Case Reports

Mystery Burns and Nocturnal Seizure Safety

Author and Disclosure Information

 

References

Comment

Classification of Burns and Damage
According to the World Health Organization, nonfatal burn injuries are a leading cause of morbidity and occur mainly in the home and workplace.4 There are many types of burns: radiation, electrical, chemical, friction, and thermal. The most common type of burns are thermal burns,4 which can be further subdivided into wet and dry. Both of our patients experienced dry thermal burns.

Based on the skin tissue layers involved in the thermal damage, burn wounds are further divided into first-degree burns, superficial second-degree burns, deep second-degree burns, and third-degree burns.5 These classifications each have characteristic gross features. Based on these criteria, our patients both presented with blistering and ruptured bullae and no eschar formation, which is classified as second-degree superficial burns.

Following thermal insult to the skin, 3 zones are formed. The central zone consists of irreparable damage referred to as the zone of coagulation. The zone of stasis lies between the completely damaged central region and the outermost regions of the burn lesion, and it receives slightly less blood flow. This area can fully recover after complete perfusion is returned early in the healing process. The outermost zone of hyperemia can fully recover and is an area marked by intense vasodilation from inflammatory reactions.5

Wound Healing
During the healing process, metabolic activity is remarkably increased, which leads to formation of reactive oxygen species.6 The production of reactive oxygen species is both beneficial and harmful. It is protective against invasion of microorganisms, but it delays the re-epithelialization process. The burn injury itself generates multiple cytokines and lipid mediators.7 After the initial keratinocyte migration and proliferation, angiogenesis and fibrogenesis lead to the formation of the basement membrane at the dermoepidermal junction,5 which is followed by structural strengthening of the skin with collagen and elastin deposition. The final results of healing are dependent on the depth of the wound. With deeper burns there will be contractures and hypertrophic scarring and a possibility for hypopigmentation from melanocyte death.5 With more superficial injuries, the burned area appears hyperpigmented from overactivity of melanocytes during the healing process. In less severe cases of superficial burns, it can take 5 to 7 days for granulation tissue to cover the wound and to heal with little to no scarring.5

Burns in Patients With Seizure Disorders
Burns pose a serious risk to patients with seizure disorders that often is underappreciated by patients and health care providers. Although many burns are first-degree burns, up to 10% of burns require medical attention.1 In the initial phase following a thermal insult, the skin’s microflora is killed off, but within a week the sterile skin can become infected.5 The most common microbial invasions seen in blistering wounds are due to Pseudomonas aeruginosa and Staphylococcus aureus.8 With larger burns associated with immunocompromising factors such as diabetes mellitus or older age, patients are at an increased risk for becoming septic. Prior to the period of infection, the damage caused by the heat leads to vasodilation of the microvasculature surrounding the injured area. In addition, release of cytokines leads to migration of inflammatory cells. With the vasodilation of vasculature, proteinaceous fluids from the intravascular space can collect between the dead epidermal and dermal layers to form blisters.5 In larger burns, the fluid shifts will lead to severe oncotic pressure decreases intravascularly and can lead to hypotensive shock.6 When burns have a more severe global effect, aggressive resuscitation and vasopressors are required to maintain perfusion of vital organs.

Both of our patients experienced painful lesions, but they were fortunate to have factors of youth, superficial damage, and low total body surface area burns for a smaller risk for infection, fluid loss, and severely disfiguring scars.8 Because the duration of the postictal phase can vary, there is potential for more severe burns that can leave a lifelong reminder of the event. Depending on the skin type and the depth of the thermal insult, evidence of injury may last many years in the form of hypertrophic scars, contractures, and changes in skin pigmentation.5 At distances 30 cm or less from the standard blow-dryer, it takes 2 minutes to cause cell death.9 In comparison to a heat source that is meant to provide warmth to a room, there is a notable difference in potential for severe burns with the standard heater vs the standard blow-dryer.

Along with the physical pain, the visual reminders of the injurious event can have notable psychological effects. Scars can decrease self-esteem and lead to depression, anxiety, body image problems, and sexuality issues.10

Given the immense risks associated with burn injuries and the many unfortunate outcomes, emphasis should be placed on patient education regarding safety precautions with seizure disorders. In one study, it was found that only 5% of patients recall receiving a warning about the risk for burn injuries with seizures.2 It is important for patients and physicians to develop a written comprehensive safety plan that addresses the risks for daily activities during the day and night. Although patients may not remember being told about the risks, a written safety plan likely will increase patient awareness and reduce avoidable injuries. In addition to written safety plans, prior recommendations for reducing burn injuries in seizure patients include the use of fire and heater guards as well as flame-retardant clothing and blankets.11

Pages

Recommended Reading

An 89-year-old woman presented with an ulceration overlying a cardiac pacemaker
MDedge Dermatology
Cellulitis ranks as top reason for skin-related pediatric inpatient admissions
MDedge Dermatology
Collagen powder deemed noninferior to primary closure for punch-biopsy healing
MDedge Dermatology
Clinical Pearl: Topical Timolol for Refractory Hypergranulation
MDedge Dermatology
Reflectance Confocal Microscopy to Facilitate Knifeless Skin Cancer Management
MDedge Dermatology
Pyoderma Gangrenosum Developing After Chest Tube Placement in a Patient With Chronic Lymphocytic Leukemia
MDedge Dermatology
Hydrogen Peroxide as a Hemostatic Agent During Dermatologic Surgery
MDedge Dermatology
Cynodon dactylon
MDedge Dermatology
What’s Eating You? Vespids Revisited
MDedge Dermatology
Hyperbaric Oxygen Therapy in Dermatology
MDedge Dermatology