LayerRx Mapping ID
319
Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Allow Teaser Image

One Patient Changed This Oncologist’s View of Hope. Here’s How.

Article Type
Changed
Tue, 06/25/2024 - 17:58

— Carlos, a 21-year-old, lay in a hospital bed, barely clinging to life. Following a stem cell transplant for leukemia, Carlos had developed a life-threatening case of graft-vs-host disease.

But Carlos’ mother had faith.

“I have hope things will get better,” she said, via interpreter, to Richard Leiter, MD, a palliative care doctor in training at that time.

“I hope they will,” Dr. Leiter told her.

“I should have stopped there,” said Dr. Leiter, recounting an early-career lesson on hope during the ASCO Voices session at the American Society of Clinical Oncology annual meeting. “But in my eagerness to show my attending and myself that I could handle this conversation, I kept going, mistakenly.”

“But none of us think they will,” Dr. Leiter continued.

Carlos’ mother looked Dr. Leiter in the eye. “You want him to die,” she said.

“I knew, even then, that she was right,” recalled Dr. Leiter, now a palliative care physician at Dana-Farber Cancer Institute and Brigham and Women’s Hospital and an assistant professor of medicine at Harvard Medical School, Boston.

Although there was nothing he could do to save Carlos, Dr. Leiter also couldn’t sit with the extreme suffering. “The pain was too great,” Dr. Leiter said. “I needed her to adopt our narrative that we had done everything we could to help him live, and now, we would do everything we could to help his death be a comfortable one.”

But looking back, Dr. Leiter realized, “How could we have asked her to accept what was fundamentally unacceptable, to comprehend the incomprehensible?”
 

The Importance of Hope

Hope is not only a feature of human cognition but also a measurable and malleable construct that can affect life outcomes, Alan B. Astrow, MD, said during an ASCO symposium on “The Art and Science of Hope.”

“How we think about hope directly influences patient care,” said Dr. Astrow, chief of hematology and medical oncology at NewYork-Presbyterian Brooklyn Methodist Hospital and a professor of clinical medicine at Weill Cornell Medicine in New York City.

Hope, whatever it turns out to be neurobiologically, is “very much a gift” that underlies human existence, he said.

Physicians have the capacity to restore or shatter a patient’s hopes, and those who come to understand the importance of hope will wish to extend the gift to others, Dr. Astrow said.

Asking patients about their hopes is the “golden question,” Steven Z. Pantilat, MD, said at the symposium. “When you think about the future, what do you hope for?”

Often, the answers reveal not only “things beyond a cure that matter tremendously to the patient but things that we can help with,” said Dr. Pantilat, professor and chief of the Division of Palliative Medicine at the University of California San Francisco.

Dr. Pantilat recalled a patient with advanced pancreatic cancer who wished to see her daughter’s wedding in 10 months. He knew that was unlikely, but the discussion led to another solution.

Her daughter moved the wedding to the ICU.

Hope can persist and uplift even in the darkest of times, and “as clinicians, we need to be in the true hope business,” he said.

While some patients may wish for a cure, others may want more time with family or comfort in the face of suffering. People can “hope for all the things that can still be, despite the fact that there’s a lot of things that can’t,” he said.

However, fear that a patient will hope for a cure, and that the difficult discussions to follow might destroy hope or lead to false hope, sometimes means physicians won’t begin the conversation.

“We want to be honest with our patients — compassionate and kind, but honest — when we talk about their hopes,” Dr. Pantilat explained. Sometimes that means he needs to tell patients, “I wish that could happen. I wish I had a treatment that could make your cancer go away, but unfortunately, I don’t. So let’s think about what else we can do to help you.”

Having these difficult discussions matters. The evidence, although limited, indicates that feeling hopeful can improve patients’ well-being and may even boost their cancer outcomes.

One recent study found, for instance, that patients who reported feeling more hopeful also had lower levels of depression and anxiety. Early research also suggests that greater levels of hope may have a hand in reducing inflammation in patients with ovarian cancer and could even improve survival in some patients with advanced cancer.

For Dr. Leiter, while these lessons came early in his career as a palliative care physician, they persist and influence his practice today.

“I know that I could not have prevented Carlos’ death. None of us could have, and none of us could have protected his mother from the unimaginable grief that will stay with her for the rest of her life,” he said. “But I could have made things just a little bit less difficult for her.

“I could have acted as her guide rather than her cross-examiner,” he continued, explaining that he now sees hope as “a generous collaborator” that can coexist with rising creatinine levels, failing livers, and fears about intubation.

“As clinicians, we can always find space to hope with our patients and their families,” he said. “So now, years later when I sit with a terrified and grieving family and they tell me they hope their loved one gets better, I remember Carlos’ mother’s eyes piercing mine ... and I know how to respond: ‘I hope so, too.’ And I do.”
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

— Carlos, a 21-year-old, lay in a hospital bed, barely clinging to life. Following a stem cell transplant for leukemia, Carlos had developed a life-threatening case of graft-vs-host disease.

But Carlos’ mother had faith.

“I have hope things will get better,” she said, via interpreter, to Richard Leiter, MD, a palliative care doctor in training at that time.

“I hope they will,” Dr. Leiter told her.

“I should have stopped there,” said Dr. Leiter, recounting an early-career lesson on hope during the ASCO Voices session at the American Society of Clinical Oncology annual meeting. “But in my eagerness to show my attending and myself that I could handle this conversation, I kept going, mistakenly.”

“But none of us think they will,” Dr. Leiter continued.

Carlos’ mother looked Dr. Leiter in the eye. “You want him to die,” she said.

“I knew, even then, that she was right,” recalled Dr. Leiter, now a palliative care physician at Dana-Farber Cancer Institute and Brigham and Women’s Hospital and an assistant professor of medicine at Harvard Medical School, Boston.

Although there was nothing he could do to save Carlos, Dr. Leiter also couldn’t sit with the extreme suffering. “The pain was too great,” Dr. Leiter said. “I needed her to adopt our narrative that we had done everything we could to help him live, and now, we would do everything we could to help his death be a comfortable one.”

But looking back, Dr. Leiter realized, “How could we have asked her to accept what was fundamentally unacceptable, to comprehend the incomprehensible?”
 

The Importance of Hope

Hope is not only a feature of human cognition but also a measurable and malleable construct that can affect life outcomes, Alan B. Astrow, MD, said during an ASCO symposium on “The Art and Science of Hope.”

“How we think about hope directly influences patient care,” said Dr. Astrow, chief of hematology and medical oncology at NewYork-Presbyterian Brooklyn Methodist Hospital and a professor of clinical medicine at Weill Cornell Medicine in New York City.

Hope, whatever it turns out to be neurobiologically, is “very much a gift” that underlies human existence, he said.

Physicians have the capacity to restore or shatter a patient’s hopes, and those who come to understand the importance of hope will wish to extend the gift to others, Dr. Astrow said.

Asking patients about their hopes is the “golden question,” Steven Z. Pantilat, MD, said at the symposium. “When you think about the future, what do you hope for?”

Often, the answers reveal not only “things beyond a cure that matter tremendously to the patient but things that we can help with,” said Dr. Pantilat, professor and chief of the Division of Palliative Medicine at the University of California San Francisco.

Dr. Pantilat recalled a patient with advanced pancreatic cancer who wished to see her daughter’s wedding in 10 months. He knew that was unlikely, but the discussion led to another solution.

Her daughter moved the wedding to the ICU.

Hope can persist and uplift even in the darkest of times, and “as clinicians, we need to be in the true hope business,” he said.

While some patients may wish for a cure, others may want more time with family or comfort in the face of suffering. People can “hope for all the things that can still be, despite the fact that there’s a lot of things that can’t,” he said.

However, fear that a patient will hope for a cure, and that the difficult discussions to follow might destroy hope or lead to false hope, sometimes means physicians won’t begin the conversation.

“We want to be honest with our patients — compassionate and kind, but honest — when we talk about their hopes,” Dr. Pantilat explained. Sometimes that means he needs to tell patients, “I wish that could happen. I wish I had a treatment that could make your cancer go away, but unfortunately, I don’t. So let’s think about what else we can do to help you.”

Having these difficult discussions matters. The evidence, although limited, indicates that feeling hopeful can improve patients’ well-being and may even boost their cancer outcomes.

One recent study found, for instance, that patients who reported feeling more hopeful also had lower levels of depression and anxiety. Early research also suggests that greater levels of hope may have a hand in reducing inflammation in patients with ovarian cancer and could even improve survival in some patients with advanced cancer.

For Dr. Leiter, while these lessons came early in his career as a palliative care physician, they persist and influence his practice today.

“I know that I could not have prevented Carlos’ death. None of us could have, and none of us could have protected his mother from the unimaginable grief that will stay with her for the rest of her life,” he said. “But I could have made things just a little bit less difficult for her.

“I could have acted as her guide rather than her cross-examiner,” he continued, explaining that he now sees hope as “a generous collaborator” that can coexist with rising creatinine levels, failing livers, and fears about intubation.

“As clinicians, we can always find space to hope with our patients and their families,” he said. “So now, years later when I sit with a terrified and grieving family and they tell me they hope their loved one gets better, I remember Carlos’ mother’s eyes piercing mine ... and I know how to respond: ‘I hope so, too.’ And I do.”
 

A version of this article appeared on Medscape.com.

— Carlos, a 21-year-old, lay in a hospital bed, barely clinging to life. Following a stem cell transplant for leukemia, Carlos had developed a life-threatening case of graft-vs-host disease.

But Carlos’ mother had faith.

“I have hope things will get better,” she said, via interpreter, to Richard Leiter, MD, a palliative care doctor in training at that time.

“I hope they will,” Dr. Leiter told her.

“I should have stopped there,” said Dr. Leiter, recounting an early-career lesson on hope during the ASCO Voices session at the American Society of Clinical Oncology annual meeting. “But in my eagerness to show my attending and myself that I could handle this conversation, I kept going, mistakenly.”

“But none of us think they will,” Dr. Leiter continued.

Carlos’ mother looked Dr. Leiter in the eye. “You want him to die,” she said.

“I knew, even then, that she was right,” recalled Dr. Leiter, now a palliative care physician at Dana-Farber Cancer Institute and Brigham and Women’s Hospital and an assistant professor of medicine at Harvard Medical School, Boston.

Although there was nothing he could do to save Carlos, Dr. Leiter also couldn’t sit with the extreme suffering. “The pain was too great,” Dr. Leiter said. “I needed her to adopt our narrative that we had done everything we could to help him live, and now, we would do everything we could to help his death be a comfortable one.”

But looking back, Dr. Leiter realized, “How could we have asked her to accept what was fundamentally unacceptable, to comprehend the incomprehensible?”
 

The Importance of Hope

Hope is not only a feature of human cognition but also a measurable and malleable construct that can affect life outcomes, Alan B. Astrow, MD, said during an ASCO symposium on “The Art and Science of Hope.”

“How we think about hope directly influences patient care,” said Dr. Astrow, chief of hematology and medical oncology at NewYork-Presbyterian Brooklyn Methodist Hospital and a professor of clinical medicine at Weill Cornell Medicine in New York City.

Hope, whatever it turns out to be neurobiologically, is “very much a gift” that underlies human existence, he said.

Physicians have the capacity to restore or shatter a patient’s hopes, and those who come to understand the importance of hope will wish to extend the gift to others, Dr. Astrow said.

Asking patients about their hopes is the “golden question,” Steven Z. Pantilat, MD, said at the symposium. “When you think about the future, what do you hope for?”

Often, the answers reveal not only “things beyond a cure that matter tremendously to the patient but things that we can help with,” said Dr. Pantilat, professor and chief of the Division of Palliative Medicine at the University of California San Francisco.

Dr. Pantilat recalled a patient with advanced pancreatic cancer who wished to see her daughter’s wedding in 10 months. He knew that was unlikely, but the discussion led to another solution.

Her daughter moved the wedding to the ICU.

Hope can persist and uplift even in the darkest of times, and “as clinicians, we need to be in the true hope business,” he said.

While some patients may wish for a cure, others may want more time with family or comfort in the face of suffering. People can “hope for all the things that can still be, despite the fact that there’s a lot of things that can’t,” he said.

However, fear that a patient will hope for a cure, and that the difficult discussions to follow might destroy hope or lead to false hope, sometimes means physicians won’t begin the conversation.

“We want to be honest with our patients — compassionate and kind, but honest — when we talk about their hopes,” Dr. Pantilat explained. Sometimes that means he needs to tell patients, “I wish that could happen. I wish I had a treatment that could make your cancer go away, but unfortunately, I don’t. So let’s think about what else we can do to help you.”

Having these difficult discussions matters. The evidence, although limited, indicates that feeling hopeful can improve patients’ well-being and may even boost their cancer outcomes.

One recent study found, for instance, that patients who reported feeling more hopeful also had lower levels of depression and anxiety. Early research also suggests that greater levels of hope may have a hand in reducing inflammation in patients with ovarian cancer and could even improve survival in some patients with advanced cancer.

For Dr. Leiter, while these lessons came early in his career as a palliative care physician, they persist and influence his practice today.

“I know that I could not have prevented Carlos’ death. None of us could have, and none of us could have protected his mother from the unimaginable grief that will stay with her for the rest of her life,” he said. “But I could have made things just a little bit less difficult for her.

“I could have acted as her guide rather than her cross-examiner,” he continued, explaining that he now sees hope as “a generous collaborator” that can coexist with rising creatinine levels, failing livers, and fears about intubation.

“As clinicians, we can always find space to hope with our patients and their families,” he said. “So now, years later when I sit with a terrified and grieving family and they tell me they hope their loved one gets better, I remember Carlos’ mother’s eyes piercing mine ... and I know how to respond: ‘I hope so, too.’ And I do.”
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ASCO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Location a Risk Factor for Early-Onset Cancer?

Article Type
Changed
Wed, 09/11/2024 - 03:47

Early-onset cancer—diagnosed in adults aged ≤ 50 years—is on the rise. Researchers have studied a variety of factors driving the trend, such as type of cancer. However, geographic locality might have as much, if not more, to do with it, according to a study by researchers at Fox Chase Cancer Center, a National Cancer Institute-designated Comprehensive Cancer Center research facility.

Using the US Cancer Statistics Public Use Research Database, the researchers collected data from adults aged 20 to 49 years with invasive cancer (excluding in situ cases) diagnosed from 2015 through 2020. They calculated the incidence for each state using the national rate as the reference. Then, they calculated a second set of rates, comparing each state to the US in terms of overall incidence and advanced-stage incidence for all early-onset cancers.

The resulting maps indicated that early-onset cancer cases are not evenly distributed. States with worse-than-national rates are frequently near each other geographically. For instance, the rate of early-onset female breast cancer was worse than the national rate in 17 states, 16 of which were located in the eastern half of the US (Hawaii was the 17th state). Similarly, most states with worse-than-national rates of digestive cancers were located in the eastern half of the US, with a concentration in the South. Rates of male genital cancers were worse than national rates in 18 states, primarily in the eastern half of the country (plus Montana, Nebraska, and Puerto Rico).

Three states in the Southeast, 7 in the Northeast, and Puerto Rico had the highest incidence of lymphohematopoietic cancers. Incidence rates of endocrine cancers were worse than national rates in 25 states, which the researchers found formed “a horizontal core of the country running from east to west,” plus Puerto Rico. Rates of urinary system cancers were worse than national rates in 17 contiguous states, from New Mexico to Pennsylvania.

Rates of female genital cancers were worse than national rates in 16 states, largely in the Midwest and South, plus California and Puerto Rico. Skin cancer, on the other hand, was a great leveler, with worse-than-national rates in 32 states, mostly in the northern portion of the country.

Kentucky and West Virginia had the highest overall and advanced-stage incidence rates of early-onset cancer for all cancer sites combined. They were followed by Arkansas, Connecticut, Florida, Georgia, Iowa, Louisiana, Maine, Missouri, New Jersey, New York, North Carolina, Ohio, and Pennsylvania.

According to the researchers, this study provides the first analysis of age-adjusted rates of early-onset cancer based on state-level population and case numbers. Geographic patterns in early-onset cancer, they suggest, indicate possible similarities that could relate to demographic, socioeconomic, behavioral, or environmental risks. “Focusing prevention efforts on the highest-incidence states for the most prevalent sites may reduce the rate of early-onset cancer nationally.”

Publications
Topics
Sections

Early-onset cancer—diagnosed in adults aged ≤ 50 years—is on the rise. Researchers have studied a variety of factors driving the trend, such as type of cancer. However, geographic locality might have as much, if not more, to do with it, according to a study by researchers at Fox Chase Cancer Center, a National Cancer Institute-designated Comprehensive Cancer Center research facility.

Using the US Cancer Statistics Public Use Research Database, the researchers collected data from adults aged 20 to 49 years with invasive cancer (excluding in situ cases) diagnosed from 2015 through 2020. They calculated the incidence for each state using the national rate as the reference. Then, they calculated a second set of rates, comparing each state to the US in terms of overall incidence and advanced-stage incidence for all early-onset cancers.

The resulting maps indicated that early-onset cancer cases are not evenly distributed. States with worse-than-national rates are frequently near each other geographically. For instance, the rate of early-onset female breast cancer was worse than the national rate in 17 states, 16 of which were located in the eastern half of the US (Hawaii was the 17th state). Similarly, most states with worse-than-national rates of digestive cancers were located in the eastern half of the US, with a concentration in the South. Rates of male genital cancers were worse than national rates in 18 states, primarily in the eastern half of the country (plus Montana, Nebraska, and Puerto Rico).

Three states in the Southeast, 7 in the Northeast, and Puerto Rico had the highest incidence of lymphohematopoietic cancers. Incidence rates of endocrine cancers were worse than national rates in 25 states, which the researchers found formed “a horizontal core of the country running from east to west,” plus Puerto Rico. Rates of urinary system cancers were worse than national rates in 17 contiguous states, from New Mexico to Pennsylvania.

Rates of female genital cancers were worse than national rates in 16 states, largely in the Midwest and South, plus California and Puerto Rico. Skin cancer, on the other hand, was a great leveler, with worse-than-national rates in 32 states, mostly in the northern portion of the country.

Kentucky and West Virginia had the highest overall and advanced-stage incidence rates of early-onset cancer for all cancer sites combined. They were followed by Arkansas, Connecticut, Florida, Georgia, Iowa, Louisiana, Maine, Missouri, New Jersey, New York, North Carolina, Ohio, and Pennsylvania.

According to the researchers, this study provides the first analysis of age-adjusted rates of early-onset cancer based on state-level population and case numbers. Geographic patterns in early-onset cancer, they suggest, indicate possible similarities that could relate to demographic, socioeconomic, behavioral, or environmental risks. “Focusing prevention efforts on the highest-incidence states for the most prevalent sites may reduce the rate of early-onset cancer nationally.”

Early-onset cancer—diagnosed in adults aged ≤ 50 years—is on the rise. Researchers have studied a variety of factors driving the trend, such as type of cancer. However, geographic locality might have as much, if not more, to do with it, according to a study by researchers at Fox Chase Cancer Center, a National Cancer Institute-designated Comprehensive Cancer Center research facility.

Using the US Cancer Statistics Public Use Research Database, the researchers collected data from adults aged 20 to 49 years with invasive cancer (excluding in situ cases) diagnosed from 2015 through 2020. They calculated the incidence for each state using the national rate as the reference. Then, they calculated a second set of rates, comparing each state to the US in terms of overall incidence and advanced-stage incidence for all early-onset cancers.

The resulting maps indicated that early-onset cancer cases are not evenly distributed. States with worse-than-national rates are frequently near each other geographically. For instance, the rate of early-onset female breast cancer was worse than the national rate in 17 states, 16 of which were located in the eastern half of the US (Hawaii was the 17th state). Similarly, most states with worse-than-national rates of digestive cancers were located in the eastern half of the US, with a concentration in the South. Rates of male genital cancers were worse than national rates in 18 states, primarily in the eastern half of the country (plus Montana, Nebraska, and Puerto Rico).

Three states in the Southeast, 7 in the Northeast, and Puerto Rico had the highest incidence of lymphohematopoietic cancers. Incidence rates of endocrine cancers were worse than national rates in 25 states, which the researchers found formed “a horizontal core of the country running from east to west,” plus Puerto Rico. Rates of urinary system cancers were worse than national rates in 17 contiguous states, from New Mexico to Pennsylvania.

Rates of female genital cancers were worse than national rates in 16 states, largely in the Midwest and South, plus California and Puerto Rico. Skin cancer, on the other hand, was a great leveler, with worse-than-national rates in 32 states, mostly in the northern portion of the country.

Kentucky and West Virginia had the highest overall and advanced-stage incidence rates of early-onset cancer for all cancer sites combined. They were followed by Arkansas, Connecticut, Florida, Georgia, Iowa, Louisiana, Maine, Missouri, New Jersey, New York, North Carolina, Ohio, and Pennsylvania.

According to the researchers, this study provides the first analysis of age-adjusted rates of early-onset cancer based on state-level population and case numbers. Geographic patterns in early-onset cancer, they suggest, indicate possible similarities that could relate to demographic, socioeconomic, behavioral, or environmental risks. “Focusing prevention efforts on the highest-incidence states for the most prevalent sites may reduce the rate of early-onset cancer nationally.”

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 06/18/2024 - 16:00
Un-Gate On Date
Tue, 06/18/2024 - 16:00
Use ProPublica
CFC Schedule Remove Status
Tue, 06/18/2024 - 16:00
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA Expands Repotrectinib Label to All NTRK Gene Fusion+ Solid Tumors

Article Type
Changed
Fri, 06/14/2024 - 10:44
Display Headline
FDA Expands Repotrectinib Label to All NTRK Gene Fusion+ Solid Tumors

The US Food and Drug Administration has granted accelerated approval to repotrectinib (Augtyro, Bristol Myers Squibb) for all locally advanced, unresectable, or metastatic solid tumors with an NTRK gene fusion that have progressed after initial treatment or that have no satisfactory alternative therapies.

The approval is a label expansion for the tyrosine kinase inhibitor (TKI), which received initial clearance in November 2023 for locally advanced or metastatic ROS1-positive non–small cell lung cancer. 

NTRK gene fusions are genetic abnormalities wherein part of the NTRK gene fuses with an unrelated gene. The abnormal gene can then produce an oncogenic protein. Although rare, these mutations are found in many cancer types.

The approval, for adult and pediatric patients aged 12 years or older, was based on the single-arm open-label TRIDENT-1 trial in 88 adults with locally advanced or metastatic NTRK gene fusion solid tumors.

In the 40 patients who were TKI-naive, the overall response rate was 58%, and the median duration of response was not estimable. In the 48 patients who had a TKI previously, the overall response rate was 50% and median duration of response was 9.9 months.

In 20% or more of participants, treatment caused dizziness, dysgeusia, peripheral neuropathy, constipation, dyspnea, fatigue, ataxia, cognitive impairment, muscular weakness, and nausea.

Labeling warns of central nervous system reactions, interstitial lung disease/pneumonitis, hepatotoxicity, myalgia with creatine phosphokinase elevation, hyperuricemia, bone fractures, and embryo-fetal toxicity.

The recommended dose is 160 mg orally once daily for 14 days then increased to 160 mg twice daily until disease progression or unacceptable toxicity.

Sixty 40-mg capsules cost around $7,644, according to drugs.com
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Food and Drug Administration has granted accelerated approval to repotrectinib (Augtyro, Bristol Myers Squibb) for all locally advanced, unresectable, or metastatic solid tumors with an NTRK gene fusion that have progressed after initial treatment or that have no satisfactory alternative therapies.

The approval is a label expansion for the tyrosine kinase inhibitor (TKI), which received initial clearance in November 2023 for locally advanced or metastatic ROS1-positive non–small cell lung cancer. 

NTRK gene fusions are genetic abnormalities wherein part of the NTRK gene fuses with an unrelated gene. The abnormal gene can then produce an oncogenic protein. Although rare, these mutations are found in many cancer types.

The approval, for adult and pediatric patients aged 12 years or older, was based on the single-arm open-label TRIDENT-1 trial in 88 adults with locally advanced or metastatic NTRK gene fusion solid tumors.

In the 40 patients who were TKI-naive, the overall response rate was 58%, and the median duration of response was not estimable. In the 48 patients who had a TKI previously, the overall response rate was 50% and median duration of response was 9.9 months.

In 20% or more of participants, treatment caused dizziness, dysgeusia, peripheral neuropathy, constipation, dyspnea, fatigue, ataxia, cognitive impairment, muscular weakness, and nausea.

Labeling warns of central nervous system reactions, interstitial lung disease/pneumonitis, hepatotoxicity, myalgia with creatine phosphokinase elevation, hyperuricemia, bone fractures, and embryo-fetal toxicity.

The recommended dose is 160 mg orally once daily for 14 days then increased to 160 mg twice daily until disease progression or unacceptable toxicity.

Sixty 40-mg capsules cost around $7,644, according to drugs.com
 

A version of this article appeared on Medscape.com.

The US Food and Drug Administration has granted accelerated approval to repotrectinib (Augtyro, Bristol Myers Squibb) for all locally advanced, unresectable, or metastatic solid tumors with an NTRK gene fusion that have progressed after initial treatment or that have no satisfactory alternative therapies.

The approval is a label expansion for the tyrosine kinase inhibitor (TKI), which received initial clearance in November 2023 for locally advanced or metastatic ROS1-positive non–small cell lung cancer. 

NTRK gene fusions are genetic abnormalities wherein part of the NTRK gene fuses with an unrelated gene. The abnormal gene can then produce an oncogenic protein. Although rare, these mutations are found in many cancer types.

The approval, for adult and pediatric patients aged 12 years or older, was based on the single-arm open-label TRIDENT-1 trial in 88 adults with locally advanced or metastatic NTRK gene fusion solid tumors.

In the 40 patients who were TKI-naive, the overall response rate was 58%, and the median duration of response was not estimable. In the 48 patients who had a TKI previously, the overall response rate was 50% and median duration of response was 9.9 months.

In 20% or more of participants, treatment caused dizziness, dysgeusia, peripheral neuropathy, constipation, dyspnea, fatigue, ataxia, cognitive impairment, muscular weakness, and nausea.

Labeling warns of central nervous system reactions, interstitial lung disease/pneumonitis, hepatotoxicity, myalgia with creatine phosphokinase elevation, hyperuricemia, bone fractures, and embryo-fetal toxicity.

The recommended dose is 160 mg orally once daily for 14 days then increased to 160 mg twice daily until disease progression or unacceptable toxicity.

Sixty 40-mg capsules cost around $7,644, according to drugs.com
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Display Headline
FDA Expands Repotrectinib Label to All NTRK Gene Fusion+ Solid Tumors
Display Headline
FDA Expands Repotrectinib Label to All NTRK Gene Fusion+ Solid Tumors
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Could British Columbia Eliminate Cervical Cancer by 2031?

Article Type
Changed
Mon, 06/17/2024 - 15:08

British Columbia (BC) could eliminate cervical cancer within the next 20 years if the province shifts from cytology to human papillomavirus (HPV)–based screening before the end of the decade, data suggested. To achieve this goal, the province will also need to reach historically underscreened, equity-seeking populations (ie, Black, indigenous, immigrant, LGBTQ, and disabled patients, and those with sexual trauma) through mailed self-screening HPV tests.

The adoption of both these strategies is essential, according to a modeling study that was published on June 3 in CMAJ, especially because the true impact of HPV vaccination has yet to be fully realized.

“In BC, we have a school-based program to increase vaccine coverage in boys and girls starting in grade 6,” study author Reka Pataky, PhD, a senior research health economist at the Canadian Centre for Applied Research in Cancer Control and BC Cancer in Vancouver, British Columbia, Canada, told this news organization. Dr. Pataky noted that this immunization program was launched in 2008 and that some of the initial cohorts haven›t yet reached the average age of diagnosis, which is between 30 and 59 years.

Three’s a Charm

The investigators undertook a modeling study to determine when and how BC might achieve the elimination of cervical cancer following a transition to HPV-based screening. Elimination was defined as an annual age-standardized incidence rate of < 4.0 per 100,000 women.

Modeling scenarios were developed using the Canadian Partnership Against Cancer’s priority targets, which include increasing HPV vaccination through school-based coverage from 70% to 90%, increasing the probability of ever receiving a screening test from 90% to 95%, increasing the rate of on-time screening from 70% to 90%, and improving follow-up to 95% for colposcopy (currently 88%) and HPV testing (currently 80%). Modeling simulated HPV transmission and the natural history of cervical cancer in the Canadian population and relied upon two reference scenarios: One using BC’s cytology-based screening at the time of analysis, and the other an HPV base-case scenario.

The researchers found that with the status quo (ie, cytology-based screening and no change to vaccination or screening participation rates), BC would not eliminate cervical cancer until 2045. Implementation of HPV-based screening at the current 70% participation rate would achieve elimination in 2034 and prevent 942 cases compared with cytology screening. Increasing the proportion of patients who were ever screened or increasing vaccination coverage would result in cervical cancer elimination by 2033. The time line would be shortened even further (to 2031) through a combination of three strategies (ie, improving recruitment, on-time screening, and follow-up compliance).

Low Incidence, Strained System

The incidence of cervical cancer in Canada is relatively low, accounting for 1.3% of all new female cancers and 1.1% of all female cancer deaths.

“The reason that we have such low rates is because we have organized screening programs,” explained Rachel Kupets, MD, associate professor of gynecologic oncology at the University of Toronto and Sunnybrook Hospital, Toronto. She was not involved in the study.

“We’re starting to see what happens when the system gets strained with lower participation rates. I am starting to see a lot more women with invasive cervical cancer. They’re younger, and their cancers are less curable and less treatable,” she said.

Difficulties with access, interest, and education have contributed to low cervical screening rates among equity-seeking populations, according to Dr. Pataky and Dr. Kupets.

“Self-screening is another tool that can incrementally benefit those folks who wouldn’t otherwise undergo screening or don’t want an invasive test,” said Dr. Kupets. It can also play an increasing role, while current access to primary care services in Canada is at an all-time low. Community outreach through centers, mobile coaches, and nursing stations might help ensure participation by at-risk populations. These measures also could boost follow-up for and education about positive results, said Dr. Kupets.

In a related editorial, Shannon Charlebois, MD, medical editor of CMAJ, and Sarah Kean, MD, assistant professor of gynecologic oncology at the University of Manitoba in Winnipeg, Manitoba, Canada, emphasized the need for mailed HPV self-screening kits to be paid for and integrated into provincial cervical cancer screening programs across Canada to support earlier cervical cancer detection and lower invasive cancer rates.

Dr. Pataky concurred. “There have been discussions about making the big transition from traditional cytology to implementing HPV self-screening,” she said. “We have really effective tools for preventing cervical cancer, and it’s important to not lose sight of that goal.”

The study was funded by the National Institutes of Health. Dr. Pataky and Dr. Kupets reported no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

British Columbia (BC) could eliminate cervical cancer within the next 20 years if the province shifts from cytology to human papillomavirus (HPV)–based screening before the end of the decade, data suggested. To achieve this goal, the province will also need to reach historically underscreened, equity-seeking populations (ie, Black, indigenous, immigrant, LGBTQ, and disabled patients, and those with sexual trauma) through mailed self-screening HPV tests.

The adoption of both these strategies is essential, according to a modeling study that was published on June 3 in CMAJ, especially because the true impact of HPV vaccination has yet to be fully realized.

“In BC, we have a school-based program to increase vaccine coverage in boys and girls starting in grade 6,” study author Reka Pataky, PhD, a senior research health economist at the Canadian Centre for Applied Research in Cancer Control and BC Cancer in Vancouver, British Columbia, Canada, told this news organization. Dr. Pataky noted that this immunization program was launched in 2008 and that some of the initial cohorts haven›t yet reached the average age of diagnosis, which is between 30 and 59 years.

Three’s a Charm

The investigators undertook a modeling study to determine when and how BC might achieve the elimination of cervical cancer following a transition to HPV-based screening. Elimination was defined as an annual age-standardized incidence rate of < 4.0 per 100,000 women.

Modeling scenarios were developed using the Canadian Partnership Against Cancer’s priority targets, which include increasing HPV vaccination through school-based coverage from 70% to 90%, increasing the probability of ever receiving a screening test from 90% to 95%, increasing the rate of on-time screening from 70% to 90%, and improving follow-up to 95% for colposcopy (currently 88%) and HPV testing (currently 80%). Modeling simulated HPV transmission and the natural history of cervical cancer in the Canadian population and relied upon two reference scenarios: One using BC’s cytology-based screening at the time of analysis, and the other an HPV base-case scenario.

The researchers found that with the status quo (ie, cytology-based screening and no change to vaccination or screening participation rates), BC would not eliminate cervical cancer until 2045. Implementation of HPV-based screening at the current 70% participation rate would achieve elimination in 2034 and prevent 942 cases compared with cytology screening. Increasing the proportion of patients who were ever screened or increasing vaccination coverage would result in cervical cancer elimination by 2033. The time line would be shortened even further (to 2031) through a combination of three strategies (ie, improving recruitment, on-time screening, and follow-up compliance).

Low Incidence, Strained System

The incidence of cervical cancer in Canada is relatively low, accounting for 1.3% of all new female cancers and 1.1% of all female cancer deaths.

“The reason that we have such low rates is because we have organized screening programs,” explained Rachel Kupets, MD, associate professor of gynecologic oncology at the University of Toronto and Sunnybrook Hospital, Toronto. She was not involved in the study.

“We’re starting to see what happens when the system gets strained with lower participation rates. I am starting to see a lot more women with invasive cervical cancer. They’re younger, and their cancers are less curable and less treatable,” she said.

Difficulties with access, interest, and education have contributed to low cervical screening rates among equity-seeking populations, according to Dr. Pataky and Dr. Kupets.

“Self-screening is another tool that can incrementally benefit those folks who wouldn’t otherwise undergo screening or don’t want an invasive test,” said Dr. Kupets. It can also play an increasing role, while current access to primary care services in Canada is at an all-time low. Community outreach through centers, mobile coaches, and nursing stations might help ensure participation by at-risk populations. These measures also could boost follow-up for and education about positive results, said Dr. Kupets.

In a related editorial, Shannon Charlebois, MD, medical editor of CMAJ, and Sarah Kean, MD, assistant professor of gynecologic oncology at the University of Manitoba in Winnipeg, Manitoba, Canada, emphasized the need for mailed HPV self-screening kits to be paid for and integrated into provincial cervical cancer screening programs across Canada to support earlier cervical cancer detection and lower invasive cancer rates.

Dr. Pataky concurred. “There have been discussions about making the big transition from traditional cytology to implementing HPV self-screening,” she said. “We have really effective tools for preventing cervical cancer, and it’s important to not lose sight of that goal.”

The study was funded by the National Institutes of Health. Dr. Pataky and Dr. Kupets reported no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

British Columbia (BC) could eliminate cervical cancer within the next 20 years if the province shifts from cytology to human papillomavirus (HPV)–based screening before the end of the decade, data suggested. To achieve this goal, the province will also need to reach historically underscreened, equity-seeking populations (ie, Black, indigenous, immigrant, LGBTQ, and disabled patients, and those with sexual trauma) through mailed self-screening HPV tests.

The adoption of both these strategies is essential, according to a modeling study that was published on June 3 in CMAJ, especially because the true impact of HPV vaccination has yet to be fully realized.

“In BC, we have a school-based program to increase vaccine coverage in boys and girls starting in grade 6,” study author Reka Pataky, PhD, a senior research health economist at the Canadian Centre for Applied Research in Cancer Control and BC Cancer in Vancouver, British Columbia, Canada, told this news organization. Dr. Pataky noted that this immunization program was launched in 2008 and that some of the initial cohorts haven›t yet reached the average age of diagnosis, which is between 30 and 59 years.

Three’s a Charm

The investigators undertook a modeling study to determine when and how BC might achieve the elimination of cervical cancer following a transition to HPV-based screening. Elimination was defined as an annual age-standardized incidence rate of < 4.0 per 100,000 women.

Modeling scenarios were developed using the Canadian Partnership Against Cancer’s priority targets, which include increasing HPV vaccination through school-based coverage from 70% to 90%, increasing the probability of ever receiving a screening test from 90% to 95%, increasing the rate of on-time screening from 70% to 90%, and improving follow-up to 95% for colposcopy (currently 88%) and HPV testing (currently 80%). Modeling simulated HPV transmission and the natural history of cervical cancer in the Canadian population and relied upon two reference scenarios: One using BC’s cytology-based screening at the time of analysis, and the other an HPV base-case scenario.

The researchers found that with the status quo (ie, cytology-based screening and no change to vaccination or screening participation rates), BC would not eliminate cervical cancer until 2045. Implementation of HPV-based screening at the current 70% participation rate would achieve elimination in 2034 and prevent 942 cases compared with cytology screening. Increasing the proportion of patients who were ever screened or increasing vaccination coverage would result in cervical cancer elimination by 2033. The time line would be shortened even further (to 2031) through a combination of three strategies (ie, improving recruitment, on-time screening, and follow-up compliance).

Low Incidence, Strained System

The incidence of cervical cancer in Canada is relatively low, accounting for 1.3% of all new female cancers and 1.1% of all female cancer deaths.

“The reason that we have such low rates is because we have organized screening programs,” explained Rachel Kupets, MD, associate professor of gynecologic oncology at the University of Toronto and Sunnybrook Hospital, Toronto. She was not involved in the study.

“We’re starting to see what happens when the system gets strained with lower participation rates. I am starting to see a lot more women with invasive cervical cancer. They’re younger, and their cancers are less curable and less treatable,” she said.

Difficulties with access, interest, and education have contributed to low cervical screening rates among equity-seeking populations, according to Dr. Pataky and Dr. Kupets.

“Self-screening is another tool that can incrementally benefit those folks who wouldn’t otherwise undergo screening or don’t want an invasive test,” said Dr. Kupets. It can also play an increasing role, while current access to primary care services in Canada is at an all-time low. Community outreach through centers, mobile coaches, and nursing stations might help ensure participation by at-risk populations. These measures also could boost follow-up for and education about positive results, said Dr. Kupets.

In a related editorial, Shannon Charlebois, MD, medical editor of CMAJ, and Sarah Kean, MD, assistant professor of gynecologic oncology at the University of Manitoba in Winnipeg, Manitoba, Canada, emphasized the need for mailed HPV self-screening kits to be paid for and integrated into provincial cervical cancer screening programs across Canada to support earlier cervical cancer detection and lower invasive cancer rates.

Dr. Pataky concurred. “There have been discussions about making the big transition from traditional cytology to implementing HPV self-screening,” she said. “We have really effective tools for preventing cervical cancer, and it’s important to not lose sight of that goal.”

The study was funded by the National Institutes of Health. Dr. Pataky and Dr. Kupets reported no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

HPV Vaccine Offers Cancer Protection Beyond Cervical Cancer

Article Type
Changed
Tue, 06/11/2024 - 15:20

Vaccination against human papillomavirus (HPV) is an effective way to prevent HPV infection and cancers typically caused by HPV, including cervical cancer and head and neck cancers, new research showed.

The analysis, featured at a press briefing ahead of the presentation at the American Society of Clinical Oncology (ASCO) 2024 annual meeting, notably found that men who received the HPV vaccine had a 56% lower risk for head and neck cancers.

“We’ve known for a long time that having the HPV vaccine can prevent the development of HPV infection, yes, but importantly, cancer,” primarily cervical cancer, said briefing moderator and ASCO president Lynn Schuchter, MD, Abramson Cancer Center, University of Pennsylvania, Philadelphia. “This is a really important study that extends the information about the impact.”

Using the US TriNetX database, lead investigator Jefferson DeKloe, BS, a research fellow with Thomas Jefferson University, Philadelphia, and colleagues created a matched cohort of 760,540 HPV-vaccinated and unvaccinated men and 945,999 HPV-vaccinated and unvaccinated women.

HPV-vaccinated men had a 54% lower risk for all HPV-related cancers (odds ratio [OR], 0.46; < .001) and a 56% lower risk for head and neck cancers (OR, 0.44; < .001) than unvaccinated men. There were not enough cases of anal and penile cancers for analysis.

HPV-vaccinated women had a 27% lower risk for all HPV-related cancers (OR, 0.73; < .05), a 54% lower risk for cervical cancer (OR, 0.46; < .05), and a 33% lower risk for head and neck cancers (OR, 0.67; 95% CI, 0.42-1.08) than HPV-unvaccinated women, but this finding was not significant. There were not enough cases of anal cancers for analysis, and the odds of developing vulvar or vaginal cancer was not significantly different in HPV-vaccinated vs unvaccinated women.

Vaccinated women, however, were less likely than unvaccinated women to develop high-grade squamous intraepithelial lesions (OR, 0.44), cervical carcinoma in situ (OR, 0.42), or abnormal Pap findings (OR, 0.87), and were less likely to undergo cone biopsy and loop electrosurgical excision (OR, 0.45).

“This study really highlights the importance of getting the HPV vaccine,” Dr. Schuchter said at the briefing.

“HPV vaccination is cancer prevention,” Glenn Hanna, MD, with Dana-Farber Cancer Institute, Boston, said in an ASCO statement.

Still, HPV vaccination rates in the United States remain relatively low. According to the National Cancer Institute, in 2022, only about 58% of adolescents aged 13-15 years had received two or three doses of HPV vaccine as recommended.

“The goal,” Dr. Schuchter said at the briefing, “is that younger girls and young boys get vaccinated to prevent development of HPV infection, and that should decrease the risk of cancer, which is what we’ve seen.”

Mr. DeKloe agreed and highlighted the importance of improving vaccination rates. “Identifying effective interventions that increase HPV vaccination rates is critical in reducing undue cancer burden in the United States,” Mr. DeKloe said in a statement.

The study had no funding source. Mr. DeKloe had no relevant disclosures. Dr. Hanna has disclosed relationships with Bicara Therapeutics, Bristol Myers Squibb, Coherus BioSciences, and others. Dr. Schuchter had no relevant disclosures.

A version of this article appeared on Medscape.com .

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Vaccination against human papillomavirus (HPV) is an effective way to prevent HPV infection and cancers typically caused by HPV, including cervical cancer and head and neck cancers, new research showed.

The analysis, featured at a press briefing ahead of the presentation at the American Society of Clinical Oncology (ASCO) 2024 annual meeting, notably found that men who received the HPV vaccine had a 56% lower risk for head and neck cancers.

“We’ve known for a long time that having the HPV vaccine can prevent the development of HPV infection, yes, but importantly, cancer,” primarily cervical cancer, said briefing moderator and ASCO president Lynn Schuchter, MD, Abramson Cancer Center, University of Pennsylvania, Philadelphia. “This is a really important study that extends the information about the impact.”

Using the US TriNetX database, lead investigator Jefferson DeKloe, BS, a research fellow with Thomas Jefferson University, Philadelphia, and colleagues created a matched cohort of 760,540 HPV-vaccinated and unvaccinated men and 945,999 HPV-vaccinated and unvaccinated women.

HPV-vaccinated men had a 54% lower risk for all HPV-related cancers (odds ratio [OR], 0.46; < .001) and a 56% lower risk for head and neck cancers (OR, 0.44; < .001) than unvaccinated men. There were not enough cases of anal and penile cancers for analysis.

HPV-vaccinated women had a 27% lower risk for all HPV-related cancers (OR, 0.73; < .05), a 54% lower risk for cervical cancer (OR, 0.46; < .05), and a 33% lower risk for head and neck cancers (OR, 0.67; 95% CI, 0.42-1.08) than HPV-unvaccinated women, but this finding was not significant. There were not enough cases of anal cancers for analysis, and the odds of developing vulvar or vaginal cancer was not significantly different in HPV-vaccinated vs unvaccinated women.

Vaccinated women, however, were less likely than unvaccinated women to develop high-grade squamous intraepithelial lesions (OR, 0.44), cervical carcinoma in situ (OR, 0.42), or abnormal Pap findings (OR, 0.87), and were less likely to undergo cone biopsy and loop electrosurgical excision (OR, 0.45).

“This study really highlights the importance of getting the HPV vaccine,” Dr. Schuchter said at the briefing.

“HPV vaccination is cancer prevention,” Glenn Hanna, MD, with Dana-Farber Cancer Institute, Boston, said in an ASCO statement.

Still, HPV vaccination rates in the United States remain relatively low. According to the National Cancer Institute, in 2022, only about 58% of adolescents aged 13-15 years had received two or three doses of HPV vaccine as recommended.

“The goal,” Dr. Schuchter said at the briefing, “is that younger girls and young boys get vaccinated to prevent development of HPV infection, and that should decrease the risk of cancer, which is what we’ve seen.”

Mr. DeKloe agreed and highlighted the importance of improving vaccination rates. “Identifying effective interventions that increase HPV vaccination rates is critical in reducing undue cancer burden in the United States,” Mr. DeKloe said in a statement.

The study had no funding source. Mr. DeKloe had no relevant disclosures. Dr. Hanna has disclosed relationships with Bicara Therapeutics, Bristol Myers Squibb, Coherus BioSciences, and others. Dr. Schuchter had no relevant disclosures.

A version of this article appeared on Medscape.com .

Vaccination against human papillomavirus (HPV) is an effective way to prevent HPV infection and cancers typically caused by HPV, including cervical cancer and head and neck cancers, new research showed.

The analysis, featured at a press briefing ahead of the presentation at the American Society of Clinical Oncology (ASCO) 2024 annual meeting, notably found that men who received the HPV vaccine had a 56% lower risk for head and neck cancers.

“We’ve known for a long time that having the HPV vaccine can prevent the development of HPV infection, yes, but importantly, cancer,” primarily cervical cancer, said briefing moderator and ASCO president Lynn Schuchter, MD, Abramson Cancer Center, University of Pennsylvania, Philadelphia. “This is a really important study that extends the information about the impact.”

Using the US TriNetX database, lead investigator Jefferson DeKloe, BS, a research fellow with Thomas Jefferson University, Philadelphia, and colleagues created a matched cohort of 760,540 HPV-vaccinated and unvaccinated men and 945,999 HPV-vaccinated and unvaccinated women.

HPV-vaccinated men had a 54% lower risk for all HPV-related cancers (odds ratio [OR], 0.46; < .001) and a 56% lower risk for head and neck cancers (OR, 0.44; < .001) than unvaccinated men. There were not enough cases of anal and penile cancers for analysis.

HPV-vaccinated women had a 27% lower risk for all HPV-related cancers (OR, 0.73; < .05), a 54% lower risk for cervical cancer (OR, 0.46; < .05), and a 33% lower risk for head and neck cancers (OR, 0.67; 95% CI, 0.42-1.08) than HPV-unvaccinated women, but this finding was not significant. There were not enough cases of anal cancers for analysis, and the odds of developing vulvar or vaginal cancer was not significantly different in HPV-vaccinated vs unvaccinated women.

Vaccinated women, however, were less likely than unvaccinated women to develop high-grade squamous intraepithelial lesions (OR, 0.44), cervical carcinoma in situ (OR, 0.42), or abnormal Pap findings (OR, 0.87), and were less likely to undergo cone biopsy and loop electrosurgical excision (OR, 0.45).

“This study really highlights the importance of getting the HPV vaccine,” Dr. Schuchter said at the briefing.

“HPV vaccination is cancer prevention,” Glenn Hanna, MD, with Dana-Farber Cancer Institute, Boston, said in an ASCO statement.

Still, HPV vaccination rates in the United States remain relatively low. According to the National Cancer Institute, in 2022, only about 58% of adolescents aged 13-15 years had received two or three doses of HPV vaccine as recommended.

“The goal,” Dr. Schuchter said at the briefing, “is that younger girls and young boys get vaccinated to prevent development of HPV infection, and that should decrease the risk of cancer, which is what we’ve seen.”

Mr. DeKloe agreed and highlighted the importance of improving vaccination rates. “Identifying effective interventions that increase HPV vaccination rates is critical in reducing undue cancer burden in the United States,” Mr. DeKloe said in a statement.

The study had no funding source. Mr. DeKloe had no relevant disclosures. Dr. Hanna has disclosed relationships with Bicara Therapeutics, Bristol Myers Squibb, Coherus BioSciences, and others. Dr. Schuchter had no relevant disclosures.

A version of this article appeared on Medscape.com .

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ASCO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Are Children Born Through ART at Higher Risk for Cancer?

Article Type
Changed
Mon, 06/10/2024 - 15:35

The results of a large French study comparing the cancer risk in children conceived through assisted reproductive technology (ART) with that of naturally conceived children were published recently in JAMA Network Open. This study is one of the largest to date on this subject: It included 8,526,306 children born in France between 2010 and 2021, of whom 260,236 (3%) were conceived through ART, and followed them up to a median age of 6.7 years.

Motivations for the Study

ART (including artificial insemination, in vitro fertilization [IVF], or intracytoplasmic sperm injection [ICSI] with fresh or frozen embryo transfer) accounts for about 1 in 30 births in France. However, limited and heterogeneous data have suggested an increased risk for certain health disorders, including cancer, among children conceived through ART. Therefore, a large-scale evaluation of cancer risk in these children is important.

No Overall Increase

In all, 9256 children developed cancer, including 292 who were conceived through ART. Thus, this study did not show an increased risk for cancer (of all types combined) in children conceived through ART. Nevertheless, a slight increase in the risk for leukemia was observed in children conceived through IVF or ICSI. The investigators observed approximately one additional case for every 5000 newborns conceived through IVF or ICSI who reached age 10 years.

Epidemiological monitoring should be continued to better evaluate long-term risks and see whether the risk for leukemia is confirmed. If it is, then it will be useful to investigate the mechanisms related to ART techniques or the fertility disorders of parents that could lead to an increased risk for leukemia.

This story was translated from Univadis France, which is part of the Medscape Professional Network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The results of a large French study comparing the cancer risk in children conceived through assisted reproductive technology (ART) with that of naturally conceived children were published recently in JAMA Network Open. This study is one of the largest to date on this subject: It included 8,526,306 children born in France between 2010 and 2021, of whom 260,236 (3%) were conceived through ART, and followed them up to a median age of 6.7 years.

Motivations for the Study

ART (including artificial insemination, in vitro fertilization [IVF], or intracytoplasmic sperm injection [ICSI] with fresh or frozen embryo transfer) accounts for about 1 in 30 births in France. However, limited and heterogeneous data have suggested an increased risk for certain health disorders, including cancer, among children conceived through ART. Therefore, a large-scale evaluation of cancer risk in these children is important.

No Overall Increase

In all, 9256 children developed cancer, including 292 who were conceived through ART. Thus, this study did not show an increased risk for cancer (of all types combined) in children conceived through ART. Nevertheless, a slight increase in the risk for leukemia was observed in children conceived through IVF or ICSI. The investigators observed approximately one additional case for every 5000 newborns conceived through IVF or ICSI who reached age 10 years.

Epidemiological monitoring should be continued to better evaluate long-term risks and see whether the risk for leukemia is confirmed. If it is, then it will be useful to investigate the mechanisms related to ART techniques or the fertility disorders of parents that could lead to an increased risk for leukemia.

This story was translated from Univadis France, which is part of the Medscape Professional Network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

The results of a large French study comparing the cancer risk in children conceived through assisted reproductive technology (ART) with that of naturally conceived children were published recently in JAMA Network Open. This study is one of the largest to date on this subject: It included 8,526,306 children born in France between 2010 and 2021, of whom 260,236 (3%) were conceived through ART, and followed them up to a median age of 6.7 years.

Motivations for the Study

ART (including artificial insemination, in vitro fertilization [IVF], or intracytoplasmic sperm injection [ICSI] with fresh or frozen embryo transfer) accounts for about 1 in 30 births in France. However, limited and heterogeneous data have suggested an increased risk for certain health disorders, including cancer, among children conceived through ART. Therefore, a large-scale evaluation of cancer risk in these children is important.

No Overall Increase

In all, 9256 children developed cancer, including 292 who were conceived through ART. Thus, this study did not show an increased risk for cancer (of all types combined) in children conceived through ART. Nevertheless, a slight increase in the risk for leukemia was observed in children conceived through IVF or ICSI. The investigators observed approximately one additional case for every 5000 newborns conceived through IVF or ICSI who reached age 10 years.

Epidemiological monitoring should be continued to better evaluate long-term risks and see whether the risk for leukemia is confirmed. If it is, then it will be useful to investigate the mechanisms related to ART techniques or the fertility disorders of parents that could lead to an increased risk for leukemia.

This story was translated from Univadis France, which is part of the Medscape Professional Network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The ASCO Annual Meeting Starts This Week

Article Type
Changed
Thu, 05/30/2024 - 16:51

About 45,000 people will descend on Chicago for the American Society of Clinical Oncology (ASCO) annual meeting, starting May 31.

From its origins in 1964, ASCO’s annual event has grown to become the world’s largest clinical oncology meeting, drawing attendees from across the globe.

More than 7000 abstracts were submitted for this year’s meeting a new record — and over 5000 were selected for presentation.

This year’s chair of the Annual Meeting Education Committee, Thomas William LeBlanc, MD, told us he has been attending the meeting since his training days more than a decade ago.

The event is “just incredibly empowering and energizing,” Dr. LeBlanc said, with opportunities to catch up with old colleagues and meet new ones, learn how far oncology has come and where it’s headed, and hear clinical pearls to take back the clinic.

This year’s theme, selected by ASCO President Lynn M. Schuchter, MD, is “The Art and Science of Cancer Care: From Comfort to Cure.” 

Dr. LeBlanc, a blood cancer specialist at Duke University, Durham, North Carolina, said the theme has been woven throughout the abstract and educational sessions. Most sessions will have at least one presentation related to how we support people — not only “when we cure them but also when we can’t cure them,” he said.

Topics will include patient well-being, comfort measures, and survivorship. And for the first time the plenary session will include a palliative care abstract that addresses whether or not palliative care can be delivered effectively through telemedicine. The session is on Sunday, June 2. 

Other potentially practice changing plenary abstracts tackle immunotherapy combinations for resectable melanoma, perioperative chemotherapy vs neoadjuvant chemoradiation for esophageal cancer, and osimertinib after definitive chemoradiotherapy for unresectable non–small cell lung cancer.

ASCO is piloting a slightly different format for research presentations this year. Instead of starting with context and background, speakers have been asked to present study results upfront as well as repeat them at the end of the talk. The reason behind the tweak is that engagement and retention tend to be better when results are presented upfront, instead of just at the end of a talk.

A popular session — ASCO Voices — has also been given a more central position in the conference: Friday, May 31. In this session, speakers will give short presentations about their personal experiences as providers, researchers, or patients.

ASCO Voices is a relatively recent addition to the meeting that has grown and gotten better. The talks are usually “very powerful narratives” that remind clinicians about “the importance of what they’re doing each day,” Dr. LeBlanc said.

Snippets of the talks will be played while people wait for sessions to begin at the meeting, so attendees who miss the Friday talks can still hear them.

In terms of educational sessions, Dr. LeBlanc highlighted two that might be of general interest to practicing oncologists: A joint ASCO/American Association for Cancer Research session entitled “Drugging the ‘Undruggable’ Target: Successes, Challenges, and the Road Ahead,” on Sunday morning and “Common Sense Oncology: Equity, Value, and Outcomes That Matter” on Monday morning.

As a blood cancer specialist, he said he is particularly interested in the topline results from the ASC4FIRST trial of asciminib, a newer kinase inhibitor, in newly diagnosed chronic myeloid leukemia, presented on Friday.

As in past years, this news organization will be on hand providing coverage with a dedicated team of reporters, editors, and videographers. Stop by our exhibit hall booth — number 26030 — to learn about the tools we offer to support your practice.
 

A version of this article appeared on Medscape.com .

Publications
Topics
Sections

About 45,000 people will descend on Chicago for the American Society of Clinical Oncology (ASCO) annual meeting, starting May 31.

From its origins in 1964, ASCO’s annual event has grown to become the world’s largest clinical oncology meeting, drawing attendees from across the globe.

More than 7000 abstracts were submitted for this year’s meeting a new record — and over 5000 were selected for presentation.

This year’s chair of the Annual Meeting Education Committee, Thomas William LeBlanc, MD, told us he has been attending the meeting since his training days more than a decade ago.

The event is “just incredibly empowering and energizing,” Dr. LeBlanc said, with opportunities to catch up with old colleagues and meet new ones, learn how far oncology has come and where it’s headed, and hear clinical pearls to take back the clinic.

This year’s theme, selected by ASCO President Lynn M. Schuchter, MD, is “The Art and Science of Cancer Care: From Comfort to Cure.” 

Dr. LeBlanc, a blood cancer specialist at Duke University, Durham, North Carolina, said the theme has been woven throughout the abstract and educational sessions. Most sessions will have at least one presentation related to how we support people — not only “when we cure them but also when we can’t cure them,” he said.

Topics will include patient well-being, comfort measures, and survivorship. And for the first time the plenary session will include a palliative care abstract that addresses whether or not palliative care can be delivered effectively through telemedicine. The session is on Sunday, June 2. 

Other potentially practice changing plenary abstracts tackle immunotherapy combinations for resectable melanoma, perioperative chemotherapy vs neoadjuvant chemoradiation for esophageal cancer, and osimertinib after definitive chemoradiotherapy for unresectable non–small cell lung cancer.

ASCO is piloting a slightly different format for research presentations this year. Instead of starting with context and background, speakers have been asked to present study results upfront as well as repeat them at the end of the talk. The reason behind the tweak is that engagement and retention tend to be better when results are presented upfront, instead of just at the end of a talk.

A popular session — ASCO Voices — has also been given a more central position in the conference: Friday, May 31. In this session, speakers will give short presentations about their personal experiences as providers, researchers, or patients.

ASCO Voices is a relatively recent addition to the meeting that has grown and gotten better. The talks are usually “very powerful narratives” that remind clinicians about “the importance of what they’re doing each day,” Dr. LeBlanc said.

Snippets of the talks will be played while people wait for sessions to begin at the meeting, so attendees who miss the Friday talks can still hear them.

In terms of educational sessions, Dr. LeBlanc highlighted two that might be of general interest to practicing oncologists: A joint ASCO/American Association for Cancer Research session entitled “Drugging the ‘Undruggable’ Target: Successes, Challenges, and the Road Ahead,” on Sunday morning and “Common Sense Oncology: Equity, Value, and Outcomes That Matter” on Monday morning.

As a blood cancer specialist, he said he is particularly interested in the topline results from the ASC4FIRST trial of asciminib, a newer kinase inhibitor, in newly diagnosed chronic myeloid leukemia, presented on Friday.

As in past years, this news organization will be on hand providing coverage with a dedicated team of reporters, editors, and videographers. Stop by our exhibit hall booth — number 26030 — to learn about the tools we offer to support your practice.
 

A version of this article appeared on Medscape.com .

About 45,000 people will descend on Chicago for the American Society of Clinical Oncology (ASCO) annual meeting, starting May 31.

From its origins in 1964, ASCO’s annual event has grown to become the world’s largest clinical oncology meeting, drawing attendees from across the globe.

More than 7000 abstracts were submitted for this year’s meeting a new record — and over 5000 were selected for presentation.

This year’s chair of the Annual Meeting Education Committee, Thomas William LeBlanc, MD, told us he has been attending the meeting since his training days more than a decade ago.

The event is “just incredibly empowering and energizing,” Dr. LeBlanc said, with opportunities to catch up with old colleagues and meet new ones, learn how far oncology has come and where it’s headed, and hear clinical pearls to take back the clinic.

This year’s theme, selected by ASCO President Lynn M. Schuchter, MD, is “The Art and Science of Cancer Care: From Comfort to Cure.” 

Dr. LeBlanc, a blood cancer specialist at Duke University, Durham, North Carolina, said the theme has been woven throughout the abstract and educational sessions. Most sessions will have at least one presentation related to how we support people — not only “when we cure them but also when we can’t cure them,” he said.

Topics will include patient well-being, comfort measures, and survivorship. And for the first time the plenary session will include a palliative care abstract that addresses whether or not palliative care can be delivered effectively through telemedicine. The session is on Sunday, June 2. 

Other potentially practice changing plenary abstracts tackle immunotherapy combinations for resectable melanoma, perioperative chemotherapy vs neoadjuvant chemoradiation for esophageal cancer, and osimertinib after definitive chemoradiotherapy for unresectable non–small cell lung cancer.

ASCO is piloting a slightly different format for research presentations this year. Instead of starting with context and background, speakers have been asked to present study results upfront as well as repeat them at the end of the talk. The reason behind the tweak is that engagement and retention tend to be better when results are presented upfront, instead of just at the end of a talk.

A popular session — ASCO Voices — has also been given a more central position in the conference: Friday, May 31. In this session, speakers will give short presentations about their personal experiences as providers, researchers, or patients.

ASCO Voices is a relatively recent addition to the meeting that has grown and gotten better. The talks are usually “very powerful narratives” that remind clinicians about “the importance of what they’re doing each day,” Dr. LeBlanc said.

Snippets of the talks will be played while people wait for sessions to begin at the meeting, so attendees who miss the Friday talks can still hear them.

In terms of educational sessions, Dr. LeBlanc highlighted two that might be of general interest to practicing oncologists: A joint ASCO/American Association for Cancer Research session entitled “Drugging the ‘Undruggable’ Target: Successes, Challenges, and the Road Ahead,” on Sunday morning and “Common Sense Oncology: Equity, Value, and Outcomes That Matter” on Monday morning.

As a blood cancer specialist, he said he is particularly interested in the topline results from the ASC4FIRST trial of asciminib, a newer kinase inhibitor, in newly diagnosed chronic myeloid leukemia, presented on Friday.

As in past years, this news organization will be on hand providing coverage with a dedicated team of reporters, editors, and videographers. Stop by our exhibit hall booth — number 26030 — to learn about the tools we offer to support your practice.
 

A version of this article appeared on Medscape.com .

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ASTRO Releases New EBRT Guideline for Symptomatic Bone Mets

Article Type
Changed
Wed, 05/29/2024 - 16:28

A new clinical practice guideline by the American Society for Radiation Oncology (ASTRO) steers use of external beam radiation therapy (EBRT) for the palliation of symptomatic bone metastases, including recommendations concerning pain management and quality of life.

The guideline was needed to update previous recommendations and incorporate new high-quality evidence for the management of symptomatic bone metastases, Sara Alcorn, MD, PhD, of the University of Minnesota, Minneapolis, and colleagues wrote in Practical Radiation Oncology.

The focus was on the efficacy of EBRT in reducing pain, improving skeletal function, and enhancing quality of life, they wrote in the clinical practice guideline.

In developing their recommendations, the ASTRO task force reviewed evidence from 53 randomized controlled trials (RCTs) and 31 nonrandomized studies, and considered clinical experience.
 

Indications for Palliative Radiation

EBRT is strongly recommended for reducing pain from osseous metastasis and improving ambulatory status, sphincter function, and reducing pain in patients with spinal metastases causing compression of the spinal cord or cauda equina.

For patients with symptomatic bone metastases and an anticipated life expectancy of at least 4 weeks, EBRT is conditionally recommended to improve quality of life.

Implementation of other Treatments Alongside Palliative Radiation

Instead of RT alone, surgery with postoperative RT is conditionally recommended for patients with compression of the spinal cord or cauda equina.

Postoperative RT is strongly recommended for patients who have undergone surgery for non-spine bone metastases or spine metastases without involving spinal cord or cauda equina compression.

For patients with spinal bone metastases compressing the spinal cord or cauda equina, combining RT with dexamethasone is strongly recommended over RT alone.

Techniques, Dose-Fractionation, and Dose-Constraints for Initial Palliative Radiation

For patients with symptomatic bone metastases undergoing conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 3000 cGy in 10 fractions.

For patients with spinal bone metastases causing compression of the spinal cord or cauda equina who are not candidates for initial surgical decompression and are treated with conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 1600 cGy in 2 fractions, 2000 cGy in 5 fractions, or 3000 cGy in 10 fractions.

When selecting dose-fractionation, consider patient and disease factors such as prognosis and radiosensitivity, the authors wrote.

Highly conformal planning and delivery techniques, such as intensity-modulated radiation therapy, are conditionally recommended for patients with spinal bone metastases compressing the spinal cord or cauda equina who are receiving dose-escalated palliative RT.

The strongly recommended stereotactic body radiotherapy (SBRT) doses for patients with symptomatic bone metastases are 1200 to 1600 cGy in 1 fraction for non-spine metastases and 2400 cGy in 2 fractions for spine metastases. Other established SBRT dose and fractionation regimens with similar biologically effective doses may be considered based on patient tumor characteristics, normal tissue factors, and physician experience.

For patients with symptomatic bone metastases who have an ECOG PS of 0-2, are not undergoing surgical intervention, and have no neurological symptoms, SBRT is conditionally recommended over conventional palliative RT. Other factors to consider include life expectancy, tumor radiosensitivity, and metastatic disease burden, the guideline says.
 

 

 

Techniques, Dose-Fractionation, and Dose-Constraints for Palliative Reirradiation

For patients with spinal bone metastases requiring reirradiation to the same site, the strongly recommended conventional palliative RT regimens are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 2000 cGy in 8 fractions. When determining the RT dose-fractionation, consider the prior RT dose, time interval, and total spinal cord tolerance, the guideline says.

Treatment with SBRT is conditionally recommended for patients with spinal bone metastases needing reirradiation at the same site. When determining if SBRT is appropriate, consider patient factors such as urgency of treatment, prognosis, and radio-resistance. In addition, consider the prior RT dose, time interval, and total spinal cord tolerance when determining the RT dose-fractionation, the authors say.

The strongly recommended options for patients with symptomatic non-spine bone metastases needing reirradiation at the same site are single-fraction RT (800 cGy in 1 fraction) or multifraction conventional palliative RT (2000 cGy in 5 fractions or 2400 cGy in 6 fractions).
 

Impact of Techniques and Dose-fractionation on Quality of Life and Toxicity

For patients with bone metastases undergoing palliative radiation, it is strongly recommended to use a shared decision-making approach to determine the dose, fractionation, and supportive measures to optimize quality of life.

“Based on published data, the ASTRO task force’s recommendations inform best clinical practices on palliative RT for symptomatic bone metastases,” the guideline panelists said.

Limitations

While the guideline provides comprehensive recommendations, the panelists underscored the importance of individualized treatment approaches. Future research is needed to address gaps in evidence, particularly regarding advanced RT techniques and reirradiation strategies.

Guideline development was funded by ASTRO, with the systematic evidence review funded by the Patient-Centered Outcomes Research Institute. The panelists disclosed relationships with AstraZeneca, Elekta, Teladoc, and others.

Publications
Topics
Sections

A new clinical practice guideline by the American Society for Radiation Oncology (ASTRO) steers use of external beam radiation therapy (EBRT) for the palliation of symptomatic bone metastases, including recommendations concerning pain management and quality of life.

The guideline was needed to update previous recommendations and incorporate new high-quality evidence for the management of symptomatic bone metastases, Sara Alcorn, MD, PhD, of the University of Minnesota, Minneapolis, and colleagues wrote in Practical Radiation Oncology.

The focus was on the efficacy of EBRT in reducing pain, improving skeletal function, and enhancing quality of life, they wrote in the clinical practice guideline.

In developing their recommendations, the ASTRO task force reviewed evidence from 53 randomized controlled trials (RCTs) and 31 nonrandomized studies, and considered clinical experience.
 

Indications for Palliative Radiation

EBRT is strongly recommended for reducing pain from osseous metastasis and improving ambulatory status, sphincter function, and reducing pain in patients with spinal metastases causing compression of the spinal cord or cauda equina.

For patients with symptomatic bone metastases and an anticipated life expectancy of at least 4 weeks, EBRT is conditionally recommended to improve quality of life.

Implementation of other Treatments Alongside Palliative Radiation

Instead of RT alone, surgery with postoperative RT is conditionally recommended for patients with compression of the spinal cord or cauda equina.

Postoperative RT is strongly recommended for patients who have undergone surgery for non-spine bone metastases or spine metastases without involving spinal cord or cauda equina compression.

For patients with spinal bone metastases compressing the spinal cord or cauda equina, combining RT with dexamethasone is strongly recommended over RT alone.

Techniques, Dose-Fractionation, and Dose-Constraints for Initial Palliative Radiation

For patients with symptomatic bone metastases undergoing conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 3000 cGy in 10 fractions.

For patients with spinal bone metastases causing compression of the spinal cord or cauda equina who are not candidates for initial surgical decompression and are treated with conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 1600 cGy in 2 fractions, 2000 cGy in 5 fractions, or 3000 cGy in 10 fractions.

When selecting dose-fractionation, consider patient and disease factors such as prognosis and radiosensitivity, the authors wrote.

Highly conformal planning and delivery techniques, such as intensity-modulated radiation therapy, are conditionally recommended for patients with spinal bone metastases compressing the spinal cord or cauda equina who are receiving dose-escalated palliative RT.

The strongly recommended stereotactic body radiotherapy (SBRT) doses for patients with symptomatic bone metastases are 1200 to 1600 cGy in 1 fraction for non-spine metastases and 2400 cGy in 2 fractions for spine metastases. Other established SBRT dose and fractionation regimens with similar biologically effective doses may be considered based on patient tumor characteristics, normal tissue factors, and physician experience.

For patients with symptomatic bone metastases who have an ECOG PS of 0-2, are not undergoing surgical intervention, and have no neurological symptoms, SBRT is conditionally recommended over conventional palliative RT. Other factors to consider include life expectancy, tumor radiosensitivity, and metastatic disease burden, the guideline says.
 

 

 

Techniques, Dose-Fractionation, and Dose-Constraints for Palliative Reirradiation

For patients with spinal bone metastases requiring reirradiation to the same site, the strongly recommended conventional palliative RT regimens are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 2000 cGy in 8 fractions. When determining the RT dose-fractionation, consider the prior RT dose, time interval, and total spinal cord tolerance, the guideline says.

Treatment with SBRT is conditionally recommended for patients with spinal bone metastases needing reirradiation at the same site. When determining if SBRT is appropriate, consider patient factors such as urgency of treatment, prognosis, and radio-resistance. In addition, consider the prior RT dose, time interval, and total spinal cord tolerance when determining the RT dose-fractionation, the authors say.

The strongly recommended options for patients with symptomatic non-spine bone metastases needing reirradiation at the same site are single-fraction RT (800 cGy in 1 fraction) or multifraction conventional palliative RT (2000 cGy in 5 fractions or 2400 cGy in 6 fractions).
 

Impact of Techniques and Dose-fractionation on Quality of Life and Toxicity

For patients with bone metastases undergoing palliative radiation, it is strongly recommended to use a shared decision-making approach to determine the dose, fractionation, and supportive measures to optimize quality of life.

“Based on published data, the ASTRO task force’s recommendations inform best clinical practices on palliative RT for symptomatic bone metastases,” the guideline panelists said.

Limitations

While the guideline provides comprehensive recommendations, the panelists underscored the importance of individualized treatment approaches. Future research is needed to address gaps in evidence, particularly regarding advanced RT techniques and reirradiation strategies.

Guideline development was funded by ASTRO, with the systematic evidence review funded by the Patient-Centered Outcomes Research Institute. The panelists disclosed relationships with AstraZeneca, Elekta, Teladoc, and others.

A new clinical practice guideline by the American Society for Radiation Oncology (ASTRO) steers use of external beam radiation therapy (EBRT) for the palliation of symptomatic bone metastases, including recommendations concerning pain management and quality of life.

The guideline was needed to update previous recommendations and incorporate new high-quality evidence for the management of symptomatic bone metastases, Sara Alcorn, MD, PhD, of the University of Minnesota, Minneapolis, and colleagues wrote in Practical Radiation Oncology.

The focus was on the efficacy of EBRT in reducing pain, improving skeletal function, and enhancing quality of life, they wrote in the clinical practice guideline.

In developing their recommendations, the ASTRO task force reviewed evidence from 53 randomized controlled trials (RCTs) and 31 nonrandomized studies, and considered clinical experience.
 

Indications for Palliative Radiation

EBRT is strongly recommended for reducing pain from osseous metastasis and improving ambulatory status, sphincter function, and reducing pain in patients with spinal metastases causing compression of the spinal cord or cauda equina.

For patients with symptomatic bone metastases and an anticipated life expectancy of at least 4 weeks, EBRT is conditionally recommended to improve quality of life.

Implementation of other Treatments Alongside Palliative Radiation

Instead of RT alone, surgery with postoperative RT is conditionally recommended for patients with compression of the spinal cord or cauda equina.

Postoperative RT is strongly recommended for patients who have undergone surgery for non-spine bone metastases or spine metastases without involving spinal cord or cauda equina compression.

For patients with spinal bone metastases compressing the spinal cord or cauda equina, combining RT with dexamethasone is strongly recommended over RT alone.

Techniques, Dose-Fractionation, and Dose-Constraints for Initial Palliative Radiation

For patients with symptomatic bone metastases undergoing conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 3000 cGy in 10 fractions.

For patients with spinal bone metastases causing compression of the spinal cord or cauda equina who are not candidates for initial surgical decompression and are treated with conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 1600 cGy in 2 fractions, 2000 cGy in 5 fractions, or 3000 cGy in 10 fractions.

When selecting dose-fractionation, consider patient and disease factors such as prognosis and radiosensitivity, the authors wrote.

Highly conformal planning and delivery techniques, such as intensity-modulated radiation therapy, are conditionally recommended for patients with spinal bone metastases compressing the spinal cord or cauda equina who are receiving dose-escalated palliative RT.

The strongly recommended stereotactic body radiotherapy (SBRT) doses for patients with symptomatic bone metastases are 1200 to 1600 cGy in 1 fraction for non-spine metastases and 2400 cGy in 2 fractions for spine metastases. Other established SBRT dose and fractionation regimens with similar biologically effective doses may be considered based on patient tumor characteristics, normal tissue factors, and physician experience.

For patients with symptomatic bone metastases who have an ECOG PS of 0-2, are not undergoing surgical intervention, and have no neurological symptoms, SBRT is conditionally recommended over conventional palliative RT. Other factors to consider include life expectancy, tumor radiosensitivity, and metastatic disease burden, the guideline says.
 

 

 

Techniques, Dose-Fractionation, and Dose-Constraints for Palliative Reirradiation

For patients with spinal bone metastases requiring reirradiation to the same site, the strongly recommended conventional palliative RT regimens are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 2000 cGy in 8 fractions. When determining the RT dose-fractionation, consider the prior RT dose, time interval, and total spinal cord tolerance, the guideline says.

Treatment with SBRT is conditionally recommended for patients with spinal bone metastases needing reirradiation at the same site. When determining if SBRT is appropriate, consider patient factors such as urgency of treatment, prognosis, and radio-resistance. In addition, consider the prior RT dose, time interval, and total spinal cord tolerance when determining the RT dose-fractionation, the authors say.

The strongly recommended options for patients with symptomatic non-spine bone metastases needing reirradiation at the same site are single-fraction RT (800 cGy in 1 fraction) or multifraction conventional palliative RT (2000 cGy in 5 fractions or 2400 cGy in 6 fractions).
 

Impact of Techniques and Dose-fractionation on Quality of Life and Toxicity

For patients with bone metastases undergoing palliative radiation, it is strongly recommended to use a shared decision-making approach to determine the dose, fractionation, and supportive measures to optimize quality of life.

“Based on published data, the ASTRO task force’s recommendations inform best clinical practices on palliative RT for symptomatic bone metastases,” the guideline panelists said.

Limitations

While the guideline provides comprehensive recommendations, the panelists underscored the importance of individualized treatment approaches. Future research is needed to address gaps in evidence, particularly regarding advanced RT techniques and reirradiation strategies.

Guideline development was funded by ASTRO, with the systematic evidence review funded by the Patient-Centered Outcomes Research Institute. The panelists disclosed relationships with AstraZeneca, Elekta, Teladoc, and others.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM PRACTICAL RADIATION ONCOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Obesity and Cancer: Untangling a Complex Web

Article Type
Changed
Tue, 05/28/2024 - 15:41

 

According to the Centers for Disease Control and Prevention (CDC), over 684,000 Americans are diagnosed with an “obesity-associated” cancer each year.

The incidence of many of these cancers has been rising in recent years, particularly among younger people — a trend that sits in contrast with the overall decline in cancers with no established relationship to excess weight, such as lung and skin cancers. 

Is obesity the new smoking? Not exactly.

Tracing a direct line between excess fat and cancer is much less clear-cut than it is with tobacco. While about 42% of cancers — including common ones such as colorectal and postmenopausal breast cancers — are considered obesity-related, only about 8% of incident cancers are attributed to excess body weight. People often develop those diseases regardless of weight.

Although plenty of evidence points to excess body fat as a cancer risk factor, it’s unclear at what point excess weight has an effect. Is gaining weight later in life, for instance, better or worse for cancer risk than being overweight or obese from a young age?

There’s another glaring knowledge gap: Does losing weight at some point in adulthood change the picture? In other words, how many of those 684,000 diagnoses might have been prevented if people shed excess pounds?

When it comes to weight and cancer risk, “there’s a lot we don’t know,” said Jennifer W. Bea, PhD, associate professor, health promotion sciences, University of Arizona, Tucson.

A Consistent but Complicated Relationship

Given the growing incidence of obesity — which currently affects about 42% of US adults and 20% of children and teenagers — it’s no surprise that many studies have delved into the potential effects of excess weight on cancer rates.

Although virtually all the evidence comes from large cohort studies, leaving the cause-effect question open, certain associations keep showing up.

“What we know is that, consistently, a higher body mass index [BMI] — particularly in the obese category — leads to a higher risk of multiple cancers,” said Jeffrey A. Meyerhardt, MD, MPH, codirector, Colon and Rectal Cancer Center, Dana-Farber Cancer Institute, Boston.

In a widely cited report published in The New England Journal of Medicine in 2016, the International Agency for Research on Cancer (IARC) analyzed over 1000 epidemiologic studies on body fat and cancer. The agency pointed to over a dozen cancers, including some of the most common and deadly, linked to excess body weight.

That list includes esophageal adenocarcinoma and endometrial cancer — associated with the highest risk — along with kidney, liver, stomach (gastric cardia), pancreatic, colorectal, postmenopausal breast, gallbladder, ovarian, and thyroid cancers, plus multiple myeloma and meningioma. There’s also “limited” evidence linking excess weight to additional cancer types, including aggressive prostate cancer and certain head and neck cancers.

At the same time, Dr. Meyerhardt said, many of those same cancers are also associated with issues that lead to, or coexist with, overweight and obesity, including poor diet, lack of exercise, and metabolic conditions such as diabetes. 

It’s a complicated web, and it’s likely, Dr. Meyerhardt said, that high BMI both directly affects cancer risk and is part of a “causal pathway” of other factors that do.

Regarding direct effects, preclinical research has pointed to multiple ways in which excess body fat could contribute to cancer, said Karen M. Basen-Engquist, PhD, MPH, professor, Division of Cancer Prevention and Population Services, The University of Texas MD Anderson Cancer Center, Houston.

One broad mechanism to help explain the obesity-cancer link is chronic systemic inflammation because excess fat tissue can raise levels of substances in the body, such as tumor necrosis factor alpha and interleukin 6, which fuel inflammation. Excess fat also contributes to hyperinsulinemia — too much insulin in the blood — which can help promote the growth and spread of tumor cells. 

But the underlying reasons also appear to vary by cancer type, Dr. Basen-Engquist said. With hormonally driven cancer types, such as breast and endometrial, excess body fat may alter hormone levels in ways that spur tumor growth. Extra fat tissue may, for example, convert androgens into estrogens, which could help feed estrogen-dependent tumors.

That, Dr. Basen-Engquist noted, could be why excess weight is associated with postmenopausal, not premenopausal, breast cancer: Before menopause, body fat is a relatively minor contributor to estrogen levels but becomes more important after menopause.

 

 

How Big Is the Effect?

While more than a dozen cancers have been consistently linked to excess weight, the strength of those associations varies considerably. 

Endometrial and esophageal cancers are two that stand out. In the 2016 IARC analysis, people with severe obesity had a seven-times greater risk for endometrial cancer and 4.8-times greater risk for esophageal adenocarcinoma vs people with a normal BMI.

With other cancers, the risk increases for those with severe obesity compared with a normal BMI were far more modest: 10% for ovarian cancer, 30% for colorectal cancer, and 80% for kidney and stomach cancers, for example. For postmenopausal breast cancer, every five-unit increase in BMI was associated with a 10% relative risk increase.

A 2018 study from the American Cancer Society, which attempted to estimate the proportion of cancers in the United States attributable to modifiable risk factors — including alcohol consumption, ultraviolet rays exposure, and physical inactivity — found that smoking accounted for the highest proportion of cancer cases by a wide margin (19%), but excess weight came in second (7.8%).

Again, weight appeared to play a bigger role in certain cancers than others: An estimated 60% of endometrial cancers were linked to excess weight, as were roughly one third of esophageal, kidney, and liver cancers. At the other end of the spectrum, just over 11% of breast, 5% of colorectal, and 4% of ovarian cancers were attributable to excess weight.

Even at the lower end, those rates could make a big difference on the population level, especially for groups with higher rates of obesity.

CDC data show that obesity-related cancers are rising among women younger than 50 years, most rapidly among Hispanic women, and some less common obesity-related cancers, such as stomach, thyroid and pancreatic, are also rising among Black individuals and Hispanic Americans.

Obesity may be one reason for growing cancer disparities, said Leah Ferrucci, PhD, MPH, assistant professor, epidemiology, Yale School of Public Health, New Haven, Connecticut. But, she added, the evidence is limited because Black individuals and Hispanic Americans are understudied.

When Do Extra Pounds Matter?

When it comes to cancer risk, at what point in life does excess weight, or weight gain, matter? Is the standard weight gain in middle age, for instance, as hazardous as being overweight or obese from a young age?

Some evidence suggests there’s no “safe” time for putting on excess pounds.

A recent meta-analysis concluded that weight gain at any point after age 18 years is associated with incremental increases in the risk for postmenopausal breast cancer. A 2023 study in JAMA Network Open found a similar pattern with colorectal and other gastrointestinal cancers: People who had sustained overweight or obesity from age 20 years through middle age faced an increased risk of developing those cancers after age 55 years. 

The timing of weight gain didn’t seem to matter either. The same elevated risk held among people who were normal weight in their younger years but became overweight after age 55 years.

Those studies focused on later-onset disease. But, in recent years, experts have tracked a troubling rise in early-onset cancers — those diagnosed before age 50 years — particularly gastrointestinal cancers. 

An obvious question, Dr. Meyerhardt said, is whether the growing prevalence of obesity among young people is partly to blame.

There’s some data to support that, he said. An analysis from the Nurses’ Health Study II found that women with obesity had double the risk for early-onset colorectal cancer as those with a normal BMI. And every 5-kg increase in weight after age 18 years was associated with a 9% increase in colorectal cancer risk.

But while obesity trends probably partly explain the rise in early-onset cancers, there is likely more to the story, Dr. Meyerhardt said.

“I think all of us who see an increasing number of patients under 50 with colorectal cancer know there’s a fair number who do not fit that [high BMI] profile,” he said. “There’s a fair number over 50 who don’t either.”

 

 

Does Weight Loss Help?

With all the evidence pointing to high BMI as a cancer risk factor, a logical conclusion is that weight loss should reduce that excess risk. However, Dr. Bea said, there’s actually little data to support that, and what exists comes from observational studies.

Some research has focused on people who had substantial weight loss after bariatric surgery, with encouraging results. A study published in JAMA found that among 5053 people who underwent bariatric surgery, 2.9% developed an obesity-related cancer over 10 years compared with 4.9% in the nonsurgery group.

Most people, however, aim for less dramatic weight loss, with the help of diet and exercise or sometimes medication. Some evidence shows that a modest degree of weight loss may lower the risks for postmenopausal breast and endometrial cancers. 

A 2020 pooled analysis found, for instance, that among women aged ≥ 50 years, those who lost as little as 2.0-4.5 kg, or 4.4-10.0 pounds, and kept it off for 10 years had a lower risk for breast cancer than women whose weight remained stable. And losing more weight — 9 kg, or about 20 pounds, or more — was even better for lowering cancer risk.

But other research suggests the opposite. A recent analysis found that people who lost weight within the past 2 years through diet and exercise had a higher risk for a range of cancers compared with those who did not lose weight. Overall, though, the increased risk was quite low.

Whatever the research does, or doesn’t, show about weight and cancer risk, Dr. Basen-Engquist said, it’s important that risk factors, obesity and otherwise, aren’t “used as blame tools.”

“With obesity, behavior certainly plays into it,” she said. “But there are so many influences on our behavior that are socially determined.”

Both Dr. Basen-Engquist and Dr. Meyerhardt said it’s important for clinicians to consider the individual in front of them and for everyone to set realistic expectations. 

People with obesity should not feel they have to become thin to be healthier, and no one has to leap from being sedentary to exercising several hours a week

“We don’t want patients to feel that if they don’t get to a stated goal in a guideline, it’s all for naught,” Dr. Meyerhardt said.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

According to the Centers for Disease Control and Prevention (CDC), over 684,000 Americans are diagnosed with an “obesity-associated” cancer each year.

The incidence of many of these cancers has been rising in recent years, particularly among younger people — a trend that sits in contrast with the overall decline in cancers with no established relationship to excess weight, such as lung and skin cancers. 

Is obesity the new smoking? Not exactly.

Tracing a direct line between excess fat and cancer is much less clear-cut than it is with tobacco. While about 42% of cancers — including common ones such as colorectal and postmenopausal breast cancers — are considered obesity-related, only about 8% of incident cancers are attributed to excess body weight. People often develop those diseases regardless of weight.

Although plenty of evidence points to excess body fat as a cancer risk factor, it’s unclear at what point excess weight has an effect. Is gaining weight later in life, for instance, better or worse for cancer risk than being overweight or obese from a young age?

There’s another glaring knowledge gap: Does losing weight at some point in adulthood change the picture? In other words, how many of those 684,000 diagnoses might have been prevented if people shed excess pounds?

When it comes to weight and cancer risk, “there’s a lot we don’t know,” said Jennifer W. Bea, PhD, associate professor, health promotion sciences, University of Arizona, Tucson.

A Consistent but Complicated Relationship

Given the growing incidence of obesity — which currently affects about 42% of US adults and 20% of children and teenagers — it’s no surprise that many studies have delved into the potential effects of excess weight on cancer rates.

Although virtually all the evidence comes from large cohort studies, leaving the cause-effect question open, certain associations keep showing up.

“What we know is that, consistently, a higher body mass index [BMI] — particularly in the obese category — leads to a higher risk of multiple cancers,” said Jeffrey A. Meyerhardt, MD, MPH, codirector, Colon and Rectal Cancer Center, Dana-Farber Cancer Institute, Boston.

In a widely cited report published in The New England Journal of Medicine in 2016, the International Agency for Research on Cancer (IARC) analyzed over 1000 epidemiologic studies on body fat and cancer. The agency pointed to over a dozen cancers, including some of the most common and deadly, linked to excess body weight.

That list includes esophageal adenocarcinoma and endometrial cancer — associated with the highest risk — along with kidney, liver, stomach (gastric cardia), pancreatic, colorectal, postmenopausal breast, gallbladder, ovarian, and thyroid cancers, plus multiple myeloma and meningioma. There’s also “limited” evidence linking excess weight to additional cancer types, including aggressive prostate cancer and certain head and neck cancers.

At the same time, Dr. Meyerhardt said, many of those same cancers are also associated with issues that lead to, or coexist with, overweight and obesity, including poor diet, lack of exercise, and metabolic conditions such as diabetes. 

It’s a complicated web, and it’s likely, Dr. Meyerhardt said, that high BMI both directly affects cancer risk and is part of a “causal pathway” of other factors that do.

Regarding direct effects, preclinical research has pointed to multiple ways in which excess body fat could contribute to cancer, said Karen M. Basen-Engquist, PhD, MPH, professor, Division of Cancer Prevention and Population Services, The University of Texas MD Anderson Cancer Center, Houston.

One broad mechanism to help explain the obesity-cancer link is chronic systemic inflammation because excess fat tissue can raise levels of substances in the body, such as tumor necrosis factor alpha and interleukin 6, which fuel inflammation. Excess fat also contributes to hyperinsulinemia — too much insulin in the blood — which can help promote the growth and spread of tumor cells. 

But the underlying reasons also appear to vary by cancer type, Dr. Basen-Engquist said. With hormonally driven cancer types, such as breast and endometrial, excess body fat may alter hormone levels in ways that spur tumor growth. Extra fat tissue may, for example, convert androgens into estrogens, which could help feed estrogen-dependent tumors.

That, Dr. Basen-Engquist noted, could be why excess weight is associated with postmenopausal, not premenopausal, breast cancer: Before menopause, body fat is a relatively minor contributor to estrogen levels but becomes more important after menopause.

 

 

How Big Is the Effect?

While more than a dozen cancers have been consistently linked to excess weight, the strength of those associations varies considerably. 

Endometrial and esophageal cancers are two that stand out. In the 2016 IARC analysis, people with severe obesity had a seven-times greater risk for endometrial cancer and 4.8-times greater risk for esophageal adenocarcinoma vs people with a normal BMI.

With other cancers, the risk increases for those with severe obesity compared with a normal BMI were far more modest: 10% for ovarian cancer, 30% for colorectal cancer, and 80% for kidney and stomach cancers, for example. For postmenopausal breast cancer, every five-unit increase in BMI was associated with a 10% relative risk increase.

A 2018 study from the American Cancer Society, which attempted to estimate the proportion of cancers in the United States attributable to modifiable risk factors — including alcohol consumption, ultraviolet rays exposure, and physical inactivity — found that smoking accounted for the highest proportion of cancer cases by a wide margin (19%), but excess weight came in second (7.8%).

Again, weight appeared to play a bigger role in certain cancers than others: An estimated 60% of endometrial cancers were linked to excess weight, as were roughly one third of esophageal, kidney, and liver cancers. At the other end of the spectrum, just over 11% of breast, 5% of colorectal, and 4% of ovarian cancers were attributable to excess weight.

Even at the lower end, those rates could make a big difference on the population level, especially for groups with higher rates of obesity.

CDC data show that obesity-related cancers are rising among women younger than 50 years, most rapidly among Hispanic women, and some less common obesity-related cancers, such as stomach, thyroid and pancreatic, are also rising among Black individuals and Hispanic Americans.

Obesity may be one reason for growing cancer disparities, said Leah Ferrucci, PhD, MPH, assistant professor, epidemiology, Yale School of Public Health, New Haven, Connecticut. But, she added, the evidence is limited because Black individuals and Hispanic Americans are understudied.

When Do Extra Pounds Matter?

When it comes to cancer risk, at what point in life does excess weight, or weight gain, matter? Is the standard weight gain in middle age, for instance, as hazardous as being overweight or obese from a young age?

Some evidence suggests there’s no “safe” time for putting on excess pounds.

A recent meta-analysis concluded that weight gain at any point after age 18 years is associated with incremental increases in the risk for postmenopausal breast cancer. A 2023 study in JAMA Network Open found a similar pattern with colorectal and other gastrointestinal cancers: People who had sustained overweight or obesity from age 20 years through middle age faced an increased risk of developing those cancers after age 55 years. 

The timing of weight gain didn’t seem to matter either. The same elevated risk held among people who were normal weight in their younger years but became overweight after age 55 years.

Those studies focused on later-onset disease. But, in recent years, experts have tracked a troubling rise in early-onset cancers — those diagnosed before age 50 years — particularly gastrointestinal cancers. 

An obvious question, Dr. Meyerhardt said, is whether the growing prevalence of obesity among young people is partly to blame.

There’s some data to support that, he said. An analysis from the Nurses’ Health Study II found that women with obesity had double the risk for early-onset colorectal cancer as those with a normal BMI. And every 5-kg increase in weight after age 18 years was associated with a 9% increase in colorectal cancer risk.

But while obesity trends probably partly explain the rise in early-onset cancers, there is likely more to the story, Dr. Meyerhardt said.

“I think all of us who see an increasing number of patients under 50 with colorectal cancer know there’s a fair number who do not fit that [high BMI] profile,” he said. “There’s a fair number over 50 who don’t either.”

 

 

Does Weight Loss Help?

With all the evidence pointing to high BMI as a cancer risk factor, a logical conclusion is that weight loss should reduce that excess risk. However, Dr. Bea said, there’s actually little data to support that, and what exists comes from observational studies.

Some research has focused on people who had substantial weight loss after bariatric surgery, with encouraging results. A study published in JAMA found that among 5053 people who underwent bariatric surgery, 2.9% developed an obesity-related cancer over 10 years compared with 4.9% in the nonsurgery group.

Most people, however, aim for less dramatic weight loss, with the help of diet and exercise or sometimes medication. Some evidence shows that a modest degree of weight loss may lower the risks for postmenopausal breast and endometrial cancers. 

A 2020 pooled analysis found, for instance, that among women aged ≥ 50 years, those who lost as little as 2.0-4.5 kg, or 4.4-10.0 pounds, and kept it off for 10 years had a lower risk for breast cancer than women whose weight remained stable. And losing more weight — 9 kg, or about 20 pounds, or more — was even better for lowering cancer risk.

But other research suggests the opposite. A recent analysis found that people who lost weight within the past 2 years through diet and exercise had a higher risk for a range of cancers compared with those who did not lose weight. Overall, though, the increased risk was quite low.

Whatever the research does, or doesn’t, show about weight and cancer risk, Dr. Basen-Engquist said, it’s important that risk factors, obesity and otherwise, aren’t “used as blame tools.”

“With obesity, behavior certainly plays into it,” she said. “But there are so many influences on our behavior that are socially determined.”

Both Dr. Basen-Engquist and Dr. Meyerhardt said it’s important for clinicians to consider the individual in front of them and for everyone to set realistic expectations. 

People with obesity should not feel they have to become thin to be healthier, and no one has to leap from being sedentary to exercising several hours a week

“We don’t want patients to feel that if they don’t get to a stated goal in a guideline, it’s all for naught,” Dr. Meyerhardt said.

A version of this article appeared on Medscape.com.

 

According to the Centers for Disease Control and Prevention (CDC), over 684,000 Americans are diagnosed with an “obesity-associated” cancer each year.

The incidence of many of these cancers has been rising in recent years, particularly among younger people — a trend that sits in contrast with the overall decline in cancers with no established relationship to excess weight, such as lung and skin cancers. 

Is obesity the new smoking? Not exactly.

Tracing a direct line between excess fat and cancer is much less clear-cut than it is with tobacco. While about 42% of cancers — including common ones such as colorectal and postmenopausal breast cancers — are considered obesity-related, only about 8% of incident cancers are attributed to excess body weight. People often develop those diseases regardless of weight.

Although plenty of evidence points to excess body fat as a cancer risk factor, it’s unclear at what point excess weight has an effect. Is gaining weight later in life, for instance, better or worse for cancer risk than being overweight or obese from a young age?

There’s another glaring knowledge gap: Does losing weight at some point in adulthood change the picture? In other words, how many of those 684,000 diagnoses might have been prevented if people shed excess pounds?

When it comes to weight and cancer risk, “there’s a lot we don’t know,” said Jennifer W. Bea, PhD, associate professor, health promotion sciences, University of Arizona, Tucson.

A Consistent but Complicated Relationship

Given the growing incidence of obesity — which currently affects about 42% of US adults and 20% of children and teenagers — it’s no surprise that many studies have delved into the potential effects of excess weight on cancer rates.

Although virtually all the evidence comes from large cohort studies, leaving the cause-effect question open, certain associations keep showing up.

“What we know is that, consistently, a higher body mass index [BMI] — particularly in the obese category — leads to a higher risk of multiple cancers,” said Jeffrey A. Meyerhardt, MD, MPH, codirector, Colon and Rectal Cancer Center, Dana-Farber Cancer Institute, Boston.

In a widely cited report published in The New England Journal of Medicine in 2016, the International Agency for Research on Cancer (IARC) analyzed over 1000 epidemiologic studies on body fat and cancer. The agency pointed to over a dozen cancers, including some of the most common and deadly, linked to excess body weight.

That list includes esophageal adenocarcinoma and endometrial cancer — associated with the highest risk — along with kidney, liver, stomach (gastric cardia), pancreatic, colorectal, postmenopausal breast, gallbladder, ovarian, and thyroid cancers, plus multiple myeloma and meningioma. There’s also “limited” evidence linking excess weight to additional cancer types, including aggressive prostate cancer and certain head and neck cancers.

At the same time, Dr. Meyerhardt said, many of those same cancers are also associated with issues that lead to, or coexist with, overweight and obesity, including poor diet, lack of exercise, and metabolic conditions such as diabetes. 

It’s a complicated web, and it’s likely, Dr. Meyerhardt said, that high BMI both directly affects cancer risk and is part of a “causal pathway” of other factors that do.

Regarding direct effects, preclinical research has pointed to multiple ways in which excess body fat could contribute to cancer, said Karen M. Basen-Engquist, PhD, MPH, professor, Division of Cancer Prevention and Population Services, The University of Texas MD Anderson Cancer Center, Houston.

One broad mechanism to help explain the obesity-cancer link is chronic systemic inflammation because excess fat tissue can raise levels of substances in the body, such as tumor necrosis factor alpha and interleukin 6, which fuel inflammation. Excess fat also contributes to hyperinsulinemia — too much insulin in the blood — which can help promote the growth and spread of tumor cells. 

But the underlying reasons also appear to vary by cancer type, Dr. Basen-Engquist said. With hormonally driven cancer types, such as breast and endometrial, excess body fat may alter hormone levels in ways that spur tumor growth. Extra fat tissue may, for example, convert androgens into estrogens, which could help feed estrogen-dependent tumors.

That, Dr. Basen-Engquist noted, could be why excess weight is associated with postmenopausal, not premenopausal, breast cancer: Before menopause, body fat is a relatively minor contributor to estrogen levels but becomes more important after menopause.

 

 

How Big Is the Effect?

While more than a dozen cancers have been consistently linked to excess weight, the strength of those associations varies considerably. 

Endometrial and esophageal cancers are two that stand out. In the 2016 IARC analysis, people with severe obesity had a seven-times greater risk for endometrial cancer and 4.8-times greater risk for esophageal adenocarcinoma vs people with a normal BMI.

With other cancers, the risk increases for those with severe obesity compared with a normal BMI were far more modest: 10% for ovarian cancer, 30% for colorectal cancer, and 80% for kidney and stomach cancers, for example. For postmenopausal breast cancer, every five-unit increase in BMI was associated with a 10% relative risk increase.

A 2018 study from the American Cancer Society, which attempted to estimate the proportion of cancers in the United States attributable to modifiable risk factors — including alcohol consumption, ultraviolet rays exposure, and physical inactivity — found that smoking accounted for the highest proportion of cancer cases by a wide margin (19%), but excess weight came in second (7.8%).

Again, weight appeared to play a bigger role in certain cancers than others: An estimated 60% of endometrial cancers were linked to excess weight, as were roughly one third of esophageal, kidney, and liver cancers. At the other end of the spectrum, just over 11% of breast, 5% of colorectal, and 4% of ovarian cancers were attributable to excess weight.

Even at the lower end, those rates could make a big difference on the population level, especially for groups with higher rates of obesity.

CDC data show that obesity-related cancers are rising among women younger than 50 years, most rapidly among Hispanic women, and some less common obesity-related cancers, such as stomach, thyroid and pancreatic, are also rising among Black individuals and Hispanic Americans.

Obesity may be one reason for growing cancer disparities, said Leah Ferrucci, PhD, MPH, assistant professor, epidemiology, Yale School of Public Health, New Haven, Connecticut. But, she added, the evidence is limited because Black individuals and Hispanic Americans are understudied.

When Do Extra Pounds Matter?

When it comes to cancer risk, at what point in life does excess weight, or weight gain, matter? Is the standard weight gain in middle age, for instance, as hazardous as being overweight or obese from a young age?

Some evidence suggests there’s no “safe” time for putting on excess pounds.

A recent meta-analysis concluded that weight gain at any point after age 18 years is associated with incremental increases in the risk for postmenopausal breast cancer. A 2023 study in JAMA Network Open found a similar pattern with colorectal and other gastrointestinal cancers: People who had sustained overweight or obesity from age 20 years through middle age faced an increased risk of developing those cancers after age 55 years. 

The timing of weight gain didn’t seem to matter either. The same elevated risk held among people who were normal weight in their younger years but became overweight after age 55 years.

Those studies focused on later-onset disease. But, in recent years, experts have tracked a troubling rise in early-onset cancers — those diagnosed before age 50 years — particularly gastrointestinal cancers. 

An obvious question, Dr. Meyerhardt said, is whether the growing prevalence of obesity among young people is partly to blame.

There’s some data to support that, he said. An analysis from the Nurses’ Health Study II found that women with obesity had double the risk for early-onset colorectal cancer as those with a normal BMI. And every 5-kg increase in weight after age 18 years was associated with a 9% increase in colorectal cancer risk.

But while obesity trends probably partly explain the rise in early-onset cancers, there is likely more to the story, Dr. Meyerhardt said.

“I think all of us who see an increasing number of patients under 50 with colorectal cancer know there’s a fair number who do not fit that [high BMI] profile,” he said. “There’s a fair number over 50 who don’t either.”

 

 

Does Weight Loss Help?

With all the evidence pointing to high BMI as a cancer risk factor, a logical conclusion is that weight loss should reduce that excess risk. However, Dr. Bea said, there’s actually little data to support that, and what exists comes from observational studies.

Some research has focused on people who had substantial weight loss after bariatric surgery, with encouraging results. A study published in JAMA found that among 5053 people who underwent bariatric surgery, 2.9% developed an obesity-related cancer over 10 years compared with 4.9% in the nonsurgery group.

Most people, however, aim for less dramatic weight loss, with the help of diet and exercise or sometimes medication. Some evidence shows that a modest degree of weight loss may lower the risks for postmenopausal breast and endometrial cancers. 

A 2020 pooled analysis found, for instance, that among women aged ≥ 50 years, those who lost as little as 2.0-4.5 kg, or 4.4-10.0 pounds, and kept it off for 10 years had a lower risk for breast cancer than women whose weight remained stable. And losing more weight — 9 kg, or about 20 pounds, or more — was even better for lowering cancer risk.

But other research suggests the opposite. A recent analysis found that people who lost weight within the past 2 years through diet and exercise had a higher risk for a range of cancers compared with those who did not lose weight. Overall, though, the increased risk was quite low.

Whatever the research does, or doesn’t, show about weight and cancer risk, Dr. Basen-Engquist said, it’s important that risk factors, obesity and otherwise, aren’t “used as blame tools.”

“With obesity, behavior certainly plays into it,” she said. “But there are so many influences on our behavior that are socially determined.”

Both Dr. Basen-Engquist and Dr. Meyerhardt said it’s important for clinicians to consider the individual in front of them and for everyone to set realistic expectations. 

People with obesity should not feel they have to become thin to be healthier, and no one has to leap from being sedentary to exercising several hours a week

“We don’t want patients to feel that if they don’t get to a stated goal in a guideline, it’s all for naught,” Dr. Meyerhardt said.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Urine Test Could Prevent Unnecessary Prostate Biopsies

Article Type
Changed
Tue, 05/28/2024 - 15:42

To date, men undergoing screening through the measurement of prostate-specific antigen (PSA) levels have had a significant reduction in neoplastic mortality. Because of its low specificity, however, this practice often leads to frequent, unnecessary, invasive biopsies and the diagnosis of low-grade, indolent cancer. While guided biopsies with multiparametric MRI can improve the diagnosis of grade 2 prostate cancers, widespread implementation remains challenging. The use of noninvasive biomarkers to stratify the risk for prostate cancer may be a more practical option.

The National Comprehensive Cancer Network proposes a test consisting of six blood and urine biomarkers for all grades of prostate cancer, and it outperforms PSA testing. However, current practice focuses on detecting high-grade cancers. It has been hypothesized that increasing the number of biomarkers by including molecules specifically expressed in aggressive high-grade prostate cancers could improve test accuracy. Based on the identification of new genes that are overexpressed in high-grade cancers, a polymerase chain reaction (PCR) technique targeting 54 candidate markers was used to develop an optimal 18-gene test that could be used before imaging (with MRI) and biopsy and to assess whether the latter procedures are warranted.
 

Development Cohort

In the development cohort (n = 815; median age, 63 years), quantitative PCR (qPCR) analysis of the 54 candidate genes was performed on urine samples that had been prospectively collected before biopsy following a digital rectal examination. Patients with previously diagnosed prostate cancer, abnormal MRI results, and those who had already undergone a prostate biopsy were excluded. Participants’ PSA levels ranged from 3 to 10 ng/mL (median interquartile range [IQR], 5.6 [4.6-7.2] ng/mL). Valid qPCR results were obtained from 761 participants (93.4%). Subsequently, prostate biopsy revealed grade 2 or higher cancer in 293 participants (38.5%).

Thus, a urine test called MyProstateScore 2.0 (MPSA) was developed, with two formulations: MPSA2 and MPSA2+, depending on whether a prostate volume was considered. The final MPSA2 development model included clinical data and 17 of the most informative markers, including nine specific to cancer, which were associated with the KLK3 reference gene.
 

Validation and Analyses

The external validation cohort (n = 813) consisted of participants in the NCI EDRN PCA3 Evaluation trial. Valid qPCR results were obtained from 743 participants, of whom 151 (20.3%) were found to have high-grade prostate cancer.

The median MPS2 score was higher in patients with grade 2 or higher prostate cancer (0.44; IQR, 0.23-0.69) than in those with noncontributory biopsies (0.08; IQR, 0.03-0.19; P < .001) or grade 1 cancer (0.25; IQR, 0.09-0.48; P < .01).

Comparative analyses included PSA, the Prostate Cancer Prevention Trial risk calculator, the Prostate Health Index (PHI), and various previous genetic models. Decision curve analyses quantified the benefit of each biomarker studied. The 151 participants with high-grade prostate cancer had operating curve values ranging from 0.60 for PSA alone to 0.77 for PHI and 0.76 for a two-gene multiplex model. The MPSA model had values of 0.81 and 0.82 for MPSA2+. For a required sensitivity of 95%, the MPS2 model could reduce the rate of unnecessary initial biopsies in the population by 35%-42%, with an impact of 15%-30% for other tests. Among the subgroups analyzed, MPS2 models showed negative predictive values of 95%-99% for grade 2 or higher prostate cancers and 99% for grade 3 or higher tumors.
 

 

 

MPS2 and Competitors

Existing biomarkers have reduced selectivity in detecting high-grade prostate tumors. This lower performance has led to the development of a new urine test including, for the first time, markers specifically overexpressed in high-grade prostate cancer. This new MPS2 test has a sensitivity of 95% for high-grade prostate cancer and a specificity ranging from 35% to 51%, depending on the subgroups. For clinicians, widespread use of MPS2 could greatly reduce the number of unnecessary biopsies while maintaining a high detection rate of grade 2 or higher prostate cancer.

Among patients who have had a negative first biopsy, MPS2 would have a sensitivity of 94.4% and a specificity of 51%, which is much higher than other tests like prostate cancer antigen 3 gene, three-gene model, and MPS. In addition, in patients with grade 1 prostate cancer, urinary markers for high-grade cancer could indicate the existence of a more aggressive tumor requiring increased monitoring.

This study has limitations, however. The ethnic diversity of its population was limited. A few Black men were included, for example. Second, a systematic biopsy was used as the reference, which can increase negative predictive value and decrease positive predictive value. Classification errors may have occurred. Therefore, further studies are needed to confirm these initial results and the long-term positive impact of using MPS2.

In conclusion, an 18-gene urine test seems to be more relevant for diagnosing high-grade prostate cancer than existing tests. It could prevent additional imaging or biopsy examinations in 35%-41% of patients. Therefore, the use of such tests in patients with high PSA levels could reduce the potential risks associated with prostate cancer screening while preserving its long-term benefits.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

To date, men undergoing screening through the measurement of prostate-specific antigen (PSA) levels have had a significant reduction in neoplastic mortality. Because of its low specificity, however, this practice often leads to frequent, unnecessary, invasive biopsies and the diagnosis of low-grade, indolent cancer. While guided biopsies with multiparametric MRI can improve the diagnosis of grade 2 prostate cancers, widespread implementation remains challenging. The use of noninvasive biomarkers to stratify the risk for prostate cancer may be a more practical option.

The National Comprehensive Cancer Network proposes a test consisting of six blood and urine biomarkers for all grades of prostate cancer, and it outperforms PSA testing. However, current practice focuses on detecting high-grade cancers. It has been hypothesized that increasing the number of biomarkers by including molecules specifically expressed in aggressive high-grade prostate cancers could improve test accuracy. Based on the identification of new genes that are overexpressed in high-grade cancers, a polymerase chain reaction (PCR) technique targeting 54 candidate markers was used to develop an optimal 18-gene test that could be used before imaging (with MRI) and biopsy and to assess whether the latter procedures are warranted.
 

Development Cohort

In the development cohort (n = 815; median age, 63 years), quantitative PCR (qPCR) analysis of the 54 candidate genes was performed on urine samples that had been prospectively collected before biopsy following a digital rectal examination. Patients with previously diagnosed prostate cancer, abnormal MRI results, and those who had already undergone a prostate biopsy were excluded. Participants’ PSA levels ranged from 3 to 10 ng/mL (median interquartile range [IQR], 5.6 [4.6-7.2] ng/mL). Valid qPCR results were obtained from 761 participants (93.4%). Subsequently, prostate biopsy revealed grade 2 or higher cancer in 293 participants (38.5%).

Thus, a urine test called MyProstateScore 2.0 (MPSA) was developed, with two formulations: MPSA2 and MPSA2+, depending on whether a prostate volume was considered. The final MPSA2 development model included clinical data and 17 of the most informative markers, including nine specific to cancer, which were associated with the KLK3 reference gene.
 

Validation and Analyses

The external validation cohort (n = 813) consisted of participants in the NCI EDRN PCA3 Evaluation trial. Valid qPCR results were obtained from 743 participants, of whom 151 (20.3%) were found to have high-grade prostate cancer.

The median MPS2 score was higher in patients with grade 2 or higher prostate cancer (0.44; IQR, 0.23-0.69) than in those with noncontributory biopsies (0.08; IQR, 0.03-0.19; P < .001) or grade 1 cancer (0.25; IQR, 0.09-0.48; P < .01).

Comparative analyses included PSA, the Prostate Cancer Prevention Trial risk calculator, the Prostate Health Index (PHI), and various previous genetic models. Decision curve analyses quantified the benefit of each biomarker studied. The 151 participants with high-grade prostate cancer had operating curve values ranging from 0.60 for PSA alone to 0.77 for PHI and 0.76 for a two-gene multiplex model. The MPSA model had values of 0.81 and 0.82 for MPSA2+. For a required sensitivity of 95%, the MPS2 model could reduce the rate of unnecessary initial biopsies in the population by 35%-42%, with an impact of 15%-30% for other tests. Among the subgroups analyzed, MPS2 models showed negative predictive values of 95%-99% for grade 2 or higher prostate cancers and 99% for grade 3 or higher tumors.
 

 

 

MPS2 and Competitors

Existing biomarkers have reduced selectivity in detecting high-grade prostate tumors. This lower performance has led to the development of a new urine test including, for the first time, markers specifically overexpressed in high-grade prostate cancer. This new MPS2 test has a sensitivity of 95% for high-grade prostate cancer and a specificity ranging from 35% to 51%, depending on the subgroups. For clinicians, widespread use of MPS2 could greatly reduce the number of unnecessary biopsies while maintaining a high detection rate of grade 2 or higher prostate cancer.

Among patients who have had a negative first biopsy, MPS2 would have a sensitivity of 94.4% and a specificity of 51%, which is much higher than other tests like prostate cancer antigen 3 gene, three-gene model, and MPS. In addition, in patients with grade 1 prostate cancer, urinary markers for high-grade cancer could indicate the existence of a more aggressive tumor requiring increased monitoring.

This study has limitations, however. The ethnic diversity of its population was limited. A few Black men were included, for example. Second, a systematic biopsy was used as the reference, which can increase negative predictive value and decrease positive predictive value. Classification errors may have occurred. Therefore, further studies are needed to confirm these initial results and the long-term positive impact of using MPS2.

In conclusion, an 18-gene urine test seems to be more relevant for diagnosing high-grade prostate cancer than existing tests. It could prevent additional imaging or biopsy examinations in 35%-41% of patients. Therefore, the use of such tests in patients with high PSA levels could reduce the potential risks associated with prostate cancer screening while preserving its long-term benefits.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

To date, men undergoing screening through the measurement of prostate-specific antigen (PSA) levels have had a significant reduction in neoplastic mortality. Because of its low specificity, however, this practice often leads to frequent, unnecessary, invasive biopsies and the diagnosis of low-grade, indolent cancer. While guided biopsies with multiparametric MRI can improve the diagnosis of grade 2 prostate cancers, widespread implementation remains challenging. The use of noninvasive biomarkers to stratify the risk for prostate cancer may be a more practical option.

The National Comprehensive Cancer Network proposes a test consisting of six blood and urine biomarkers for all grades of prostate cancer, and it outperforms PSA testing. However, current practice focuses on detecting high-grade cancers. It has been hypothesized that increasing the number of biomarkers by including molecules specifically expressed in aggressive high-grade prostate cancers could improve test accuracy. Based on the identification of new genes that are overexpressed in high-grade cancers, a polymerase chain reaction (PCR) technique targeting 54 candidate markers was used to develop an optimal 18-gene test that could be used before imaging (with MRI) and biopsy and to assess whether the latter procedures are warranted.
 

Development Cohort

In the development cohort (n = 815; median age, 63 years), quantitative PCR (qPCR) analysis of the 54 candidate genes was performed on urine samples that had been prospectively collected before biopsy following a digital rectal examination. Patients with previously diagnosed prostate cancer, abnormal MRI results, and those who had already undergone a prostate biopsy were excluded. Participants’ PSA levels ranged from 3 to 10 ng/mL (median interquartile range [IQR], 5.6 [4.6-7.2] ng/mL). Valid qPCR results were obtained from 761 participants (93.4%). Subsequently, prostate biopsy revealed grade 2 or higher cancer in 293 participants (38.5%).

Thus, a urine test called MyProstateScore 2.0 (MPSA) was developed, with two formulations: MPSA2 and MPSA2+, depending on whether a prostate volume was considered. The final MPSA2 development model included clinical data and 17 of the most informative markers, including nine specific to cancer, which were associated with the KLK3 reference gene.
 

Validation and Analyses

The external validation cohort (n = 813) consisted of participants in the NCI EDRN PCA3 Evaluation trial. Valid qPCR results were obtained from 743 participants, of whom 151 (20.3%) were found to have high-grade prostate cancer.

The median MPS2 score was higher in patients with grade 2 or higher prostate cancer (0.44; IQR, 0.23-0.69) than in those with noncontributory biopsies (0.08; IQR, 0.03-0.19; P < .001) or grade 1 cancer (0.25; IQR, 0.09-0.48; P < .01).

Comparative analyses included PSA, the Prostate Cancer Prevention Trial risk calculator, the Prostate Health Index (PHI), and various previous genetic models. Decision curve analyses quantified the benefit of each biomarker studied. The 151 participants with high-grade prostate cancer had operating curve values ranging from 0.60 for PSA alone to 0.77 for PHI and 0.76 for a two-gene multiplex model. The MPSA model had values of 0.81 and 0.82 for MPSA2+. For a required sensitivity of 95%, the MPS2 model could reduce the rate of unnecessary initial biopsies in the population by 35%-42%, with an impact of 15%-30% for other tests. Among the subgroups analyzed, MPS2 models showed negative predictive values of 95%-99% for grade 2 or higher prostate cancers and 99% for grade 3 or higher tumors.
 

 

 

MPS2 and Competitors

Existing biomarkers have reduced selectivity in detecting high-grade prostate tumors. This lower performance has led to the development of a new urine test including, for the first time, markers specifically overexpressed in high-grade prostate cancer. This new MPS2 test has a sensitivity of 95% for high-grade prostate cancer and a specificity ranging from 35% to 51%, depending on the subgroups. For clinicians, widespread use of MPS2 could greatly reduce the number of unnecessary biopsies while maintaining a high detection rate of grade 2 or higher prostate cancer.

Among patients who have had a negative first biopsy, MPS2 would have a sensitivity of 94.4% and a specificity of 51%, which is much higher than other tests like prostate cancer antigen 3 gene, three-gene model, and MPS. In addition, in patients with grade 1 prostate cancer, urinary markers for high-grade cancer could indicate the existence of a more aggressive tumor requiring increased monitoring.

This study has limitations, however. The ethnic diversity of its population was limited. A few Black men were included, for example. Second, a systematic biopsy was used as the reference, which can increase negative predictive value and decrease positive predictive value. Classification errors may have occurred. Therefore, further studies are needed to confirm these initial results and the long-term positive impact of using MPS2.

In conclusion, an 18-gene urine test seems to be more relevant for diagnosing high-grade prostate cancer than existing tests. It could prevent additional imaging or biopsy examinations in 35%-41% of patients. Therefore, the use of such tests in patients with high PSA levels could reduce the potential risks associated with prostate cancer screening while preserving its long-term benefits.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article