell the medical team about an unwitnessed fall. Older patients may be concerned they will be placed in nursing homes and those with memory loss may forget to report a minor fall. Education of patients and family members could improve reporting of inpatient falls and further our understanding of contributing factors.
Finally, although the evaluation of fall‐related injuries was conducted by a blinded reviewer, the potential for bias does exist among even the best‐intentioned reviewers. Additionally, there may be some degree of variability within the reviewer's data abstraction.
This study adds valuable information about the epidemiology of inpatient falls at large, urban, tertiary‐care academic medical centers, including characteristics of patients who fell, circumstances surrounding falls, injuries sustained, and predictors of fall‐related injury found on imaging. Although additional research is essential to identify methods to effectively prevent inpatient falls, this study contributes to the limited data in this area, can guide providers who are evaluating inpatients who have fallen, and may be used to design future investigations. It is imperative that measures are identified to avoid the frequent adverse outcomes that result from inpatient falls. Insurance companies, hospital administrators, patients, and providers will be demanding that a safe environment be a key component of quality of care measures.
This study draws attention to the scope of the problem at our institution that is common to hospitals across the country. In our study, our academic medical center had a fall rate consistent with published reports, but new efforts have been focused on quality improvement in this area. An interdisciplinary fall prevention committee has been formed that includes physicians, nurses, patient care assistants, physical therapists, pharmacists, and representatives from information technology (IT). Currently, a program of a fall risk‐factor assessment with targeted interventions to reduce those risk factors is being developed for all high‐risk patients and will be piloted on inpatient units.
Acknowledgements
The authors thank Susan Emro, BS, Department of Health Policy, Susan Davis, MS, MPH, RN, CNAA, Department of Nursing, and Albert Siu, MD, MSPH, Brookdale Department of Geriatrics and Adult Development, for their review of this article. Author contributions were as followsconception and design: S.M.B, R.K., and T.M.; collection and assembly of data: S.M.B.; analysis and interpretation of the data: S.M.B, R.K., and J.W.; drafting of the article: S.M.B.; critical revision of the article for important intellectual content: R.K. and J.W.; final approval of the article: S.M.B, R.K., and J.W.; statistical expertise: J.W.; obtaining of funding: S.M.B.
- Risk of falls for hospitalized patients: a predictive model based on routinely available data.J Clin Epidemiol.2001;54(12):1258–1266. , , , .
- A case‐control study of patient, medication, and care‐related risk factors for inpatient falls.J Gen Intern Med.2005;20(2):116–122. , , , et al.
- Characteristics and circumstances of falls in a hospital setting: a prospective analysis.J Gen Intern Med.2004;19(7):732–739. , , , et al.
- Falls and consequent injuries in hospitalized patients: effects of an interdisciplinary falls prevention program.BMC Health Serv Res.2006;6:69. , , , .
- Serious falls in hospitalized patients: correlates and resource utilization.Am J Med.1995;99(2):137–143. , , , .
- Using tools to assess and prevent inpatient falls.Jt Comm J Qual Saf.2003;29(7):363–368. , .
- Incidence and risk factors for inpatient falls in an academic acute‐care hospital.J Nippon Med Sch.2006;73(5):265–270. , , .
- Nonpayment for performance? Medicare's new reimbursement rule.N Engl J Med.2007;357(16):1573–1575. .
- Clinical practice. preventing falls in elderly persons.N Engl J Med.2003;348(1):42–49. .
- Building the science of falls‐prevention research.J Am Geriatr Soc.2004;52(3):461–462. .
- Interventions for preventing falls in acute‐ and chronic‐care hospitals: a systematic review and meta‐analysis.J Am Geriatr Soc.2008;56(1):29–36. , , , , , .
- Interventions for the prevention of falls in older adults: systematic review and meta‐analysis of randomised clinical trials.BMJ.2004;328(7441):680. , , , et al.
- Acceptability of fall prevention measures for hospital inpatients.Age Ageing.2004;33(4):400–401. , , , et al.
- Can volunteer companions prevent falls among inpatients? A feasibility study using a pre‐post comparative design.BMC Geriatr.2006;6:11. , , , et al.
- Using targeted risk factor reduction to prevent falls in older in‐patients: a randomised controlled trial.Age Ageing.2004;33(4):390–395. , , , , .
- Prevention of falls in hospital inpatients: agendas for research and practice.Age Ageing.2004;33(4):328–330. .
- Patterns and predictors of inpatient falls and fall‐related injuries in a large academic hospital.Infect Control Hosp Epidemiol.2005;26(10):822–827. , , , et al.
- The relationship of falls to injury among hospital in‐patients.Int J Clin Pract.2005;59(1):17–20. , , , , .
- Indications for computed tomography in patients with minor head injury.N Engl J Med.2000;343(2):100–105. , , , , , .
- Anemia increases risk for falls in hospitalized older adults: an evaluation of falls in 362 hospitalized, ambulatory, long‐term care, and community patients.J Am Med Dir Assoc.2006;7(5):287–293. , , .
- Improving the capture of fall events in hospitals: combining a service for evaluating inpatient falls with an incident report system.J Am Geriatr Soc.2008;56(4):701–704. , , , , , .
- Attitudes and barriers to incident reporting: a collaborative hospital study.Qual Saf Health Care.2006;15(1):39–43. , , , et al.
- Risk of falls for hospitalized patients: a predictive model based on routinely available data.J Clin Epidemiol.2001;54(12):1258–1266. , , , .
- A case‐control study of patient, medication, and care‐related risk factors for inpatient falls.J Gen Intern Med.2005;20(2):116–122. , , , et al.
- Characteristics and circumstances of falls in a hospital setting: a prospective analysis.J Gen Intern Med.2004;19(7):732–739. , , , et al.
- Falls and consequent injuries in hospitalized patients: effects of an interdisciplinary falls prevention program.BMC Health Serv Res.2006;6:69. , , , .
- Serious falls in hospitalized patients: correlates and resource utilization.Am J Med.1995;99(2):137–143. , , , .
- Using tools to assess and prevent inpatient falls.Jt Comm J Qual Saf.2003;29(7):363–368. , .
- Incidence and risk factors for inpatient falls in an academic acute‐care hospital.J Nippon Med Sch.2006;73(5):265–270. , , .
- Nonpayment for performance? Medicare's new reimbursement rule.N Engl J Med.2007;357(16):1573–1575. .
- Clinical practice. preventing falls in elderly persons.N Engl J Med.2003;348(1):42–49. .
- Building the science of falls‐prevention research.J Am Geriatr Soc.2004;52(3):461–462. .
- Interventions for preventing falls in acute‐ and chronic‐care hospitals: a systematic review and meta‐analysis.J Am Geriatr Soc.2008;56(1):29–36. , , , , , .
- Interventions for the prevention of falls in older adults: systematic review and meta‐analysis of randomised clinical trials.BMJ.2004;328(7441):680. , , , et al.
- Acceptability of fall prevention measures for hospital inpatients.Age Ageing.2004;33(4):400–401. , , , et al.
- Can volunteer companions prevent falls among inpatients? A feasibility study using a pre‐post comparative design.BMC Geriatr.2006;6:11. , , , et al.
- Using targeted risk factor reduction to prevent falls in older in‐patients: a randomised controlled trial.Age Ageing.2004;33(4):390–395. , , , , .
- Prevention of falls in hospital inpatients: agendas for research and practice.Age Ageing.2004;33(4):328–330. .
- Patterns and predictors of inpatient falls and fall‐related injuries in a large academic hospital.Infect Control Hosp Epidemiol.2005;26(10):822–827. , , , et al.
- The relationship of falls to injury among hospital in‐patients.Int J Clin Pract.2005;59(1):17–20. , , , , .
- Indications for computed tomography in patients with minor head injury.N Engl J Med.2000;343(2):100–105. , , , , , .
- Anemia increases risk for falls in hospitalized older adults: an evaluation of falls in 362 hospitalized, ambulatory, long‐term care, and community patients.J Am Med Dir Assoc.2006;7(5):287–293. , , .
- Improving the capture of fall events in hospitals: combining a service for evaluating inpatient falls with an incident report system.J Am Geriatr Soc.2008;56(4):701–704. , , , , , .
- Attitudes and barriers to incident reporting: a collaborative hospital study.Qual Saf Health Care.2006;15(1):39–43. , , , et al.
Copyright © 2010 Society of Hospital Medicine
Academic Hospital Medicine
The past decade has seen hospital medicine grow from fewer than 1000 hospitalists nationwide to more than 20,000.1 In fact, survey data suggest that hospital medicine is the fastest growing field of internal medicine in the history of the US, and the growth of hospital medicine has produced a net increase in the number of generalists in the US.2
Although few direct estimates exist, academic hospital medicine (AHM) is also growing rapidly.1 Fueled by potential efficiency gains, a need for increased educational oversight of teaching services, and new residency work hour limitations, many academic medical centers and teaching hospitals have developed large hospital medicine programs. Internal medicine residency graduates interested in general medicine are finding hospital medicine an increasingly popular career choice. As a result, AHM groups have many recent residency graduates with an average age that is generally younger than 40.3
Over 85% of hospitalists are generalists and should find natural alliances with the nonhospitalist side of general internal medicine by collaborating in the course of clinical care, by teaching residents and students, or by designing quality improvement or research projects. In many academic centers, hospitalists are part of the division of general internal medicine, whereas in a few centers, hospitalists either have a separate division or lie outside the internal medicine department (employed by their hospitals).
Despite sharing a common training background and generalist mindset, many new academic hospitalists face different challenges than those faced by pure outpatient‐based academic generalists. First, at many centers, the financial arrangements between the AHM group and the hospital discourage hospitalists from traditional academic pursuits and draw them into clinical, operational, or administrative duties (such as responsibility for utilization review) that, although locally valuable, may not count as academic products in themselves or may take time away from more academic activities. Close alignment between hospitals and AHM may result in hospital administrators dictating hospitalists' practice in a way that further impedes academic viability. Reductions in resident training hours and an increasing need to provide 24‐hour coverage have facilitated growth in AHM into roles beyond those of the traditional academic generalist, such as medical comanagement of surgical patients and coverage of nonteaching services.4, 5 The youth of the field may exacerbate these problems. Most academic hospitalist groups have few senior leaders, whether they are clinical‐, education‐, or research‐focused. Young faculty need senior leaders as mentors to buffer them from relentless clinical demands that would compromise their hopes for academic success.
In order to better characterize these concerns and develop a shared work plan for future activities in support of AHM, the Society of Hospital Medicine (SHM) and the Society of General Internal Medicine (SGIM) convened an AHM consensus conference, a collaborative meeting developed and attended by representatives from SHM, SGIM, the Association of Chiefs of General Internal Medicine (ACGIM), the Association of Professors of Medicine, the Association of Program Directors in Internal Medicine, and the Association of Administrators in Internal Medicine. Using a structured consensus‐building format, we identified key barriers and challenges to AHM, then developed potential solutions.
Consensus Conference Format
Consensus Conference Steering Committee
The consensus conference was developed first by the sponsoring professional societies (SGIM, SHM, and ACGIM) being asked to nominate 2 people to be part of the consensus conference steering committee. The steering committee's main functions were to identify key tasks for the consensus conference, invite consensus conference attendees, ensure adequate representation from all participating organizations, synthesize the results of the consensus conference, and work with the individual professional societies so that results from the consensus conference were acted upon in a coordinated and effective manner.
Consensus Conference Prework
The consensus conference co‐chairs convened a series of conference calls in the spring of 2007, during which the steering committee developed a series of key areas to be explored during the conference. Topic areas were selected on the basis of the group's expertise and referred to past work by AHM taskforces convened by both SGIM/ACGIM and SHM.
The steering committee then invited stakeholders from each invited society so that each professional organization would provide at least 1 representative with expertise appropriate to 1 of the key domains identified:
-
Clinical and financial issues (within which topics such as optimal job descriptions and salary structures would be explored).
-
Teaching and education mission (within which topics such as mentorship for AHM junior faculty might be discussed).
-
Research and promotable activities (within which issues related to the development of promotable activities for AHM would be discussed).
Invitees to the consensus conference were assigned to one working group, given a general description of the potential areas within their domain, and instructed to consider a number of broad questions relevant to the topic area. These questions were as follows:
-
What are the key barriers to AHM in each key domain?
-
What viewpoints or barriers are the most pressing and/or actionable?
-
What solutions could be implemented or initiated in the next 1 to 3 years?
In order to facilitate discussion, consensus conference invitees were provided copies of findings from the SGIM/ACGIM and SHM Academic Hospitalist Task Forces, preliminary results from a survey of AHM leaders, and key literature related to the field.
Consensus Conference Format
The AHM consensus conference followed a modified Delphi consensus‐building format, in which the members of each working group developed findings relevant to their area, presented these viewpoints back to the overall group for feedback, and returned to their working group to refine their initial recommendations or move on to subsequent areas.
We used Day 1 of the meeting to confirm and refine lists of key barriers and opportunities to AHM. On Day 2, we developed actionable solutions and identified barriers with no ready solution but which were felt to be worth highlighting.
Each cycle of feedback (1 on Day 1 and 2 on Day 2) was used to identify additional barriers or opportunities prespecified by the steering committee, prioritize issues/opportunities, clarify uncertainties or point them out when they existed, and identify new areas requiring consensus. Between each cycle, workflow and interim results were summarized by the co‐chairs and a professional meeting coordinator to ensure that the group felt consensus had been achieved and to identify where additional work was required.
Writing Group/Peer Review
After the consensus conference adjourned, minutes were circulated to the group and approved, whereupon a summary of the meeting was reformatted into manuscript form. The manuscript was circulated to the steering committee, consensus conference attendees, and 2 selected peer reviewers as an additional check on the external validity of the study's results.
Consensus Findings 1: Current Challenges in AHM (Table 1)
Clinical and Financial Issues in AHM
The consensus group identified misalignment of the mission of hospitals (which often provide substantial financial support for hospital medicine programs) and the mission of departments of internal medicine (or divisions of general internal medicine) in which adult hospitalists reside as a fundamental barrier in AHM. Misalignment of missions produces challenges to the development of hospitalist groups in that their primary funder, the hospital, focuses on clinical care delivery, productivity, efficiency, and, in some cases, participation in patient safety and quality improvement efforts, whereas academic departments place considerable value on education, research, grants received, dissemination of scholarly work, and the national reputation of its faculty. Further exacerbating this tension is the fact that hospitalists do not always reside within traditional academic divisions (such as divisions of general medicine) and are therefore viewed by the hospital and their peers as hospital employees more than academic faculty.
As yet, few hospital medicine programs have successfully integrated academic and clinical needs. In many AHM programs, clinical demands have trumped academic pursuits and, as a result, produced jobs that have frequent turnover. This occurs most often when hospitalists are hired by academic medical centers primarily to staff nonresident services. Hospitalists who join these academic programs expecting ample opportunity to teach and pursue scholarly work often leave when they realize these jobs differ little from those in community settings (with the exception of less pay and, in most cases, a less efficient clinical delivery system). This turnover contributes to the perception of hospitalists as transient nonacademic faculty. The participants felt that we needed to define the ideal academic hospitalist job description.
Clinical and Financial Issues | Teaching and Education Mission | Research and Promotable Activities | Cross‐Cutting Issues |
---|---|---|---|
| |||
Hospitalists' functions more often explicitly linked to hospital initiatives (clinical care, quality improvement, utilization, and throughput) | Distinguishing jobs that are predominantly clinical (C‐e) from those that are predominantly education‐focused (c‐E), which is important given the high clinical burdens | Lack of a pipeline producing hospitalist clinician investigators | Lack of leadership or negotiation skill training |
Differing political, financial, and scientific priorities between hospitalists and administrators | Further exacerbation of C‐e/c‐E distinctions by the emergence of uncovered services | Few national funders focusing on inpatient general internal medicine | Little infrastructure for academic functions |
Little guidance on the best models for each job type | Little recognition of quality improvement as a promotable/testable activity | Rapidly moving/growing field | |
Decreasing interest in general internal medicine as a career path |
Teaching and Education Mission in AHM
Traditionally, faculty in academic medical centers have had prominent roles in resident teaching services, supervising medical residents, interns, and students. Hospitalists fill these roles at some institutions and in many cases have replaced senior faculty who are no longer able (because of competing demands from clinics or labs) or willing (because of an increased need for oversight and availability) to staff the teaching service. The teaching hospitalists start at these positions straight out of residency with little experience, training, or mentoring in how to succeed as a clinician educator. The creation of nonresident hospitalist services to address residency work hour requirements has removed many hospitalists from teaching opportunities as these services often have few if any teaching opportunities. The consensus group identified the lack of teaching opportunities and a lack of any formal preparation for those who do teach as the key challenges for new hospitalist clinician educators.
Research and Promotable Activities in AHM
Numerous challenges to promotion and success in hospital medicine research were identified. Most conference attendees felt that chairs of departments of medicine do not fully understand what the roles of academic hospitalists are, how they fit into the department's mission, or what is needed to better integrate hospitalists into the research and academic activities of the department. In addition, there are few hospital medicine fellowship programs, and those that have been created focus primarily on improving teaching skills or quality improvement rather than on research or the development of academic products. Aspiring academic hospitalists could pursue research fellowship training in existing programs (ie, the Robert Wood Johnson Foundation), but few graduates currently pursue these opportunities, and federally funded fellowships (eg, the National Research Service Awards and Health Resources and Services Administration T32 awards) explicitly exclude physicians who are not focused on primary care research. The group noted that a number of Veterans Administration fellowships (such as the Quality Scholars programs) may provide avenues for the training of hospital medicinefocused researchers, but they have been underused.
For researchers who focus on hospital medicine, federal funding sources are limited for both career development awards (K‐series) and later (R‐series) grants, particularly those funding the quality and safety research that hospitalists often pursue. Agencies of the National Institutes of Health currently do not provide many opportunities for hospital‐based general internal medicine research, and thus academic hospitalist research is undervalued by many promotion committees.
Cross‐Cutting Issues
Challenges in leadership and mentorship were identified as cross‐cutting. Many AHM programs are young, and so are their leaders. As a result, hospital medicine leaders often lack the experience and skills necessary to successfully negotiate for the support that is critical for the ideal program's success. As a young field, hospital medicine lacks faculty who have succeeded in careers as hospitalists, have been promoted in tenure tracks, and can mentor and guide young faculty through the complexities of academic medicine. Absent leadership and mentoring, few hospital medicine programs will succeed in traditional academic pursuits.
Consensus Findings 2: Overcoming Challenges to the Development of AHM (Table 2)
Summit attendees spent considerable time developing and refining solutions to the challenges described previously. Addressing the challenges resulted in a diverse group of proposed products that included educating key stakeholders, designing meetings, courses, or workshops, and gathering and disseminating data. There was considerable overlap among the solutions (Table 2).
Solutions | Proposed Products | Challenge Domains Addressed* |
---|---|---|
| ||
1. Educate stakeholders | Workshops at professional society meetings (SHM, SGIM, ACGIM, APM, and APDIM) | Addresses all domains |
Publications highlighting issues | ||
2. Define the sustainable job | Data gathering and publication | Clinical/financial |
3. Quality improvement portfolio | Development and dissemination of criteria for the QI portfolio | Research/promotion |
4. Hospitalist training/mentoring | Academic hospitalist boot camp | Teaching/education |
Research/promotion | ||
Cross‐cutting | ||
5. Enhance research career pathways | Advocacy for enhanced training programs and funding sources | Research/promotion |
6. Improved relationships among general medicine societies | Society collaboration on product development | Addresses all domains |
Outreach to and Education of Stakeholders in Academic Medicine
The focus of the educational and outreach efforts suggested by the consensus group is to help leaders in academic medicine (not just AHM) and academic medical centers understand the challenges facing AHM. More importantly, efforts should reinforce the value of academic hospitalists to their hospital, department, and division. Efforts to engage these critical stakeholders to discuss and potentially address a number of the conference's proposed solutions are needed. Leaders include deans of medical schools, chairs of departments of medicine, division chiefs, and hospital administrative leadership.
Suggested outreach and educational activities included the publication of articles in key journals with the goal of increasing the visibility of AHM in professional societies as well as meetings and workshops focusing on teaching hospitalists and academic leaders methods to overcome challenges. Professional societies with a stake in AHM should better understand the challenges and position themselves to address these issues. The AHM task forces of SHM and SGIM can help give academic hospitalists a voice in having their needs addressed.
Publications
Articles have been commissioned in the following areas: descriptions of challenges and proposed solutions, best practices for nonresident hospitalist services, and metrics for the success of hospital medicine programs.
Meetings/Workshops
Meetings and workshops, sponsored by professional societies with a vested interest in AHM, were thought to be an effective way to address the needs of hospitalists, particularly those pursuing careers as clinician educators. Such workshops would provide skills in teaching and early career survival (eg, how to bill correctly) and in developing an educator's portfolio. Leadership training offerings, perhaps building on examples from SHM and ACGIM, were also thought to be valuable resources and venues that should be directed toward hospitalists, their chiefs, and relevant leaders.
Defining a Sustainable Job Description for Academic Hospitalists
The group strongly endorsed the need for transparent and readily available data aimed at developing sustainable academic hospitalist positions. For example, required information would include how academic jobs are constructed (in terms of months on service per year and the number of nights or weekends of coverage) and what successful programs and their hospitalists have found to be acceptable. Over the longer term, empiric comparisons based on key metrics are needed to not only help guide career development and retention but also facilitate negotiations for programmatic support.
The group pointed out that embedded in delineating an optimal academic hospitalist job description is the longstanding work of general medicine societies in supporting and fostering the development of clinician educators. In many ways, the pressures of academic physicians to be mostly clinician and less educator versus someone who focuses heavily on educational work is similar for hospitalists and outpatient generalists. Academic general internal medicine divisions hired many general internists in the early 1990s to expand the reach of academic medical centers and increase the outpatient base.6 Many university hospitals are now hiring hospitalists to provide the inpatient care for these patients, but residency work hour reductions have added a layer of complexity, creating the need for entirely new roles for academic generalists (such as surgical comanagement of medically complex patients).7, 8 Past experiences in refining and reinforcing education as a key function (
Development of a Quality‐Improvement Portfolio Akin to an Educator's Portfolio
Many hospitalists actively participate in administrative work related to quality improvement activities, and we should develop this additional pathway for promotable academic activities (eg, clinician administrator); however, such a pathway may not be recognized by all promotion committees. The group observed that many aspects of quality improvement are similar to those of education (eg, developing a curriculum, leading a team, evaluating a process, defining generalizability, and disseminating locally proven interventions) and as such would be amenable to the development of a quality improvement portfolio, which candidates could submit to promotion committees. Again, past work in developing the importance and value of the educator's portfolio would facilitate the development of a quality improvement portfolio, which would require endorsement from key stakeholders (eg, the Association of Professors of Medicine, SGIM, and SHM).9 Importantly, this work may also benefit many outpatient‐based generalists who are increasingly focusing their careers on quality and safety improvement.
Developing Mentoring and Training Opportunities for Newly Hired and Junior Hospitalists
We reached a strong consensus about the need to develop a retreat‐format training opportunity by which junior academic hospitalists would be able to gain training in tasks critical to early‐career success. These were envisioned as an initial 2‐ to 3‐day meeting followed by mentorship at a distance and continued collaboration within the class of attendees. Topics would include key functions in AHM, such as becoming an effective attending physician and teacher, leadership, quality improvement, the business of medicine, effective billing, and maintaining a curriculum vitae. A number of professional societies have developed leadership or mentoring retreats, and at the time of this article's preparation, both regional and national efforts were underway to develop these products.
Developing Training and Mentorship Pathways for Hospitalist Researchers
There are few funded hospitalist researchers in the midcareer phase and a small but growing number of academic hospitalists entering the field with a focus on research. Enhancing a pipeline of researchers is a critical need for the field, as cementing AHM as an equal member of the academic medical community will be predicated on the successful development of hospitalist investigators. To this end, academic hospitalist groups should be encouraged to partner with other established research units (particularly general internal medicine) to create mentoring relationships and increase collaborative activities. The emergence of the Clinical and Translational Science Awards consortium sites, with a focus on implementation and effectiveness research, may also provide local opportunities for hospitalists to partner in research important for early‐career grant submission. Furthermore, building the pipeline of academic hospitalist researchers will require a strong focus on identifying students and residents through outreach at individual sites as well as presentations at national meetings (eg, the American College of Physicians).
Two other issues were also thought to be important. First, professional societies should work to encourage funders of primary carefocused general medicine training programs (the National Research Service Awards and the Health Resources and Services Administration) to allow hospitalists to qualify for such critical research training. Second, continuing to advocate for increasing funding for implementation and effectiveness research, via either the Agency for Healthcare Research and Quality or individual agencies of the National Institutes of Health, will be key; the emergence of a medical effectiveness institute would also be a potential boon.
Improving Relationships Between the Professional Homes of Academic Generalists
Relationships between outpatient‐based general medicine and hospital medicine were rocky as the field of AHM first took shape, and some residua of initial tensions persist a decade later. These tensions persist in part because hospitalists remain underdeveloped members of the academic community, and this perhaps gives some license to aver that hospitalists are merely transient faculty in a stage between residency and fellowship hired to improve throughput.
Overcoming this perception will require more engagement between academic generalists of all types, not less. The consensus group felt strongly that there need not be a single professional home for academic hospitalists and that generalists should be willing and even encouraged to self‐identify as hospital‐ or clinic‐focused, much as they might be geriatrics‐focused, informatics‐focused, or women's healthfocused. In fact, in some academic centers, a few generalists have successfully integrated themselves into both clinic‐based and hospitalist roles. In this way, the emergence and growth of AHM should be viewed as a boon to the practice of general medicine, not a challenge.
Resources
Much of what is proposed to enhance AHM will require resources. Academic hospitals have a vested interest in supporting AHM as a way to reduce turnover in a group that is increasingly critical for hospital operations, not to mention key leadership roles. Negotiating for these resources should emphasize that hospitals benefit directly from the revenue and margin that comes from incremental hospital admissions, collect most of the federal graduate medical education dollars, and benefit from improved care processes that are a result of hospitalist quality improvement efforts.
Deans and Departments, a key audience for the conference findings, also have a clear stake in fostering a less transient, more professionally satisfied and academically successful work force, particularly when hospitalists are increasingly the key educators of medical residents. Moreover, schools have a vested interest in the academic accomplishments and national reputation of their hospitalists. The financial arrangements will be unique to each setting and institution, and it is clear that the sources to be tapped will vary from site to site, but these resources are clearly necessary for the field.
Conclusions
AHM is at a crossroads. Unparalleled growth has created a large cadre of hospitalists who are struggling to meet the clinical demands of practice and the requirements for academic promotion; this situation will likely lead to, at a minimum, worsening problems with faculty turnover, and even greater losses of talented and passionate clinicians from the field of academic General Internal Medicine.
The challenges are numerous but not insurmountable, and our process identified issues and potential solutions which address clinical, educational, and research aspects of academic hospitalists' lives. We acknowledge that our findings are most relevant to hospitalists at academic medical centers or large academically oriented community teaching hospitals rather than hospitalists at community hospitals whose work is predominantly clinical with smaller teaching roles. However, we feel the academic hospitalists we targeted are in greater need of assistance. We believe that the most important issues are unsustainable, nonacademic positions, poor job preparation and training, inadequate prioritization of academic roles, and insufficient leadership and mentoring within the field.
It is the hope of all the consensus conference attendees that efforts focusing on academic hospitalists in the short term are not viewed as effort diverted from general internal medicine; in fact, the group felt that while many of the products of the consensus conference were probably most needed by AHM in the short term, these same solutions would likely be useful to outpatient‐based generalists as well. Despite the concerns and challenges outlined, the consensus conference group was also very hopeful that, in the setting where resources and collaboration are appropriately marshaled, that AHM will flourish quickly. In doing so, academic hospitalists will become better role models for residents and students, attracting the next generation of generalists needed to provide care to an increasingly complex patient population, and further advance the mission of General Internal Medicine.
Acknowledgements
The authors thank Dr. Jeff Glasheen and Dr. Robert Wachter for their comments on an earlier version of this article. In addition, the authors thank the following conference participants: Dan Brotman, MD, Johns Hopkins University; Deborah M. DeMarco, MD, President of the Association of Program Directors in Internal Medicine; Jeff Glasheen, MD, University of Colorado; Rusty Holman, MD, President of the Society of Hospital Medicine; Martha A. Hooven, President of the Administrators of Internal Medicine; Peter Kaboli, MD, University of Iowa; David O Meltzer, MD, PhD, University of Chicago; Vikas Parekh, MD, University of Michigan; Russell Phillips, MD MPH, Harvard Medical School; Sanjay Saint, MD, MPH, University of Michigan; Barbara Schuster, MD, President of the Association of Professors of Medicine; Brad Sharpe, MD, University of California San Francisco; Jeff Wiese, MD, Tulane University; David Kushner, Facilitator of the Kushner Companies; Geri Barnes, Support Staff of the Society of Hospital Medicine; and Amy Woodward, Support Staff of the Society of General Internal Medicine.
- The status of hospital medicine groups in the United States.J Hosp Med.2006;1:75–80. , , , .
- Trends in market demand for internal medicine 1999 to 2004: an analysis of physician job advertisements.J Gen Intern Med.2006;21:1079–1085. , , , , , .
- Society of Hospital Medicine. 2006 Hospital Medicine Survey. Available at: http://www.hospitalmedicine.org/content/navigationmenu/media/mediakit/media_kit.htm. Accessed January 2009.
- Effects of work hour reduction on residents' lives: a systematic review.JAMA.2005;294:1088–1100. , , , , , .
- Hospitalists in teaching hospitals: opportunities but not without danger.J Gen Intern Med.2004;19:392–393. , .
- UCLA rewrites the script for academic networks.Med Netw Strategy Rep.1998;7:1–5.
- Systematic review: effects of resident work hours on patient safety.Ann Intern Med.2004;141:851–857. , , , , , .
- The expanding role of hospitalists in the United States.Swiss Med Wkly.2006;136:591–596. , .
- Documentation systems for educators seeking academic promotion in U.S. medical schools.Acad Med.2004;79:783–790. , , , .
The past decade has seen hospital medicine grow from fewer than 1000 hospitalists nationwide to more than 20,000.1 In fact, survey data suggest that hospital medicine is the fastest growing field of internal medicine in the history of the US, and the growth of hospital medicine has produced a net increase in the number of generalists in the US.2
Although few direct estimates exist, academic hospital medicine (AHM) is also growing rapidly.1 Fueled by potential efficiency gains, a need for increased educational oversight of teaching services, and new residency work hour limitations, many academic medical centers and teaching hospitals have developed large hospital medicine programs. Internal medicine residency graduates interested in general medicine are finding hospital medicine an increasingly popular career choice. As a result, AHM groups have many recent residency graduates with an average age that is generally younger than 40.3
Over 85% of hospitalists are generalists and should find natural alliances with the nonhospitalist side of general internal medicine by collaborating in the course of clinical care, by teaching residents and students, or by designing quality improvement or research projects. In many academic centers, hospitalists are part of the division of general internal medicine, whereas in a few centers, hospitalists either have a separate division or lie outside the internal medicine department (employed by their hospitals).
Despite sharing a common training background and generalist mindset, many new academic hospitalists face different challenges than those faced by pure outpatient‐based academic generalists. First, at many centers, the financial arrangements between the AHM group and the hospital discourage hospitalists from traditional academic pursuits and draw them into clinical, operational, or administrative duties (such as responsibility for utilization review) that, although locally valuable, may not count as academic products in themselves or may take time away from more academic activities. Close alignment between hospitals and AHM may result in hospital administrators dictating hospitalists' practice in a way that further impedes academic viability. Reductions in resident training hours and an increasing need to provide 24‐hour coverage have facilitated growth in AHM into roles beyond those of the traditional academic generalist, such as medical comanagement of surgical patients and coverage of nonteaching services.4, 5 The youth of the field may exacerbate these problems. Most academic hospitalist groups have few senior leaders, whether they are clinical‐, education‐, or research‐focused. Young faculty need senior leaders as mentors to buffer them from relentless clinical demands that would compromise their hopes for academic success.
In order to better characterize these concerns and develop a shared work plan for future activities in support of AHM, the Society of Hospital Medicine (SHM) and the Society of General Internal Medicine (SGIM) convened an AHM consensus conference, a collaborative meeting developed and attended by representatives from SHM, SGIM, the Association of Chiefs of General Internal Medicine (ACGIM), the Association of Professors of Medicine, the Association of Program Directors in Internal Medicine, and the Association of Administrators in Internal Medicine. Using a structured consensus‐building format, we identified key barriers and challenges to AHM, then developed potential solutions.
Consensus Conference Format
Consensus Conference Steering Committee
The consensus conference was developed first by the sponsoring professional societies (SGIM, SHM, and ACGIM) being asked to nominate 2 people to be part of the consensus conference steering committee. The steering committee's main functions were to identify key tasks for the consensus conference, invite consensus conference attendees, ensure adequate representation from all participating organizations, synthesize the results of the consensus conference, and work with the individual professional societies so that results from the consensus conference were acted upon in a coordinated and effective manner.
Consensus Conference Prework
The consensus conference co‐chairs convened a series of conference calls in the spring of 2007, during which the steering committee developed a series of key areas to be explored during the conference. Topic areas were selected on the basis of the group's expertise and referred to past work by AHM taskforces convened by both SGIM/ACGIM and SHM.
The steering committee then invited stakeholders from each invited society so that each professional organization would provide at least 1 representative with expertise appropriate to 1 of the key domains identified:
-
Clinical and financial issues (within which topics such as optimal job descriptions and salary structures would be explored).
-
Teaching and education mission (within which topics such as mentorship for AHM junior faculty might be discussed).
-
Research and promotable activities (within which issues related to the development of promotable activities for AHM would be discussed).
Invitees to the consensus conference were assigned to one working group, given a general description of the potential areas within their domain, and instructed to consider a number of broad questions relevant to the topic area. These questions were as follows:
-
What are the key barriers to AHM in each key domain?
-
What viewpoints or barriers are the most pressing and/or actionable?
-
What solutions could be implemented or initiated in the next 1 to 3 years?
In order to facilitate discussion, consensus conference invitees were provided copies of findings from the SGIM/ACGIM and SHM Academic Hospitalist Task Forces, preliminary results from a survey of AHM leaders, and key literature related to the field.
Consensus Conference Format
The AHM consensus conference followed a modified Delphi consensus‐building format, in which the members of each working group developed findings relevant to their area, presented these viewpoints back to the overall group for feedback, and returned to their working group to refine their initial recommendations or move on to subsequent areas.
We used Day 1 of the meeting to confirm and refine lists of key barriers and opportunities to AHM. On Day 2, we developed actionable solutions and identified barriers with no ready solution but which were felt to be worth highlighting.
Each cycle of feedback (1 on Day 1 and 2 on Day 2) was used to identify additional barriers or opportunities prespecified by the steering committee, prioritize issues/opportunities, clarify uncertainties or point them out when they existed, and identify new areas requiring consensus. Between each cycle, workflow and interim results were summarized by the co‐chairs and a professional meeting coordinator to ensure that the group felt consensus had been achieved and to identify where additional work was required.
Writing Group/Peer Review
After the consensus conference adjourned, minutes were circulated to the group and approved, whereupon a summary of the meeting was reformatted into manuscript form. The manuscript was circulated to the steering committee, consensus conference attendees, and 2 selected peer reviewers as an additional check on the external validity of the study's results.
Consensus Findings 1: Current Challenges in AHM (Table 1)
Clinical and Financial Issues in AHM
The consensus group identified misalignment of the mission of hospitals (which often provide substantial financial support for hospital medicine programs) and the mission of departments of internal medicine (or divisions of general internal medicine) in which adult hospitalists reside as a fundamental barrier in AHM. Misalignment of missions produces challenges to the development of hospitalist groups in that their primary funder, the hospital, focuses on clinical care delivery, productivity, efficiency, and, in some cases, participation in patient safety and quality improvement efforts, whereas academic departments place considerable value on education, research, grants received, dissemination of scholarly work, and the national reputation of its faculty. Further exacerbating this tension is the fact that hospitalists do not always reside within traditional academic divisions (such as divisions of general medicine) and are therefore viewed by the hospital and their peers as hospital employees more than academic faculty.
As yet, few hospital medicine programs have successfully integrated academic and clinical needs. In many AHM programs, clinical demands have trumped academic pursuits and, as a result, produced jobs that have frequent turnover. This occurs most often when hospitalists are hired by academic medical centers primarily to staff nonresident services. Hospitalists who join these academic programs expecting ample opportunity to teach and pursue scholarly work often leave when they realize these jobs differ little from those in community settings (with the exception of less pay and, in most cases, a less efficient clinical delivery system). This turnover contributes to the perception of hospitalists as transient nonacademic faculty. The participants felt that we needed to define the ideal academic hospitalist job description.
Clinical and Financial Issues | Teaching and Education Mission | Research and Promotable Activities | Cross‐Cutting Issues |
---|---|---|---|
| |||
Hospitalists' functions more often explicitly linked to hospital initiatives (clinical care, quality improvement, utilization, and throughput) | Distinguishing jobs that are predominantly clinical (C‐e) from those that are predominantly education‐focused (c‐E), which is important given the high clinical burdens | Lack of a pipeline producing hospitalist clinician investigators | Lack of leadership or negotiation skill training |
Differing political, financial, and scientific priorities between hospitalists and administrators | Further exacerbation of C‐e/c‐E distinctions by the emergence of uncovered services | Few national funders focusing on inpatient general internal medicine | Little infrastructure for academic functions |
Little guidance on the best models for each job type | Little recognition of quality improvement as a promotable/testable activity | Rapidly moving/growing field | |
Decreasing interest in general internal medicine as a career path |
Teaching and Education Mission in AHM
Traditionally, faculty in academic medical centers have had prominent roles in resident teaching services, supervising medical residents, interns, and students. Hospitalists fill these roles at some institutions and in many cases have replaced senior faculty who are no longer able (because of competing demands from clinics or labs) or willing (because of an increased need for oversight and availability) to staff the teaching service. The teaching hospitalists start at these positions straight out of residency with little experience, training, or mentoring in how to succeed as a clinician educator. The creation of nonresident hospitalist services to address residency work hour requirements has removed many hospitalists from teaching opportunities as these services often have few if any teaching opportunities. The consensus group identified the lack of teaching opportunities and a lack of any formal preparation for those who do teach as the key challenges for new hospitalist clinician educators.
Research and Promotable Activities in AHM
Numerous challenges to promotion and success in hospital medicine research were identified. Most conference attendees felt that chairs of departments of medicine do not fully understand what the roles of academic hospitalists are, how they fit into the department's mission, or what is needed to better integrate hospitalists into the research and academic activities of the department. In addition, there are few hospital medicine fellowship programs, and those that have been created focus primarily on improving teaching skills or quality improvement rather than on research or the development of academic products. Aspiring academic hospitalists could pursue research fellowship training in existing programs (ie, the Robert Wood Johnson Foundation), but few graduates currently pursue these opportunities, and federally funded fellowships (eg, the National Research Service Awards and Health Resources and Services Administration T32 awards) explicitly exclude physicians who are not focused on primary care research. The group noted that a number of Veterans Administration fellowships (such as the Quality Scholars programs) may provide avenues for the training of hospital medicinefocused researchers, but they have been underused.
For researchers who focus on hospital medicine, federal funding sources are limited for both career development awards (K‐series) and later (R‐series) grants, particularly those funding the quality and safety research that hospitalists often pursue. Agencies of the National Institutes of Health currently do not provide many opportunities for hospital‐based general internal medicine research, and thus academic hospitalist research is undervalued by many promotion committees.
Cross‐Cutting Issues
Challenges in leadership and mentorship were identified as cross‐cutting. Many AHM programs are young, and so are their leaders. As a result, hospital medicine leaders often lack the experience and skills necessary to successfully negotiate for the support that is critical for the ideal program's success. As a young field, hospital medicine lacks faculty who have succeeded in careers as hospitalists, have been promoted in tenure tracks, and can mentor and guide young faculty through the complexities of academic medicine. Absent leadership and mentoring, few hospital medicine programs will succeed in traditional academic pursuits.
Consensus Findings 2: Overcoming Challenges to the Development of AHM (Table 2)
Summit attendees spent considerable time developing and refining solutions to the challenges described previously. Addressing the challenges resulted in a diverse group of proposed products that included educating key stakeholders, designing meetings, courses, or workshops, and gathering and disseminating data. There was considerable overlap among the solutions (Table 2).
Solutions | Proposed Products | Challenge Domains Addressed* |
---|---|---|
| ||
1. Educate stakeholders | Workshops at professional society meetings (SHM, SGIM, ACGIM, APM, and APDIM) | Addresses all domains |
Publications highlighting issues | ||
2. Define the sustainable job | Data gathering and publication | Clinical/financial |
3. Quality improvement portfolio | Development and dissemination of criteria for the QI portfolio | Research/promotion |
4. Hospitalist training/mentoring | Academic hospitalist boot camp | Teaching/education |
Research/promotion | ||
Cross‐cutting | ||
5. Enhance research career pathways | Advocacy for enhanced training programs and funding sources | Research/promotion |
6. Improved relationships among general medicine societies | Society collaboration on product development | Addresses all domains |
Outreach to and Education of Stakeholders in Academic Medicine
The focus of the educational and outreach efforts suggested by the consensus group is to help leaders in academic medicine (not just AHM) and academic medical centers understand the challenges facing AHM. More importantly, efforts should reinforce the value of academic hospitalists to their hospital, department, and division. Efforts to engage these critical stakeholders to discuss and potentially address a number of the conference's proposed solutions are needed. Leaders include deans of medical schools, chairs of departments of medicine, division chiefs, and hospital administrative leadership.
Suggested outreach and educational activities included the publication of articles in key journals with the goal of increasing the visibility of AHM in professional societies as well as meetings and workshops focusing on teaching hospitalists and academic leaders methods to overcome challenges. Professional societies with a stake in AHM should better understand the challenges and position themselves to address these issues. The AHM task forces of SHM and SGIM can help give academic hospitalists a voice in having their needs addressed.
Publications
Articles have been commissioned in the following areas: descriptions of challenges and proposed solutions, best practices for nonresident hospitalist services, and metrics for the success of hospital medicine programs.
Meetings/Workshops
Meetings and workshops, sponsored by professional societies with a vested interest in AHM, were thought to be an effective way to address the needs of hospitalists, particularly those pursuing careers as clinician educators. Such workshops would provide skills in teaching and early career survival (eg, how to bill correctly) and in developing an educator's portfolio. Leadership training offerings, perhaps building on examples from SHM and ACGIM, were also thought to be valuable resources and venues that should be directed toward hospitalists, their chiefs, and relevant leaders.
Defining a Sustainable Job Description for Academic Hospitalists
The group strongly endorsed the need for transparent and readily available data aimed at developing sustainable academic hospitalist positions. For example, required information would include how academic jobs are constructed (in terms of months on service per year and the number of nights or weekends of coverage) and what successful programs and their hospitalists have found to be acceptable. Over the longer term, empiric comparisons based on key metrics are needed to not only help guide career development and retention but also facilitate negotiations for programmatic support.
The group pointed out that embedded in delineating an optimal academic hospitalist job description is the longstanding work of general medicine societies in supporting and fostering the development of clinician educators. In many ways, the pressures of academic physicians to be mostly clinician and less educator versus someone who focuses heavily on educational work is similar for hospitalists and outpatient generalists. Academic general internal medicine divisions hired many general internists in the early 1990s to expand the reach of academic medical centers and increase the outpatient base.6 Many university hospitals are now hiring hospitalists to provide the inpatient care for these patients, but residency work hour reductions have added a layer of complexity, creating the need for entirely new roles for academic generalists (such as surgical comanagement of medically complex patients).7, 8 Past experiences in refining and reinforcing education as a key function (
Development of a Quality‐Improvement Portfolio Akin to an Educator's Portfolio
Many hospitalists actively participate in administrative work related to quality improvement activities, and we should develop this additional pathway for promotable academic activities (eg, clinician administrator); however, such a pathway may not be recognized by all promotion committees. The group observed that many aspects of quality improvement are similar to those of education (eg, developing a curriculum, leading a team, evaluating a process, defining generalizability, and disseminating locally proven interventions) and as such would be amenable to the development of a quality improvement portfolio, which candidates could submit to promotion committees. Again, past work in developing the importance and value of the educator's portfolio would facilitate the development of a quality improvement portfolio, which would require endorsement from key stakeholders (eg, the Association of Professors of Medicine, SGIM, and SHM).9 Importantly, this work may also benefit many outpatient‐based generalists who are increasingly focusing their careers on quality and safety improvement.
Developing Mentoring and Training Opportunities for Newly Hired and Junior Hospitalists
We reached a strong consensus about the need to develop a retreat‐format training opportunity by which junior academic hospitalists would be able to gain training in tasks critical to early‐career success. These were envisioned as an initial 2‐ to 3‐day meeting followed by mentorship at a distance and continued collaboration within the class of attendees. Topics would include key functions in AHM, such as becoming an effective attending physician and teacher, leadership, quality improvement, the business of medicine, effective billing, and maintaining a curriculum vitae. A number of professional societies have developed leadership or mentoring retreats, and at the time of this article's preparation, both regional and national efforts were underway to develop these products.
Developing Training and Mentorship Pathways for Hospitalist Researchers
There are few funded hospitalist researchers in the midcareer phase and a small but growing number of academic hospitalists entering the field with a focus on research. Enhancing a pipeline of researchers is a critical need for the field, as cementing AHM as an equal member of the academic medical community will be predicated on the successful development of hospitalist investigators. To this end, academic hospitalist groups should be encouraged to partner with other established research units (particularly general internal medicine) to create mentoring relationships and increase collaborative activities. The emergence of the Clinical and Translational Science Awards consortium sites, with a focus on implementation and effectiveness research, may also provide local opportunities for hospitalists to partner in research important for early‐career grant submission. Furthermore, building the pipeline of academic hospitalist researchers will require a strong focus on identifying students and residents through outreach at individual sites as well as presentations at national meetings (eg, the American College of Physicians).
Two other issues were also thought to be important. First, professional societies should work to encourage funders of primary carefocused general medicine training programs (the National Research Service Awards and the Health Resources and Services Administration) to allow hospitalists to qualify for such critical research training. Second, continuing to advocate for increasing funding for implementation and effectiveness research, via either the Agency for Healthcare Research and Quality or individual agencies of the National Institutes of Health, will be key; the emergence of a medical effectiveness institute would also be a potential boon.
Improving Relationships Between the Professional Homes of Academic Generalists
Relationships between outpatient‐based general medicine and hospital medicine were rocky as the field of AHM first took shape, and some residua of initial tensions persist a decade later. These tensions persist in part because hospitalists remain underdeveloped members of the academic community, and this perhaps gives some license to aver that hospitalists are merely transient faculty in a stage between residency and fellowship hired to improve throughput.
Overcoming this perception will require more engagement between academic generalists of all types, not less. The consensus group felt strongly that there need not be a single professional home for academic hospitalists and that generalists should be willing and even encouraged to self‐identify as hospital‐ or clinic‐focused, much as they might be geriatrics‐focused, informatics‐focused, or women's healthfocused. In fact, in some academic centers, a few generalists have successfully integrated themselves into both clinic‐based and hospitalist roles. In this way, the emergence and growth of AHM should be viewed as a boon to the practice of general medicine, not a challenge.
Resources
Much of what is proposed to enhance AHM will require resources. Academic hospitals have a vested interest in supporting AHM as a way to reduce turnover in a group that is increasingly critical for hospital operations, not to mention key leadership roles. Negotiating for these resources should emphasize that hospitals benefit directly from the revenue and margin that comes from incremental hospital admissions, collect most of the federal graduate medical education dollars, and benefit from improved care processes that are a result of hospitalist quality improvement efforts.
Deans and Departments, a key audience for the conference findings, also have a clear stake in fostering a less transient, more professionally satisfied and academically successful work force, particularly when hospitalists are increasingly the key educators of medical residents. Moreover, schools have a vested interest in the academic accomplishments and national reputation of their hospitalists. The financial arrangements will be unique to each setting and institution, and it is clear that the sources to be tapped will vary from site to site, but these resources are clearly necessary for the field.
Conclusions
AHM is at a crossroads. Unparalleled growth has created a large cadre of hospitalists who are struggling to meet the clinical demands of practice and the requirements for academic promotion; this situation will likely lead to, at a minimum, worsening problems with faculty turnover, and even greater losses of talented and passionate clinicians from the field of academic General Internal Medicine.
The challenges are numerous but not insurmountable, and our process identified issues and potential solutions which address clinical, educational, and research aspects of academic hospitalists' lives. We acknowledge that our findings are most relevant to hospitalists at academic medical centers or large academically oriented community teaching hospitals rather than hospitalists at community hospitals whose work is predominantly clinical with smaller teaching roles. However, we feel the academic hospitalists we targeted are in greater need of assistance. We believe that the most important issues are unsustainable, nonacademic positions, poor job preparation and training, inadequate prioritization of academic roles, and insufficient leadership and mentoring within the field.
It is the hope of all the consensus conference attendees that efforts focusing on academic hospitalists in the short term are not viewed as effort diverted from general internal medicine; in fact, the group felt that while many of the products of the consensus conference were probably most needed by AHM in the short term, these same solutions would likely be useful to outpatient‐based generalists as well. Despite the concerns and challenges outlined, the consensus conference group was also very hopeful that, in the setting where resources and collaboration are appropriately marshaled, that AHM will flourish quickly. In doing so, academic hospitalists will become better role models for residents and students, attracting the next generation of generalists needed to provide care to an increasingly complex patient population, and further advance the mission of General Internal Medicine.
Acknowledgements
The authors thank Dr. Jeff Glasheen and Dr. Robert Wachter for their comments on an earlier version of this article. In addition, the authors thank the following conference participants: Dan Brotman, MD, Johns Hopkins University; Deborah M. DeMarco, MD, President of the Association of Program Directors in Internal Medicine; Jeff Glasheen, MD, University of Colorado; Rusty Holman, MD, President of the Society of Hospital Medicine; Martha A. Hooven, President of the Administrators of Internal Medicine; Peter Kaboli, MD, University of Iowa; David O Meltzer, MD, PhD, University of Chicago; Vikas Parekh, MD, University of Michigan; Russell Phillips, MD MPH, Harvard Medical School; Sanjay Saint, MD, MPH, University of Michigan; Barbara Schuster, MD, President of the Association of Professors of Medicine; Brad Sharpe, MD, University of California San Francisco; Jeff Wiese, MD, Tulane University; David Kushner, Facilitator of the Kushner Companies; Geri Barnes, Support Staff of the Society of Hospital Medicine; and Amy Woodward, Support Staff of the Society of General Internal Medicine.
The past decade has seen hospital medicine grow from fewer than 1000 hospitalists nationwide to more than 20,000.1 In fact, survey data suggest that hospital medicine is the fastest growing field of internal medicine in the history of the US, and the growth of hospital medicine has produced a net increase in the number of generalists in the US.2
Although few direct estimates exist, academic hospital medicine (AHM) is also growing rapidly.1 Fueled by potential efficiency gains, a need for increased educational oversight of teaching services, and new residency work hour limitations, many academic medical centers and teaching hospitals have developed large hospital medicine programs. Internal medicine residency graduates interested in general medicine are finding hospital medicine an increasingly popular career choice. As a result, AHM groups have many recent residency graduates with an average age that is generally younger than 40.3
Over 85% of hospitalists are generalists and should find natural alliances with the nonhospitalist side of general internal medicine by collaborating in the course of clinical care, by teaching residents and students, or by designing quality improvement or research projects. In many academic centers, hospitalists are part of the division of general internal medicine, whereas in a few centers, hospitalists either have a separate division or lie outside the internal medicine department (employed by their hospitals).
Despite sharing a common training background and generalist mindset, many new academic hospitalists face different challenges than those faced by pure outpatient‐based academic generalists. First, at many centers, the financial arrangements between the AHM group and the hospital discourage hospitalists from traditional academic pursuits and draw them into clinical, operational, or administrative duties (such as responsibility for utilization review) that, although locally valuable, may not count as academic products in themselves or may take time away from more academic activities. Close alignment between hospitals and AHM may result in hospital administrators dictating hospitalists' practice in a way that further impedes academic viability. Reductions in resident training hours and an increasing need to provide 24‐hour coverage have facilitated growth in AHM into roles beyond those of the traditional academic generalist, such as medical comanagement of surgical patients and coverage of nonteaching services.4, 5 The youth of the field may exacerbate these problems. Most academic hospitalist groups have few senior leaders, whether they are clinical‐, education‐, or research‐focused. Young faculty need senior leaders as mentors to buffer them from relentless clinical demands that would compromise their hopes for academic success.
In order to better characterize these concerns and develop a shared work plan for future activities in support of AHM, the Society of Hospital Medicine (SHM) and the Society of General Internal Medicine (SGIM) convened an AHM consensus conference, a collaborative meeting developed and attended by representatives from SHM, SGIM, the Association of Chiefs of General Internal Medicine (ACGIM), the Association of Professors of Medicine, the Association of Program Directors in Internal Medicine, and the Association of Administrators in Internal Medicine. Using a structured consensus‐building format, we identified key barriers and challenges to AHM, then developed potential solutions.
Consensus Conference Format
Consensus Conference Steering Committee
The consensus conference was developed first by the sponsoring professional societies (SGIM, SHM, and ACGIM) being asked to nominate 2 people to be part of the consensus conference steering committee. The steering committee's main functions were to identify key tasks for the consensus conference, invite consensus conference attendees, ensure adequate representation from all participating organizations, synthesize the results of the consensus conference, and work with the individual professional societies so that results from the consensus conference were acted upon in a coordinated and effective manner.
Consensus Conference Prework
The consensus conference co‐chairs convened a series of conference calls in the spring of 2007, during which the steering committee developed a series of key areas to be explored during the conference. Topic areas were selected on the basis of the group's expertise and referred to past work by AHM taskforces convened by both SGIM/ACGIM and SHM.
The steering committee then invited stakeholders from each invited society so that each professional organization would provide at least 1 representative with expertise appropriate to 1 of the key domains identified:
-
Clinical and financial issues (within which topics such as optimal job descriptions and salary structures would be explored).
-
Teaching and education mission (within which topics such as mentorship for AHM junior faculty might be discussed).
-
Research and promotable activities (within which issues related to the development of promotable activities for AHM would be discussed).
Invitees to the consensus conference were assigned to one working group, given a general description of the potential areas within their domain, and instructed to consider a number of broad questions relevant to the topic area. These questions were as follows:
-
What are the key barriers to AHM in each key domain?
-
What viewpoints or barriers are the most pressing and/or actionable?
-
What solutions could be implemented or initiated in the next 1 to 3 years?
In order to facilitate discussion, consensus conference invitees were provided copies of findings from the SGIM/ACGIM and SHM Academic Hospitalist Task Forces, preliminary results from a survey of AHM leaders, and key literature related to the field.
Consensus Conference Format
The AHM consensus conference followed a modified Delphi consensus‐building format, in which the members of each working group developed findings relevant to their area, presented these viewpoints back to the overall group for feedback, and returned to their working group to refine their initial recommendations or move on to subsequent areas.
We used Day 1 of the meeting to confirm and refine lists of key barriers and opportunities to AHM. On Day 2, we developed actionable solutions and identified barriers with no ready solution but which were felt to be worth highlighting.
Each cycle of feedback (1 on Day 1 and 2 on Day 2) was used to identify additional barriers or opportunities prespecified by the steering committee, prioritize issues/opportunities, clarify uncertainties or point them out when they existed, and identify new areas requiring consensus. Between each cycle, workflow and interim results were summarized by the co‐chairs and a professional meeting coordinator to ensure that the group felt consensus had been achieved and to identify where additional work was required.
Writing Group/Peer Review
After the consensus conference adjourned, minutes were circulated to the group and approved, whereupon a summary of the meeting was reformatted into manuscript form. The manuscript was circulated to the steering committee, consensus conference attendees, and 2 selected peer reviewers as an additional check on the external validity of the study's results.
Consensus Findings 1: Current Challenges in AHM (Table 1)
Clinical and Financial Issues in AHM
The consensus group identified misalignment of the mission of hospitals (which often provide substantial financial support for hospital medicine programs) and the mission of departments of internal medicine (or divisions of general internal medicine) in which adult hospitalists reside as a fundamental barrier in AHM. Misalignment of missions produces challenges to the development of hospitalist groups in that their primary funder, the hospital, focuses on clinical care delivery, productivity, efficiency, and, in some cases, participation in patient safety and quality improvement efforts, whereas academic departments place considerable value on education, research, grants received, dissemination of scholarly work, and the national reputation of its faculty. Further exacerbating this tension is the fact that hospitalists do not always reside within traditional academic divisions (such as divisions of general medicine) and are therefore viewed by the hospital and their peers as hospital employees more than academic faculty.
As yet, few hospital medicine programs have successfully integrated academic and clinical needs. In many AHM programs, clinical demands have trumped academic pursuits and, as a result, produced jobs that have frequent turnover. This occurs most often when hospitalists are hired by academic medical centers primarily to staff nonresident services. Hospitalists who join these academic programs expecting ample opportunity to teach and pursue scholarly work often leave when they realize these jobs differ little from those in community settings (with the exception of less pay and, in most cases, a less efficient clinical delivery system). This turnover contributes to the perception of hospitalists as transient nonacademic faculty. The participants felt that we needed to define the ideal academic hospitalist job description.
Clinical and Financial Issues | Teaching and Education Mission | Research and Promotable Activities | Cross‐Cutting Issues |
---|---|---|---|
| |||
Hospitalists' functions more often explicitly linked to hospital initiatives (clinical care, quality improvement, utilization, and throughput) | Distinguishing jobs that are predominantly clinical (C‐e) from those that are predominantly education‐focused (c‐E), which is important given the high clinical burdens | Lack of a pipeline producing hospitalist clinician investigators | Lack of leadership or negotiation skill training |
Differing political, financial, and scientific priorities between hospitalists and administrators | Further exacerbation of C‐e/c‐E distinctions by the emergence of uncovered services | Few national funders focusing on inpatient general internal medicine | Little infrastructure for academic functions |
Little guidance on the best models for each job type | Little recognition of quality improvement as a promotable/testable activity | Rapidly moving/growing field | |
Decreasing interest in general internal medicine as a career path |
Teaching and Education Mission in AHM
Traditionally, faculty in academic medical centers have had prominent roles in resident teaching services, supervising medical residents, interns, and students. Hospitalists fill these roles at some institutions and in many cases have replaced senior faculty who are no longer able (because of competing demands from clinics or labs) or willing (because of an increased need for oversight and availability) to staff the teaching service. The teaching hospitalists start at these positions straight out of residency with little experience, training, or mentoring in how to succeed as a clinician educator. The creation of nonresident hospitalist services to address residency work hour requirements has removed many hospitalists from teaching opportunities as these services often have few if any teaching opportunities. The consensus group identified the lack of teaching opportunities and a lack of any formal preparation for those who do teach as the key challenges for new hospitalist clinician educators.
Research and Promotable Activities in AHM
Numerous challenges to promotion and success in hospital medicine research were identified. Most conference attendees felt that chairs of departments of medicine do not fully understand what the roles of academic hospitalists are, how they fit into the department's mission, or what is needed to better integrate hospitalists into the research and academic activities of the department. In addition, there are few hospital medicine fellowship programs, and those that have been created focus primarily on improving teaching skills or quality improvement rather than on research or the development of academic products. Aspiring academic hospitalists could pursue research fellowship training in existing programs (ie, the Robert Wood Johnson Foundation), but few graduates currently pursue these opportunities, and federally funded fellowships (eg, the National Research Service Awards and Health Resources and Services Administration T32 awards) explicitly exclude physicians who are not focused on primary care research. The group noted that a number of Veterans Administration fellowships (such as the Quality Scholars programs) may provide avenues for the training of hospital medicinefocused researchers, but they have been underused.
For researchers who focus on hospital medicine, federal funding sources are limited for both career development awards (K‐series) and later (R‐series) grants, particularly those funding the quality and safety research that hospitalists often pursue. Agencies of the National Institutes of Health currently do not provide many opportunities for hospital‐based general internal medicine research, and thus academic hospitalist research is undervalued by many promotion committees.
Cross‐Cutting Issues
Challenges in leadership and mentorship were identified as cross‐cutting. Many AHM programs are young, and so are their leaders. As a result, hospital medicine leaders often lack the experience and skills necessary to successfully negotiate for the support that is critical for the ideal program's success. As a young field, hospital medicine lacks faculty who have succeeded in careers as hospitalists, have been promoted in tenure tracks, and can mentor and guide young faculty through the complexities of academic medicine. Absent leadership and mentoring, few hospital medicine programs will succeed in traditional academic pursuits.
Consensus Findings 2: Overcoming Challenges to the Development of AHM (Table 2)
Summit attendees spent considerable time developing and refining solutions to the challenges described previously. Addressing the challenges resulted in a diverse group of proposed products that included educating key stakeholders, designing meetings, courses, or workshops, and gathering and disseminating data. There was considerable overlap among the solutions (Table 2).
Solutions | Proposed Products | Challenge Domains Addressed* |
---|---|---|
| ||
1. Educate stakeholders | Workshops at professional society meetings (SHM, SGIM, ACGIM, APM, and APDIM) | Addresses all domains |
Publications highlighting issues | ||
2. Define the sustainable job | Data gathering and publication | Clinical/financial |
3. Quality improvement portfolio | Development and dissemination of criteria for the QI portfolio | Research/promotion |
4. Hospitalist training/mentoring | Academic hospitalist boot camp | Teaching/education |
Research/promotion | ||
Cross‐cutting | ||
5. Enhance research career pathways | Advocacy for enhanced training programs and funding sources | Research/promotion |
6. Improved relationships among general medicine societies | Society collaboration on product development | Addresses all domains |
Outreach to and Education of Stakeholders in Academic Medicine
The focus of the educational and outreach efforts suggested by the consensus group is to help leaders in academic medicine (not just AHM) and academic medical centers understand the challenges facing AHM. More importantly, efforts should reinforce the value of academic hospitalists to their hospital, department, and division. Efforts to engage these critical stakeholders to discuss and potentially address a number of the conference's proposed solutions are needed. Leaders include deans of medical schools, chairs of departments of medicine, division chiefs, and hospital administrative leadership.
Suggested outreach and educational activities included the publication of articles in key journals with the goal of increasing the visibility of AHM in professional societies as well as meetings and workshops focusing on teaching hospitalists and academic leaders methods to overcome challenges. Professional societies with a stake in AHM should better understand the challenges and position themselves to address these issues. The AHM task forces of SHM and SGIM can help give academic hospitalists a voice in having their needs addressed.
Publications
Articles have been commissioned in the following areas: descriptions of challenges and proposed solutions, best practices for nonresident hospitalist services, and metrics for the success of hospital medicine programs.
Meetings/Workshops
Meetings and workshops, sponsored by professional societies with a vested interest in AHM, were thought to be an effective way to address the needs of hospitalists, particularly those pursuing careers as clinician educators. Such workshops would provide skills in teaching and early career survival (eg, how to bill correctly) and in developing an educator's portfolio. Leadership training offerings, perhaps building on examples from SHM and ACGIM, were also thought to be valuable resources and venues that should be directed toward hospitalists, their chiefs, and relevant leaders.
Defining a Sustainable Job Description for Academic Hospitalists
The group strongly endorsed the need for transparent and readily available data aimed at developing sustainable academic hospitalist positions. For example, required information would include how academic jobs are constructed (in terms of months on service per year and the number of nights or weekends of coverage) and what successful programs and their hospitalists have found to be acceptable. Over the longer term, empiric comparisons based on key metrics are needed to not only help guide career development and retention but also facilitate negotiations for programmatic support.
The group pointed out that embedded in delineating an optimal academic hospitalist job description is the longstanding work of general medicine societies in supporting and fostering the development of clinician educators. In many ways, the pressures of academic physicians to be mostly clinician and less educator versus someone who focuses heavily on educational work is similar for hospitalists and outpatient generalists. Academic general internal medicine divisions hired many general internists in the early 1990s to expand the reach of academic medical centers and increase the outpatient base.6 Many university hospitals are now hiring hospitalists to provide the inpatient care for these patients, but residency work hour reductions have added a layer of complexity, creating the need for entirely new roles for academic generalists (such as surgical comanagement of medically complex patients).7, 8 Past experiences in refining and reinforcing education as a key function (
Development of a Quality‐Improvement Portfolio Akin to an Educator's Portfolio
Many hospitalists actively participate in administrative work related to quality improvement activities, and we should develop this additional pathway for promotable academic activities (eg, clinician administrator); however, such a pathway may not be recognized by all promotion committees. The group observed that many aspects of quality improvement are similar to those of education (eg, developing a curriculum, leading a team, evaluating a process, defining generalizability, and disseminating locally proven interventions) and as such would be amenable to the development of a quality improvement portfolio, which candidates could submit to promotion committees. Again, past work in developing the importance and value of the educator's portfolio would facilitate the development of a quality improvement portfolio, which would require endorsement from key stakeholders (eg, the Association of Professors of Medicine, SGIM, and SHM).9 Importantly, this work may also benefit many outpatient‐based generalists who are increasingly focusing their careers on quality and safety improvement.
Developing Mentoring and Training Opportunities for Newly Hired and Junior Hospitalists
We reached a strong consensus about the need to develop a retreat‐format training opportunity by which junior academic hospitalists would be able to gain training in tasks critical to early‐career success. These were envisioned as an initial 2‐ to 3‐day meeting followed by mentorship at a distance and continued collaboration within the class of attendees. Topics would include key functions in AHM, such as becoming an effective attending physician and teacher, leadership, quality improvement, the business of medicine, effective billing, and maintaining a curriculum vitae. A number of professional societies have developed leadership or mentoring retreats, and at the time of this article's preparation, both regional and national efforts were underway to develop these products.
Developing Training and Mentorship Pathways for Hospitalist Researchers
There are few funded hospitalist researchers in the midcareer phase and a small but growing number of academic hospitalists entering the field with a focus on research. Enhancing a pipeline of researchers is a critical need for the field, as cementing AHM as an equal member of the academic medical community will be predicated on the successful development of hospitalist investigators. To this end, academic hospitalist groups should be encouraged to partner with other established research units (particularly general internal medicine) to create mentoring relationships and increase collaborative activities. The emergence of the Clinical and Translational Science Awards consortium sites, with a focus on implementation and effectiveness research, may also provide local opportunities for hospitalists to partner in research important for early‐career grant submission. Furthermore, building the pipeline of academic hospitalist researchers will require a strong focus on identifying students and residents through outreach at individual sites as well as presentations at national meetings (eg, the American College of Physicians).
Two other issues were also thought to be important. First, professional societies should work to encourage funders of primary carefocused general medicine training programs (the National Research Service Awards and the Health Resources and Services Administration) to allow hospitalists to qualify for such critical research training. Second, continuing to advocate for increasing funding for implementation and effectiveness research, via either the Agency for Healthcare Research and Quality or individual agencies of the National Institutes of Health, will be key; the emergence of a medical effectiveness institute would also be a potential boon.
Improving Relationships Between the Professional Homes of Academic Generalists
Relationships between outpatient‐based general medicine and hospital medicine were rocky as the field of AHM first took shape, and some residua of initial tensions persist a decade later. These tensions persist in part because hospitalists remain underdeveloped members of the academic community, and this perhaps gives some license to aver that hospitalists are merely transient faculty in a stage between residency and fellowship hired to improve throughput.
Overcoming this perception will require more engagement between academic generalists of all types, not less. The consensus group felt strongly that there need not be a single professional home for academic hospitalists and that generalists should be willing and even encouraged to self‐identify as hospital‐ or clinic‐focused, much as they might be geriatrics‐focused, informatics‐focused, or women's healthfocused. In fact, in some academic centers, a few generalists have successfully integrated themselves into both clinic‐based and hospitalist roles. In this way, the emergence and growth of AHM should be viewed as a boon to the practice of general medicine, not a challenge.
Resources
Much of what is proposed to enhance AHM will require resources. Academic hospitals have a vested interest in supporting AHM as a way to reduce turnover in a group that is increasingly critical for hospital operations, not to mention key leadership roles. Negotiating for these resources should emphasize that hospitals benefit directly from the revenue and margin that comes from incremental hospital admissions, collect most of the federal graduate medical education dollars, and benefit from improved care processes that are a result of hospitalist quality improvement efforts.
Deans and Departments, a key audience for the conference findings, also have a clear stake in fostering a less transient, more professionally satisfied and academically successful work force, particularly when hospitalists are increasingly the key educators of medical residents. Moreover, schools have a vested interest in the academic accomplishments and national reputation of their hospitalists. The financial arrangements will be unique to each setting and institution, and it is clear that the sources to be tapped will vary from site to site, but these resources are clearly necessary for the field.
Conclusions
AHM is at a crossroads. Unparalleled growth has created a large cadre of hospitalists who are struggling to meet the clinical demands of practice and the requirements for academic promotion; this situation will likely lead to, at a minimum, worsening problems with faculty turnover, and even greater losses of talented and passionate clinicians from the field of academic General Internal Medicine.
The challenges are numerous but not insurmountable, and our process identified issues and potential solutions which address clinical, educational, and research aspects of academic hospitalists' lives. We acknowledge that our findings are most relevant to hospitalists at academic medical centers or large academically oriented community teaching hospitals rather than hospitalists at community hospitals whose work is predominantly clinical with smaller teaching roles. However, we feel the academic hospitalists we targeted are in greater need of assistance. We believe that the most important issues are unsustainable, nonacademic positions, poor job preparation and training, inadequate prioritization of academic roles, and insufficient leadership and mentoring within the field.
It is the hope of all the consensus conference attendees that efforts focusing on academic hospitalists in the short term are not viewed as effort diverted from general internal medicine; in fact, the group felt that while many of the products of the consensus conference were probably most needed by AHM in the short term, these same solutions would likely be useful to outpatient‐based generalists as well. Despite the concerns and challenges outlined, the consensus conference group was also very hopeful that, in the setting where resources and collaboration are appropriately marshaled, that AHM will flourish quickly. In doing so, academic hospitalists will become better role models for residents and students, attracting the next generation of generalists needed to provide care to an increasingly complex patient population, and further advance the mission of General Internal Medicine.
Acknowledgements
The authors thank Dr. Jeff Glasheen and Dr. Robert Wachter for their comments on an earlier version of this article. In addition, the authors thank the following conference participants: Dan Brotman, MD, Johns Hopkins University; Deborah M. DeMarco, MD, President of the Association of Program Directors in Internal Medicine; Jeff Glasheen, MD, University of Colorado; Rusty Holman, MD, President of the Society of Hospital Medicine; Martha A. Hooven, President of the Administrators of Internal Medicine; Peter Kaboli, MD, University of Iowa; David O Meltzer, MD, PhD, University of Chicago; Vikas Parekh, MD, University of Michigan; Russell Phillips, MD MPH, Harvard Medical School; Sanjay Saint, MD, MPH, University of Michigan; Barbara Schuster, MD, President of the Association of Professors of Medicine; Brad Sharpe, MD, University of California San Francisco; Jeff Wiese, MD, Tulane University; David Kushner, Facilitator of the Kushner Companies; Geri Barnes, Support Staff of the Society of Hospital Medicine; and Amy Woodward, Support Staff of the Society of General Internal Medicine.
- The status of hospital medicine groups in the United States.J Hosp Med.2006;1:75–80. , , , .
- Trends in market demand for internal medicine 1999 to 2004: an analysis of physician job advertisements.J Gen Intern Med.2006;21:1079–1085. , , , , , .
- Society of Hospital Medicine. 2006 Hospital Medicine Survey. Available at: http://www.hospitalmedicine.org/content/navigationmenu/media/mediakit/media_kit.htm. Accessed January 2009.
- Effects of work hour reduction on residents' lives: a systematic review.JAMA.2005;294:1088–1100. , , , , , .
- Hospitalists in teaching hospitals: opportunities but not without danger.J Gen Intern Med.2004;19:392–393. , .
- UCLA rewrites the script for academic networks.Med Netw Strategy Rep.1998;7:1–5.
- Systematic review: effects of resident work hours on patient safety.Ann Intern Med.2004;141:851–857. , , , , , .
- The expanding role of hospitalists in the United States.Swiss Med Wkly.2006;136:591–596. , .
- Documentation systems for educators seeking academic promotion in U.S. medical schools.Acad Med.2004;79:783–790. , , , .
- The status of hospital medicine groups in the United States.J Hosp Med.2006;1:75–80. , , , .
- Trends in market demand for internal medicine 1999 to 2004: an analysis of physician job advertisements.J Gen Intern Med.2006;21:1079–1085. , , , , , .
- Society of Hospital Medicine. 2006 Hospital Medicine Survey. Available at: http://www.hospitalmedicine.org/content/navigationmenu/media/mediakit/media_kit.htm. Accessed January 2009.
- Effects of work hour reduction on residents' lives: a systematic review.JAMA.2005;294:1088–1100. , , , , , .
- Hospitalists in teaching hospitals: opportunities but not without danger.J Gen Intern Med.2004;19:392–393. , .
- UCLA rewrites the script for academic networks.Med Netw Strategy Rep.1998;7:1–5.
- Systematic review: effects of resident work hours on patient safety.Ann Intern Med.2004;141:851–857. , , , , , .
- The expanding role of hospitalists in the United States.Swiss Med Wkly.2006;136:591–596. , .
- Documentation systems for educators seeking academic promotion in U.S. medical schools.Acad Med.2004;79:783–790. , , , .