Affiliations
University of Wisconsin School of Medicine and Public Health, Department of Medicine, and the Center for Quality and Productivity Improvement, University of Wisconsin, Madison, Madison, Wisconsin
Given name(s)
Robert J.
Family name
Wolosin
Degrees
PhD

Hospitalist‐Job Fit

Article Type
Changed
Mon, 05/22/2017 - 18:22
Display Headline
Person‐job fit: An exploratory cross‐sectional analysis of hospitalists

Person‐organization fit concerns the conditions and consequences of compatibility between people and the organizations for which they work.[1] Studies of other industries have demonstrated that person‐organization fit informs the way individuals join, perform in, and are retained by organizations.[2] Person‐job fit is a closely related subordinate concept that concerns the alignment of workers and their job in as much as workers have needs that their job supplies, or conversely, jobs have requirements that certain workers' abilities can help meet.[3] Explorations of job fit in physicians and their work have recently emerged in a few investigations published in medical journals.[4, 5, 6, 7, 8] Further expanding the understanding of fit between physicians and their employment is important, because the decline of solo practices and recent emphasis on team‐based care have led to a growing number of US physicians working in organizations.[9]

The movement of physicians into employed situations may continue if certain types of Accountable Care Organizations take root.[10] And physicians may be primed to join employer organizations based on current career priorities of individuals in American society. Surveys of medical residents entering the workforce reveal more physicians preferring the security of being employees than starting their own practices.[11] Given these trends, job fit will inform our understanding of how personal and job characteristics facilitate recruitment, performance, satisfaction, and longevity of physician employees.

BACKGROUND

Virtually all hospitalists work in organizationshospitalsand are employees of hospitals, medical schools, physician group practices, or management companies, and therefore invariably function within organizational structures and systems.[7] In spite of their rapid growth in numbers, many employers have faced difficulties recruiting and retaining enough hospitalists to fill their staffing needs. Consequently, the US hospitalist workforce today is characterized by high salaries, work load, and attrition rates.[12]

In this evolving unsaturated market, the attraction‐selection‐attrition framework[13] provides a theoretical construct that predicts that hospitalists and their employers would seek congruence of goals and values early in their relationship through a process of trial and error. This framework assumes that early interactions between workers and organizations serve as opportunities for them to understand if job fit is poor and dissociate or remain affiliated as long as job fit is mutually acceptable. Therefore, job switching on average is expected to increase job fit because workers and organizations gain a better understanding of their own goals and values and choose more wisely the next time.

Other theoretical frameworks, such as the job characteristic model,[14] suggest that over time as workers stay at the same job, they continue to maintain and improve job fit through various workplace‐ or self‐modification strategies. For example, seniority status may have privileges (eg, less undesirable call), or workers may create privileged niches through the acquisition of new skills and abilities over time. Hospitalists' tendency to diversify their work‐related activities by incorporating administrative and teaching responsibilities[15] may thus contribute to improving job fit. Additionally, as a measure of complementarity among people who work together, job fit may be influenced by the quality of relationships among hospitalists and their coworkers through their reorientation to the prevailing organizational climate[16, 17] and increasing socialization.[18] Finally, given that experiential learning is known to contribute to better hospitalist work performance,[19] job fit may affect productivity and clinical outcomes vis‐‐vis quality of work life.

To test the validity of these assumptions in a sample of hospitalists, we critically appraised the following 4 hypotheses:

  • Hypothesis 1 (H1): Job attrition and reselection improves job fit among hospitalists entering the job market.
  • Hypothesis 2 (H2): Better job fit is achieved through hospitalists engaging a variety of personal skills and abilities.
  • Hypothesis 3 (H3): Job fit increases with hospitalists' job duration together with socialization and internalization of organizational values.
  • Hypothesis 4 (H4): Job fit is correlated with hospitalists' quality of work life.

 

METHODS

Analysis was performed on data from the 2009 to 2010 Hospital Medicine Physician Worklife Survey. The sample frame included nonmembers and members of Society of Hospital Medicine (SHM). Details about sampling strategy, data collection, and data quality are available in previous publications.[7, 20] The 118‐item survey instrument, including 9 demographic items and 24 practice and job characteristic items, was administered by mail. Examples of information solicited through these items included respondents' practice model, the number of hospitalist jobs they have held, and the specific kinds of clinical and nonclinical activities they performed as part of their current job.

We used a reliable but broad and generic measure of self‐perceived person‐job fit.[21] The survey items of the 5‐point Likert‐type scale anchored between strongly disagree and strongly agree were: I feel that my work utilizes my full abilities, I feel competent and fully able to handle my job, my job gives me the chance to do the things I feel I do best, I feel that my job and I are well‐matched, I feel I have adequate preparation for the job I now hold. The quality of hospitalists' relationships with physician colleagues, staff, and patients as well as job satisfaction was measured using scales adapted from the Physician Worklife Study.[22] Organizational climate was measured using an adapted scale from the Minimizing Error, Maximizing Outcome study incorporating 3 items from the cohesiveness subscale, 4 items from the organizational trust subscale, and 1 item from the quality emphasis subscale that were most pertinent to hospitalists' relationship with their organizations.[23] Intent to leave practice or reduce work hours was measured using 5 items from the Multi‐Center Hospitalist Survey Project.[24] Frequency of participation in suboptimal patient care was measured by adapting 3 items from the suboptimal reported practice subscale and 2 items from the suboptimal patient care subscale developed by Shanafelt et al.[25] Stress and job burnout were assessed using validated measures.[26, 27] Detailed descriptions of the response rate calculation and imputation of missing item data are available in previous publications.[7, 20]

Mean, variance, range, and skew were used to characterize the responses to the job fit survey scale. A table of respondent characteristics was constructed. A visual representation of job fit by individual hospitalist year in current practice was created, first, by plotting a locally weighted scatterplot smoothing curve to examine the shape of the general relationship, and second, by fitting a similarly contoured functional polynomial curve with 95% confidence intervals (CI) to a plot of the mean and interquartile range of job fit for each year in current practice. Spearman partial correlations were calculated for job fit and each of the 5 items addressing likelihood of leaving practice or reducing workload adjusted for gender to control for the higher proportion of women who plan to work part time. Median (interquartile range) job fit was calculated for categories defined by the number of job changes and compared with the reference category (no job change) using the nonparametric rank sum test for comparing non‐normally distributed data. Multivariate logistic regression models were used to calculate the odds ratio (OR) of participating in each of several clinical and nonclinical hospitalist activities between respondents whose job fit score was optimal (5 on a 5‐point scale) and less than optimal controlling for covariates that influence the likelihood of participating in these activities (years in current practice, practice model, and specialty training). A Spearman correlation matrix was created to assess interscale correlations among organizational parameters (years in current practice, job fit, organizational climate, and relationship with colleagues, staff, and patients). Finally, a separate Spearman correlation matrix was created to assess the interscale correlations among individual worker parameters (job fit, suboptimal patient care, job burnout, stress, and job satisfaction). Statistical significance was defined as P value <0.05, and all analyses were performed on Stata 11.0 (StataCorp, College Station, TX). The Northwestern University institutional review board approved this study.

RESULTS

Respondents included 816 hospitalists belonging to around 700 unique organizations. The adjusted response rate from the stratified sample was 26%. Respondents and nonrespondents were similar with regard to geographic region and model of practice, but respondents were more likely to be members of the SHM than nonrespondents. Panel A of Table 1 shows the demographic characteristics of the respondents. The mean age was 44.3 years, and about one‐third were women. The average hospitalist had about 7 years of experience in the specialty and about 5 years with their current hospitalist job. The majority were trained in internal medicine or one of its subspecialties, whereas pediatricians, family physicians, and physicians with other training made up the remainder.

Characteristics of Respondent Hospitalists
 Panel APanel B
 TotalAssimilation Period HospitalistsAdvancement Period Hospitalists
  • NOTE: Abbreviations: SD, standard deviation.
Total, n816103713
Female, n (%)284 (35)37 (36)247 (35)
Age, mean (SD)44.3 (9.0)41.9 (9.3)44.7 (8.9)
Years postresidency experience as hospitalist, mean (SD)6.9 (4.5)4.3 (3.1)7.2 (4.6)
Years in current practice, mean (SD)5.1 (3.9)0.9 (0.3)6.7 (3.8)
Specialty training, n (%)   
Internal medicine555 (68)75 (73)480 (67)
Pediatrics117 (14)8 (8)109 (15.3)
Family medicine49 (6)7 (7)42 (6)
Other95 (11)13 (13)82 (12)

Job fit was highly skewed toward optimum fit, with a mean of 4.3 on a scale of 1 to 5, with a narrow standard deviation of 0.7. The poorest job fit was reported by 0.3%, whereas optimal fit was reported by 21% of respondents. Job fit plotted against years in current practice had a logarithmic appearance typical of learning curves (Figure 1). An inflection point was visualized at around 2 years. For the purposes of this article, we refer to hospitalists' experience in the first 2 years of a job as an assimilation period, which is marked by a steep increase in job fit early when rapid learning or attrition took place. The years beyond the inflection point are characterized as an advancement period, when a more attenuated rise in job fit was experienced with time. The Spearman correlation between job fit and years in practice during the advancement period was 0.145 (n = 678, P < 0.001). Panel B of Table 1 displays the characteristics of respondents separately for the assimilation and advancement cohorts. Assimilation hospitalists in our sample had a mean age of 41.9 years and mean on‐the‐job experience of 4.3 years, reflecting that many hospitalists in the first 2 years of a job have made at least 1 job change in the past.

Figure 1
Graph of hospitalist‐job fit (minimum 1, maximum 5) by years of completed practice in current hospitalist job.

To show the effects of attrition and reselection, we first evaluated the proposition that hospitalists experience attrition (ie, intend to leave their jobs) in response to poor fit. Table 2 shows the correlations between job fit and the self‐reported intent to leave practice or reduce workload separately for the assimilation and advancement periods. For hospitalists in the assimilation period, job fit was negatively correlated with intent to leave current practice within 2 years and to leave hospital medicine within 5 years (P = 0.010 and 0.043, respectively). Hospitalists with <2 years in their current job, therefore, tended to consider attrition but not workload reduction to deal with poor job fit. On the other hand, hospitalists in the advancement period considered both attrition and workload reduction strategies in response to poor fit (all P < 0.001).

Spearman Correlations Between Hospitalist‐Job Fit (1 Worst Fit, 5 Best Fit) and Intent to Leave or Reduce Workload (1 Not Likely at All, 4 Very Likely) Adjusted for Gender
 Assimilation Period HospitalistsAdvancement Period Hospitalists
RhoP ValueRhoP Value
Likelihood that a hospitalist will:    
Leave current practice within 2 years0.2530.0100.367<0.001
Decrease total work hours within 5 years0.0600.5480.179<0.001
Decrease clinical work hours within 5 years0.0720.4690.144<0.001
Leave hospital medicine within 5 years0.2000.0430.231<0.001
Leave direct patient care within 5 years0.0400.6910.212<0.001

In Table 3, we further compared the median job fit across categories for the number of job switches. The median job fit during the assimilation period of hospitalists who had made 1 job change was slightly but statistically higher than the job fit of their counterparts who never left their first job (4.4 vs 4.0, P = 0.046). This suggests that job switching by hospitalists early in their jobs is associated with improved job fit (H1). However, the fit during the assimilation period of hospitalists who switched jobs twice or more was statistically no different from the fit of those in their first jobs, suggesting that the effect of the attrition‐reselection strategy is weak or inconsistent. The job fit for advancement period hospitalists was also different across the job change and no‐change categories. However, in the case of hospitalists later in their jobs, the median job fit was slightly but statistically lower among those who made job changes, revealing the potential drop in job fit that occurs when a hospitalist already established in his or her job starts over again in a new setting.

Relative Job Fit During the Assimilation and Advancement Periods Comparing Hospitalists Who Made Job Changes to Those Who Did Not
 nAge, Mean (95% CI), yHospitalist‐Job Fit, Median (IQR)P Valuea
  • NOTE: Abbreviations: CI, confidence interval; IQR, interquartile range.
  • Indicates P value of the deviation from the hospitalist‐job fit reference value
  • Eight item nonrespondents.
  • Forty‐one item nonrespondents.
Assimilation period hospitalistsb
No job change2942.3 (37.347.3)4.0 (3.84.4)Reference
1 job change3940.3 (38.142.5)4.4 (4.04.8)0.046
2 or more job changes2743.8 (41.046.6)4.4 (3.84.8)0.153
Advancement period hospitalistsc
No job change39044.5 (43.645.5)4.6 (4.05.0)Reference
1 job change18345.0 (43.746.3)4.2 (4.04.8)0.002
2 or more job changes9944.9 (43.146.6)4.2 (3.84.8)0.002

We hypothesized that hospitalists who achieved high job fit within a particular job were more likely to have engaged in activities that utilize a wider spectrum of their abilities. As shown in Table 4, hospitalists in the highest quartile of job fit were associated with a general trend toward higher odds of participating in a variety of common clinical and nonclinical hospitalist activities, but only the odds ratio associated with teaching achieved statistical significance (OR: 1.53, 95% CI: 1.01‐2.31) (H2).

Odds Ratio of Indicating Participation in Various Clinical and Nonclinical Activities Between the Highest Quartile and the Lower 3 Quartiles of Hospitalist‐Job Fit Adjusted for Years in Current Practice, Practice Model, and Specialty Training
 Participation, n/N (%)Odds Ratio (95% CI)P Value
  • NOTE: Abbreviations: CI, confidence interval.
Administrative or committee work704/816 (86)0.73 (0.431.26)0.262
Quality improvement or patient safety initiatives678/816 (83)1.13 (0.642.00)0.680
Information technology design or implementation379/816 (46)1.18 (0.801.73)0.408
Any of the above leadership activities758/816 (93)1.31 (0.563.05)0.535
Teaching442/816 (54)1.53 (1.012.31)0.046
Research120/816 (15)1.07 (0.601.92)0.816
Any of the above academic activities457/816 (56)1.50 (0.992.27)0.057
Code team or rapid response team437/816 (54)1.13 (0.771.68)0.533
Intensive care unit254/816 (31)0.84 (0.531.35)0.469
Skilled nursing facility or long‐term acute care facility126/816 (15)1.06 (0.621.81)0.835
Outpatient general medical practice44/816 (5)1.75 (0.813.80)0.157
Any of the above clinical activities681/816 (79)1.02 (0.601.76)0.930

Socialization with peers and the gradual sharing of values within organizations are hypothesized mechanisms for increasing job fit with time. We found that the number of years in current practice was positively correlated with job fit (Spearman coefficient R = 0.149, P < 0.001), organizational climate (R = 0.128, P < 0.001), and relationship with nonphysician staff (R = 0.102, P < 0.01). The association between years in practice and relationship with physician colleagues were weaker (R = 0.079, P < 0.05). Consistent with the episodic nature of patients' encounters with hospitalists, the measure of patient relationships was not significantly associated with length of time in job. In addition, we found substantial correlations among job fit, organizational climate, and all the relational measures (all R > 0.280, P < 0.001), indicating that hospitalists increasingly share the values of their organizations over time (H3).

Finally, we also hypothesized that poor job fit is associated with poor performance and quality of work life. Strong correlations with job fit were noted for stress (R = 0.307, P < 0.001), job burnout (R = 0.360, P < 0.001), and job satisfaction (R = 0.570, P < 0.001). Job fit (R = 0.147, P < 0.001), job burnout (R = 0.236, P < 0.001), stress (R = 0.305, P < 0.001), and job satisfaction (R = 0.224, P < 0.001) were all significantly correlated with the frequency of participating in suboptimal care (H4).

DISCUSSION

In this exploratory analysis, we validated in the hospitalist workforce several assumptions about person‐job fit that have been observed in workers of other industries. We observed attrition‐reselection (ie, job switching) as a strategy used by physicians to achieve better fit early in their job tenure, whereas job modification appeared to be more effective than attrition‐reselection among physicians already established in their jobs. We provided weak but plausible evidence that physicians with optimal job fit had a tendency to participate in activities (eg, teaching) that engage a wider set of interests and abilities. We also demonstrated the growth in hospitalists sharing the values of their organization through the time‐dependent associations among organizational climate, relational measures, and job fit. Finally, we found that physicians with suboptimal job fit were more likely to report poor performance in their work compared to those indicating optimal fit.

Our previous analysis of data from the Hospital Medicine Physician Worklife Survey exposed the widely variable work characteristics of hospitalist jobs in the US market and the equally variable preferences and priorities of individual hospitalists in selecting their work setting.[7] The implication of our present study is that hospitalists achieve the high levels of observed job fit using various strategies that aid their alignment with their employment. One of these strategies involves time, but physician longevity in practice may be both a determinant and product of good job fit. Although early job attrition may be necessary for fitting the right hospitalists to the right jobs, employers may appreciate the importance of retaining experienced hospitalists not only for cost and performance considerations but also for the growth of social capital in organizations consisting of enduring individuals. As our data suggest that hospitalists grow with their jobs, physicians may experience better fit with jobs that flexibly couple their work demands with benefits that address their individual work‐life needs over time. Another implication of this study is that job fit is a useful and predictive measure of job selection, performance, and retention. In light of studies that expose the limitations of job satisfaction as a measure influenced more by workers' dispositional affect (ie, their temperament and outlook) than their compatibility with their jobs,[28] job fit may add a functional dimension to traditional employee feedback measures.

There are limitations to this analysis. The most notable is the low survey response rate. Two reasons contributed to the fairly low rate of return. First, the original sampling frame included many outdated addresses and names of individuals who did not meet inclusion criteria. Although all sampled individuals who would have been excluded from the study could not be identified, we calculated our response rate without accounting for the proportion of potential ineligibles in the denominator population [Response Rate 2 (RR2) according to standards of the American Association of Public Opinion Research].[29] Second, the response rates of physician surveys have seen a steady decline over the years.[30] Respondents to our survey may be older and more experienced than US hospitalists in general. Although concerns about bias from under‐reporting cannot be fully addressed, we believe that the study sample is adequate for this preliminary study intended to translate the evidence of observed phenomena from the nonphysician to the physician workforces. The suboptimal response characteristics (high skew and low variability) of the generic person‐job fit survey scale used in this study indicate that a reliable survey instrument specifically designed to measure physician‐job fit need to be constructed de novo and validated for any future study. Although we performed simple analyses to support our assertions, few of our subanalyses may be underpowered, contributing to overinterpretation of the data. Additional empirical work is also necessary to assess the generalizability of this study's claims in other medical and surgical specialties. Such studies would also allow measurement of the sensitivity and specificity of physicians' self‐identification of poor job fit. Finally, additional investigations of this time‐dependent construct are more appropriately performed using a longitudinal study design to overcome the limitations inherent in this cross‐sectional analysis. Our conclusions about the time‐dependent features of job fit may be explained by other characteristics such as generational and cultural differences among hospitalists with varying experience.

As the US healthcare system reorganizes to bolster accountability,[31] we anticipate increasing interdependence between physicians and their employer organizations. Ultimately, the desired accountability in healthcare is likely to be obtained if physicians function not only as passive and interchangeable employees but as active stakeholders in the achievement of each organization's goals. A methodology for assessing the alignment of physicians and their jobs will continue to be important along the way.

Disclosure

Nothing to report.

Files
References
  1. Kristof AL. Person‐organization fit: an integrative review of its conceptualizations, measurement, and implications. Personnel Psychol. 1996;49:149.
  2. Kristof‐Brown AL, Zimmerman RD, Johnson EC. Consequences of individuals' fit at work: a meta‐analysis of person‐job, person‐organization, person‐group, and person‐supervisor fit. Personnel Psychol. 2005;58(2):281342.
  3. Edwards JR.Person‐job fit: a conceptual integration, literature review and methodological critique. In: Cooper CL, Robertson IT, eds. International Review of Industrial and Organizational Psychology. Vol.6. New York, NY:John Wiley 1991.
  4. Vandenberghe C. Organizational culture, person‐culture fit, and turnover: a replication in the health care industry. J Organ Behav. 1999;20(2):175184.
  5. Zazzali JL, Alexander JA, Shortell SM, Burns LR. Organizational culture and physician satisfaction with dimensions of group practice. Health Serv Res. 2007;42(3 pt 1):11501176.
  6. Shanafelt TD, West CP, Sloan JA, et al. Career fit and burnout among academic faculty. Arch Intern Med. 2009;169(10):990995.
  7. Hinami K, Whelan CT, Miller JA, Wolosin RJ, Wetterneck TB. Job characteristics, satisfaction, and burnout across hospitalist practice models. J Hosp Med. 2012;7(5):402410.
  8. Huesch MD. Provider‐hospital “fit” and patient outcomes: evidence from Massachusetts cardiac surgeons, 2002–2004. Health Serv Res. 2011;46(1 pt 1):126.
  9. Okie S. The evolving primary care physician. N Engl J Med. 2012;366(20):18491853.
  10. Kocher R, Sahni NR. Hospitals' race to employ physicians—the logic behind a money‐losing proposition. N Engl J Med. 2011;364(19):17901793.
  11. 2011 Survey of Final‐Year Medical Residents. Irving, TX:Merritt Hawkins;2011.
  12. State of Hospital Medicine: 2010 Report Based on 2009 Data. Englewood, CO:Society of Hospital Medicine and the Medical Group Management Association;2010.
  13. Schneider B, Goldstein HW, Smith DB. The ASA framework: an update. Personnel Psychol. 1995;48(4):747773.
  14. Hackman JR, Oldham GR. Work Redesign. Reading. MA:Addison‐Wesley;1980.
  15. Sehgal NL, Wachter RM. The expanding role of hospitalists in the United States. Swiss Med Wkly. 2006;136(37–38):591596.
  16. Ostroff C, Kozlowski SWJ. Organizational socialization as a learning‐process—the role of information acquisition. Personnel Psychol. 1992;45(4):849874.
  17. Ostroff C, Rothausen TJ. The moderating effect of tenure in person‐environment fit: a field study in educational organizations. J Occup Organ Psych. 1997;70:173188.
  18. Chatman JA. Matching people and organizations—selection and socialization in public accounting firms. Admin Sci Quart. 1991;36(3):459484.
  19. Meltzer D, Manning WG, Morrison J, et al. Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists. Ann Intern Med. 2002;137(11):866874.
  20. Hinami K, Whelan CT, Wolosin RJ, Miller JA, Wetterneck TB. Worklife and satisfaction of hospitalists: toward flourishing careers. J Gen Intern Med. 2012;27(1):2836.
  21. Xie JL. Karasek's model in the People's Republic of China: effects of job demands, control, and individual differences. Acad Manage J. 1996;39(6):15941618.
  22. Konrad TR, Williams ES, Linzer M, et al. Measuring physician job satisfaction in a changing workplace and a challenging environment. SGIM Career Satisfaction Study Group. Society of General Internal Medicine. Med Care. 1999;37(11):11741182.
  23. Linzer M, Manwell LB, Mundt M, et al. Organizational climate, stress, and error in primary care: The MEMO Study. Adv Patient Saf. 2005;1:6577.
  24. Meltzer DO, Arora V, Zhang JX, et al. Effects of inpatient experience on outcomes and costs in a multicenter trial of academic hospitalists. J Gen Intern Med. 2005;20(suppl 1):141142.
  25. Shanafelt TD, Bradley KA, Wipf JE, Back AL. Burnout and self‐reported patient care in an internal medicine residency program. Ann Intern Med. 2002;136(5):358367.
  26. Yang CL, Carayon P. Effect of job demands and social support on worker stress—a study of VDT users. Behav Inform Technol. 1995;14(1):3240.
  27. Rohland BM, Kruse GR, Rohrer JE. Validation of a single‐item measure of burnout against the Maslach Burnout Inventory among physicians. Stress Health. 2004;20(2):7579.
  28. Dormann C, Zapf D. Job satisfaction: a meta‐analysis of stabilities. J Organ Behav. 2001;22(5):483504.
  29. The American Association for Public Opinion Research. Standard definitions: final dispositions of case codes and outcome rates for surveys.7th ed. Available at: http://www.aapor.org/Standard_Definitions2.htm. Accessed May 2,2012.
  30. Cull WL, O'Connor KG, Sharp S, Tang SFS. Response rates and response bias for 50 surveys of pediatricians. Health Serv Res. 2005;40(1):213226.
  31. Fisher ES, Shortell SM. Accountable care organizations: accountable for what, to whom, and how. JAMA. 2010;304(15):17156.
Article PDF
Issue
Journal of Hospital Medicine - 8(2)
Publications
Page Number
96-101
Sections
Files
Files
Article PDF
Article PDF

Person‐organization fit concerns the conditions and consequences of compatibility between people and the organizations for which they work.[1] Studies of other industries have demonstrated that person‐organization fit informs the way individuals join, perform in, and are retained by organizations.[2] Person‐job fit is a closely related subordinate concept that concerns the alignment of workers and their job in as much as workers have needs that their job supplies, or conversely, jobs have requirements that certain workers' abilities can help meet.[3] Explorations of job fit in physicians and their work have recently emerged in a few investigations published in medical journals.[4, 5, 6, 7, 8] Further expanding the understanding of fit between physicians and their employment is important, because the decline of solo practices and recent emphasis on team‐based care have led to a growing number of US physicians working in organizations.[9]

The movement of physicians into employed situations may continue if certain types of Accountable Care Organizations take root.[10] And physicians may be primed to join employer organizations based on current career priorities of individuals in American society. Surveys of medical residents entering the workforce reveal more physicians preferring the security of being employees than starting their own practices.[11] Given these trends, job fit will inform our understanding of how personal and job characteristics facilitate recruitment, performance, satisfaction, and longevity of physician employees.

BACKGROUND

Virtually all hospitalists work in organizationshospitalsand are employees of hospitals, medical schools, physician group practices, or management companies, and therefore invariably function within organizational structures and systems.[7] In spite of their rapid growth in numbers, many employers have faced difficulties recruiting and retaining enough hospitalists to fill their staffing needs. Consequently, the US hospitalist workforce today is characterized by high salaries, work load, and attrition rates.[12]

In this evolving unsaturated market, the attraction‐selection‐attrition framework[13] provides a theoretical construct that predicts that hospitalists and their employers would seek congruence of goals and values early in their relationship through a process of trial and error. This framework assumes that early interactions between workers and organizations serve as opportunities for them to understand if job fit is poor and dissociate or remain affiliated as long as job fit is mutually acceptable. Therefore, job switching on average is expected to increase job fit because workers and organizations gain a better understanding of their own goals and values and choose more wisely the next time.

Other theoretical frameworks, such as the job characteristic model,[14] suggest that over time as workers stay at the same job, they continue to maintain and improve job fit through various workplace‐ or self‐modification strategies. For example, seniority status may have privileges (eg, less undesirable call), or workers may create privileged niches through the acquisition of new skills and abilities over time. Hospitalists' tendency to diversify their work‐related activities by incorporating administrative and teaching responsibilities[15] may thus contribute to improving job fit. Additionally, as a measure of complementarity among people who work together, job fit may be influenced by the quality of relationships among hospitalists and their coworkers through their reorientation to the prevailing organizational climate[16, 17] and increasing socialization.[18] Finally, given that experiential learning is known to contribute to better hospitalist work performance,[19] job fit may affect productivity and clinical outcomes vis‐‐vis quality of work life.

To test the validity of these assumptions in a sample of hospitalists, we critically appraised the following 4 hypotheses:

  • Hypothesis 1 (H1): Job attrition and reselection improves job fit among hospitalists entering the job market.
  • Hypothesis 2 (H2): Better job fit is achieved through hospitalists engaging a variety of personal skills and abilities.
  • Hypothesis 3 (H3): Job fit increases with hospitalists' job duration together with socialization and internalization of organizational values.
  • Hypothesis 4 (H4): Job fit is correlated with hospitalists' quality of work life.

 

METHODS

Analysis was performed on data from the 2009 to 2010 Hospital Medicine Physician Worklife Survey. The sample frame included nonmembers and members of Society of Hospital Medicine (SHM). Details about sampling strategy, data collection, and data quality are available in previous publications.[7, 20] The 118‐item survey instrument, including 9 demographic items and 24 practice and job characteristic items, was administered by mail. Examples of information solicited through these items included respondents' practice model, the number of hospitalist jobs they have held, and the specific kinds of clinical and nonclinical activities they performed as part of their current job.

We used a reliable but broad and generic measure of self‐perceived person‐job fit.[21] The survey items of the 5‐point Likert‐type scale anchored between strongly disagree and strongly agree were: I feel that my work utilizes my full abilities, I feel competent and fully able to handle my job, my job gives me the chance to do the things I feel I do best, I feel that my job and I are well‐matched, I feel I have adequate preparation for the job I now hold. The quality of hospitalists' relationships with physician colleagues, staff, and patients as well as job satisfaction was measured using scales adapted from the Physician Worklife Study.[22] Organizational climate was measured using an adapted scale from the Minimizing Error, Maximizing Outcome study incorporating 3 items from the cohesiveness subscale, 4 items from the organizational trust subscale, and 1 item from the quality emphasis subscale that were most pertinent to hospitalists' relationship with their organizations.[23] Intent to leave practice or reduce work hours was measured using 5 items from the Multi‐Center Hospitalist Survey Project.[24] Frequency of participation in suboptimal patient care was measured by adapting 3 items from the suboptimal reported practice subscale and 2 items from the suboptimal patient care subscale developed by Shanafelt et al.[25] Stress and job burnout were assessed using validated measures.[26, 27] Detailed descriptions of the response rate calculation and imputation of missing item data are available in previous publications.[7, 20]

Mean, variance, range, and skew were used to characterize the responses to the job fit survey scale. A table of respondent characteristics was constructed. A visual representation of job fit by individual hospitalist year in current practice was created, first, by plotting a locally weighted scatterplot smoothing curve to examine the shape of the general relationship, and second, by fitting a similarly contoured functional polynomial curve with 95% confidence intervals (CI) to a plot of the mean and interquartile range of job fit for each year in current practice. Spearman partial correlations were calculated for job fit and each of the 5 items addressing likelihood of leaving practice or reducing workload adjusted for gender to control for the higher proportion of women who plan to work part time. Median (interquartile range) job fit was calculated for categories defined by the number of job changes and compared with the reference category (no job change) using the nonparametric rank sum test for comparing non‐normally distributed data. Multivariate logistic regression models were used to calculate the odds ratio (OR) of participating in each of several clinical and nonclinical hospitalist activities between respondents whose job fit score was optimal (5 on a 5‐point scale) and less than optimal controlling for covariates that influence the likelihood of participating in these activities (years in current practice, practice model, and specialty training). A Spearman correlation matrix was created to assess interscale correlations among organizational parameters (years in current practice, job fit, organizational climate, and relationship with colleagues, staff, and patients). Finally, a separate Spearman correlation matrix was created to assess the interscale correlations among individual worker parameters (job fit, suboptimal patient care, job burnout, stress, and job satisfaction). Statistical significance was defined as P value <0.05, and all analyses were performed on Stata 11.0 (StataCorp, College Station, TX). The Northwestern University institutional review board approved this study.

RESULTS

Respondents included 816 hospitalists belonging to around 700 unique organizations. The adjusted response rate from the stratified sample was 26%. Respondents and nonrespondents were similar with regard to geographic region and model of practice, but respondents were more likely to be members of the SHM than nonrespondents. Panel A of Table 1 shows the demographic characteristics of the respondents. The mean age was 44.3 years, and about one‐third were women. The average hospitalist had about 7 years of experience in the specialty and about 5 years with their current hospitalist job. The majority were trained in internal medicine or one of its subspecialties, whereas pediatricians, family physicians, and physicians with other training made up the remainder.

Characteristics of Respondent Hospitalists
 Panel APanel B
 TotalAssimilation Period HospitalistsAdvancement Period Hospitalists
  • NOTE: Abbreviations: SD, standard deviation.
Total, n816103713
Female, n (%)284 (35)37 (36)247 (35)
Age, mean (SD)44.3 (9.0)41.9 (9.3)44.7 (8.9)
Years postresidency experience as hospitalist, mean (SD)6.9 (4.5)4.3 (3.1)7.2 (4.6)
Years in current practice, mean (SD)5.1 (3.9)0.9 (0.3)6.7 (3.8)
Specialty training, n (%)   
Internal medicine555 (68)75 (73)480 (67)
Pediatrics117 (14)8 (8)109 (15.3)
Family medicine49 (6)7 (7)42 (6)
Other95 (11)13 (13)82 (12)

Job fit was highly skewed toward optimum fit, with a mean of 4.3 on a scale of 1 to 5, with a narrow standard deviation of 0.7. The poorest job fit was reported by 0.3%, whereas optimal fit was reported by 21% of respondents. Job fit plotted against years in current practice had a logarithmic appearance typical of learning curves (Figure 1). An inflection point was visualized at around 2 years. For the purposes of this article, we refer to hospitalists' experience in the first 2 years of a job as an assimilation period, which is marked by a steep increase in job fit early when rapid learning or attrition took place. The years beyond the inflection point are characterized as an advancement period, when a more attenuated rise in job fit was experienced with time. The Spearman correlation between job fit and years in practice during the advancement period was 0.145 (n = 678, P < 0.001). Panel B of Table 1 displays the characteristics of respondents separately for the assimilation and advancement cohorts. Assimilation hospitalists in our sample had a mean age of 41.9 years and mean on‐the‐job experience of 4.3 years, reflecting that many hospitalists in the first 2 years of a job have made at least 1 job change in the past.

Figure 1
Graph of hospitalist‐job fit (minimum 1, maximum 5) by years of completed practice in current hospitalist job.

To show the effects of attrition and reselection, we first evaluated the proposition that hospitalists experience attrition (ie, intend to leave their jobs) in response to poor fit. Table 2 shows the correlations between job fit and the self‐reported intent to leave practice or reduce workload separately for the assimilation and advancement periods. For hospitalists in the assimilation period, job fit was negatively correlated with intent to leave current practice within 2 years and to leave hospital medicine within 5 years (P = 0.010 and 0.043, respectively). Hospitalists with <2 years in their current job, therefore, tended to consider attrition but not workload reduction to deal with poor job fit. On the other hand, hospitalists in the advancement period considered both attrition and workload reduction strategies in response to poor fit (all P < 0.001).

Spearman Correlations Between Hospitalist‐Job Fit (1 Worst Fit, 5 Best Fit) and Intent to Leave or Reduce Workload (1 Not Likely at All, 4 Very Likely) Adjusted for Gender
 Assimilation Period HospitalistsAdvancement Period Hospitalists
RhoP ValueRhoP Value
Likelihood that a hospitalist will:    
Leave current practice within 2 years0.2530.0100.367<0.001
Decrease total work hours within 5 years0.0600.5480.179<0.001
Decrease clinical work hours within 5 years0.0720.4690.144<0.001
Leave hospital medicine within 5 years0.2000.0430.231<0.001
Leave direct patient care within 5 years0.0400.6910.212<0.001

In Table 3, we further compared the median job fit across categories for the number of job switches. The median job fit during the assimilation period of hospitalists who had made 1 job change was slightly but statistically higher than the job fit of their counterparts who never left their first job (4.4 vs 4.0, P = 0.046). This suggests that job switching by hospitalists early in their jobs is associated with improved job fit (H1). However, the fit during the assimilation period of hospitalists who switched jobs twice or more was statistically no different from the fit of those in their first jobs, suggesting that the effect of the attrition‐reselection strategy is weak or inconsistent. The job fit for advancement period hospitalists was also different across the job change and no‐change categories. However, in the case of hospitalists later in their jobs, the median job fit was slightly but statistically lower among those who made job changes, revealing the potential drop in job fit that occurs when a hospitalist already established in his or her job starts over again in a new setting.

Relative Job Fit During the Assimilation and Advancement Periods Comparing Hospitalists Who Made Job Changes to Those Who Did Not
 nAge, Mean (95% CI), yHospitalist‐Job Fit, Median (IQR)P Valuea
  • NOTE: Abbreviations: CI, confidence interval; IQR, interquartile range.
  • Indicates P value of the deviation from the hospitalist‐job fit reference value
  • Eight item nonrespondents.
  • Forty‐one item nonrespondents.
Assimilation period hospitalistsb
No job change2942.3 (37.347.3)4.0 (3.84.4)Reference
1 job change3940.3 (38.142.5)4.4 (4.04.8)0.046
2 or more job changes2743.8 (41.046.6)4.4 (3.84.8)0.153
Advancement period hospitalistsc
No job change39044.5 (43.645.5)4.6 (4.05.0)Reference
1 job change18345.0 (43.746.3)4.2 (4.04.8)0.002
2 or more job changes9944.9 (43.146.6)4.2 (3.84.8)0.002

We hypothesized that hospitalists who achieved high job fit within a particular job were more likely to have engaged in activities that utilize a wider spectrum of their abilities. As shown in Table 4, hospitalists in the highest quartile of job fit were associated with a general trend toward higher odds of participating in a variety of common clinical and nonclinical hospitalist activities, but only the odds ratio associated with teaching achieved statistical significance (OR: 1.53, 95% CI: 1.01‐2.31) (H2).

Odds Ratio of Indicating Participation in Various Clinical and Nonclinical Activities Between the Highest Quartile and the Lower 3 Quartiles of Hospitalist‐Job Fit Adjusted for Years in Current Practice, Practice Model, and Specialty Training
 Participation, n/N (%)Odds Ratio (95% CI)P Value
  • NOTE: Abbreviations: CI, confidence interval.
Administrative or committee work704/816 (86)0.73 (0.431.26)0.262
Quality improvement or patient safety initiatives678/816 (83)1.13 (0.642.00)0.680
Information technology design or implementation379/816 (46)1.18 (0.801.73)0.408
Any of the above leadership activities758/816 (93)1.31 (0.563.05)0.535
Teaching442/816 (54)1.53 (1.012.31)0.046
Research120/816 (15)1.07 (0.601.92)0.816
Any of the above academic activities457/816 (56)1.50 (0.992.27)0.057
Code team or rapid response team437/816 (54)1.13 (0.771.68)0.533
Intensive care unit254/816 (31)0.84 (0.531.35)0.469
Skilled nursing facility or long‐term acute care facility126/816 (15)1.06 (0.621.81)0.835
Outpatient general medical practice44/816 (5)1.75 (0.813.80)0.157
Any of the above clinical activities681/816 (79)1.02 (0.601.76)0.930

Socialization with peers and the gradual sharing of values within organizations are hypothesized mechanisms for increasing job fit with time. We found that the number of years in current practice was positively correlated with job fit (Spearman coefficient R = 0.149, P < 0.001), organizational climate (R = 0.128, P < 0.001), and relationship with nonphysician staff (R = 0.102, P < 0.01). The association between years in practice and relationship with physician colleagues were weaker (R = 0.079, P < 0.05). Consistent with the episodic nature of patients' encounters with hospitalists, the measure of patient relationships was not significantly associated with length of time in job. In addition, we found substantial correlations among job fit, organizational climate, and all the relational measures (all R > 0.280, P < 0.001), indicating that hospitalists increasingly share the values of their organizations over time (H3).

Finally, we also hypothesized that poor job fit is associated with poor performance and quality of work life. Strong correlations with job fit were noted for stress (R = 0.307, P < 0.001), job burnout (R = 0.360, P < 0.001), and job satisfaction (R = 0.570, P < 0.001). Job fit (R = 0.147, P < 0.001), job burnout (R = 0.236, P < 0.001), stress (R = 0.305, P < 0.001), and job satisfaction (R = 0.224, P < 0.001) were all significantly correlated with the frequency of participating in suboptimal care (H4).

DISCUSSION

In this exploratory analysis, we validated in the hospitalist workforce several assumptions about person‐job fit that have been observed in workers of other industries. We observed attrition‐reselection (ie, job switching) as a strategy used by physicians to achieve better fit early in their job tenure, whereas job modification appeared to be more effective than attrition‐reselection among physicians already established in their jobs. We provided weak but plausible evidence that physicians with optimal job fit had a tendency to participate in activities (eg, teaching) that engage a wider set of interests and abilities. We also demonstrated the growth in hospitalists sharing the values of their organization through the time‐dependent associations among organizational climate, relational measures, and job fit. Finally, we found that physicians with suboptimal job fit were more likely to report poor performance in their work compared to those indicating optimal fit.

Our previous analysis of data from the Hospital Medicine Physician Worklife Survey exposed the widely variable work characteristics of hospitalist jobs in the US market and the equally variable preferences and priorities of individual hospitalists in selecting their work setting.[7] The implication of our present study is that hospitalists achieve the high levels of observed job fit using various strategies that aid their alignment with their employment. One of these strategies involves time, but physician longevity in practice may be both a determinant and product of good job fit. Although early job attrition may be necessary for fitting the right hospitalists to the right jobs, employers may appreciate the importance of retaining experienced hospitalists not only for cost and performance considerations but also for the growth of social capital in organizations consisting of enduring individuals. As our data suggest that hospitalists grow with their jobs, physicians may experience better fit with jobs that flexibly couple their work demands with benefits that address their individual work‐life needs over time. Another implication of this study is that job fit is a useful and predictive measure of job selection, performance, and retention. In light of studies that expose the limitations of job satisfaction as a measure influenced more by workers' dispositional affect (ie, their temperament and outlook) than their compatibility with their jobs,[28] job fit may add a functional dimension to traditional employee feedback measures.

There are limitations to this analysis. The most notable is the low survey response rate. Two reasons contributed to the fairly low rate of return. First, the original sampling frame included many outdated addresses and names of individuals who did not meet inclusion criteria. Although all sampled individuals who would have been excluded from the study could not be identified, we calculated our response rate without accounting for the proportion of potential ineligibles in the denominator population [Response Rate 2 (RR2) according to standards of the American Association of Public Opinion Research].[29] Second, the response rates of physician surveys have seen a steady decline over the years.[30] Respondents to our survey may be older and more experienced than US hospitalists in general. Although concerns about bias from under‐reporting cannot be fully addressed, we believe that the study sample is adequate for this preliminary study intended to translate the evidence of observed phenomena from the nonphysician to the physician workforces. The suboptimal response characteristics (high skew and low variability) of the generic person‐job fit survey scale used in this study indicate that a reliable survey instrument specifically designed to measure physician‐job fit need to be constructed de novo and validated for any future study. Although we performed simple analyses to support our assertions, few of our subanalyses may be underpowered, contributing to overinterpretation of the data. Additional empirical work is also necessary to assess the generalizability of this study's claims in other medical and surgical specialties. Such studies would also allow measurement of the sensitivity and specificity of physicians' self‐identification of poor job fit. Finally, additional investigations of this time‐dependent construct are more appropriately performed using a longitudinal study design to overcome the limitations inherent in this cross‐sectional analysis. Our conclusions about the time‐dependent features of job fit may be explained by other characteristics such as generational and cultural differences among hospitalists with varying experience.

As the US healthcare system reorganizes to bolster accountability,[31] we anticipate increasing interdependence between physicians and their employer organizations. Ultimately, the desired accountability in healthcare is likely to be obtained if physicians function not only as passive and interchangeable employees but as active stakeholders in the achievement of each organization's goals. A methodology for assessing the alignment of physicians and their jobs will continue to be important along the way.

Disclosure

Nothing to report.

Person‐organization fit concerns the conditions and consequences of compatibility between people and the organizations for which they work.[1] Studies of other industries have demonstrated that person‐organization fit informs the way individuals join, perform in, and are retained by organizations.[2] Person‐job fit is a closely related subordinate concept that concerns the alignment of workers and their job in as much as workers have needs that their job supplies, or conversely, jobs have requirements that certain workers' abilities can help meet.[3] Explorations of job fit in physicians and their work have recently emerged in a few investigations published in medical journals.[4, 5, 6, 7, 8] Further expanding the understanding of fit between physicians and their employment is important, because the decline of solo practices and recent emphasis on team‐based care have led to a growing number of US physicians working in organizations.[9]

The movement of physicians into employed situations may continue if certain types of Accountable Care Organizations take root.[10] And physicians may be primed to join employer organizations based on current career priorities of individuals in American society. Surveys of medical residents entering the workforce reveal more physicians preferring the security of being employees than starting their own practices.[11] Given these trends, job fit will inform our understanding of how personal and job characteristics facilitate recruitment, performance, satisfaction, and longevity of physician employees.

BACKGROUND

Virtually all hospitalists work in organizationshospitalsand are employees of hospitals, medical schools, physician group practices, or management companies, and therefore invariably function within organizational structures and systems.[7] In spite of their rapid growth in numbers, many employers have faced difficulties recruiting and retaining enough hospitalists to fill their staffing needs. Consequently, the US hospitalist workforce today is characterized by high salaries, work load, and attrition rates.[12]

In this evolving unsaturated market, the attraction‐selection‐attrition framework[13] provides a theoretical construct that predicts that hospitalists and their employers would seek congruence of goals and values early in their relationship through a process of trial and error. This framework assumes that early interactions between workers and organizations serve as opportunities for them to understand if job fit is poor and dissociate or remain affiliated as long as job fit is mutually acceptable. Therefore, job switching on average is expected to increase job fit because workers and organizations gain a better understanding of their own goals and values and choose more wisely the next time.

Other theoretical frameworks, such as the job characteristic model,[14] suggest that over time as workers stay at the same job, they continue to maintain and improve job fit through various workplace‐ or self‐modification strategies. For example, seniority status may have privileges (eg, less undesirable call), or workers may create privileged niches through the acquisition of new skills and abilities over time. Hospitalists' tendency to diversify their work‐related activities by incorporating administrative and teaching responsibilities[15] may thus contribute to improving job fit. Additionally, as a measure of complementarity among people who work together, job fit may be influenced by the quality of relationships among hospitalists and their coworkers through their reorientation to the prevailing organizational climate[16, 17] and increasing socialization.[18] Finally, given that experiential learning is known to contribute to better hospitalist work performance,[19] job fit may affect productivity and clinical outcomes vis‐‐vis quality of work life.

To test the validity of these assumptions in a sample of hospitalists, we critically appraised the following 4 hypotheses:

  • Hypothesis 1 (H1): Job attrition and reselection improves job fit among hospitalists entering the job market.
  • Hypothesis 2 (H2): Better job fit is achieved through hospitalists engaging a variety of personal skills and abilities.
  • Hypothesis 3 (H3): Job fit increases with hospitalists' job duration together with socialization and internalization of organizational values.
  • Hypothesis 4 (H4): Job fit is correlated with hospitalists' quality of work life.

 

METHODS

Analysis was performed on data from the 2009 to 2010 Hospital Medicine Physician Worklife Survey. The sample frame included nonmembers and members of Society of Hospital Medicine (SHM). Details about sampling strategy, data collection, and data quality are available in previous publications.[7, 20] The 118‐item survey instrument, including 9 demographic items and 24 practice and job characteristic items, was administered by mail. Examples of information solicited through these items included respondents' practice model, the number of hospitalist jobs they have held, and the specific kinds of clinical and nonclinical activities they performed as part of their current job.

We used a reliable but broad and generic measure of self‐perceived person‐job fit.[21] The survey items of the 5‐point Likert‐type scale anchored between strongly disagree and strongly agree were: I feel that my work utilizes my full abilities, I feel competent and fully able to handle my job, my job gives me the chance to do the things I feel I do best, I feel that my job and I are well‐matched, I feel I have adequate preparation for the job I now hold. The quality of hospitalists' relationships with physician colleagues, staff, and patients as well as job satisfaction was measured using scales adapted from the Physician Worklife Study.[22] Organizational climate was measured using an adapted scale from the Minimizing Error, Maximizing Outcome study incorporating 3 items from the cohesiveness subscale, 4 items from the organizational trust subscale, and 1 item from the quality emphasis subscale that were most pertinent to hospitalists' relationship with their organizations.[23] Intent to leave practice or reduce work hours was measured using 5 items from the Multi‐Center Hospitalist Survey Project.[24] Frequency of participation in suboptimal patient care was measured by adapting 3 items from the suboptimal reported practice subscale and 2 items from the suboptimal patient care subscale developed by Shanafelt et al.[25] Stress and job burnout were assessed using validated measures.[26, 27] Detailed descriptions of the response rate calculation and imputation of missing item data are available in previous publications.[7, 20]

Mean, variance, range, and skew were used to characterize the responses to the job fit survey scale. A table of respondent characteristics was constructed. A visual representation of job fit by individual hospitalist year in current practice was created, first, by plotting a locally weighted scatterplot smoothing curve to examine the shape of the general relationship, and second, by fitting a similarly contoured functional polynomial curve with 95% confidence intervals (CI) to a plot of the mean and interquartile range of job fit for each year in current practice. Spearman partial correlations were calculated for job fit and each of the 5 items addressing likelihood of leaving practice or reducing workload adjusted for gender to control for the higher proportion of women who plan to work part time. Median (interquartile range) job fit was calculated for categories defined by the number of job changes and compared with the reference category (no job change) using the nonparametric rank sum test for comparing non‐normally distributed data. Multivariate logistic regression models were used to calculate the odds ratio (OR) of participating in each of several clinical and nonclinical hospitalist activities between respondents whose job fit score was optimal (5 on a 5‐point scale) and less than optimal controlling for covariates that influence the likelihood of participating in these activities (years in current practice, practice model, and specialty training). A Spearman correlation matrix was created to assess interscale correlations among organizational parameters (years in current practice, job fit, organizational climate, and relationship with colleagues, staff, and patients). Finally, a separate Spearman correlation matrix was created to assess the interscale correlations among individual worker parameters (job fit, suboptimal patient care, job burnout, stress, and job satisfaction). Statistical significance was defined as P value <0.05, and all analyses were performed on Stata 11.0 (StataCorp, College Station, TX). The Northwestern University institutional review board approved this study.

RESULTS

Respondents included 816 hospitalists belonging to around 700 unique organizations. The adjusted response rate from the stratified sample was 26%. Respondents and nonrespondents were similar with regard to geographic region and model of practice, but respondents were more likely to be members of the SHM than nonrespondents. Panel A of Table 1 shows the demographic characteristics of the respondents. The mean age was 44.3 years, and about one‐third were women. The average hospitalist had about 7 years of experience in the specialty and about 5 years with their current hospitalist job. The majority were trained in internal medicine or one of its subspecialties, whereas pediatricians, family physicians, and physicians with other training made up the remainder.

Characteristics of Respondent Hospitalists
 Panel APanel B
 TotalAssimilation Period HospitalistsAdvancement Period Hospitalists
  • NOTE: Abbreviations: SD, standard deviation.
Total, n816103713
Female, n (%)284 (35)37 (36)247 (35)
Age, mean (SD)44.3 (9.0)41.9 (9.3)44.7 (8.9)
Years postresidency experience as hospitalist, mean (SD)6.9 (4.5)4.3 (3.1)7.2 (4.6)
Years in current practice, mean (SD)5.1 (3.9)0.9 (0.3)6.7 (3.8)
Specialty training, n (%)   
Internal medicine555 (68)75 (73)480 (67)
Pediatrics117 (14)8 (8)109 (15.3)
Family medicine49 (6)7 (7)42 (6)
Other95 (11)13 (13)82 (12)

Job fit was highly skewed toward optimum fit, with a mean of 4.3 on a scale of 1 to 5, with a narrow standard deviation of 0.7. The poorest job fit was reported by 0.3%, whereas optimal fit was reported by 21% of respondents. Job fit plotted against years in current practice had a logarithmic appearance typical of learning curves (Figure 1). An inflection point was visualized at around 2 years. For the purposes of this article, we refer to hospitalists' experience in the first 2 years of a job as an assimilation period, which is marked by a steep increase in job fit early when rapid learning or attrition took place. The years beyond the inflection point are characterized as an advancement period, when a more attenuated rise in job fit was experienced with time. The Spearman correlation between job fit and years in practice during the advancement period was 0.145 (n = 678, P < 0.001). Panel B of Table 1 displays the characteristics of respondents separately for the assimilation and advancement cohorts. Assimilation hospitalists in our sample had a mean age of 41.9 years and mean on‐the‐job experience of 4.3 years, reflecting that many hospitalists in the first 2 years of a job have made at least 1 job change in the past.

Figure 1
Graph of hospitalist‐job fit (minimum 1, maximum 5) by years of completed practice in current hospitalist job.

To show the effects of attrition and reselection, we first evaluated the proposition that hospitalists experience attrition (ie, intend to leave their jobs) in response to poor fit. Table 2 shows the correlations between job fit and the self‐reported intent to leave practice or reduce workload separately for the assimilation and advancement periods. For hospitalists in the assimilation period, job fit was negatively correlated with intent to leave current practice within 2 years and to leave hospital medicine within 5 years (P = 0.010 and 0.043, respectively). Hospitalists with <2 years in their current job, therefore, tended to consider attrition but not workload reduction to deal with poor job fit. On the other hand, hospitalists in the advancement period considered both attrition and workload reduction strategies in response to poor fit (all P < 0.001).

Spearman Correlations Between Hospitalist‐Job Fit (1 Worst Fit, 5 Best Fit) and Intent to Leave or Reduce Workload (1 Not Likely at All, 4 Very Likely) Adjusted for Gender
 Assimilation Period HospitalistsAdvancement Period Hospitalists
RhoP ValueRhoP Value
Likelihood that a hospitalist will:    
Leave current practice within 2 years0.2530.0100.367<0.001
Decrease total work hours within 5 years0.0600.5480.179<0.001
Decrease clinical work hours within 5 years0.0720.4690.144<0.001
Leave hospital medicine within 5 years0.2000.0430.231<0.001
Leave direct patient care within 5 years0.0400.6910.212<0.001

In Table 3, we further compared the median job fit across categories for the number of job switches. The median job fit during the assimilation period of hospitalists who had made 1 job change was slightly but statistically higher than the job fit of their counterparts who never left their first job (4.4 vs 4.0, P = 0.046). This suggests that job switching by hospitalists early in their jobs is associated with improved job fit (H1). However, the fit during the assimilation period of hospitalists who switched jobs twice or more was statistically no different from the fit of those in their first jobs, suggesting that the effect of the attrition‐reselection strategy is weak or inconsistent. The job fit for advancement period hospitalists was also different across the job change and no‐change categories. However, in the case of hospitalists later in their jobs, the median job fit was slightly but statistically lower among those who made job changes, revealing the potential drop in job fit that occurs when a hospitalist already established in his or her job starts over again in a new setting.

Relative Job Fit During the Assimilation and Advancement Periods Comparing Hospitalists Who Made Job Changes to Those Who Did Not
 nAge, Mean (95% CI), yHospitalist‐Job Fit, Median (IQR)P Valuea
  • NOTE: Abbreviations: CI, confidence interval; IQR, interquartile range.
  • Indicates P value of the deviation from the hospitalist‐job fit reference value
  • Eight item nonrespondents.
  • Forty‐one item nonrespondents.
Assimilation period hospitalistsb
No job change2942.3 (37.347.3)4.0 (3.84.4)Reference
1 job change3940.3 (38.142.5)4.4 (4.04.8)0.046
2 or more job changes2743.8 (41.046.6)4.4 (3.84.8)0.153
Advancement period hospitalistsc
No job change39044.5 (43.645.5)4.6 (4.05.0)Reference
1 job change18345.0 (43.746.3)4.2 (4.04.8)0.002
2 or more job changes9944.9 (43.146.6)4.2 (3.84.8)0.002

We hypothesized that hospitalists who achieved high job fit within a particular job were more likely to have engaged in activities that utilize a wider spectrum of their abilities. As shown in Table 4, hospitalists in the highest quartile of job fit were associated with a general trend toward higher odds of participating in a variety of common clinical and nonclinical hospitalist activities, but only the odds ratio associated with teaching achieved statistical significance (OR: 1.53, 95% CI: 1.01‐2.31) (H2).

Odds Ratio of Indicating Participation in Various Clinical and Nonclinical Activities Between the Highest Quartile and the Lower 3 Quartiles of Hospitalist‐Job Fit Adjusted for Years in Current Practice, Practice Model, and Specialty Training
 Participation, n/N (%)Odds Ratio (95% CI)P Value
  • NOTE: Abbreviations: CI, confidence interval.
Administrative or committee work704/816 (86)0.73 (0.431.26)0.262
Quality improvement or patient safety initiatives678/816 (83)1.13 (0.642.00)0.680
Information technology design or implementation379/816 (46)1.18 (0.801.73)0.408
Any of the above leadership activities758/816 (93)1.31 (0.563.05)0.535
Teaching442/816 (54)1.53 (1.012.31)0.046
Research120/816 (15)1.07 (0.601.92)0.816
Any of the above academic activities457/816 (56)1.50 (0.992.27)0.057
Code team or rapid response team437/816 (54)1.13 (0.771.68)0.533
Intensive care unit254/816 (31)0.84 (0.531.35)0.469
Skilled nursing facility or long‐term acute care facility126/816 (15)1.06 (0.621.81)0.835
Outpatient general medical practice44/816 (5)1.75 (0.813.80)0.157
Any of the above clinical activities681/816 (79)1.02 (0.601.76)0.930

Socialization with peers and the gradual sharing of values within organizations are hypothesized mechanisms for increasing job fit with time. We found that the number of years in current practice was positively correlated with job fit (Spearman coefficient R = 0.149, P < 0.001), organizational climate (R = 0.128, P < 0.001), and relationship with nonphysician staff (R = 0.102, P < 0.01). The association between years in practice and relationship with physician colleagues were weaker (R = 0.079, P < 0.05). Consistent with the episodic nature of patients' encounters with hospitalists, the measure of patient relationships was not significantly associated with length of time in job. In addition, we found substantial correlations among job fit, organizational climate, and all the relational measures (all R > 0.280, P < 0.001), indicating that hospitalists increasingly share the values of their organizations over time (H3).

Finally, we also hypothesized that poor job fit is associated with poor performance and quality of work life. Strong correlations with job fit were noted for stress (R = 0.307, P < 0.001), job burnout (R = 0.360, P < 0.001), and job satisfaction (R = 0.570, P < 0.001). Job fit (R = 0.147, P < 0.001), job burnout (R = 0.236, P < 0.001), stress (R = 0.305, P < 0.001), and job satisfaction (R = 0.224, P < 0.001) were all significantly correlated with the frequency of participating in suboptimal care (H4).

DISCUSSION

In this exploratory analysis, we validated in the hospitalist workforce several assumptions about person‐job fit that have been observed in workers of other industries. We observed attrition‐reselection (ie, job switching) as a strategy used by physicians to achieve better fit early in their job tenure, whereas job modification appeared to be more effective than attrition‐reselection among physicians already established in their jobs. We provided weak but plausible evidence that physicians with optimal job fit had a tendency to participate in activities (eg, teaching) that engage a wider set of interests and abilities. We also demonstrated the growth in hospitalists sharing the values of their organization through the time‐dependent associations among organizational climate, relational measures, and job fit. Finally, we found that physicians with suboptimal job fit were more likely to report poor performance in their work compared to those indicating optimal fit.

Our previous analysis of data from the Hospital Medicine Physician Worklife Survey exposed the widely variable work characteristics of hospitalist jobs in the US market and the equally variable preferences and priorities of individual hospitalists in selecting their work setting.[7] The implication of our present study is that hospitalists achieve the high levels of observed job fit using various strategies that aid their alignment with their employment. One of these strategies involves time, but physician longevity in practice may be both a determinant and product of good job fit. Although early job attrition may be necessary for fitting the right hospitalists to the right jobs, employers may appreciate the importance of retaining experienced hospitalists not only for cost and performance considerations but also for the growth of social capital in organizations consisting of enduring individuals. As our data suggest that hospitalists grow with their jobs, physicians may experience better fit with jobs that flexibly couple their work demands with benefits that address their individual work‐life needs over time. Another implication of this study is that job fit is a useful and predictive measure of job selection, performance, and retention. In light of studies that expose the limitations of job satisfaction as a measure influenced more by workers' dispositional affect (ie, their temperament and outlook) than their compatibility with their jobs,[28] job fit may add a functional dimension to traditional employee feedback measures.

There are limitations to this analysis. The most notable is the low survey response rate. Two reasons contributed to the fairly low rate of return. First, the original sampling frame included many outdated addresses and names of individuals who did not meet inclusion criteria. Although all sampled individuals who would have been excluded from the study could not be identified, we calculated our response rate without accounting for the proportion of potential ineligibles in the denominator population [Response Rate 2 (RR2) according to standards of the American Association of Public Opinion Research].[29] Second, the response rates of physician surveys have seen a steady decline over the years.[30] Respondents to our survey may be older and more experienced than US hospitalists in general. Although concerns about bias from under‐reporting cannot be fully addressed, we believe that the study sample is adequate for this preliminary study intended to translate the evidence of observed phenomena from the nonphysician to the physician workforces. The suboptimal response characteristics (high skew and low variability) of the generic person‐job fit survey scale used in this study indicate that a reliable survey instrument specifically designed to measure physician‐job fit need to be constructed de novo and validated for any future study. Although we performed simple analyses to support our assertions, few of our subanalyses may be underpowered, contributing to overinterpretation of the data. Additional empirical work is also necessary to assess the generalizability of this study's claims in other medical and surgical specialties. Such studies would also allow measurement of the sensitivity and specificity of physicians' self‐identification of poor job fit. Finally, additional investigations of this time‐dependent construct are more appropriately performed using a longitudinal study design to overcome the limitations inherent in this cross‐sectional analysis. Our conclusions about the time‐dependent features of job fit may be explained by other characteristics such as generational and cultural differences among hospitalists with varying experience.

As the US healthcare system reorganizes to bolster accountability,[31] we anticipate increasing interdependence between physicians and their employer organizations. Ultimately, the desired accountability in healthcare is likely to be obtained if physicians function not only as passive and interchangeable employees but as active stakeholders in the achievement of each organization's goals. A methodology for assessing the alignment of physicians and their jobs will continue to be important along the way.

Disclosure

Nothing to report.

References
  1. Kristof AL. Person‐organization fit: an integrative review of its conceptualizations, measurement, and implications. Personnel Psychol. 1996;49:149.
  2. Kristof‐Brown AL, Zimmerman RD, Johnson EC. Consequences of individuals' fit at work: a meta‐analysis of person‐job, person‐organization, person‐group, and person‐supervisor fit. Personnel Psychol. 2005;58(2):281342.
  3. Edwards JR.Person‐job fit: a conceptual integration, literature review and methodological critique. In: Cooper CL, Robertson IT, eds. International Review of Industrial and Organizational Psychology. Vol.6. New York, NY:John Wiley 1991.
  4. Vandenberghe C. Organizational culture, person‐culture fit, and turnover: a replication in the health care industry. J Organ Behav. 1999;20(2):175184.
  5. Zazzali JL, Alexander JA, Shortell SM, Burns LR. Organizational culture and physician satisfaction with dimensions of group practice. Health Serv Res. 2007;42(3 pt 1):11501176.
  6. Shanafelt TD, West CP, Sloan JA, et al. Career fit and burnout among academic faculty. Arch Intern Med. 2009;169(10):990995.
  7. Hinami K, Whelan CT, Miller JA, Wolosin RJ, Wetterneck TB. Job characteristics, satisfaction, and burnout across hospitalist practice models. J Hosp Med. 2012;7(5):402410.
  8. Huesch MD. Provider‐hospital “fit” and patient outcomes: evidence from Massachusetts cardiac surgeons, 2002–2004. Health Serv Res. 2011;46(1 pt 1):126.
  9. Okie S. The evolving primary care physician. N Engl J Med. 2012;366(20):18491853.
  10. Kocher R, Sahni NR. Hospitals' race to employ physicians—the logic behind a money‐losing proposition. N Engl J Med. 2011;364(19):17901793.
  11. 2011 Survey of Final‐Year Medical Residents. Irving, TX:Merritt Hawkins;2011.
  12. State of Hospital Medicine: 2010 Report Based on 2009 Data. Englewood, CO:Society of Hospital Medicine and the Medical Group Management Association;2010.
  13. Schneider B, Goldstein HW, Smith DB. The ASA framework: an update. Personnel Psychol. 1995;48(4):747773.
  14. Hackman JR, Oldham GR. Work Redesign. Reading. MA:Addison‐Wesley;1980.
  15. Sehgal NL, Wachter RM. The expanding role of hospitalists in the United States. Swiss Med Wkly. 2006;136(37–38):591596.
  16. Ostroff C, Kozlowski SWJ. Organizational socialization as a learning‐process—the role of information acquisition. Personnel Psychol. 1992;45(4):849874.
  17. Ostroff C, Rothausen TJ. The moderating effect of tenure in person‐environment fit: a field study in educational organizations. J Occup Organ Psych. 1997;70:173188.
  18. Chatman JA. Matching people and organizations—selection and socialization in public accounting firms. Admin Sci Quart. 1991;36(3):459484.
  19. Meltzer D, Manning WG, Morrison J, et al. Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists. Ann Intern Med. 2002;137(11):866874.
  20. Hinami K, Whelan CT, Wolosin RJ, Miller JA, Wetterneck TB. Worklife and satisfaction of hospitalists: toward flourishing careers. J Gen Intern Med. 2012;27(1):2836.
  21. Xie JL. Karasek's model in the People's Republic of China: effects of job demands, control, and individual differences. Acad Manage J. 1996;39(6):15941618.
  22. Konrad TR, Williams ES, Linzer M, et al. Measuring physician job satisfaction in a changing workplace and a challenging environment. SGIM Career Satisfaction Study Group. Society of General Internal Medicine. Med Care. 1999;37(11):11741182.
  23. Linzer M, Manwell LB, Mundt M, et al. Organizational climate, stress, and error in primary care: The MEMO Study. Adv Patient Saf. 2005;1:6577.
  24. Meltzer DO, Arora V, Zhang JX, et al. Effects of inpatient experience on outcomes and costs in a multicenter trial of academic hospitalists. J Gen Intern Med. 2005;20(suppl 1):141142.
  25. Shanafelt TD, Bradley KA, Wipf JE, Back AL. Burnout and self‐reported patient care in an internal medicine residency program. Ann Intern Med. 2002;136(5):358367.
  26. Yang CL, Carayon P. Effect of job demands and social support on worker stress—a study of VDT users. Behav Inform Technol. 1995;14(1):3240.
  27. Rohland BM, Kruse GR, Rohrer JE. Validation of a single‐item measure of burnout against the Maslach Burnout Inventory among physicians. Stress Health. 2004;20(2):7579.
  28. Dormann C, Zapf D. Job satisfaction: a meta‐analysis of stabilities. J Organ Behav. 2001;22(5):483504.
  29. The American Association for Public Opinion Research. Standard definitions: final dispositions of case codes and outcome rates for surveys.7th ed. Available at: http://www.aapor.org/Standard_Definitions2.htm. Accessed May 2,2012.
  30. Cull WL, O'Connor KG, Sharp S, Tang SFS. Response rates and response bias for 50 surveys of pediatricians. Health Serv Res. 2005;40(1):213226.
  31. Fisher ES, Shortell SM. Accountable care organizations: accountable for what, to whom, and how. JAMA. 2010;304(15):17156.
References
  1. Kristof AL. Person‐organization fit: an integrative review of its conceptualizations, measurement, and implications. Personnel Psychol. 1996;49:149.
  2. Kristof‐Brown AL, Zimmerman RD, Johnson EC. Consequences of individuals' fit at work: a meta‐analysis of person‐job, person‐organization, person‐group, and person‐supervisor fit. Personnel Psychol. 2005;58(2):281342.
  3. Edwards JR.Person‐job fit: a conceptual integration, literature review and methodological critique. In: Cooper CL, Robertson IT, eds. International Review of Industrial and Organizational Psychology. Vol.6. New York, NY:John Wiley 1991.
  4. Vandenberghe C. Organizational culture, person‐culture fit, and turnover: a replication in the health care industry. J Organ Behav. 1999;20(2):175184.
  5. Zazzali JL, Alexander JA, Shortell SM, Burns LR. Organizational culture and physician satisfaction with dimensions of group practice. Health Serv Res. 2007;42(3 pt 1):11501176.
  6. Shanafelt TD, West CP, Sloan JA, et al. Career fit and burnout among academic faculty. Arch Intern Med. 2009;169(10):990995.
  7. Hinami K, Whelan CT, Miller JA, Wolosin RJ, Wetterneck TB. Job characteristics, satisfaction, and burnout across hospitalist practice models. J Hosp Med. 2012;7(5):402410.
  8. Huesch MD. Provider‐hospital “fit” and patient outcomes: evidence from Massachusetts cardiac surgeons, 2002–2004. Health Serv Res. 2011;46(1 pt 1):126.
  9. Okie S. The evolving primary care physician. N Engl J Med. 2012;366(20):18491853.
  10. Kocher R, Sahni NR. Hospitals' race to employ physicians—the logic behind a money‐losing proposition. N Engl J Med. 2011;364(19):17901793.
  11. 2011 Survey of Final‐Year Medical Residents. Irving, TX:Merritt Hawkins;2011.
  12. State of Hospital Medicine: 2010 Report Based on 2009 Data. Englewood, CO:Society of Hospital Medicine and the Medical Group Management Association;2010.
  13. Schneider B, Goldstein HW, Smith DB. The ASA framework: an update. Personnel Psychol. 1995;48(4):747773.
  14. Hackman JR, Oldham GR. Work Redesign. Reading. MA:Addison‐Wesley;1980.
  15. Sehgal NL, Wachter RM. The expanding role of hospitalists in the United States. Swiss Med Wkly. 2006;136(37–38):591596.
  16. Ostroff C, Kozlowski SWJ. Organizational socialization as a learning‐process—the role of information acquisition. Personnel Psychol. 1992;45(4):849874.
  17. Ostroff C, Rothausen TJ. The moderating effect of tenure in person‐environment fit: a field study in educational organizations. J Occup Organ Psych. 1997;70:173188.
  18. Chatman JA. Matching people and organizations—selection and socialization in public accounting firms. Admin Sci Quart. 1991;36(3):459484.
  19. Meltzer D, Manning WG, Morrison J, et al. Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists. Ann Intern Med. 2002;137(11):866874.
  20. Hinami K, Whelan CT, Wolosin RJ, Miller JA, Wetterneck TB. Worklife and satisfaction of hospitalists: toward flourishing careers. J Gen Intern Med. 2012;27(1):2836.
  21. Xie JL. Karasek's model in the People's Republic of China: effects of job demands, control, and individual differences. Acad Manage J. 1996;39(6):15941618.
  22. Konrad TR, Williams ES, Linzer M, et al. Measuring physician job satisfaction in a changing workplace and a challenging environment. SGIM Career Satisfaction Study Group. Society of General Internal Medicine. Med Care. 1999;37(11):11741182.
  23. Linzer M, Manwell LB, Mundt M, et al. Organizational climate, stress, and error in primary care: The MEMO Study. Adv Patient Saf. 2005;1:6577.
  24. Meltzer DO, Arora V, Zhang JX, et al. Effects of inpatient experience on outcomes and costs in a multicenter trial of academic hospitalists. J Gen Intern Med. 2005;20(suppl 1):141142.
  25. Shanafelt TD, Bradley KA, Wipf JE, Back AL. Burnout and self‐reported patient care in an internal medicine residency program. Ann Intern Med. 2002;136(5):358367.
  26. Yang CL, Carayon P. Effect of job demands and social support on worker stress—a study of VDT users. Behav Inform Technol. 1995;14(1):3240.
  27. Rohland BM, Kruse GR, Rohrer JE. Validation of a single‐item measure of burnout against the Maslach Burnout Inventory among physicians. Stress Health. 2004;20(2):7579.
  28. Dormann C, Zapf D. Job satisfaction: a meta‐analysis of stabilities. J Organ Behav. 2001;22(5):483504.
  29. The American Association for Public Opinion Research. Standard definitions: final dispositions of case codes and outcome rates for surveys.7th ed. Available at: http://www.aapor.org/Standard_Definitions2.htm. Accessed May 2,2012.
  30. Cull WL, O'Connor KG, Sharp S, Tang SFS. Response rates and response bias for 50 surveys of pediatricians. Health Serv Res. 2005;40(1):213226.
  31. Fisher ES, Shortell SM. Accountable care organizations: accountable for what, to whom, and how. JAMA. 2010;304(15):17156.
Issue
Journal of Hospital Medicine - 8(2)
Issue
Journal of Hospital Medicine - 8(2)
Page Number
96-101
Page Number
96-101
Publications
Publications
Article Type
Display Headline
Person‐job fit: An exploratory cross‐sectional analysis of hospitalists
Display Headline
Person‐job fit: An exploratory cross‐sectional analysis of hospitalists
Sections
Article Source

Copyright © 2012 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Address for correspondence and reprint requests: Keiki Hinami, MD, MS, Northwestern University Feinberg School of Medicine, 211 E. Ontario St, 7‐727, Chicago IL 60611; Telephone: 312‐926‐0050; Fax: 312‐926‐4588; E-mail: khinami@nmh.org
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files

Hospitalist Practice Models

Article Type
Changed
Mon, 05/22/2017 - 18:45
Display Headline
Job characteristics, satisfaction, and burnout across hospitalist practice models

Over the past 15 years, there has been dramatic growth in the number of hospitalist physicians in the United States and in the number of hospitals served by them.13 Hospitals are motivated to hire experienced hospitalists to staff their inpatient services,4 with goals that include obtaining cost‐savings and higher quality.59 The rapid growth of Hospital Medicine saw multiple types of hospital practice models emerge with differing job characteristics, clinical duties, workload, and compensation schemes.10 The extent of the variability of hospitalist jobs across practice models is not known.

Intensifying recruitment efforts and the concomitant increase in compensation for hospitalists over the last decade suggest that demand for hospitalists is strong and sustained.11 As a result, today's cohort of hospitalists has a wide range of choices of types of jobs, practice models, and locations. The diversity of available hospitalist jobs is characterized, for example, by setting (community hospital vs academic hospital), employer (hospital vs private practice), job duties (the amount and type of clinical work, and other administrative, teaching, or research duties), and intensity (work hours and duties to maximize income or lifestyle). How these choices relate to job satisfaction and burnout are also unknown.

The Society of Hospital Medicine (SHM) has administered surveys to hospitalist group leaders biennially since 2003.1215 These surveys, however, do not address issues related to individual hospitalist worklife, recruitment, and retention. In 2005, SHM convened a Career Satisfaction Task Force that designed and executed a national survey of hospitalists in 2009‐2010. The objective of this study is to evaluate how job characteristics vary by practice model, and the association of these characteristics and practice models with job satisfaction and burnout.

METHODS

Survey Instrument

A detailed description of the survey design, sampling strategy, data collection, and response rate calculations is described elsewhere.16 Portions of the 118‐item survey instrument assessed characteristics of the respondents' hospitalist group (12 items), details about their individual work patterns (12 items), and demographics (9 items). Work patterns were evaluated by the average number of clinical work days, consecutive days, hours per month, percentage of work assigned to night duty, and number of patient encounters. Average hours spent on nonclinical work, and the percentage of time allocated for clinical, administrative, teaching, and research activities were solicited. Additional items assessed specific clinical responsibilities, pretax earnings in FY2010, the availability of information technology capabilities, and the adequacy of available resources. Job and specialty satisfaction and 11 satisfaction domain measures were measured using validated scales.1726 Burnout symptoms were measured using a validated single‐item measure.26, 27

Sampling Strategy

We surveyed a national stratified sample of hospitalists in the US and Puerto Rico. We used the largest database of hospitalists (>24,000 names) currently available and maintained by the SHM as our sampling frame. We linked hospitalist employer information to hospital statistics from the American Hospital Association database28 to stratify the sample by number of hospital beds, geographic region, employment model, and specialty training, oversampling pediatric hospitalists due to small numbers. A respondent sample of about 700 hospitalists was calculated to be adequate to detect a 0.5 point difference in job satisfaction scores between subgroups assuming 90% power and alpha of 0.05. However, we sampled a total of 5389 addresses from the database to overcome the traditionally low physician response rates, duplicate sampling, bad addresses, and non‐hospitalists being included in the sampling frame. In addition, 2 multistate hospitalist companies (EmCare, In Compass Health) and 1 for‐profit hospital chain (HCA, Inc) financially sponsored this project with the stipulation that all of their hospitalist employees (n = 884) would be surveyed.

Data Collection

The healthcare consulting firm, Press Ganey, provided support with survey layout and administration following the modified Dillman method.29 Three rounds of coded surveys and solicitation letters from the investigators were mailed 2 weeks apart in November and December 2009. Because of low response rates to the mailed survey, an online survey was created using Survey Monkey and sent to 650 surveyees for whom e‐mail addresses were available, and administered at a kiosk for sample physicians during the SHM 2010 annual meeting.

Data Analysis

Nonresponse bias was measured by comparing characteristics between respondents of separate survey waves.30 We determined the validity of mailing addresses immediately following the survey period by mapping each address using Google, and if the address was a hospital, researching online whether or not the intended recipient was currently employed there. Practice characteristics were compared across 5 model categories distilled from the SHM & Medical Group Management Association survey: local hospitalist‐only group, multistate hospitalist group, multispecialty physician group, employer hospital, and university or medical school. Weighted proportions, means, and medians were calculated to account for oversampling of pediatric hospitalists. Differences in categorical measures were assessed using the chi‐square test and the design‐based F test for comparing weighted data. Weighted means (99% confidence intervals) and medians (interquartile ranges) were calculated. Because each parameter yielded a single outlier value across the 5 practice models, differences across weighted means were assessed using generalized linear models with the single outlier value chosen as the reference mean. Pair‐wise Wilcoxon rank sum test was used to compare median values. In these 4‐way comparisons of means and medians, significance was defined as P value of 0.0125 per Bonferroni correction. A single survey item solicited respondents to choose exactly 4 of 13 considerations most pertinent to job satisfaction. The proportion of respondents who scored 4 on a 5‐point Likert scale of the 11 satisfaction domains and 2 global measures of satisfaction, and burnout symptoms defined as 3 on a 5‐point single item measure were bar‐graphed. Chi‐square statistics were used to evaluate for differences across practice models. Statistical significance was defined by alpha less than 0.05, unless otherwise specified. All analyses were performed using STATA version 11.0 (College Station, TX). This study was approved by the Loyola University Institutional Review Board.

Survey data required cleaning prior to analysis. Missing gender information was imputed using the respondents' name. Responses to the item that asked to indicate the proportion of work dedicated to administrative responsibilities, clinical care, teaching, and research that did not add up to 100% were dropped. Two responses that indicated full‐time equivalent (FTE) of 0%, but whose respondents otherwise completed the survey implying they worked as clinical hospitalists, were replaced with values calculated from the given number of work hours relative to the median work hours in our sample. Out of range or implausible responses to the following items were dropped from analyses: the average number of billable encounters during a typical day or shift, number of shifts performing clinical activities during a typical month, pretax earnings, the year the respondent completed residency training, and the number of whole years practiced as a hospitalist. The proportion of selective item nonresponse was small and we did not, otherwise, impute missing data.

RESULTS

Response Rate

Of the 5389 originally sampled addresses, 1868 were undeliverable. Addresses were further excluded if they appeared in duplicate or were outdated. This yielded a total of 3105 eligible surveyees in the sample. As illustrated in Figure 1, 841 responded to the mailed survey and 5 responded to the Web‐based survey. After rejecting 67 non‐hospitalist respondents and 3 duplicate surveys, a total of 776 surveys were included in the final analysis. The adjusted response rate was 25.6% (776/3035). Members of SHM were more likely to return the survey than nonmembers. The adjusted response rate from hospitalists affiliated with the 3 sponsoring institutions was 6% (40/662). Because these respondents were more likely to be non‐members of SHM, we opted to analyze the responses from the sponsor hospitalists together with the sampled hospitalists. The demographics of the resulting pool of 816 respondents affiliated with over 650 unique hospitalist groups were representative of the original survey frame. We analyzed data from 794 of these who responded to the item indicating their hospitalist practice model. Demographic characteristics of responders and nonresponders to the practice model survey item were similar.

Figure 1
Sampling flow chart. Sponsors are: EmCare; In Compass Health; and HCA, Inc. Abbreviations: PG, Press Ganey Associates; SHM, Society of Hospital Medicine.

Characteristics of Hospitalists and Their Groups

Table 1 summarizes the characteristics of hospitalist respondents and their organizations by practice model. More (44%) respondents identified their practice model as directly employed by the hospital than other models, including multispecialty physician group (15%), multistate hospitalist group (14%), university or medical school (14%), local hospitalist group (12%), and other (2%). The median age of hospitalist respondents was 42 years, with 6.8 years of mean experience as a hospitalist. One third were women, 84% were married, and 46% had dependent children 6 years old or younger at home. Notably, hospitalists in multistate groups had fewer years of experience, and fewer hospitalists in local and multistate groups were married compared to hospitalists in other practice models.

Characteristics of Hospitalist Respondents and Their Hospitalist Groups by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: AHA, American Hospital Association; CI, confidence interval; EHR, electronic health record; IQR, interquartile range.

  • indicate the pairs of values for which a significant difference exists.

Hospitalist characteristics      
Age, weighted mean (99% CI)45 (42, 48)44 (42, 47)45 (43, 47)45 (43, 46)43 (40, 46) 
Years hospitalist experience, weighted mean (99% CI)8 (6, 9)*5 (4, 6)*8 (7, 9)7 (6, 7)8 (6, 9)<0.010*
Women, weighted %29303931430.118
Married, weighted %76778289810.009
At least 1 dependent child younger than age 6 living in home, weighted %47484347450.905
Pediatric specialty, n (%)<10<1011 (10%)57 (16%)36 (34%)<0.001
Hospitalist group characteristics      
Region, weighted %     <0.001
Northeast (AHA 1 & 2)1310162713 
South (AHA 3 & 4)1937132421 
Midwest (AHA 5 & 6)2324252226 
Mountain (AHA 7 & 8)2220161324 
West (AHA 9)2410311416 
No. beds of primary hospital, weighted %     <0.001
Up to 1491726122414 
1502993036363321 
3004492624292019 
450599138171121 
600 or more12671324 
No. of hospital facilities served by current practice, weighted %     <0.001
15370677766 
22022201624 
3 or more27913710 
No. of physicians in current practice, median (IQR)10 (5, 18)8 (6, 12)*14 (8, 25)*12 (6, 18)12 (7, 20)<0.001*, 0.001
No. of non‐physician providers in current practice, median (IQR)0 (0, 2)0 (0, 2)0 (0, 3)1 (0, 2)0 (0, 2) 
Available information technology capabilities, weighted %      
EHR to access physician notes5757755879<0.001
EHR to access nursing documentations68677475760.357
EHR to access laboratory or test results97899596960.054
Electronic order entry3019533856<0.001
Electronic billing38313636380.818
Access to EHR at home or off site78737882840.235
Access to Up‐to‐Date or other clinical guideline resources8077919296<0.001
Access to schedules, calendars, or other organizational resources56576667750.024
E‐mail, Web‐based paging, or other communication resources7463888990<0.001

Several differences in respondent group characteristics by practice model were found. Respondents in multistate hospitalist groups were more likely from the South and Midwest, while respondents from multispecialty groups were likely from the West. More multistate group practices were based in smaller hospitals, while academic hospitalists tended to practice in hospitals with 600 or more beds. Respondents employed by hospitals were more likely to practice at 1 hospital facility only, while local group practices were more likely to practice at 3 or more facilities. The median number of physicians in a hospitalist group was 11 (interquartile range [IQR] 6, 19). Local and multistate groups had fewer hospitalists compared to other models. Nonphysician providers were employed by nearly half of all hospitalist practices. Although almost all groups had access to some information technology, more academic hospitalists had access to electronic order entry, electronic physician notes, electronic clinical guidelines resources and communication technology, while local and multistate groups were least likely to have access to these resources.

Work Pattern Variations

Table 2 further details hospitalist work hours by practice model. The majority of hospitalists (78%) reported their position was full‐time (FTE 1.0), while 13% reported working less than full‐time (FTE <1.0). Only 5% of local group hospitalists worked part‐time, while 20% of multispecialty group hospitalists did. An additional 9% reported FTE >1.0, indicating their work hours exceeded the definition of a full‐time physician in their practice. Among full‐time hospitalists, local group members worked a greater number of shifts per month than employees of multispecialty groups, hospitals, and academic medical centers. Academic hospitalists reported higher numbers of consecutive clinical days worked on average, but fewer night shifts compared to hospitalists employed by multistate groups, multispecialty groups, and hospitals; fewer billable encounters than hospitalists in local and multistate groups; and more nonclinical work hours than hospitalists of any other practice model. Academic hospitalists also spent more time on teaching and research than other practice models. Hospitalists spent 11%‐18% of their time on administrative and committee responsibilities, with the least amount spent by hospitalists in multistate groups and the most in academic practice.

Hospitalist Work Hours by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: CI, confidence interval; FTE, full‐time equivalent.

  • indicate the pairs of values for which a significant difference exists. P value calculated using chi‐square test for comparing FTE categories with alpha defined as <0.05. Pairwise P values calculated using generalized linear models with a single outlier value as the reference value for all other comparisons and alpha defined as <0.0125 per Bonferroni correction.

FTE, weighted %0.058
FTE < 1.0613201214 
FTE = 1.08575748082 
FTE > 1.01013685 
Workload parameters, weighted mean (99% CI) 
Clinical shifts per month for FTE 1.019 (17, 20)*17 (16, 19)15 (14, 17)*16 (15, 16)15 (13, 17)<0.001*
Hours per clinical shift10 (9, 11)11 (10, 11)*10 (10, 11.0)11 (10, 11.0)10 (9, 10)*0.006*, 0.002
Consecutive days on clinical shift8 (6, 9)7 (6, 7)*6 (6, 7)7 (6, 7)9 (7, 10)*0.002*, <0.001
% Clinical shifts on nights20 (15, 25)23 (18, 28)*23 (17, 29)21 (17, 24)14 (9, 18)*0.001*, 0.002
% Night shifts spent in hospital61 (49, 74)*63 (52, 75)72 (62, 83)73 (67, 80)43 (29, 57)*0.010*, 0.003, <0.001
Billable encounters per clinical shift17 (14, 19)*17 (16, 18)14 (13, 15)15 (14, 16)13 (11, 14)*<0.001*, 0.002
Hours nonclinical work per month23 (12, 34)*19 (11, 27)31 (20, 42)30 (24, 36)71 (55, 86)*<0.001*
Hours clinical and nonclinical work per month for FTE 1.0202 (186, 219)211 (196, 226)184 (170, 198)*193 (186, 201)221 (203, 238)*<0.001*
Professional activity, weighted mean % (99% CI) 
Clinical84 (78, 89)*86 (81, 90)78 (72, 84)79 (76, 82)58 (51, 64)*<0.001*
Teaching2.3 (1, 5)*3 (1, 4)6 (4, 9)6 (5, 8)17 (14, 20)*<0.001*
Administration and Committee work13 (8, 19)11 (8, 15)*16 (10, 21)14 (12, 17)19 (14, 24)*0.001*
Research0 (0, 0)*1 (0, 2)0 (0, 1)1 (0, 1)7 (3, 11)*<0.001*

Table 3 tabulates other work pattern characteristics. Most hospitalists indicated that their current clinical work as hospitalists involved the general medical wards (100%), medical consultations (98%), and comanagement with specialists (92%). There were wide differences in participation in comanagement (100%, local groups vs 71%, academic), intensive care unit (ICU) responsibilities (94%, multistate groups vs 27%, academic), and nursing home care (30%, local groups vs 8%, academic). Among activities that are potentially not reimbursable, academic hospitalists were less likely to participate in coordination of patient transfers and code or rapid response teams, while multistate groups were least likely to participate in quality improvement activities. In total, 99% of hospitalists reported participating in at least 1 potentially nonreimbursable clinical activity.

Hospitalist Work Patterns and Compensation by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: CI, confidence interval.

  • indicate the pairs of values for which a significant difference exists. Pairwise P value calculated using generalized linear models with a single outlier value as the reference value for comparing earnings and alpha defined as <0.0125 per Bonferroni correction. P values calculated using chi‐square test for all other comparisons with alpha defined as <0.05.

Reimbursable activities, overlapping weighted % 
General medical ward1009910099990.809
Medical consultations999910098950.043
Comanagement with specialists10096969371<0.001
Preoperative evaluations92929088770.002
Intensive care unit8694677527<0.001
Skilled nursing facility or long‐term acute care facility301912168<0.001
Outpatient general medical practice4455100.241
Potentially nonreimbursable activities, overlapping weighted % 
Coordination of patient transfers92949593820.005
Quality improvement or patient safety initiatives81788389890.029
Code team or rapid response team5657536237<0.001
Information technology design or implementation42394751510.154
Admission triage for emergency department49464340310.132
Compensation scheme, weighted %<0.001
Salary only1821302947 
Salary plus performance incentive5472596753 
Fee‐for‐service201720 
Capitation00000 
Other97430 
Compensation links to incentives, overlapping weighted % 
No incentives40282929480.003
Patient satisfaction2339383814<0.001
Length of stay18172013100.208
Overall cost8119560.270
Test utilization22710<0.001
Clinical processes and outcomes2634444324<0.001
Other17292631250.087
Earnings, weighted mean dollars (99% CI)226,065 (202,891, 249,240)*225,613 (210,772, 240,454)202,617 (186,036, 219,198)206,087 (198,413, 213,460)166,478 (151,135, 181,821)*<0.001*

Hospitalist compensation schemes were significantly different across the practice models. Salary‐only schemes were most common among academic hospitalists (47%), while 72% of multistate groups used performance incentives in addition to salary. More local groups used fee‐for‐service compensation than other models. Incentives differed by practice model, with more multistate groups having incentives based on patient satisfaction, while more multispecialty physician groups had incentives based on clinical processes and outcomes than other models. Finally, mean earnings for academic hospitalists were significantly lower than for hospitalists of other practice models. Local and multistate group hospitalists earned more than any other practice model (all P <0.001), and $60,000 more than the lowest compensated academic hospitalists.

Components of Job Satisfaction

Hospitalists' rankings of the most important factors for job satisfaction revealed differences across models (Figure 2). Overall, hospitalists were most likely to consider optimal workload and compensation as important factors for job satisfaction from a list of 13 considerations. Local groups and academics were least likely to rank optimal workload as a top factor, and local group hospitalists were more likely to rank optimal autonomy than those of other models. Academic hospitalists had less concern for substantial pay, and more concern for the variety of tasks they perform and recognition by leaders, than other hospitalists.

Figure 2
Weighted proportion of respondents indicating the consideration as among the top 4 most important factors for job satisfaction by practice model. P values calculated using chi‐square tests across practice models with alpha defined as <0.05.

Job Satisfaction and Burnout Risk

Differences in the ratings of 4 of the 11 satisfaction and job characteristic domains were found across the practice models (Figure 3). Multispecialty group hospitalists were less satisfied with autonomy and their relationship with patients than other practice models, and along with multistate groups, reported the highest perceived workload. Organizational fairness was rated much higher by local group hospitalists than other practice models. Despite these differences in work patterns and satisfaction, there were no differences found in level of global job satisfaction, specialty satisfaction, or burnout across the practice models. Overall, 62% of respondents reported high job satisfaction (4 on a 1 to 5 scale), and 30% indicated burnout symptoms.

Figure 3
Weighted proportion of respondents with satisfaction domain score ≥4 (out of 5) and burnout scale score ≥3 (out of 5) by practice model. P values calculated using chi‐square tests across practice models with alpha defined as <0.05.

DISCUSSION

In our sample of US hospitalists, we found major differences in work patterns and compensation across hospitalist practice models, but no differences in job satisfaction, specialty satisfaction, and burnout. In particular, differences across these models included variations in hospitalist workload, hours, pay, and distribution of work activities. We found that hospitalists perform a variety of clinical and nonclinical tasks, for many of which there are not standard reimbursement mechanisms. We also found that features of a job that individual hospitalists considered most important vary by practice model.

Previous analysis of this data explored the overall state of hospitalist satisfaction.16 The present analysis offers a glimpse into hospitalists' systems‐orientation through a deeper look at their work patterns. The growth in the number of hospitalists who participate in intensive care medicine, specialty comanagement, and other work that involves close working relationships with specialist physicians confirms collaborative care as one of the dominant drivers of the hospitalist movement. At the level of indirect patient care, nearly all hospitalists contributed to work that facilitates coordination, quality, patient safety, or information technology. Understanding the integrative value of hospitalists outside of their clinical productivity may be of interest to hospital administrators.

Global satisfaction measures were similar across practice models. This finding is particularly interesting given the major differences in job characteristics seen among the practice models. This similarity in global satisfaction despite real differences in the nature of the job suggests that individuals find settings that allow them to address their individual professional goals. Our study demonstrates that, in 2010, Hospital Medicine has evolved enough to accommodate a wide variety of goals and needs.

While global satisfaction did not differ among practice types, hospitalists from various models did report differences in factors considered important to global satisfaction. While workload and pay were rated as influential across most models, the degree of importance was significantly different. In academic settings, substantial pay was not a top consideration for overall job satisfaction, whereas in local and multistate hospitalist groups, pay was a very close second in importance to optimal workload. These results may prove helpful for individual hospitalists trying to find their optimal job. For example, someone who is less concerned about workload, but wants to be paid well and have a high degree of autonomy, may find satisfaction in local hospitalist groups. However, for someone who is willing to sacrifice a higher salary for variety of activities, academic Hospital Medicine may be a better fit.

There is a concerning aspect of hospitalist job satisfaction that different practice models do not seem to solve. Control over personal time is a top consideration for many hospitalists across practice models, yet their satisfaction with personal time is low. As control over personal time is seen as a draw to the Hospital Medicine specialty, group leaders may need to evaluate their programs to ensure that schedules and workload support efforts for hospitalists to balance work and homelife commitments.

There are additional findings that are important for Hospital Medicine group leaders. Regardless of practice model, compensation and workload are often used as tools to recruit and retain hospitalists. While these tools may be effective, leaders may find more nuanced approaches to improving their hospitalists' overall satisfaction. Leaders of local hospitalist groups may find their hospitalists tolerant of heavier workloads as long as they are adequately rewarded and are given real autonomy over their work. However, leaders of academic programs may be missing the primary factor that can improve their hospitalists' satisfaction. Rather than asking for higher salaries to remain competitive, it may be more effective to advocate for time and training for their hospitalists to pursue important other activities beyond direct clinical care. Given that resources will always be limited, group leaders need to understand all of the elements that can contribute to hospitalist job satisfaction.

We point out several limitations to this study. First, our adjusted response rate of 25.6% is low for survey research, in general. As mentioned above, hospitalists are not easily identified in any available national physician database. Therefore, we deliberately designed our sampling strategy to error on the side of including ineligible surveyees to reduce systematic exclusion of practicing hospitalists. Using simple post hoc methods, we identified many nonhospitalists and bad addresses from our sample, but because these methods were exclusionary as opposed to confirmatory, we believe that a significant proportion of remaining nonrespondents may also have been ineligible for the survey. Although this does not fully address concerns about potential response bias, we believe that our sample representing a large number of hospitalist groups is adequate to make estimations about a nationally representative sample of practicing hospitalists. Second, in spite of our inclusive approach, we may still have excluded categories of practicing hospitalists. We were careful not to allow SHM members to represent all US hospitalists and included non‐members in the sampling frame, but the possibility of systematic exclusion that may alter our results remains a concern. Additionally, one of our goals was to characterize pediatric hospitalists independently from their adult‐patient counterparts. Despite oversampling of pediatricians, their sample was too small for a more detailed comparison across practice models. Also, self‐reported data about workload and compensation are subject to inaccuracies related to recall and cognitive biases. Last, this is a cross‐sectional study of hospitalist satisfaction at one point in time. Consequently, our sample may not be representative of very dissatisfied hospitalists who have already left their jobs.

The diversity found across existing practice models and the characteristics of the practices provide physicians with the opportunity to bring their unique skills and motivations to the hospitalist movement. As hospitals and other organizations seek to create, maintain, or grow hospitalist programs, the data provided here may prove useful to understand the relationship between practice characteristics and individual job satisfaction. Additionally, hospitalists looking for a job can consider these results as additional information to guide their choice of practice model and work patterns.

Acknowledgements

The authors thank Kenneth A. Rasinski for assistance with survey items refinement, and members of the SHM Career Satisfaction Task Force for their assistance in survey development.

Files
References
  1. Kralovec PD,Miller JA,Wellikson L,Huddleston JM.The status of hospital medicine groups in the United States.J Hosp Med.2006;1(2):7580.
  2. Kuo Y‐F,Sharma G,Freeman JL,Goodwin JS.Growth in the care of older patients by hospitalists in the United States.N Engl J Med.2009;360(11):11021112.
  3. Wachter RM.The state of hospital medicine in 2008.Med Clin North Am.2008;92(2):265273,vii.
  4. Pham HH,Devers KJ,Kuo S,Berenson R.Health care market trends and the evolution of hospitalist use and roles.J Gen Intern Med.2005;20(2):101107.
  5. Meltzer D,Manning WG,Morrison J, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med.2002;137(11):866874.
  6. Freese RB.The Park Nicollet experience in establishing a hospitalist system.Ann Intern Med.1999;130(4 pt 2):350354.
  7. Molinari C,Short R.Effects of an HMO hospitalist program on inpatient utilization.Am J Manag Care.2001;7(11):10511057.
  8. Coffman J,Rundall TG.The impact of hospitalists on the cost and quality of inpatient care in the United States: a research synthesis.Med Care Res Rev.2005;62(4):379406.
  9. Landrigan CP,Conway PH,Edwards S,Srivastava R.Pediatric hospitalists: a systematic review of the literature.Pediatrics.2006;117(5):17361744.
  10. Wachter RM,Goldman L.The hospitalist movement 5 years later.JAMA.2002;287(4):487494.
  11. Auerbach AD,Chlouber R,Singler J,Lurie JD,Bostrom A,Wachter RM.Trends in market demand for internal medicine 1999 to 2004: an analysis of physician job advertisements.J Gen Intern Med.2006;21(10):10791085.
  12. SHM. 2003–2004 Survey by the Society of Hospital Medicine on Productivity and Compensation: Analysis of Results. 2004 [updated 2004]. Available at: http://www.hospitalmedicine.org/AM/Template. cfm?Section=Practice_Resources Available at: http://cme.medscape.com/viewarticle/578134. Accessed October 21,2010.
  13. State of Hospital Medicine: 2010 Report Based on 2009 Data.Englewood, CO and Philadelphia, PA:Medical Group Management Association and Society of Hospital Medicine;2010.
  14. Hinami K,Whelan CT,Wolosin RJ,Miller JA,Wetterneck TB.Worklife and satisfaction of hospitalists: toward flourishing careers.J Gen Intern Med.2011, Jul 20. PMID: 21773849.
  15. Wetterneck TB,Linzer M,McMurray JE, et al.Worklife and satisfaction of general internists.Arch Intern Med.2002;162(6):649656.
  16. Linzer M,Manwell L,Mundt M, et al.Organizational climate, stress, and error in primary care: the MEMO study. In: Henriksen K, Battles JB, Marks ES, Lewin DI, eds.Advances in Patient Safety: From Research to Implementation. Vol 1: Research Findings.Rockville, MD:Agency for Healthcare Research and Quality;2005;1:6577.
  17. Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Hospitalists and the practice of inpatient medicine: results of a survey of the National Association of Inpatient Physicians.Ann Intern Med.1999;130(4 pt 2):343349.
  18. Auerbach AD,Nelson EA,Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Physician attitudes toward and prevalence of the hospitalist model of care: results of a national survey.Am J Med.2000;109(8):648653.
  19. Fields DL.Taking the Measure of Work: A Guide to Validated Scales for Organizational Research and Diagnosis.Thousand Oaks, CA:Sage Publications;2002.
  20. Caplan RD,Cobb S,French JRP,Van Harrison R,Penneau SR.Job Demands and Worker Health.Ann Arbor, MI:University of Michigan, Institute for Social Research;1980.
  21. Colquitt JA.On the dimensionality of organizational justice: a construct validation of a measure.J Appl Psychol.2001;86(3):386400.
  22. Yang CL,Carayon P.Effect of job demands and social support on worker stress—a study of VDT users.Behav Inform Technol.1995;14(1):3240.
  23. Konrad TR,Williams ES,Linzer M, et al.Measuring physician job satisfaction in a changing workplace and a challenging environment. SGIM Career Satisfaction Study Group. Society of General Internal Medicine.Med Care.1999;37(11):11741182.
  24. Linzer M,Manwell LB,Williams ES, et al.Working conditions in primary care: physician reactions and care quality.Ann Intern Med.2009;151(1):28U48.
  25. Rohland BM,Kruse GR,Rohrer JE.Validation of a single‐item measure of burnout against the Maslach Burnout Inventory among physicians.Stress Health.2004;20(2):7579.
  26. American Hospital Association. AHA Hospital Statistics. 2009 [updated 2009]. Available at: http://www.ahadata.com/ahadata/html/AHAStatistics.html. Accessed April 12,2011.
  27. Thorpe C,Ryan B,McLean SL, et al.How to obtain excellent response rates when surveying physicians.Fam Pract.2009;26(1):6568.
  28. Armstrong JS,Overton TS.Estimating nonresponse bias in mail surveys.J Marketing Res.1977;14(3):396402.
Article PDF
Issue
Journal of Hospital Medicine - 7(5)
Publications
Page Number
402-410
Sections
Files
Files
Article PDF
Article PDF

Over the past 15 years, there has been dramatic growth in the number of hospitalist physicians in the United States and in the number of hospitals served by them.13 Hospitals are motivated to hire experienced hospitalists to staff their inpatient services,4 with goals that include obtaining cost‐savings and higher quality.59 The rapid growth of Hospital Medicine saw multiple types of hospital practice models emerge with differing job characteristics, clinical duties, workload, and compensation schemes.10 The extent of the variability of hospitalist jobs across practice models is not known.

Intensifying recruitment efforts and the concomitant increase in compensation for hospitalists over the last decade suggest that demand for hospitalists is strong and sustained.11 As a result, today's cohort of hospitalists has a wide range of choices of types of jobs, practice models, and locations. The diversity of available hospitalist jobs is characterized, for example, by setting (community hospital vs academic hospital), employer (hospital vs private practice), job duties (the amount and type of clinical work, and other administrative, teaching, or research duties), and intensity (work hours and duties to maximize income or lifestyle). How these choices relate to job satisfaction and burnout are also unknown.

The Society of Hospital Medicine (SHM) has administered surveys to hospitalist group leaders biennially since 2003.1215 These surveys, however, do not address issues related to individual hospitalist worklife, recruitment, and retention. In 2005, SHM convened a Career Satisfaction Task Force that designed and executed a national survey of hospitalists in 2009‐2010. The objective of this study is to evaluate how job characteristics vary by practice model, and the association of these characteristics and practice models with job satisfaction and burnout.

METHODS

Survey Instrument

A detailed description of the survey design, sampling strategy, data collection, and response rate calculations is described elsewhere.16 Portions of the 118‐item survey instrument assessed characteristics of the respondents' hospitalist group (12 items), details about their individual work patterns (12 items), and demographics (9 items). Work patterns were evaluated by the average number of clinical work days, consecutive days, hours per month, percentage of work assigned to night duty, and number of patient encounters. Average hours spent on nonclinical work, and the percentage of time allocated for clinical, administrative, teaching, and research activities were solicited. Additional items assessed specific clinical responsibilities, pretax earnings in FY2010, the availability of information technology capabilities, and the adequacy of available resources. Job and specialty satisfaction and 11 satisfaction domain measures were measured using validated scales.1726 Burnout symptoms were measured using a validated single‐item measure.26, 27

Sampling Strategy

We surveyed a national stratified sample of hospitalists in the US and Puerto Rico. We used the largest database of hospitalists (>24,000 names) currently available and maintained by the SHM as our sampling frame. We linked hospitalist employer information to hospital statistics from the American Hospital Association database28 to stratify the sample by number of hospital beds, geographic region, employment model, and specialty training, oversampling pediatric hospitalists due to small numbers. A respondent sample of about 700 hospitalists was calculated to be adequate to detect a 0.5 point difference in job satisfaction scores between subgroups assuming 90% power and alpha of 0.05. However, we sampled a total of 5389 addresses from the database to overcome the traditionally low physician response rates, duplicate sampling, bad addresses, and non‐hospitalists being included in the sampling frame. In addition, 2 multistate hospitalist companies (EmCare, In Compass Health) and 1 for‐profit hospital chain (HCA, Inc) financially sponsored this project with the stipulation that all of their hospitalist employees (n = 884) would be surveyed.

Data Collection

The healthcare consulting firm, Press Ganey, provided support with survey layout and administration following the modified Dillman method.29 Three rounds of coded surveys and solicitation letters from the investigators were mailed 2 weeks apart in November and December 2009. Because of low response rates to the mailed survey, an online survey was created using Survey Monkey and sent to 650 surveyees for whom e‐mail addresses were available, and administered at a kiosk for sample physicians during the SHM 2010 annual meeting.

Data Analysis

Nonresponse bias was measured by comparing characteristics between respondents of separate survey waves.30 We determined the validity of mailing addresses immediately following the survey period by mapping each address using Google, and if the address was a hospital, researching online whether or not the intended recipient was currently employed there. Practice characteristics were compared across 5 model categories distilled from the SHM & Medical Group Management Association survey: local hospitalist‐only group, multistate hospitalist group, multispecialty physician group, employer hospital, and university or medical school. Weighted proportions, means, and medians were calculated to account for oversampling of pediatric hospitalists. Differences in categorical measures were assessed using the chi‐square test and the design‐based F test for comparing weighted data. Weighted means (99% confidence intervals) and medians (interquartile ranges) were calculated. Because each parameter yielded a single outlier value across the 5 practice models, differences across weighted means were assessed using generalized linear models with the single outlier value chosen as the reference mean. Pair‐wise Wilcoxon rank sum test was used to compare median values. In these 4‐way comparisons of means and medians, significance was defined as P value of 0.0125 per Bonferroni correction. A single survey item solicited respondents to choose exactly 4 of 13 considerations most pertinent to job satisfaction. The proportion of respondents who scored 4 on a 5‐point Likert scale of the 11 satisfaction domains and 2 global measures of satisfaction, and burnout symptoms defined as 3 on a 5‐point single item measure were bar‐graphed. Chi‐square statistics were used to evaluate for differences across practice models. Statistical significance was defined by alpha less than 0.05, unless otherwise specified. All analyses were performed using STATA version 11.0 (College Station, TX). This study was approved by the Loyola University Institutional Review Board.

Survey data required cleaning prior to analysis. Missing gender information was imputed using the respondents' name. Responses to the item that asked to indicate the proportion of work dedicated to administrative responsibilities, clinical care, teaching, and research that did not add up to 100% were dropped. Two responses that indicated full‐time equivalent (FTE) of 0%, but whose respondents otherwise completed the survey implying they worked as clinical hospitalists, were replaced with values calculated from the given number of work hours relative to the median work hours in our sample. Out of range or implausible responses to the following items were dropped from analyses: the average number of billable encounters during a typical day or shift, number of shifts performing clinical activities during a typical month, pretax earnings, the year the respondent completed residency training, and the number of whole years practiced as a hospitalist. The proportion of selective item nonresponse was small and we did not, otherwise, impute missing data.

RESULTS

Response Rate

Of the 5389 originally sampled addresses, 1868 were undeliverable. Addresses were further excluded if they appeared in duplicate or were outdated. This yielded a total of 3105 eligible surveyees in the sample. As illustrated in Figure 1, 841 responded to the mailed survey and 5 responded to the Web‐based survey. After rejecting 67 non‐hospitalist respondents and 3 duplicate surveys, a total of 776 surveys were included in the final analysis. The adjusted response rate was 25.6% (776/3035). Members of SHM were more likely to return the survey than nonmembers. The adjusted response rate from hospitalists affiliated with the 3 sponsoring institutions was 6% (40/662). Because these respondents were more likely to be non‐members of SHM, we opted to analyze the responses from the sponsor hospitalists together with the sampled hospitalists. The demographics of the resulting pool of 816 respondents affiliated with over 650 unique hospitalist groups were representative of the original survey frame. We analyzed data from 794 of these who responded to the item indicating their hospitalist practice model. Demographic characteristics of responders and nonresponders to the practice model survey item were similar.

Figure 1
Sampling flow chart. Sponsors are: EmCare; In Compass Health; and HCA, Inc. Abbreviations: PG, Press Ganey Associates; SHM, Society of Hospital Medicine.

Characteristics of Hospitalists and Their Groups

Table 1 summarizes the characteristics of hospitalist respondents and their organizations by practice model. More (44%) respondents identified their practice model as directly employed by the hospital than other models, including multispecialty physician group (15%), multistate hospitalist group (14%), university or medical school (14%), local hospitalist group (12%), and other (2%). The median age of hospitalist respondents was 42 years, with 6.8 years of mean experience as a hospitalist. One third were women, 84% were married, and 46% had dependent children 6 years old or younger at home. Notably, hospitalists in multistate groups had fewer years of experience, and fewer hospitalists in local and multistate groups were married compared to hospitalists in other practice models.

Characteristics of Hospitalist Respondents and Their Hospitalist Groups by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: AHA, American Hospital Association; CI, confidence interval; EHR, electronic health record; IQR, interquartile range.

  • indicate the pairs of values for which a significant difference exists.

Hospitalist characteristics      
Age, weighted mean (99% CI)45 (42, 48)44 (42, 47)45 (43, 47)45 (43, 46)43 (40, 46) 
Years hospitalist experience, weighted mean (99% CI)8 (6, 9)*5 (4, 6)*8 (7, 9)7 (6, 7)8 (6, 9)<0.010*
Women, weighted %29303931430.118
Married, weighted %76778289810.009
At least 1 dependent child younger than age 6 living in home, weighted %47484347450.905
Pediatric specialty, n (%)<10<1011 (10%)57 (16%)36 (34%)<0.001
Hospitalist group characteristics      
Region, weighted %     <0.001
Northeast (AHA 1 & 2)1310162713 
South (AHA 3 & 4)1937132421 
Midwest (AHA 5 & 6)2324252226 
Mountain (AHA 7 & 8)2220161324 
West (AHA 9)2410311416 
No. beds of primary hospital, weighted %     <0.001
Up to 1491726122414 
1502993036363321 
3004492624292019 
450599138171121 
600 or more12671324 
No. of hospital facilities served by current practice, weighted %     <0.001
15370677766 
22022201624 
3 or more27913710 
No. of physicians in current practice, median (IQR)10 (5, 18)8 (6, 12)*14 (8, 25)*12 (6, 18)12 (7, 20)<0.001*, 0.001
No. of non‐physician providers in current practice, median (IQR)0 (0, 2)0 (0, 2)0 (0, 3)1 (0, 2)0 (0, 2) 
Available information technology capabilities, weighted %      
EHR to access physician notes5757755879<0.001
EHR to access nursing documentations68677475760.357
EHR to access laboratory or test results97899596960.054
Electronic order entry3019533856<0.001
Electronic billing38313636380.818
Access to EHR at home or off site78737882840.235
Access to Up‐to‐Date or other clinical guideline resources8077919296<0.001
Access to schedules, calendars, or other organizational resources56576667750.024
E‐mail, Web‐based paging, or other communication resources7463888990<0.001

Several differences in respondent group characteristics by practice model were found. Respondents in multistate hospitalist groups were more likely from the South and Midwest, while respondents from multispecialty groups were likely from the West. More multistate group practices were based in smaller hospitals, while academic hospitalists tended to practice in hospitals with 600 or more beds. Respondents employed by hospitals were more likely to practice at 1 hospital facility only, while local group practices were more likely to practice at 3 or more facilities. The median number of physicians in a hospitalist group was 11 (interquartile range [IQR] 6, 19). Local and multistate groups had fewer hospitalists compared to other models. Nonphysician providers were employed by nearly half of all hospitalist practices. Although almost all groups had access to some information technology, more academic hospitalists had access to electronic order entry, electronic physician notes, electronic clinical guidelines resources and communication technology, while local and multistate groups were least likely to have access to these resources.

Work Pattern Variations

Table 2 further details hospitalist work hours by practice model. The majority of hospitalists (78%) reported their position was full‐time (FTE 1.0), while 13% reported working less than full‐time (FTE <1.0). Only 5% of local group hospitalists worked part‐time, while 20% of multispecialty group hospitalists did. An additional 9% reported FTE >1.0, indicating their work hours exceeded the definition of a full‐time physician in their practice. Among full‐time hospitalists, local group members worked a greater number of shifts per month than employees of multispecialty groups, hospitals, and academic medical centers. Academic hospitalists reported higher numbers of consecutive clinical days worked on average, but fewer night shifts compared to hospitalists employed by multistate groups, multispecialty groups, and hospitals; fewer billable encounters than hospitalists in local and multistate groups; and more nonclinical work hours than hospitalists of any other practice model. Academic hospitalists also spent more time on teaching and research than other practice models. Hospitalists spent 11%‐18% of their time on administrative and committee responsibilities, with the least amount spent by hospitalists in multistate groups and the most in academic practice.

Hospitalist Work Hours by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: CI, confidence interval; FTE, full‐time equivalent.

  • indicate the pairs of values for which a significant difference exists. P value calculated using chi‐square test for comparing FTE categories with alpha defined as <0.05. Pairwise P values calculated using generalized linear models with a single outlier value as the reference value for all other comparisons and alpha defined as <0.0125 per Bonferroni correction.

FTE, weighted %0.058
FTE < 1.0613201214 
FTE = 1.08575748082 
FTE > 1.01013685 
Workload parameters, weighted mean (99% CI) 
Clinical shifts per month for FTE 1.019 (17, 20)*17 (16, 19)15 (14, 17)*16 (15, 16)15 (13, 17)<0.001*
Hours per clinical shift10 (9, 11)11 (10, 11)*10 (10, 11.0)11 (10, 11.0)10 (9, 10)*0.006*, 0.002
Consecutive days on clinical shift8 (6, 9)7 (6, 7)*6 (6, 7)7 (6, 7)9 (7, 10)*0.002*, <0.001
% Clinical shifts on nights20 (15, 25)23 (18, 28)*23 (17, 29)21 (17, 24)14 (9, 18)*0.001*, 0.002
% Night shifts spent in hospital61 (49, 74)*63 (52, 75)72 (62, 83)73 (67, 80)43 (29, 57)*0.010*, 0.003, <0.001
Billable encounters per clinical shift17 (14, 19)*17 (16, 18)14 (13, 15)15 (14, 16)13 (11, 14)*<0.001*, 0.002
Hours nonclinical work per month23 (12, 34)*19 (11, 27)31 (20, 42)30 (24, 36)71 (55, 86)*<0.001*
Hours clinical and nonclinical work per month for FTE 1.0202 (186, 219)211 (196, 226)184 (170, 198)*193 (186, 201)221 (203, 238)*<0.001*
Professional activity, weighted mean % (99% CI) 
Clinical84 (78, 89)*86 (81, 90)78 (72, 84)79 (76, 82)58 (51, 64)*<0.001*
Teaching2.3 (1, 5)*3 (1, 4)6 (4, 9)6 (5, 8)17 (14, 20)*<0.001*
Administration and Committee work13 (8, 19)11 (8, 15)*16 (10, 21)14 (12, 17)19 (14, 24)*0.001*
Research0 (0, 0)*1 (0, 2)0 (0, 1)1 (0, 1)7 (3, 11)*<0.001*

Table 3 tabulates other work pattern characteristics. Most hospitalists indicated that their current clinical work as hospitalists involved the general medical wards (100%), medical consultations (98%), and comanagement with specialists (92%). There were wide differences in participation in comanagement (100%, local groups vs 71%, academic), intensive care unit (ICU) responsibilities (94%, multistate groups vs 27%, academic), and nursing home care (30%, local groups vs 8%, academic). Among activities that are potentially not reimbursable, academic hospitalists were less likely to participate in coordination of patient transfers and code or rapid response teams, while multistate groups were least likely to participate in quality improvement activities. In total, 99% of hospitalists reported participating in at least 1 potentially nonreimbursable clinical activity.

Hospitalist Work Patterns and Compensation by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: CI, confidence interval.

  • indicate the pairs of values for which a significant difference exists. Pairwise P value calculated using generalized linear models with a single outlier value as the reference value for comparing earnings and alpha defined as <0.0125 per Bonferroni correction. P values calculated using chi‐square test for all other comparisons with alpha defined as <0.05.

Reimbursable activities, overlapping weighted % 
General medical ward1009910099990.809
Medical consultations999910098950.043
Comanagement with specialists10096969371<0.001
Preoperative evaluations92929088770.002
Intensive care unit8694677527<0.001
Skilled nursing facility or long‐term acute care facility301912168<0.001
Outpatient general medical practice4455100.241
Potentially nonreimbursable activities, overlapping weighted % 
Coordination of patient transfers92949593820.005
Quality improvement or patient safety initiatives81788389890.029
Code team or rapid response team5657536237<0.001
Information technology design or implementation42394751510.154
Admission triage for emergency department49464340310.132
Compensation scheme, weighted %<0.001
Salary only1821302947 
Salary plus performance incentive5472596753 
Fee‐for‐service201720 
Capitation00000 
Other97430 
Compensation links to incentives, overlapping weighted % 
No incentives40282929480.003
Patient satisfaction2339383814<0.001
Length of stay18172013100.208
Overall cost8119560.270
Test utilization22710<0.001
Clinical processes and outcomes2634444324<0.001
Other17292631250.087
Earnings, weighted mean dollars (99% CI)226,065 (202,891, 249,240)*225,613 (210,772, 240,454)202,617 (186,036, 219,198)206,087 (198,413, 213,460)166,478 (151,135, 181,821)*<0.001*

Hospitalist compensation schemes were significantly different across the practice models. Salary‐only schemes were most common among academic hospitalists (47%), while 72% of multistate groups used performance incentives in addition to salary. More local groups used fee‐for‐service compensation than other models. Incentives differed by practice model, with more multistate groups having incentives based on patient satisfaction, while more multispecialty physician groups had incentives based on clinical processes and outcomes than other models. Finally, mean earnings for academic hospitalists were significantly lower than for hospitalists of other practice models. Local and multistate group hospitalists earned more than any other practice model (all P <0.001), and $60,000 more than the lowest compensated academic hospitalists.

Components of Job Satisfaction

Hospitalists' rankings of the most important factors for job satisfaction revealed differences across models (Figure 2). Overall, hospitalists were most likely to consider optimal workload and compensation as important factors for job satisfaction from a list of 13 considerations. Local groups and academics were least likely to rank optimal workload as a top factor, and local group hospitalists were more likely to rank optimal autonomy than those of other models. Academic hospitalists had less concern for substantial pay, and more concern for the variety of tasks they perform and recognition by leaders, than other hospitalists.

Figure 2
Weighted proportion of respondents indicating the consideration as among the top 4 most important factors for job satisfaction by practice model. P values calculated using chi‐square tests across practice models with alpha defined as <0.05.

Job Satisfaction and Burnout Risk

Differences in the ratings of 4 of the 11 satisfaction and job characteristic domains were found across the practice models (Figure 3). Multispecialty group hospitalists were less satisfied with autonomy and their relationship with patients than other practice models, and along with multistate groups, reported the highest perceived workload. Organizational fairness was rated much higher by local group hospitalists than other practice models. Despite these differences in work patterns and satisfaction, there were no differences found in level of global job satisfaction, specialty satisfaction, or burnout across the practice models. Overall, 62% of respondents reported high job satisfaction (4 on a 1 to 5 scale), and 30% indicated burnout symptoms.

Figure 3
Weighted proportion of respondents with satisfaction domain score ≥4 (out of 5) and burnout scale score ≥3 (out of 5) by practice model. P values calculated using chi‐square tests across practice models with alpha defined as <0.05.

DISCUSSION

In our sample of US hospitalists, we found major differences in work patterns and compensation across hospitalist practice models, but no differences in job satisfaction, specialty satisfaction, and burnout. In particular, differences across these models included variations in hospitalist workload, hours, pay, and distribution of work activities. We found that hospitalists perform a variety of clinical and nonclinical tasks, for many of which there are not standard reimbursement mechanisms. We also found that features of a job that individual hospitalists considered most important vary by practice model.

Previous analysis of this data explored the overall state of hospitalist satisfaction.16 The present analysis offers a glimpse into hospitalists' systems‐orientation through a deeper look at their work patterns. The growth in the number of hospitalists who participate in intensive care medicine, specialty comanagement, and other work that involves close working relationships with specialist physicians confirms collaborative care as one of the dominant drivers of the hospitalist movement. At the level of indirect patient care, nearly all hospitalists contributed to work that facilitates coordination, quality, patient safety, or information technology. Understanding the integrative value of hospitalists outside of their clinical productivity may be of interest to hospital administrators.

Global satisfaction measures were similar across practice models. This finding is particularly interesting given the major differences in job characteristics seen among the practice models. This similarity in global satisfaction despite real differences in the nature of the job suggests that individuals find settings that allow them to address their individual professional goals. Our study demonstrates that, in 2010, Hospital Medicine has evolved enough to accommodate a wide variety of goals and needs.

While global satisfaction did not differ among practice types, hospitalists from various models did report differences in factors considered important to global satisfaction. While workload and pay were rated as influential across most models, the degree of importance was significantly different. In academic settings, substantial pay was not a top consideration for overall job satisfaction, whereas in local and multistate hospitalist groups, pay was a very close second in importance to optimal workload. These results may prove helpful for individual hospitalists trying to find their optimal job. For example, someone who is less concerned about workload, but wants to be paid well and have a high degree of autonomy, may find satisfaction in local hospitalist groups. However, for someone who is willing to sacrifice a higher salary for variety of activities, academic Hospital Medicine may be a better fit.

There is a concerning aspect of hospitalist job satisfaction that different practice models do not seem to solve. Control over personal time is a top consideration for many hospitalists across practice models, yet their satisfaction with personal time is low. As control over personal time is seen as a draw to the Hospital Medicine specialty, group leaders may need to evaluate their programs to ensure that schedules and workload support efforts for hospitalists to balance work and homelife commitments.

There are additional findings that are important for Hospital Medicine group leaders. Regardless of practice model, compensation and workload are often used as tools to recruit and retain hospitalists. While these tools may be effective, leaders may find more nuanced approaches to improving their hospitalists' overall satisfaction. Leaders of local hospitalist groups may find their hospitalists tolerant of heavier workloads as long as they are adequately rewarded and are given real autonomy over their work. However, leaders of academic programs may be missing the primary factor that can improve their hospitalists' satisfaction. Rather than asking for higher salaries to remain competitive, it may be more effective to advocate for time and training for their hospitalists to pursue important other activities beyond direct clinical care. Given that resources will always be limited, group leaders need to understand all of the elements that can contribute to hospitalist job satisfaction.

We point out several limitations to this study. First, our adjusted response rate of 25.6% is low for survey research, in general. As mentioned above, hospitalists are not easily identified in any available national physician database. Therefore, we deliberately designed our sampling strategy to error on the side of including ineligible surveyees to reduce systematic exclusion of practicing hospitalists. Using simple post hoc methods, we identified many nonhospitalists and bad addresses from our sample, but because these methods were exclusionary as opposed to confirmatory, we believe that a significant proportion of remaining nonrespondents may also have been ineligible for the survey. Although this does not fully address concerns about potential response bias, we believe that our sample representing a large number of hospitalist groups is adequate to make estimations about a nationally representative sample of practicing hospitalists. Second, in spite of our inclusive approach, we may still have excluded categories of practicing hospitalists. We were careful not to allow SHM members to represent all US hospitalists and included non‐members in the sampling frame, but the possibility of systematic exclusion that may alter our results remains a concern. Additionally, one of our goals was to characterize pediatric hospitalists independently from their adult‐patient counterparts. Despite oversampling of pediatricians, their sample was too small for a more detailed comparison across practice models. Also, self‐reported data about workload and compensation are subject to inaccuracies related to recall and cognitive biases. Last, this is a cross‐sectional study of hospitalist satisfaction at one point in time. Consequently, our sample may not be representative of very dissatisfied hospitalists who have already left their jobs.

The diversity found across existing practice models and the characteristics of the practices provide physicians with the opportunity to bring their unique skills and motivations to the hospitalist movement. As hospitals and other organizations seek to create, maintain, or grow hospitalist programs, the data provided here may prove useful to understand the relationship between practice characteristics and individual job satisfaction. Additionally, hospitalists looking for a job can consider these results as additional information to guide their choice of practice model and work patterns.

Acknowledgements

The authors thank Kenneth A. Rasinski for assistance with survey items refinement, and members of the SHM Career Satisfaction Task Force for their assistance in survey development.

Over the past 15 years, there has been dramatic growth in the number of hospitalist physicians in the United States and in the number of hospitals served by them.13 Hospitals are motivated to hire experienced hospitalists to staff their inpatient services,4 with goals that include obtaining cost‐savings and higher quality.59 The rapid growth of Hospital Medicine saw multiple types of hospital practice models emerge with differing job characteristics, clinical duties, workload, and compensation schemes.10 The extent of the variability of hospitalist jobs across practice models is not known.

Intensifying recruitment efforts and the concomitant increase in compensation for hospitalists over the last decade suggest that demand for hospitalists is strong and sustained.11 As a result, today's cohort of hospitalists has a wide range of choices of types of jobs, practice models, and locations. The diversity of available hospitalist jobs is characterized, for example, by setting (community hospital vs academic hospital), employer (hospital vs private practice), job duties (the amount and type of clinical work, and other administrative, teaching, or research duties), and intensity (work hours and duties to maximize income or lifestyle). How these choices relate to job satisfaction and burnout are also unknown.

The Society of Hospital Medicine (SHM) has administered surveys to hospitalist group leaders biennially since 2003.1215 These surveys, however, do not address issues related to individual hospitalist worklife, recruitment, and retention. In 2005, SHM convened a Career Satisfaction Task Force that designed and executed a national survey of hospitalists in 2009‐2010. The objective of this study is to evaluate how job characteristics vary by practice model, and the association of these characteristics and practice models with job satisfaction and burnout.

METHODS

Survey Instrument

A detailed description of the survey design, sampling strategy, data collection, and response rate calculations is described elsewhere.16 Portions of the 118‐item survey instrument assessed characteristics of the respondents' hospitalist group (12 items), details about their individual work patterns (12 items), and demographics (9 items). Work patterns were evaluated by the average number of clinical work days, consecutive days, hours per month, percentage of work assigned to night duty, and number of patient encounters. Average hours spent on nonclinical work, and the percentage of time allocated for clinical, administrative, teaching, and research activities were solicited. Additional items assessed specific clinical responsibilities, pretax earnings in FY2010, the availability of information technology capabilities, and the adequacy of available resources. Job and specialty satisfaction and 11 satisfaction domain measures were measured using validated scales.1726 Burnout symptoms were measured using a validated single‐item measure.26, 27

Sampling Strategy

We surveyed a national stratified sample of hospitalists in the US and Puerto Rico. We used the largest database of hospitalists (>24,000 names) currently available and maintained by the SHM as our sampling frame. We linked hospitalist employer information to hospital statistics from the American Hospital Association database28 to stratify the sample by number of hospital beds, geographic region, employment model, and specialty training, oversampling pediatric hospitalists due to small numbers. A respondent sample of about 700 hospitalists was calculated to be adequate to detect a 0.5 point difference in job satisfaction scores between subgroups assuming 90% power and alpha of 0.05. However, we sampled a total of 5389 addresses from the database to overcome the traditionally low physician response rates, duplicate sampling, bad addresses, and non‐hospitalists being included in the sampling frame. In addition, 2 multistate hospitalist companies (EmCare, In Compass Health) and 1 for‐profit hospital chain (HCA, Inc) financially sponsored this project with the stipulation that all of their hospitalist employees (n = 884) would be surveyed.

Data Collection

The healthcare consulting firm, Press Ganey, provided support with survey layout and administration following the modified Dillman method.29 Three rounds of coded surveys and solicitation letters from the investigators were mailed 2 weeks apart in November and December 2009. Because of low response rates to the mailed survey, an online survey was created using Survey Monkey and sent to 650 surveyees for whom e‐mail addresses were available, and administered at a kiosk for sample physicians during the SHM 2010 annual meeting.

Data Analysis

Nonresponse bias was measured by comparing characteristics between respondents of separate survey waves.30 We determined the validity of mailing addresses immediately following the survey period by mapping each address using Google, and if the address was a hospital, researching online whether or not the intended recipient was currently employed there. Practice characteristics were compared across 5 model categories distilled from the SHM & Medical Group Management Association survey: local hospitalist‐only group, multistate hospitalist group, multispecialty physician group, employer hospital, and university or medical school. Weighted proportions, means, and medians were calculated to account for oversampling of pediatric hospitalists. Differences in categorical measures were assessed using the chi‐square test and the design‐based F test for comparing weighted data. Weighted means (99% confidence intervals) and medians (interquartile ranges) were calculated. Because each parameter yielded a single outlier value across the 5 practice models, differences across weighted means were assessed using generalized linear models with the single outlier value chosen as the reference mean. Pair‐wise Wilcoxon rank sum test was used to compare median values. In these 4‐way comparisons of means and medians, significance was defined as P value of 0.0125 per Bonferroni correction. A single survey item solicited respondents to choose exactly 4 of 13 considerations most pertinent to job satisfaction. The proportion of respondents who scored 4 on a 5‐point Likert scale of the 11 satisfaction domains and 2 global measures of satisfaction, and burnout symptoms defined as 3 on a 5‐point single item measure were bar‐graphed. Chi‐square statistics were used to evaluate for differences across practice models. Statistical significance was defined by alpha less than 0.05, unless otherwise specified. All analyses were performed using STATA version 11.0 (College Station, TX). This study was approved by the Loyola University Institutional Review Board.

Survey data required cleaning prior to analysis. Missing gender information was imputed using the respondents' name. Responses to the item that asked to indicate the proportion of work dedicated to administrative responsibilities, clinical care, teaching, and research that did not add up to 100% were dropped. Two responses that indicated full‐time equivalent (FTE) of 0%, but whose respondents otherwise completed the survey implying they worked as clinical hospitalists, were replaced with values calculated from the given number of work hours relative to the median work hours in our sample. Out of range or implausible responses to the following items were dropped from analyses: the average number of billable encounters during a typical day or shift, number of shifts performing clinical activities during a typical month, pretax earnings, the year the respondent completed residency training, and the number of whole years practiced as a hospitalist. The proportion of selective item nonresponse was small and we did not, otherwise, impute missing data.

RESULTS

Response Rate

Of the 5389 originally sampled addresses, 1868 were undeliverable. Addresses were further excluded if they appeared in duplicate or were outdated. This yielded a total of 3105 eligible surveyees in the sample. As illustrated in Figure 1, 841 responded to the mailed survey and 5 responded to the Web‐based survey. After rejecting 67 non‐hospitalist respondents and 3 duplicate surveys, a total of 776 surveys were included in the final analysis. The adjusted response rate was 25.6% (776/3035). Members of SHM were more likely to return the survey than nonmembers. The adjusted response rate from hospitalists affiliated with the 3 sponsoring institutions was 6% (40/662). Because these respondents were more likely to be non‐members of SHM, we opted to analyze the responses from the sponsor hospitalists together with the sampled hospitalists. The demographics of the resulting pool of 816 respondents affiliated with over 650 unique hospitalist groups were representative of the original survey frame. We analyzed data from 794 of these who responded to the item indicating their hospitalist practice model. Demographic characteristics of responders and nonresponders to the practice model survey item were similar.

Figure 1
Sampling flow chart. Sponsors are: EmCare; In Compass Health; and HCA, Inc. Abbreviations: PG, Press Ganey Associates; SHM, Society of Hospital Medicine.

Characteristics of Hospitalists and Their Groups

Table 1 summarizes the characteristics of hospitalist respondents and their organizations by practice model. More (44%) respondents identified their practice model as directly employed by the hospital than other models, including multispecialty physician group (15%), multistate hospitalist group (14%), university or medical school (14%), local hospitalist group (12%), and other (2%). The median age of hospitalist respondents was 42 years, with 6.8 years of mean experience as a hospitalist. One third were women, 84% were married, and 46% had dependent children 6 years old or younger at home. Notably, hospitalists in multistate groups had fewer years of experience, and fewer hospitalists in local and multistate groups were married compared to hospitalists in other practice models.

Characteristics of Hospitalist Respondents and Their Hospitalist Groups by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: AHA, American Hospital Association; CI, confidence interval; EHR, electronic health record; IQR, interquartile range.

  • indicate the pairs of values for which a significant difference exists.

Hospitalist characteristics      
Age, weighted mean (99% CI)45 (42, 48)44 (42, 47)45 (43, 47)45 (43, 46)43 (40, 46) 
Years hospitalist experience, weighted mean (99% CI)8 (6, 9)*5 (4, 6)*8 (7, 9)7 (6, 7)8 (6, 9)<0.010*
Women, weighted %29303931430.118
Married, weighted %76778289810.009
At least 1 dependent child younger than age 6 living in home, weighted %47484347450.905
Pediatric specialty, n (%)<10<1011 (10%)57 (16%)36 (34%)<0.001
Hospitalist group characteristics      
Region, weighted %     <0.001
Northeast (AHA 1 & 2)1310162713 
South (AHA 3 & 4)1937132421 
Midwest (AHA 5 & 6)2324252226 
Mountain (AHA 7 & 8)2220161324 
West (AHA 9)2410311416 
No. beds of primary hospital, weighted %     <0.001
Up to 1491726122414 
1502993036363321 
3004492624292019 
450599138171121 
600 or more12671324 
No. of hospital facilities served by current practice, weighted %     <0.001
15370677766 
22022201624 
3 or more27913710 
No. of physicians in current practice, median (IQR)10 (5, 18)8 (6, 12)*14 (8, 25)*12 (6, 18)12 (7, 20)<0.001*, 0.001
No. of non‐physician providers in current practice, median (IQR)0 (0, 2)0 (0, 2)0 (0, 3)1 (0, 2)0 (0, 2) 
Available information technology capabilities, weighted %      
EHR to access physician notes5757755879<0.001
EHR to access nursing documentations68677475760.357
EHR to access laboratory or test results97899596960.054
Electronic order entry3019533856<0.001
Electronic billing38313636380.818
Access to EHR at home or off site78737882840.235
Access to Up‐to‐Date or other clinical guideline resources8077919296<0.001
Access to schedules, calendars, or other organizational resources56576667750.024
E‐mail, Web‐based paging, or other communication resources7463888990<0.001

Several differences in respondent group characteristics by practice model were found. Respondents in multistate hospitalist groups were more likely from the South and Midwest, while respondents from multispecialty groups were likely from the West. More multistate group practices were based in smaller hospitals, while academic hospitalists tended to practice in hospitals with 600 or more beds. Respondents employed by hospitals were more likely to practice at 1 hospital facility only, while local group practices were more likely to practice at 3 or more facilities. The median number of physicians in a hospitalist group was 11 (interquartile range [IQR] 6, 19). Local and multistate groups had fewer hospitalists compared to other models. Nonphysician providers were employed by nearly half of all hospitalist practices. Although almost all groups had access to some information technology, more academic hospitalists had access to electronic order entry, electronic physician notes, electronic clinical guidelines resources and communication technology, while local and multistate groups were least likely to have access to these resources.

Work Pattern Variations

Table 2 further details hospitalist work hours by practice model. The majority of hospitalists (78%) reported their position was full‐time (FTE 1.0), while 13% reported working less than full‐time (FTE <1.0). Only 5% of local group hospitalists worked part‐time, while 20% of multispecialty group hospitalists did. An additional 9% reported FTE >1.0, indicating their work hours exceeded the definition of a full‐time physician in their practice. Among full‐time hospitalists, local group members worked a greater number of shifts per month than employees of multispecialty groups, hospitals, and academic medical centers. Academic hospitalists reported higher numbers of consecutive clinical days worked on average, but fewer night shifts compared to hospitalists employed by multistate groups, multispecialty groups, and hospitals; fewer billable encounters than hospitalists in local and multistate groups; and more nonclinical work hours than hospitalists of any other practice model. Academic hospitalists also spent more time on teaching and research than other practice models. Hospitalists spent 11%‐18% of their time on administrative and committee responsibilities, with the least amount spent by hospitalists in multistate groups and the most in academic practice.

Hospitalist Work Hours by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: CI, confidence interval; FTE, full‐time equivalent.

  • indicate the pairs of values for which a significant difference exists. P value calculated using chi‐square test for comparing FTE categories with alpha defined as <0.05. Pairwise P values calculated using generalized linear models with a single outlier value as the reference value for all other comparisons and alpha defined as <0.0125 per Bonferroni correction.

FTE, weighted %0.058
FTE < 1.0613201214 
FTE = 1.08575748082 
FTE > 1.01013685 
Workload parameters, weighted mean (99% CI) 
Clinical shifts per month for FTE 1.019 (17, 20)*17 (16, 19)15 (14, 17)*16 (15, 16)15 (13, 17)<0.001*
Hours per clinical shift10 (9, 11)11 (10, 11)*10 (10, 11.0)11 (10, 11.0)10 (9, 10)*0.006*, 0.002
Consecutive days on clinical shift8 (6, 9)7 (6, 7)*6 (6, 7)7 (6, 7)9 (7, 10)*0.002*, <0.001
% Clinical shifts on nights20 (15, 25)23 (18, 28)*23 (17, 29)21 (17, 24)14 (9, 18)*0.001*, 0.002
% Night shifts spent in hospital61 (49, 74)*63 (52, 75)72 (62, 83)73 (67, 80)43 (29, 57)*0.010*, 0.003, <0.001
Billable encounters per clinical shift17 (14, 19)*17 (16, 18)14 (13, 15)15 (14, 16)13 (11, 14)*<0.001*, 0.002
Hours nonclinical work per month23 (12, 34)*19 (11, 27)31 (20, 42)30 (24, 36)71 (55, 86)*<0.001*
Hours clinical and nonclinical work per month for FTE 1.0202 (186, 219)211 (196, 226)184 (170, 198)*193 (186, 201)221 (203, 238)*<0.001*
Professional activity, weighted mean % (99% CI) 
Clinical84 (78, 89)*86 (81, 90)78 (72, 84)79 (76, 82)58 (51, 64)*<0.001*
Teaching2.3 (1, 5)*3 (1, 4)6 (4, 9)6 (5, 8)17 (14, 20)*<0.001*
Administration and Committee work13 (8, 19)11 (8, 15)*16 (10, 21)14 (12, 17)19 (14, 24)*0.001*
Research0 (0, 0)*1 (0, 2)0 (0, 1)1 (0, 1)7 (3, 11)*<0.001*

Table 3 tabulates other work pattern characteristics. Most hospitalists indicated that their current clinical work as hospitalists involved the general medical wards (100%), medical consultations (98%), and comanagement with specialists (92%). There were wide differences in participation in comanagement (100%, local groups vs 71%, academic), intensive care unit (ICU) responsibilities (94%, multistate groups vs 27%, academic), and nursing home care (30%, local groups vs 8%, academic). Among activities that are potentially not reimbursable, academic hospitalists were less likely to participate in coordination of patient transfers and code or rapid response teams, while multistate groups were least likely to participate in quality improvement activities. In total, 99% of hospitalists reported participating in at least 1 potentially nonreimbursable clinical activity.

Hospitalist Work Patterns and Compensation by Practice Model
 Local Hospitalist‐Only GroupMulti‐State Hospitalist GroupMultispecialty Physician GroupEmployer HospitalUniversity or Medical School 
 n = 95n = 111n = 115n = 348n = 107P Value
  • Abbreviations: CI, confidence interval.

  • indicate the pairs of values for which a significant difference exists. Pairwise P value calculated using generalized linear models with a single outlier value as the reference value for comparing earnings and alpha defined as <0.0125 per Bonferroni correction. P values calculated using chi‐square test for all other comparisons with alpha defined as <0.05.

Reimbursable activities, overlapping weighted % 
General medical ward1009910099990.809
Medical consultations999910098950.043
Comanagement with specialists10096969371<0.001
Preoperative evaluations92929088770.002
Intensive care unit8694677527<0.001
Skilled nursing facility or long‐term acute care facility301912168<0.001
Outpatient general medical practice4455100.241
Potentially nonreimbursable activities, overlapping weighted % 
Coordination of patient transfers92949593820.005
Quality improvement or patient safety initiatives81788389890.029
Code team or rapid response team5657536237<0.001
Information technology design or implementation42394751510.154
Admission triage for emergency department49464340310.132
Compensation scheme, weighted %<0.001
Salary only1821302947 
Salary plus performance incentive5472596753 
Fee‐for‐service201720 
Capitation00000 
Other97430 
Compensation links to incentives, overlapping weighted % 
No incentives40282929480.003
Patient satisfaction2339383814<0.001
Length of stay18172013100.208
Overall cost8119560.270
Test utilization22710<0.001
Clinical processes and outcomes2634444324<0.001
Other17292631250.087
Earnings, weighted mean dollars (99% CI)226,065 (202,891, 249,240)*225,613 (210,772, 240,454)202,617 (186,036, 219,198)206,087 (198,413, 213,460)166,478 (151,135, 181,821)*<0.001*

Hospitalist compensation schemes were significantly different across the practice models. Salary‐only schemes were most common among academic hospitalists (47%), while 72% of multistate groups used performance incentives in addition to salary. More local groups used fee‐for‐service compensation than other models. Incentives differed by practice model, with more multistate groups having incentives based on patient satisfaction, while more multispecialty physician groups had incentives based on clinical processes and outcomes than other models. Finally, mean earnings for academic hospitalists were significantly lower than for hospitalists of other practice models. Local and multistate group hospitalists earned more than any other practice model (all P <0.001), and $60,000 more than the lowest compensated academic hospitalists.

Components of Job Satisfaction

Hospitalists' rankings of the most important factors for job satisfaction revealed differences across models (Figure 2). Overall, hospitalists were most likely to consider optimal workload and compensation as important factors for job satisfaction from a list of 13 considerations. Local groups and academics were least likely to rank optimal workload as a top factor, and local group hospitalists were more likely to rank optimal autonomy than those of other models. Academic hospitalists had less concern for substantial pay, and more concern for the variety of tasks they perform and recognition by leaders, than other hospitalists.

Figure 2
Weighted proportion of respondents indicating the consideration as among the top 4 most important factors for job satisfaction by practice model. P values calculated using chi‐square tests across practice models with alpha defined as <0.05.

Job Satisfaction and Burnout Risk

Differences in the ratings of 4 of the 11 satisfaction and job characteristic domains were found across the practice models (Figure 3). Multispecialty group hospitalists were less satisfied with autonomy and their relationship with patients than other practice models, and along with multistate groups, reported the highest perceived workload. Organizational fairness was rated much higher by local group hospitalists than other practice models. Despite these differences in work patterns and satisfaction, there were no differences found in level of global job satisfaction, specialty satisfaction, or burnout across the practice models. Overall, 62% of respondents reported high job satisfaction (4 on a 1 to 5 scale), and 30% indicated burnout symptoms.

Figure 3
Weighted proportion of respondents with satisfaction domain score ≥4 (out of 5) and burnout scale score ≥3 (out of 5) by practice model. P values calculated using chi‐square tests across practice models with alpha defined as <0.05.

DISCUSSION

In our sample of US hospitalists, we found major differences in work patterns and compensation across hospitalist practice models, but no differences in job satisfaction, specialty satisfaction, and burnout. In particular, differences across these models included variations in hospitalist workload, hours, pay, and distribution of work activities. We found that hospitalists perform a variety of clinical and nonclinical tasks, for many of which there are not standard reimbursement mechanisms. We also found that features of a job that individual hospitalists considered most important vary by practice model.

Previous analysis of this data explored the overall state of hospitalist satisfaction.16 The present analysis offers a glimpse into hospitalists' systems‐orientation through a deeper look at their work patterns. The growth in the number of hospitalists who participate in intensive care medicine, specialty comanagement, and other work that involves close working relationships with specialist physicians confirms collaborative care as one of the dominant drivers of the hospitalist movement. At the level of indirect patient care, nearly all hospitalists contributed to work that facilitates coordination, quality, patient safety, or information technology. Understanding the integrative value of hospitalists outside of their clinical productivity may be of interest to hospital administrators.

Global satisfaction measures were similar across practice models. This finding is particularly interesting given the major differences in job characteristics seen among the practice models. This similarity in global satisfaction despite real differences in the nature of the job suggests that individuals find settings that allow them to address their individual professional goals. Our study demonstrates that, in 2010, Hospital Medicine has evolved enough to accommodate a wide variety of goals and needs.

While global satisfaction did not differ among practice types, hospitalists from various models did report differences in factors considered important to global satisfaction. While workload and pay were rated as influential across most models, the degree of importance was significantly different. In academic settings, substantial pay was not a top consideration for overall job satisfaction, whereas in local and multistate hospitalist groups, pay was a very close second in importance to optimal workload. These results may prove helpful for individual hospitalists trying to find their optimal job. For example, someone who is less concerned about workload, but wants to be paid well and have a high degree of autonomy, may find satisfaction in local hospitalist groups. However, for someone who is willing to sacrifice a higher salary for variety of activities, academic Hospital Medicine may be a better fit.

There is a concerning aspect of hospitalist job satisfaction that different practice models do not seem to solve. Control over personal time is a top consideration for many hospitalists across practice models, yet their satisfaction with personal time is low. As control over personal time is seen as a draw to the Hospital Medicine specialty, group leaders may need to evaluate their programs to ensure that schedules and workload support efforts for hospitalists to balance work and homelife commitments.

There are additional findings that are important for Hospital Medicine group leaders. Regardless of practice model, compensation and workload are often used as tools to recruit and retain hospitalists. While these tools may be effective, leaders may find more nuanced approaches to improving their hospitalists' overall satisfaction. Leaders of local hospitalist groups may find their hospitalists tolerant of heavier workloads as long as they are adequately rewarded and are given real autonomy over their work. However, leaders of academic programs may be missing the primary factor that can improve their hospitalists' satisfaction. Rather than asking for higher salaries to remain competitive, it may be more effective to advocate for time and training for their hospitalists to pursue important other activities beyond direct clinical care. Given that resources will always be limited, group leaders need to understand all of the elements that can contribute to hospitalist job satisfaction.

We point out several limitations to this study. First, our adjusted response rate of 25.6% is low for survey research, in general. As mentioned above, hospitalists are not easily identified in any available national physician database. Therefore, we deliberately designed our sampling strategy to error on the side of including ineligible surveyees to reduce systematic exclusion of practicing hospitalists. Using simple post hoc methods, we identified many nonhospitalists and bad addresses from our sample, but because these methods were exclusionary as opposed to confirmatory, we believe that a significant proportion of remaining nonrespondents may also have been ineligible for the survey. Although this does not fully address concerns about potential response bias, we believe that our sample representing a large number of hospitalist groups is adequate to make estimations about a nationally representative sample of practicing hospitalists. Second, in spite of our inclusive approach, we may still have excluded categories of practicing hospitalists. We were careful not to allow SHM members to represent all US hospitalists and included non‐members in the sampling frame, but the possibility of systematic exclusion that may alter our results remains a concern. Additionally, one of our goals was to characterize pediatric hospitalists independently from their adult‐patient counterparts. Despite oversampling of pediatricians, their sample was too small for a more detailed comparison across practice models. Also, self‐reported data about workload and compensation are subject to inaccuracies related to recall and cognitive biases. Last, this is a cross‐sectional study of hospitalist satisfaction at one point in time. Consequently, our sample may not be representative of very dissatisfied hospitalists who have already left their jobs.

The diversity found across existing practice models and the characteristics of the practices provide physicians with the opportunity to bring their unique skills and motivations to the hospitalist movement. As hospitals and other organizations seek to create, maintain, or grow hospitalist programs, the data provided here may prove useful to understand the relationship between practice characteristics and individual job satisfaction. Additionally, hospitalists looking for a job can consider these results as additional information to guide their choice of practice model and work patterns.

Acknowledgements

The authors thank Kenneth A. Rasinski for assistance with survey items refinement, and members of the SHM Career Satisfaction Task Force for their assistance in survey development.

References
  1. Kralovec PD,Miller JA,Wellikson L,Huddleston JM.The status of hospital medicine groups in the United States.J Hosp Med.2006;1(2):7580.
  2. Kuo Y‐F,Sharma G,Freeman JL,Goodwin JS.Growth in the care of older patients by hospitalists in the United States.N Engl J Med.2009;360(11):11021112.
  3. Wachter RM.The state of hospital medicine in 2008.Med Clin North Am.2008;92(2):265273,vii.
  4. Pham HH,Devers KJ,Kuo S,Berenson R.Health care market trends and the evolution of hospitalist use and roles.J Gen Intern Med.2005;20(2):101107.
  5. Meltzer D,Manning WG,Morrison J, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med.2002;137(11):866874.
  6. Freese RB.The Park Nicollet experience in establishing a hospitalist system.Ann Intern Med.1999;130(4 pt 2):350354.
  7. Molinari C,Short R.Effects of an HMO hospitalist program on inpatient utilization.Am J Manag Care.2001;7(11):10511057.
  8. Coffman J,Rundall TG.The impact of hospitalists on the cost and quality of inpatient care in the United States: a research synthesis.Med Care Res Rev.2005;62(4):379406.
  9. Landrigan CP,Conway PH,Edwards S,Srivastava R.Pediatric hospitalists: a systematic review of the literature.Pediatrics.2006;117(5):17361744.
  10. Wachter RM,Goldman L.The hospitalist movement 5 years later.JAMA.2002;287(4):487494.
  11. Auerbach AD,Chlouber R,Singler J,Lurie JD,Bostrom A,Wachter RM.Trends in market demand for internal medicine 1999 to 2004: an analysis of physician job advertisements.J Gen Intern Med.2006;21(10):10791085.
  12. SHM. 2003–2004 Survey by the Society of Hospital Medicine on Productivity and Compensation: Analysis of Results. 2004 [updated 2004]. Available at: http://www.hospitalmedicine.org/AM/Template. cfm?Section=Practice_Resources Available at: http://cme.medscape.com/viewarticle/578134. Accessed October 21,2010.
  13. State of Hospital Medicine: 2010 Report Based on 2009 Data.Englewood, CO and Philadelphia, PA:Medical Group Management Association and Society of Hospital Medicine;2010.
  14. Hinami K,Whelan CT,Wolosin RJ,Miller JA,Wetterneck TB.Worklife and satisfaction of hospitalists: toward flourishing careers.J Gen Intern Med.2011, Jul 20. PMID: 21773849.
  15. Wetterneck TB,Linzer M,McMurray JE, et al.Worklife and satisfaction of general internists.Arch Intern Med.2002;162(6):649656.
  16. Linzer M,Manwell L,Mundt M, et al.Organizational climate, stress, and error in primary care: the MEMO study. In: Henriksen K, Battles JB, Marks ES, Lewin DI, eds.Advances in Patient Safety: From Research to Implementation. Vol 1: Research Findings.Rockville, MD:Agency for Healthcare Research and Quality;2005;1:6577.
  17. Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Hospitalists and the practice of inpatient medicine: results of a survey of the National Association of Inpatient Physicians.Ann Intern Med.1999;130(4 pt 2):343349.
  18. Auerbach AD,Nelson EA,Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Physician attitudes toward and prevalence of the hospitalist model of care: results of a national survey.Am J Med.2000;109(8):648653.
  19. Fields DL.Taking the Measure of Work: A Guide to Validated Scales for Organizational Research and Diagnosis.Thousand Oaks, CA:Sage Publications;2002.
  20. Caplan RD,Cobb S,French JRP,Van Harrison R,Penneau SR.Job Demands and Worker Health.Ann Arbor, MI:University of Michigan, Institute for Social Research;1980.
  21. Colquitt JA.On the dimensionality of organizational justice: a construct validation of a measure.J Appl Psychol.2001;86(3):386400.
  22. Yang CL,Carayon P.Effect of job demands and social support on worker stress—a study of VDT users.Behav Inform Technol.1995;14(1):3240.
  23. Konrad TR,Williams ES,Linzer M, et al.Measuring physician job satisfaction in a changing workplace and a challenging environment. SGIM Career Satisfaction Study Group. Society of General Internal Medicine.Med Care.1999;37(11):11741182.
  24. Linzer M,Manwell LB,Williams ES, et al.Working conditions in primary care: physician reactions and care quality.Ann Intern Med.2009;151(1):28U48.
  25. Rohland BM,Kruse GR,Rohrer JE.Validation of a single‐item measure of burnout against the Maslach Burnout Inventory among physicians.Stress Health.2004;20(2):7579.
  26. American Hospital Association. AHA Hospital Statistics. 2009 [updated 2009]. Available at: http://www.ahadata.com/ahadata/html/AHAStatistics.html. Accessed April 12,2011.
  27. Thorpe C,Ryan B,McLean SL, et al.How to obtain excellent response rates when surveying physicians.Fam Pract.2009;26(1):6568.
  28. Armstrong JS,Overton TS.Estimating nonresponse bias in mail surveys.J Marketing Res.1977;14(3):396402.
References
  1. Kralovec PD,Miller JA,Wellikson L,Huddleston JM.The status of hospital medicine groups in the United States.J Hosp Med.2006;1(2):7580.
  2. Kuo Y‐F,Sharma G,Freeman JL,Goodwin JS.Growth in the care of older patients by hospitalists in the United States.N Engl J Med.2009;360(11):11021112.
  3. Wachter RM.The state of hospital medicine in 2008.Med Clin North Am.2008;92(2):265273,vii.
  4. Pham HH,Devers KJ,Kuo S,Berenson R.Health care market trends and the evolution of hospitalist use and roles.J Gen Intern Med.2005;20(2):101107.
  5. Meltzer D,Manning WG,Morrison J, et al.Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists.Ann Intern Med.2002;137(11):866874.
  6. Freese RB.The Park Nicollet experience in establishing a hospitalist system.Ann Intern Med.1999;130(4 pt 2):350354.
  7. Molinari C,Short R.Effects of an HMO hospitalist program on inpatient utilization.Am J Manag Care.2001;7(11):10511057.
  8. Coffman J,Rundall TG.The impact of hospitalists on the cost and quality of inpatient care in the United States: a research synthesis.Med Care Res Rev.2005;62(4):379406.
  9. Landrigan CP,Conway PH,Edwards S,Srivastava R.Pediatric hospitalists: a systematic review of the literature.Pediatrics.2006;117(5):17361744.
  10. Wachter RM,Goldman L.The hospitalist movement 5 years later.JAMA.2002;287(4):487494.
  11. Auerbach AD,Chlouber R,Singler J,Lurie JD,Bostrom A,Wachter RM.Trends in market demand for internal medicine 1999 to 2004: an analysis of physician job advertisements.J Gen Intern Med.2006;21(10):10791085.
  12. SHM. 2003–2004 Survey by the Society of Hospital Medicine on Productivity and Compensation: Analysis of Results. 2004 [updated 2004]. Available at: http://www.hospitalmedicine.org/AM/Template. cfm?Section=Practice_Resources Available at: http://cme.medscape.com/viewarticle/578134. Accessed October 21,2010.
  13. State of Hospital Medicine: 2010 Report Based on 2009 Data.Englewood, CO and Philadelphia, PA:Medical Group Management Association and Society of Hospital Medicine;2010.
  14. Hinami K,Whelan CT,Wolosin RJ,Miller JA,Wetterneck TB.Worklife and satisfaction of hospitalists: toward flourishing careers.J Gen Intern Med.2011, Jul 20. PMID: 21773849.
  15. Wetterneck TB,Linzer M,McMurray JE, et al.Worklife and satisfaction of general internists.Arch Intern Med.2002;162(6):649656.
  16. Linzer M,Manwell L,Mundt M, et al.Organizational climate, stress, and error in primary care: the MEMO study. In: Henriksen K, Battles JB, Marks ES, Lewin DI, eds.Advances in Patient Safety: From Research to Implementation. Vol 1: Research Findings.Rockville, MD:Agency for Healthcare Research and Quality;2005;1:6577.
  17. Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Hospitalists and the practice of inpatient medicine: results of a survey of the National Association of Inpatient Physicians.Ann Intern Med.1999;130(4 pt 2):343349.
  18. Auerbach AD,Nelson EA,Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Physician attitudes toward and prevalence of the hospitalist model of care: results of a national survey.Am J Med.2000;109(8):648653.
  19. Fields DL.Taking the Measure of Work: A Guide to Validated Scales for Organizational Research and Diagnosis.Thousand Oaks, CA:Sage Publications;2002.
  20. Caplan RD,Cobb S,French JRP,Van Harrison R,Penneau SR.Job Demands and Worker Health.Ann Arbor, MI:University of Michigan, Institute for Social Research;1980.
  21. Colquitt JA.On the dimensionality of organizational justice: a construct validation of a measure.J Appl Psychol.2001;86(3):386400.
  22. Yang CL,Carayon P.Effect of job demands and social support on worker stress—a study of VDT users.Behav Inform Technol.1995;14(1):3240.
  23. Konrad TR,Williams ES,Linzer M, et al.Measuring physician job satisfaction in a changing workplace and a challenging environment. SGIM Career Satisfaction Study Group. Society of General Internal Medicine.Med Care.1999;37(11):11741182.
  24. Linzer M,Manwell LB,Williams ES, et al.Working conditions in primary care: physician reactions and care quality.Ann Intern Med.2009;151(1):28U48.
  25. Rohland BM,Kruse GR,Rohrer JE.Validation of a single‐item measure of burnout against the Maslach Burnout Inventory among physicians.Stress Health.2004;20(2):7579.
  26. American Hospital Association. AHA Hospital Statistics. 2009 [updated 2009]. Available at: http://www.ahadata.com/ahadata/html/AHAStatistics.html. Accessed April 12,2011.
  27. Thorpe C,Ryan B,McLean SL, et al.How to obtain excellent response rates when surveying physicians.Fam Pract.2009;26(1):6568.
  28. Armstrong JS,Overton TS.Estimating nonresponse bias in mail surveys.J Marketing Res.1977;14(3):396402.
Issue
Journal of Hospital Medicine - 7(5)
Issue
Journal of Hospital Medicine - 7(5)
Page Number
402-410
Page Number
402-410
Publications
Publications
Article Type
Display Headline
Job characteristics, satisfaction, and burnout across hospitalist practice models
Display Headline
Job characteristics, satisfaction, and burnout across hospitalist practice models
Sections
Article Source

Copyright © 2012 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Feinberg School of Medicine, Northwestern University, 211 E Ontario St, 7‐727, Chicago, IL 60611===
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files

Effect of Appointment Scheduling and Reminder Postcards on Adherence to Mammography Recommendations

Article Type
Changed
Fri, 01/18/2019 - 09:03
Display Headline
Effect of Appointment Scheduling and Reminder Postcards on Adherence to Mammography Recommendations
Article PDF
Issue
The Journal of Family Practice - 30(5)
Publications
Sections
Article PDF
Article PDF
Issue
The Journal of Family Practice - 30(5)
Issue
The Journal of Family Practice - 30(5)
Publications
Publications
Article Type
Display Headline
Effect of Appointment Scheduling and Reminder Postcards on Adherence to Mammography Recommendations
Display Headline
Effect of Appointment Scheduling and Reminder Postcards on Adherence to Mammography Recommendations
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Article PDF Media

The Experience of Screening Mammography

Article Type
Changed
Fri, 01/18/2019 - 09:18
Display Headline
The Experience of Screening Mammography
Article PDF
Issue
The Journal of Family Practice - 29(5)
Publications
Sections
Article PDF
Article PDF
Issue
The Journal of Family Practice - 29(5)
Issue
The Journal of Family Practice - 29(5)
Publications
Publications
Article Type
Display Headline
The Experience of Screening Mammography
Display Headline
The Experience of Screening Mammography
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Article PDF Media