News

The cell that might trigger Alzheimer’s disease


 

It all started with genetic data. A gene here, a gene there. Eventually the story became clearer: If scientists are to one day find a cure for Alzheimer’s disease, they should look to the immune system.

Over the past couple decades, researchers have identified numerous genes involved in various immune system functions that may also contribute to Alzheimer’s disease. Some of the prime suspects are genes that control microglia, now the focus of intense research in developing new Alzheimer’s drugs.

Microglia are amoeba-like cells that scour the brain for injuries and invaders. They help clear dead or impaired brain cells and literally gobble up invading microbes. Without them, we’d be in trouble.

In a normal brain, a protein called beta-amyloid is cleared away through our lymphatic system by microglia as molecular junk. But sometimes it builds up. Certain gene mutations are one culprit in this toxic accumulation. Traumatic brain injury is another, and, perhaps, impaired microglial function.

One thing everyone agrees on is that in people with Alzheimer’s disease, too much amyloid accumulates between their brain cells and in the vessels that supply the brain with blood. Once amyloid begins to clog networks of neurons, it triggers the accumulation of another protein, called tau, inside of these brain cells. The presence of tau sends microglia and other immune mechanisms into overdrive, resulting in the inflammatory immune response that many experts believe ultimately saps brain vitality in Alzheimer’s disease.

The gene scene

To date, nearly a dozen genes involved in immune and microglial function have been tied to Alzheimer’s disease. The first was CD33, identified in 2008.

“When we got the results, I literally ran to my colleague’s office next door and said, you gotta see this!” said Harvard neuroscientist Rudolph Tanzi. Dr. Tanzi, who goes by Rudy, led the CD33 research. The discovery was quickly named a top medical breakthrough of 2008 by Time magazine.

“We were laughing because what they didn’t know is we had no idea what this gene did,” he joked. But over time, research by Dr. Tanzi and his group revealed that CD33 is a kind of microglial on-off switch, activating the cells as part of an inflammatory pathway.

“We kind of got it all going when it came to the genetics,” he said.

Microglia normally recognize molecular patterns associated with microbes and cellular damage as unwanted. This is how they know to take action – to devour unfamiliar pathogens and dead tissue. Dr. Tanzi believes microglia sense any sign of brain damage as an infection, which causes them to become hyperactive.

Much of our modern human immune system, he explained, evolved many hundreds of thousands of years ago. Our lifespans at the time were far shorter than they are today, and the majority of people didn’t live long enough to develop dementia or the withered brain cells that come with it. So our immune system, he said, assumes any faulty brain tissue is due to a microbe, not dementia. Microglia react aggressively, clearing the area to prevent the spread of infection.

“They say, ‘We better wipe out this part of the brain that’s infected, even if it’s not.’ They don’t know,” quipped Dr. Tanzi. “That’s what causes neuroinflammation. And CD33 turns this response on. The microglia become killers, not just janitors.”

Pages

Recommended Reading

Controversial Alzheimer’s drug unlikely to get the OK in Europe
Journal of Clinical Outcomes Management
AAN issues ethical guidance on controversial Alzheimer’s drug
Journal of Clinical Outcomes Management
New blood test may detect preclinical Alzheimer’s years in advance
Journal of Clinical Outcomes Management
Califf plans work on opioids, accelerated approvals on return to FDA
Journal of Clinical Outcomes Management
Last call? Moderate alcohol’s health benefits look increasingly doubtful
Journal of Clinical Outcomes Management
New data support a causal role for depression in Alzheimer’s
Journal of Clinical Outcomes Management
COVID affects executive functioning in young to middle-age adults: Study
Journal of Clinical Outcomes Management
Global dementia cases may triple by 2050 unless risk factors are reduced
Journal of Clinical Outcomes Management
Medicare intends to limit payment for controversial Alzheimer’s drug
Journal of Clinical Outcomes Management
Novel biomarker found for Alzheimer’s disease
Journal of Clinical Outcomes Management