Genetic Test Combo May Help Identify Global Development Delay

Article Type
Changed
Tue, 06/18/2024 - 13:04

Using combined genetic testing in early childhood may decrease the misdiagnosis rate for Global Development Delay (GDD) and may help identify intervention targets, a new study suggests.

Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).

“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in JAMA Network Open.

GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.

Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive.
 

Positive Detection Rate of 61%

In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.

The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.

The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).

Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).
 

Dopaminergic Pathway Promising for Treatment

Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.

“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.

However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration.

“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.

The authors reported no relevant financial relationships.

Publications
Topics
Sections

Using combined genetic testing in early childhood may decrease the misdiagnosis rate for Global Development Delay (GDD) and may help identify intervention targets, a new study suggests.

Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).

“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in JAMA Network Open.

GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.

Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive.
 

Positive Detection Rate of 61%

In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.

The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.

The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).

Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).
 

Dopaminergic Pathway Promising for Treatment

Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.

“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.

However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration.

“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.

The authors reported no relevant financial relationships.

Using combined genetic testing in early childhood may decrease the misdiagnosis rate for Global Development Delay (GDD) and may help identify intervention targets, a new study suggests.

Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).

“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in JAMA Network Open.

GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.

Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive.
 

Positive Detection Rate of 61%

In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.

The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.

The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).

Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).
 

Dopaminergic Pathway Promising for Treatment

Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.

“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.

However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration.

“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.

The authors reported no relevant financial relationships.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168443</fileName> <TBEID>0C050994.SIG</TBEID> <TBUniqueIdentifier>MD_0C050994</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Global Development Delay</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240618T111537</QCDate> <firstPublished>20240618T130135</firstPublished> <LastPublished>20240618T130135</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240618T130135</CMSDate> <articleSource>FROM JAMA NETWORK OPEN</articleSource> <facebookInfo/> <meetingNumber/> <byline>Marcia Frellick</byline> <bylineText>MARCIA FRELLICK</bylineText> <bylineFull>MARCIA FRELLICK</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Using combined genetic testing in early childhood may decrease the misdiagnosis rate for Global Development Delay (GDD) and may help identify intervention targe</metaDescription> <articlePDF/> <teaserImage/> <teaser>The combined approach increased detection rates and may save families time and costs.</teaser> <title>Genetic Test Combo May Help Identify Global Development Delay</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>PN</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">25</term> <term>22</term> </publications> <sections> <term>39313</term> <term canonical="true">27970</term> <term>86</term> </sections> <topics> <term canonical="true">257</term> <term>248</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Genetic Test Combo May Help Identify Global Development Delay</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">Using combined genetic testing in early childhood may decrease the misdiagnosis rate for Global Development Delay (GDD) and may help identify intervention targets</span>, a new study suggests.</p> <p>Researchers, led by Jiamei Zhang, MS, Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China, in a multicenter, prospective cohort study enrolled patients ages 12 to 60 months with GDD from six centers in China from July 2020 through August 2023. Participants underwent trio whole exome sequencing (trio-WES) paired with copy number variation sequencing (CNV-seq).<br/><br/>“To the best of our knowledge, this study represents the largest prospective examination of combined genetic testing methods in a GDD cohort,” the authors reported in <em><a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2819556">JAMA Network Open</a></em><span class="Hyperlink">.</span><br/><br/>GDD is a common neurodevelopmental disorder, marked by cognitive impairment, and affects about 1% of children, the paper states. Most children with GDD develop intellectual disability (ID) after 5 years of age, with implications for quality of life, their physical abilities, and social functioning. Early and accurate diagnosis followed by appropriately targeted treatment is critical, but lacking. Researchers note that there is lack of consensus among health care professionals on whether genetic testing is necessary.<br/><br/>Genetics are known to play a significant role in pathogenesis of GDD, but definitive biomarkers have been elusive. <br/><br/></p> <h2>Positive Detection Rate of 61%</h2> <p>In this study, the combined use of trio-WES with CNV-seq in children with early-stage GDD resulted in a positive detection rate of 61%, a significant improvement over performing individual tests, “enhancing the positive detection rate by 18%-40%,” the researchers wrote. The combined approach also saves families time and costs, they note, while leading to more comprehensive genetic analysis and fewer missed diagnoses.</p> <p>The combined approach also addressed the limitations of trio-WES and CNV-seq used alone, the authors wrote. Because of technological constraints, trio-WES may miss 55% of CNV variations, and CNV-seq has a missed diagnosis rate of 3%.<br/><br/>The study included 434 patients with GDD (60% male; average age, 25 months) with diverse degrees of cognitive impairment: mild (23%); moderate (32%); severe (28%); and profound (17%).<br/><br/>Three characteristics were linked with higher likelihood of having genetic variants: Craniofacial abnormalities (odds ratio [OR], 2.27; 95% confidence interval [CI], 1.45-3.56); moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70); and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35).<br/><br/></p> <h2>Dopaminergic Pathway Promising for Treatment</h2> <p>Researchers also discovered that GDD-related genes were primarily enriched in lysosome, dopaminergic synapse, and lysine degradation pathways. Dopaminergic synapse emerged as a significant pathway linked with GDD.</p> <p>“In this cohort study, our findings support the correlation between dopaminergic synapse and cognitive impairment, as substantiated by prior research and animal models. Therefore, targeting the dopaminergic pathway holds promise for treating GDD and ID,” the authors wrote.<br/><br/>However, the authors note in the limitations that they used only a subset of 100 patients with GDD to measure dopamine concentration. <br/><br/>“Expanding the sample size and conducting in vivo and in vitro experiments are necessary steps to verify whether dopamine can be targeted for clinical precision medical intervention in patients with GDD,” they wrote.<br/><br/>The authors reported no relevant financial relationships.<span class="end"/></p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM JAMA NETWORK OPEN

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What Toxic Stress Can Do to Health

Article Type
Changed
Thu, 06/20/2024 - 14:32

We recently shared a clinical case drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs. 
 

The Centers for Disease Control and Prevention published an important monograph on ACEs in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:

  • Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.
  • Establish routine parental work/shift times to optimize cognitive outcomes in children.
  • Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing sexual violence.
  • Facilitate early in-home visitation for at-risk families as well as high-quality childcare.
  • Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.
  • Connect youth to after-school programs featuring caring adults.

But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.

The ACEs Aware initiative in California provides a comprehensive ACE screening clinical workflow to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the pediatric population are “parental depression, severe stress, unhealthy drug use, domestic violence, harsh punishment, [and] food insecurity.” Moreover, a systematic review by Steen and colleagues shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.” 

These exposures are now being investigated for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by “high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.” This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up. 

ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system. 

After the initial clinical assessment, physicians can educate patients about the ways that ACE-associated health conditions are a consequence of toxic stress exposure. From there, physicians should rely on a broader integrated health team, within the health system and the community, to offer clinical interventions and services to mitigate patients’ toxic stress. The ACEs Aware Stress Buster wheel highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which may buffer the negative impact of stressors and contribute to health and resilience

The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. Dubowitz and colleagues suggest ways to successfully incorporate ACE screenings in clinical workflow:

  • Utilize technology to implement a streamlined referral processing/tracking system.
  • Train clinicians to respond competently to positive ACE screens.
  • Gather in-network and community-based resources for patients.

In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient involvement in after-school programs may mitigate toxic stress and prevent the development of an ACE-associated health condition. 

Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

We recently shared a clinical case drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs. 
 

The Centers for Disease Control and Prevention published an important monograph on ACEs in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:

  • Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.
  • Establish routine parental work/shift times to optimize cognitive outcomes in children.
  • Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing sexual violence.
  • Facilitate early in-home visitation for at-risk families as well as high-quality childcare.
  • Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.
  • Connect youth to after-school programs featuring caring adults.

But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.

The ACEs Aware initiative in California provides a comprehensive ACE screening clinical workflow to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the pediatric population are “parental depression, severe stress, unhealthy drug use, domestic violence, harsh punishment, [and] food insecurity.” Moreover, a systematic review by Steen and colleagues shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.” 

These exposures are now being investigated for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by “high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.” This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up. 

ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system. 

After the initial clinical assessment, physicians can educate patients about the ways that ACE-associated health conditions are a consequence of toxic stress exposure. From there, physicians should rely on a broader integrated health team, within the health system and the community, to offer clinical interventions and services to mitigate patients’ toxic stress. The ACEs Aware Stress Buster wheel highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which may buffer the negative impact of stressors and contribute to health and resilience

The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. Dubowitz and colleagues suggest ways to successfully incorporate ACE screenings in clinical workflow:

  • Utilize technology to implement a streamlined referral processing/tracking system.
  • Train clinicians to respond competently to positive ACE screens.
  • Gather in-network and community-based resources for patients.

In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient involvement in after-school programs may mitigate toxic stress and prevent the development of an ACE-associated health condition. 

Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

We recently shared a clinical case drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs. 
 

The Centers for Disease Control and Prevention published an important monograph on ACEs in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:

  • Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.
  • Establish routine parental work/shift times to optimize cognitive outcomes in children.
  • Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing sexual violence.
  • Facilitate early in-home visitation for at-risk families as well as high-quality childcare.
  • Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.
  • Connect youth to after-school programs featuring caring adults.

But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.

The ACEs Aware initiative in California provides a comprehensive ACE screening clinical workflow to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the pediatric population are “parental depression, severe stress, unhealthy drug use, domestic violence, harsh punishment, [and] food insecurity.” Moreover, a systematic review by Steen and colleagues shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.” 

These exposures are now being investigated for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by “high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.” This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up. 

ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system. 

After the initial clinical assessment, physicians can educate patients about the ways that ACE-associated health conditions are a consequence of toxic stress exposure. From there, physicians should rely on a broader integrated health team, within the health system and the community, to offer clinical interventions and services to mitigate patients’ toxic stress. The ACEs Aware Stress Buster wheel highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which may buffer the negative impact of stressors and contribute to health and resilience

The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. Dubowitz and colleagues suggest ways to successfully incorporate ACE screenings in clinical workflow:

  • Utilize technology to implement a streamlined referral processing/tracking system.
  • Train clinicians to respond competently to positive ACE screens.
  • Gather in-network and community-based resources for patients.

In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient involvement in after-school programs may mitigate toxic stress and prevent the development of an ACE-associated health condition. 

Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168450</fileName> <TBEID>0C0509BA.SIG</TBEID> <TBUniqueIdentifier>MD_0C0509BA</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240618T121423</QCDate> <firstPublished>20240618T123105</firstPublished> <LastPublished>20240618T123105</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240618T123105</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Vega and Hurtado</byline> <bylineText>CHARLES P. VEGA, MD, AND ALEJANDRA HURTADO</bylineText> <bylineFull>CHARLES P. VEGA, MD, AND ALEJANDRA HURTADO</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>After the initial clinical assessment, physicians can educate patients about the ways that ACE-associated health conditions are a consequence of toxic stress ex</metaDescription> <articlePDF/> <teaserImage/> <teaser>Stress from adverse childhood experiences, which can have endocrine and other impacts, may be treated with a multidisciplinary team.</teaser> <title>What Toxic Stress Can Do to Health</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>34</term> <term canonical="true">15</term> <term>9</term> <term>21</term> <term>22</term> <term>25</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term>248</term> <term>205</term> <term>174</term> <term>271</term> <term canonical="true">280</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>What Toxic Stress Can Do to Health</title> <deck/> </itemMeta> <itemContent> <p>We recently shared a <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/1000610">clinical case</a></span> drawn from a family medicine practice about the effect of adverse childhood experiences (ACEs) on health. The widespread epidemiology and significant health consequences require a focus on the prevention and management of ACEs. <br/><br/></p> <p>The Centers for Disease Control and Prevention published an important <span class="Hyperlink"><a href="https://stacks.cdc.gov/view/cdc/82316/cdc_82316_DS1.pdf">monograph on ACEs</a></span> in 2019. Although it is evidence based, most of the interventions recommended to reduce ACEs and their sequelae are larger policy and public health efforts that go well beyond the clinician’s office. Important highlights from these recommended strategies to reduce ACEs include:</p> <ul class="body"> <li>Strengthen economic support for families through policies such as the earned income tax credit and child tax credit.</li> <li>Establish routine parental work/shift times to optimize cognitive outcomes in children.</li> <li>Promote social norms for healthy families through public health campaigns and legislative efforts to reduce corporal punishment of children. Bystander training that targets boys and men has also proven effective in reducing <span class="Hyperlink">sexual violence</span>.</li> <li>Facilitate early in-home visitation for at-risk families as well as high-quality childcare.</li> <li>Employ social-emotional learning approaches for children and adolescents, which can improve aggressive or violent behavior, rates of substance use, and academic success.</li> <li>Connect youth to after-school programs featuring caring adults.</li> </ul> <p>But clinicians still play a vital role in the prevention and management of ACEs among their patients. Akin to gathering a patient’s past medical history or family history is initiating universal ACE screening in practice and exploring related topics in conversation.<br/><br/>The <span class="Hyperlink"><a href="https://www.acesaware.org/">ACEs Aware initiative</a></span> in California provides a <span class="Hyperlink"><a href="https://www.acesaware.org/wp-content/uploads/2019/12/ACE-Clinical-Workflows-Algorithms-and-ACE-Associated-Health-Conditions.pdf">comprehensive ACE screening clinical workflow</a></span> to help implement these conversations in practice, including the assessment of associated health conditions and their appropriate clinical follow-up. While it is encouraged to universally screen patients, the key screenings to prioritize for the <span class="Hyperlink"><a href="https://publications.aap.org/pediatrics/article/149/4/e2021052641/185395/Addressing-Adverse-Childhood-Experiences-in?autologincheck=redirected">pediatric population</a></span> are “parental <span class="Hyperlink">depression</span>, severe stress, unhealthy drug use, <span class="Hyperlink">domestic violence</span>, harsh punishment, [and] food insecurity.” Moreover, <span class="Hyperlink"><a href="https://publications.aap.org/pediatrics/article/149/3/e2021051174/184788/Child-Adversity-and-Trauma-Informed-Care-Teaching?autologincheck=redirected">a systematic review by Steen and colleagues</a></span> shared insight into newer interpretations of ACE screening which relate trauma to “[...] community violence, poverty, housing instability, structural racism, environmental blight, and climate change.” <br/><br/>These exposures are now being <span class="Hyperlink"><a href="https://www.acesaware.org/wp-content/uploads/2021/09/ACE-Screening-Clinical-Assessment-and-Treatment-Planning-for-Toxic-Stress.pdf">investigated</a></span> for a connection to the toxic stress response. In the long term, this genetic regulatory mechanism can be affected by <span class="Hyperlink"><a href="https://www.acesaware.org/ace-fundamentals/the-science-of-aces-toxic-stress/">“high doses of cumulative adversity experienced during critical and sensitive periods of early life development — without the buffering protections of trusted, nurturing caregivers and safe, stable environments.”</a></span> This micro and macro lens fosters a deeper clinician understanding of a patient’s trauma origin and can better guide appropriate clinical follow-up. <br/><br/>ACE-associated health conditions can be neurologic, endocrine, metabolic, or immune system–related. Early diagnosis and treatment of these conditions can help prevent long-term health care complications, costly for both patient and the health care system. <br/><br/><span class="tag metaDescription">After the initial clinical assessment, physicians can educate patients about the ways that ACE-associated health conditions are a consequence of toxic stress exposure. From there, physicians should rely on a broader integrated health team, within the health system and the community, to offer clinical interventions and services to mitigate patients’ toxic stress.</span> The <span class="Hyperlink"><a href="https://www.acesaware.org/managestress/">ACEs Aware Stress Buster wheel</a></span> highlights seven targets to strategize stress regulation. This wheel can be used to identify existing protective factors for patients and track treatment progress, which <span class="Hyperlink"><a href="https://www.acesaware.org/wp-content/uploads/2021/09/An-Overview-A-Tiered-Clinical-Response-Framework-for-Addressing-Toxic-Stress.pdf">may buffer the negative impact of stressors and contribute to health and resilience</a></span>. <br/><br/>The burden of universal screenings in primary care is high. Without ACE screening, however, the opportunity to address downstream health effects from toxic stress may be lost. <span class="Hyperlink"><a href="https://publications.aap.org/pediatrics/article/149/4/e2021052641/185395/Addressing-Adverse-Childhood-Experiences-in">Dubowitz and colleagues</a></span> suggest ways to successfully incorporate ACE screenings in clinical workflow:</p> <ul class="body"> <li>Utilize technology to implement a streamlined referral processing/tracking system.</li> <li>Train clinicians to respond competently to positive ACE screens.</li> <li>Gather in-network and community-based resources for patients.</li> </ul> <p>In addition, prioritize screening for families with children younger than 6 years of age to begin interventions as early as possible. Primary care clinicians have the unique opportunity to provide appropriate intervention over continual care. An intervention as simple as encouraging pediatric patient <span class="Hyperlink"><a href="https://www.sciencedirect.com/science/article/pii/S2352827323002239">involvement in after-school programs</a></span> may mitigate toxic stress and prevent the development of an ACE-associated health condition. <br/><br/>Dr. Vega, Health Sciences Clinical Professor, Family Medicine, University of California, Irvine, disclosed ties with McNeil Pharmaceuticals. Alejandra Hurtado, MD candidate, University of California, Irvine School of Medicine, has disclosed no relevant financial relationships.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/what-toxic-stress-can-do-health-2024a1000b3f">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Anticoagulation Shows No Benefit in Preventing Second Stroke

Article Type
Changed
Thu, 06/20/2024 - 14:32

— Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.

“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the NOAH-AFNET 6 trial at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”

The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.
 

Subanalysis Results

In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).

The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.

However, edoxaban patients had significantly higher rates of major bleeding.

“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”

Results from the NOAH-AFNET 6 trial have been compared with those from the ARTESiA trial, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.

“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.

Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”

This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”

More research is needed to better understand AF characteristics and stroke risk, he said.
 

 

 

AF Care Enters a ‘Gray Zone’

The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.

“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”

None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.

“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.

Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

— Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.

“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the NOAH-AFNET 6 trial at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”

The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.
 

Subanalysis Results

In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).

The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.

However, edoxaban patients had significantly higher rates of major bleeding.

“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”

Results from the NOAH-AFNET 6 trial have been compared with those from the ARTESiA trial, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.

“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.

Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”

This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”

More research is needed to better understand AF characteristics and stroke risk, he said.
 

 

 

AF Care Enters a ‘Gray Zone’

The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.

“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”

None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.

“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.

Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.

A version of this article first appeared on Medscape.com.

— Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.

“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the NOAH-AFNET 6 trial at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”

The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.
 

Subanalysis Results

In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).

The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.

However, edoxaban patients had significantly higher rates of major bleeding.

“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”

Results from the NOAH-AFNET 6 trial have been compared with those from the ARTESiA trial, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.

“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.

Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”

This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”

More research is needed to better understand AF characteristics and stroke risk, he said.
 

 

 

AF Care Enters a ‘Gray Zone’

The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.

“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”

None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.

“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.

Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168445</fileName> <TBEID>0C0509AE.SIG</TBEID> <TBUniqueIdentifier>MD_0C0509AE</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240618T103758</QCDate> <firstPublished>20240618T120059</firstPublished> <LastPublished>20240618T120059</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240618T120059</CMSDate> <articleSource>FROM HRS 2024</articleSource> <facebookInfo/> <meetingNumber/> <byline>RICHARD MARK KIRKNER</byline> <bylineText>RICHARD MARK KIRKNER</bylineText> <bylineFull>RICHARD MARK KIRKNER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>BOSTON — Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reducti</metaDescription> <articlePDF/> <teaserImage/> <teaser>Oral anticoagulation with edoxaban did not reduce risk for a second stroke and the risk for major bleeding was more than quadruple the risk with no anticoagulation. </teaser> <title>Anticoagulation Shows No Benefit in Preventing Second Stroke</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">5</term> <term>15</term> <term>21</term> <term>22</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> </sections> <topics> <term canonical="true">301</term> <term>194</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Anticoagulation Shows No Benefit in Preventing Second Stroke</title> <deck/> </itemMeta> <itemContent> <p><span class="dateline">BOSTON</span> — Patients who have had a stroke are thought to be at a higher risk for another one, but oral anticoagulation with edoxaban led to no discernible reduction in the risk for a second stroke, and the risk for major bleeding was more than quadruple the risk with no anticoagulation, a subanalysis of a major European trial has shown.</p> <p>“There is no interaction between prior stroke or TIA [transient ischemic attack] and the treatment effect, and this is true for the primary outcome and the safety outcome,” Paulus Kirchoff, MD, director of cardiology at the University Heart and Vascular Center in Hamburg, Germany, said during his presentation of a subanalysis of the <a href="https://www.nejm.org/doi/full/10.1056/NEJMoa2303062">NOAH-AFNET 6 trial</a> at the annual meeting of the Heart Rhythm Society (HRS) 2024. However, “there is a signal for more safety events in patients randomized to anticoagulation with a prior stroke.”<br/><br/>The subanalysis involved 253 patients who had had a stroke or TIA and who had device-detected atrial fibrillation (AF) from the overall NOAH-AFNET 6 population of 2536 patients, which enrolled patients 65 years and older with at least one additional CHA2DS-VASc risk factor and patients 75 years and older with device-detected subclinical AF episodes of at least 6 minutes. Patients were randomized to either edoxaban or no anticoagulation, but 53.9% of the no-anticoagulation group was taking aspirin at trial enrollment. Anticoagulation with edoxaban was shown to have no significant impact on stroke rates or other cardiovascular outcomes.<br/><br/></p> <h2>Subanalysis Results</h2> <p>In the subanalysis, a composite of stroke, systemic embolism, and cardiovascular death — the primary outcome — was similar in the edoxaban and no-anticoagulation groups (14/122 patients [11.5%] vs 16/131 patients [12.2%]; 5.7% vs 6.3% per patient-year).</p> <p>The rate of recurrent stroke was also similar in the edoxaban and no-anticoagulation groups (4 of 122 patients [3.3%] vs 6 of 131 patients [4.6%]; 1.6% vs 2.3% per patient-year). And there were eight cardiovascular deaths in each group.<br/><br/>However, edoxaban patients had significantly higher rates of major bleeding.<br/><br/>“This is a subanalysis, so what we see in terms of the number of patients with events is not powered for a definitive answer, but we do see that there were 10 major bleeds in the group of patients with a prior stroke or TIA in NOAH,” Dr. Kirchoff reported. “Eight of those 10 major bleeds occurred in patients randomized to edoxaban.”<br/><br/>Results from the NOAH-AFNET 6 trial have been compared with those from the <a href="https://eppro01.ativ.me/web/index.php?page=Session&amp;project=HRS24&amp;id=4058885">ARTESiA trial</a>, which compared apixaban anticoagulation with aspirin in patients with subclinical AF and was also presented at HRS 2024. ARTESiA showed that apixaban significantly lowered the risk for stroke and systemic embolism.<br/><br/>“In ARTESiA, everyone was on aspirin when they were randomized to no anticoagulation; in NOAH, only about half were on aspirin,” Dr. Kirchoff said.<br/><br/>Both studies had similar outcomes for cardiovascular death in the anticoagulation and no-anticoagulation groups. “It’s not significant; it may be chance, but it’s definitely not the reduction in death that we have seen in the anticoagulant trials,” Dr. Kirchoff said. “When you look at the meta-analyses of the early anticoagulation trials, there’s a one third reduction in death, and here we’re talking about a smaller reduction.”<br/><br/>This research points to a need for a better way to evaluate stroke risk. “We need new markers,” Dr. Kirchoff said. “Some of them may be in the blood or imaging, genetics maybe, and one thing that really emerges from my perspective is that we now have the first evidence to suggest that patients with a very low atrial fibrillation burden have a low stroke rate.”<br/><br/>More research is needed to better understand AF characteristics and stroke risk, he said.<br/><br/></p> <h2>AF Care Enters a ‘Gray Zone’</h2> <p>The NOAH-AFNET 6 results, coupled with those from ARTESiA, are changing the paradigm for anticoagulation in patients with stroke, said Taya Glotzer, MD, an electrophysiologist at the Hackensack University Medical Center in Hackensack, New Jersey, who compiled her own analysis of the studies’ outcomes.</p> <p>“In ARTESiA, the stroke reduction was only 0.44% a year, with a number needed to treat of 250,” she said. “In the NOAH-AFNET 6 main trial, the stroke reduction was 0.2%, with the number needed to treat of 500, and in the NOAH prior stroke patients, there was a 0.7% reduction, with a number needed to treat of 143.”<br/><br/>None of these trials would meet the standard for a class 1 recommendation for anticoagulation with a reduction of even 1%-2% per year, she noted, but they do show that the stroke rate “is very, very low” in prior patients with stroke.<br/><br/>“Prior to 2024, we knew what was black and white; we knew who to anticoagulate and who not to anticoagulate. And now we are in a gray zone, trying to balance the risk of stroke and bleeding. We have to individualize or hope for substudies, perhaps using the CHA2DS-VASc score or other information about the left atrium, to help us make decisions in these patients. It’s not just going to be black and white,” she said.<br/><br/>Dr. Kirchoff had no relevant financial relationships to disclose. Dr. Glotzer disclosed financial relationships with Medtronic, Abbott, Boston Scientific, and MediaSphere Medical.<span class="end"/></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/anticoagulation-shows-no-benefit-preventing-second-stroke-2024a1000b8b">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM HRS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

GLP-1s Reduced Secondary Stroke Risk in Patients With Diabetes, Obesity

Article Type
Changed
Fri, 06/14/2024 - 16:21

Among stroke survivors with diabetes or obesity, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) reduced secondary stroke risk by up to 16%, according to authors of a recent meta-analysis. With benefits across administration routes, dosing regimens, type 2 diabetes status, and total and nonfatal strokes, the findings could improve GLP-1 RA implementation by stroke specialists in patients with stroke history and concurrent type 2 diabetes or obesity, authors said. The study was published online in the International Journal of Stoke.

Extending Longevity

Agents including GLP-1 RAs that have been found to reduce cardiovascular events among patients with type 2 diabetes and patients who are overweight or obese also reduce risk of recurrent stroke among patients with a history of stroke who are overweight, obese, or have metabolic disease, said American Heart Association (AHA) Chief Clinical Science Officer Mitchell S. V. Elkind, MD, who was not involved with the study but was asked to comment.

Elkind_Mitchell_NY_web.jpg
Dr. Mitchell S. V. Elkind

“Stroke is a leading cause of mortality and the leading cause of serious long-term disability,” he added, “so medications that help to reduce that risk can play an important role in improving overall health and well-being and hopefully reducing premature mortality.”

Investigators Anastasia Adamou, MD, an internal medicine resident at AHEPA University Hospital in Thessaloniki, Greece, and colleagues searched MEDLINE and Scopus for cardiovascular outcome trials involving adults randomly assigned to GLP-1 RAs or placebo through November 2023, ultimately analyzing 11 randomized controlled trials (RCTs).

Among 60,380 participants in the nine studies that assessed total strokes, 2.5% of the GLP-1 RA group experienced strokes during follow-up, versus 3% in the placebo group (relative risk [RR] 0.85, 95% confidence interval [CI] 0.77-0.93). Regarding secondary outcomes, the GLP-1 RA group showed a significantly lower rate of nonfatal strokes versus patients on placebo (RR 0.87, 95% CI 0.79-0.95). Conversely, investigators observed no significant risk difference among the groups regarding fatal strokes, probably due to the low rate of events — 0.3% and 0.4% for treated and untreated patients, respectively.

Subgroup analyses revealed no interaction between dosing frequency and total, nonfatal, or fatal strokes. The investigators observed no difference in nonfatal strokes among participants by type 2 diabetes status and medication administration route (oral versus subcutaneous).

“The oral administration route could provide the advantage of lower local ecchymoses and allergic reactions due to subcutaneous infusions,” Dr. Adamou said in an interview. But because oral administration demands daily intake, she added, treatment adherence might be affected. “For this reason, our team performed another subgroup analysis to compare the once-a-day to the once-a-month administration. No interaction effect was again presented between the two subgroups. This outcome allows for personalization of the administration method for each patient.”

weswadruslacaclepredolubitretifribrojeuuslosluwajuteberistofrucadumashamatucocripraspicastarupupamogislihoclukawrugechamumitrerehecrululoprouisweshodruprowrakephawrastaweswepesteprukuchachecowredo
Dr. Anastasia Adamou

 

Addressing Underutilization

Despite more than 2 decades of widespread use and well-established effects on body weight, HbA1c, and cardiovascular risk, GLP-1 RAs remain underutilized, authors wrote. This is especially true in primary care, noted one study published in Clinical Diabetes.

“GLP-1 RAs have been used for many years to treat diabetic patients,” said Dr. Adamou. But because their impact on cardiovascular health regardless of diabetic status is only recently known, she said, physicians are exercising caution when prescribing this medication to patients without diabetes. “This is why more studies need to be available, especially RCTs.”

Most neurologists traditionally have left management of type 2 diabetes and other metabolic disorders to primary care doctors, said Dr. Elkind. “However, these medications are increasingly important to vascular risk reduction and should be considered part of the stroke specialist’s armamentarium.”

Vascular neurologists can play an important role in managing metabolic disease and obesity by recommending GLP-1 RAs for patients with a history of stroke, or by initiating these medications themselves, Dr. Elkind said. “These drugs are likely to become an important part of stroke patients’ medication regimens, along with antithrombotic agents, blood pressure control, and statins. Neurologists are well-positioned to educate other physicians about the important connections among brain, heart, and metabolic health.”

To that end, he said, the AHA will update guidelines for both primary and secondary stroke prevention as warranted by evidence supporting GLP-1 RAs and other medications that could impact stroke risk in type 2 diabetes and related metabolic disorders. However, no guidelines concerning use of GLP-1 RAs for secondary stroke prevention in obesity exist. Here, said Dr. Elkind, the AHA will continue building on its innovative Cardiovascular-Kidney Metabolic Health program, which includes clinical suggestions and may include more formal clinical practice guidelines as the evidence evolves.

Among the main drivers of the initiative, he said, is the recognition that cardiovascular disease — including stroke — is the major cause of death and morbidity among patients with obesity, type 2 diabetes, and metabolic disorders. “Stroke should be considered an important part of overall cardiovascular risk, and the findings that these drugs can help to reduce the risk of stroke specifically is an important additional reason for their use.”

Dr. Elkind and Dr. Adamou reported no conflicting interests. The authors received no financial support for the study.

Publications
Topics
Sections

Among stroke survivors with diabetes or obesity, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) reduced secondary stroke risk by up to 16%, according to authors of a recent meta-analysis. With benefits across administration routes, dosing regimens, type 2 diabetes status, and total and nonfatal strokes, the findings could improve GLP-1 RA implementation by stroke specialists in patients with stroke history and concurrent type 2 diabetes or obesity, authors said. The study was published online in the International Journal of Stoke.

Extending Longevity

Agents including GLP-1 RAs that have been found to reduce cardiovascular events among patients with type 2 diabetes and patients who are overweight or obese also reduce risk of recurrent stroke among patients with a history of stroke who are overweight, obese, or have metabolic disease, said American Heart Association (AHA) Chief Clinical Science Officer Mitchell S. V. Elkind, MD, who was not involved with the study but was asked to comment.

Elkind_Mitchell_NY_web.jpg
Dr. Mitchell S. V. Elkind

“Stroke is a leading cause of mortality and the leading cause of serious long-term disability,” he added, “so medications that help to reduce that risk can play an important role in improving overall health and well-being and hopefully reducing premature mortality.”

Investigators Anastasia Adamou, MD, an internal medicine resident at AHEPA University Hospital in Thessaloniki, Greece, and colleagues searched MEDLINE and Scopus for cardiovascular outcome trials involving adults randomly assigned to GLP-1 RAs or placebo through November 2023, ultimately analyzing 11 randomized controlled trials (RCTs).

Among 60,380 participants in the nine studies that assessed total strokes, 2.5% of the GLP-1 RA group experienced strokes during follow-up, versus 3% in the placebo group (relative risk [RR] 0.85, 95% confidence interval [CI] 0.77-0.93). Regarding secondary outcomes, the GLP-1 RA group showed a significantly lower rate of nonfatal strokes versus patients on placebo (RR 0.87, 95% CI 0.79-0.95). Conversely, investigators observed no significant risk difference among the groups regarding fatal strokes, probably due to the low rate of events — 0.3% and 0.4% for treated and untreated patients, respectively.

Subgroup analyses revealed no interaction between dosing frequency and total, nonfatal, or fatal strokes. The investigators observed no difference in nonfatal strokes among participants by type 2 diabetes status and medication administration route (oral versus subcutaneous).

“The oral administration route could provide the advantage of lower local ecchymoses and allergic reactions due to subcutaneous infusions,” Dr. Adamou said in an interview. But because oral administration demands daily intake, she added, treatment adherence might be affected. “For this reason, our team performed another subgroup analysis to compare the once-a-day to the once-a-month administration. No interaction effect was again presented between the two subgroups. This outcome allows for personalization of the administration method for each patient.”

weswadruslacaclepredolubitretifribrojeuuslosluwajuteberistofrucadumashamatucocripraspicastarupupamogislihoclukawrugechamumitrerehecrululoprouisweshodruprowrakephawrastaweswepesteprukuchachecowredo
Dr. Anastasia Adamou

 

Addressing Underutilization

Despite more than 2 decades of widespread use and well-established effects on body weight, HbA1c, and cardiovascular risk, GLP-1 RAs remain underutilized, authors wrote. This is especially true in primary care, noted one study published in Clinical Diabetes.

“GLP-1 RAs have been used for many years to treat diabetic patients,” said Dr. Adamou. But because their impact on cardiovascular health regardless of diabetic status is only recently known, she said, physicians are exercising caution when prescribing this medication to patients without diabetes. “This is why more studies need to be available, especially RCTs.”

Most neurologists traditionally have left management of type 2 diabetes and other metabolic disorders to primary care doctors, said Dr. Elkind. “However, these medications are increasingly important to vascular risk reduction and should be considered part of the stroke specialist’s armamentarium.”

Vascular neurologists can play an important role in managing metabolic disease and obesity by recommending GLP-1 RAs for patients with a history of stroke, or by initiating these medications themselves, Dr. Elkind said. “These drugs are likely to become an important part of stroke patients’ medication regimens, along with antithrombotic agents, blood pressure control, and statins. Neurologists are well-positioned to educate other physicians about the important connections among brain, heart, and metabolic health.”

To that end, he said, the AHA will update guidelines for both primary and secondary stroke prevention as warranted by evidence supporting GLP-1 RAs and other medications that could impact stroke risk in type 2 diabetes and related metabolic disorders. However, no guidelines concerning use of GLP-1 RAs for secondary stroke prevention in obesity exist. Here, said Dr. Elkind, the AHA will continue building on its innovative Cardiovascular-Kidney Metabolic Health program, which includes clinical suggestions and may include more formal clinical practice guidelines as the evidence evolves.

Among the main drivers of the initiative, he said, is the recognition that cardiovascular disease — including stroke — is the major cause of death and morbidity among patients with obesity, type 2 diabetes, and metabolic disorders. “Stroke should be considered an important part of overall cardiovascular risk, and the findings that these drugs can help to reduce the risk of stroke specifically is an important additional reason for their use.”

Dr. Elkind and Dr. Adamou reported no conflicting interests. The authors received no financial support for the study.

Among stroke survivors with diabetes or obesity, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) reduced secondary stroke risk by up to 16%, according to authors of a recent meta-analysis. With benefits across administration routes, dosing regimens, type 2 diabetes status, and total and nonfatal strokes, the findings could improve GLP-1 RA implementation by stroke specialists in patients with stroke history and concurrent type 2 diabetes or obesity, authors said. The study was published online in the International Journal of Stoke.

Extending Longevity

Agents including GLP-1 RAs that have been found to reduce cardiovascular events among patients with type 2 diabetes and patients who are overweight or obese also reduce risk of recurrent stroke among patients with a history of stroke who are overweight, obese, or have metabolic disease, said American Heart Association (AHA) Chief Clinical Science Officer Mitchell S. V. Elkind, MD, who was not involved with the study but was asked to comment.

Elkind_Mitchell_NY_web.jpg
Dr. Mitchell S. V. Elkind

“Stroke is a leading cause of mortality and the leading cause of serious long-term disability,” he added, “so medications that help to reduce that risk can play an important role in improving overall health and well-being and hopefully reducing premature mortality.”

Investigators Anastasia Adamou, MD, an internal medicine resident at AHEPA University Hospital in Thessaloniki, Greece, and colleagues searched MEDLINE and Scopus for cardiovascular outcome trials involving adults randomly assigned to GLP-1 RAs or placebo through November 2023, ultimately analyzing 11 randomized controlled trials (RCTs).

Among 60,380 participants in the nine studies that assessed total strokes, 2.5% of the GLP-1 RA group experienced strokes during follow-up, versus 3% in the placebo group (relative risk [RR] 0.85, 95% confidence interval [CI] 0.77-0.93). Regarding secondary outcomes, the GLP-1 RA group showed a significantly lower rate of nonfatal strokes versus patients on placebo (RR 0.87, 95% CI 0.79-0.95). Conversely, investigators observed no significant risk difference among the groups regarding fatal strokes, probably due to the low rate of events — 0.3% and 0.4% for treated and untreated patients, respectively.

Subgroup analyses revealed no interaction between dosing frequency and total, nonfatal, or fatal strokes. The investigators observed no difference in nonfatal strokes among participants by type 2 diabetes status and medication administration route (oral versus subcutaneous).

“The oral administration route could provide the advantage of lower local ecchymoses and allergic reactions due to subcutaneous infusions,” Dr. Adamou said in an interview. But because oral administration demands daily intake, she added, treatment adherence might be affected. “For this reason, our team performed another subgroup analysis to compare the once-a-day to the once-a-month administration. No interaction effect was again presented between the two subgroups. This outcome allows for personalization of the administration method for each patient.”

weswadruslacaclepredolubitretifribrojeuuslosluwajuteberistofrucadumashamatucocripraspicastarupupamogislihoclukawrugechamumitrerehecrululoprouisweshodruprowrakephawrastaweswepesteprukuchachecowredo
Dr. Anastasia Adamou

 

Addressing Underutilization

Despite more than 2 decades of widespread use and well-established effects on body weight, HbA1c, and cardiovascular risk, GLP-1 RAs remain underutilized, authors wrote. This is especially true in primary care, noted one study published in Clinical Diabetes.

“GLP-1 RAs have been used for many years to treat diabetic patients,” said Dr. Adamou. But because their impact on cardiovascular health regardless of diabetic status is only recently known, she said, physicians are exercising caution when prescribing this medication to patients without diabetes. “This is why more studies need to be available, especially RCTs.”

Most neurologists traditionally have left management of type 2 diabetes and other metabolic disorders to primary care doctors, said Dr. Elkind. “However, these medications are increasingly important to vascular risk reduction and should be considered part of the stroke specialist’s armamentarium.”

Vascular neurologists can play an important role in managing metabolic disease and obesity by recommending GLP-1 RAs for patients with a history of stroke, or by initiating these medications themselves, Dr. Elkind said. “These drugs are likely to become an important part of stroke patients’ medication regimens, along with antithrombotic agents, blood pressure control, and statins. Neurologists are well-positioned to educate other physicians about the important connections among brain, heart, and metabolic health.”

To that end, he said, the AHA will update guidelines for both primary and secondary stroke prevention as warranted by evidence supporting GLP-1 RAs and other medications that could impact stroke risk in type 2 diabetes and related metabolic disorders. However, no guidelines concerning use of GLP-1 RAs for secondary stroke prevention in obesity exist. Here, said Dr. Elkind, the AHA will continue building on its innovative Cardiovascular-Kidney Metabolic Health program, which includes clinical suggestions and may include more formal clinical practice guidelines as the evidence evolves.

Among the main drivers of the initiative, he said, is the recognition that cardiovascular disease — including stroke — is the major cause of death and morbidity among patients with obesity, type 2 diabetes, and metabolic disorders. “Stroke should be considered an important part of overall cardiovascular risk, and the findings that these drugs can help to reduce the risk of stroke specifically is an important additional reason for their use.”

Dr. Elkind and Dr. Adamou reported no conflicting interests. The authors received no financial support for the study.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168419</fileName> <TBEID>0C05084A.SIG</TBEID> <TBUniqueIdentifier>MD_0C05084A</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>GLP-1 Stroke Diabetes Obesity</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240614T155141</QCDate> <firstPublished>20240614T161744</firstPublished> <LastPublished>20240614T161744</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240614T161744</CMSDate> <articleSource>FROM THE INTERNATIONAL JOURNAL OF STROKE</articleSource> <facebookInfo/> <meetingNumber/> <byline>John Jesitus</byline> <bylineText>JOHN JESITUS</bylineText> <bylineFull>JOHN JESITUS</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Among stroke survivors with diabetes or obesity, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) reduced secondary stroke risk by up to 16%</metaDescription> <articlePDF/> <teaserImage>275653</teaserImage> <teaser>The findings could improve GLP-1 implementation by stroke specialists in patients with stroke history and concurrent type 2 diabetes or obesity.</teaser> <title>GLP-1s Reduced Secondary Stroke Risk in Patients With Diabetes, Obesity</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>IM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>CARD</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle>Cardiology news</journalFullTitle> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>21</term> <term>15</term> <term>5</term> </publications> <sections> <term>39313</term> <term>86</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">301</term> <term>205</term> <term>261</term> <term>258</term> <term>194</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/2400f959.jpg</altRep> <description role="drol:caption">Dr. Mitchell S. V. Elkind</description> <description role="drol:credit"/> </link> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/24012a26.jpg</altRep> <description role="drol:caption">Dr. Anastasia Adamou</description> <description role="drol:credit"/> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>GLP-1s Reduced Secondary Stroke Risk in Patients With Diabetes, Obesity</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">Among stroke survivors with diabetes or obesity, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) reduced secondary stroke risk by up to 16%</span>, according to authors of a recent meta-analysis. With benefits across administration routes, dosing regimens, type 2 diabetes status, and total and nonfatal strokes, the findings could improve GLP-1 RA implementation by stroke specialists in patients with stroke history and concurrent type 2 diabetes or obesity, authors said. The <span class="Hyperlink"><a href="https://journals.sagepub.com/doi/10.1177/17474930241253988?url_ver=Z39.88-2003&amp;rfr_id=ori:rid:crossref.org&amp;rfr_dat=cr_pub%20%200pubmed">study</a></span> was published online in the <em>International Journal of Stoke</em>.</p> <h2>Extending Longevity</h2> <p>Agents including GLP-1 RAs that have been found to reduce cardiovascular events among patients with type 2 diabetes and patients who are overweight or obese also reduce risk of recurrent stroke among patients with a history of stroke who are overweight, obese, or have metabolic disease, said American Heart Association (AHA) Chief Clinical Science Officer M<span class="Hyperlink">itchell S. V. Elkind, MD, </span>who was not involved with the study but was asked to comment.[[{"fid":"275653","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Dr. Mitchell S. V. Elkind, professor of neurology and epidemiology at Columbia University Vagelos College of Physicians and Surgeons in New York.","field_file_image_credit[und][0][value]":"","field_file_image_caption[und][0][value]":"Dr. Mitchell S. V. Elkind"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]]</p> <p>“Stroke is a leading cause of mortality and the leading cause of serious long-term disability,” he added, “so medications that help to reduce that risk can play an important role in improving overall health and well-being and hopefully reducing premature mortality.”<br/><br/>Investigators Anastasia Adamou, MD, an internal medicine resident at AHEPA University Hospital in Thessaloniki, Greece, and colleagues searched MEDLINE and Scopus for cardiovascular outcome trials involving adults randomly assigned to GLP-1 RAs or placebo through November 2023, ultimately analyzing 11 randomized controlled trials (RCTs). <br/><br/>Among 60,380 participants in the nine studies that assessed total strokes, 2.5% of the GLP-1 RA group experienced strokes during follow-up, versus 3% in the placebo group (relative risk [RR] 0.85, 95% confidence interval [CI] 0.77-0.93). Regarding secondary outcomes, the GLP-1 RA group showed a significantly lower rate of nonfatal strokes versus patients on placebo (RR 0.87, 95% CI 0.79-0.95). Conversely, investigators observed no significant risk difference among the groups regarding fatal strokes, probably due to the low rate of events — 0.3% and 0.4% for treated and untreated patients, respectively. <br/><br/>Subgroup analyses revealed no interaction between dosing frequency and total, nonfatal, or fatal strokes. The investigators observed no difference in nonfatal strokes among participants by type 2 diabetes status and medication administration route (oral versus subcutaneous). <br/><br/>“The oral administration route could provide the advantage of lower local ecchymoses and allergic reactions due to subcutaneous infusions,” Dr. Adamou said in an interview. But because oral administration demands daily intake, she added, treatment adherence might be affected. “For this reason, our team performed another subgroup analysis to compare the once-a-day to the once-a-month administration. No interaction effect was again presented between the two subgroups. This outcome allows for personalization of the administration method for each patient.”[[{"fid":"301925","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Anastasia Adamou, MD, is an internal medicine resident at AHEPA University Hospital in Thessaloniki, Greece.","field_file_image_credit[und][0][value]":"","field_file_image_caption[und][0][value]":"Dr. Anastasia Adamou"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]]<br/><br/></p> <h2>Addressing Underutilization</h2> <p>Despite more than 2 decades of widespread use and well-established effects on body weight, HbA1c, and cardiovascular risk, GLP-1 RAs remain underutilized, authors wrote. This is especially true in primary care, noted one <a href="https://diabetesjournals.org/clinical/article/41/2/226/147852/Glucagon-Like-Peptide-1-Receptor-Agonists-Have-the">study</a> published in <em>Clinical Diabetes</em>.</p> <p>“GLP-1 RAs have been used for many years to treat diabetic patients,” said Dr. Adamou. But because their impact on cardiovascular health regardless of diabetic status is only recently known, she said, physicians are exercising caution when prescribing this medication to patients without diabetes. “This is why more studies need to be available, especially RCTs.”<br/><br/>Most neurologists traditionally have left management of type 2 diabetes and other metabolic disorders to primary care doctors, said Dr. Elkind. “However, these medications are increasingly important to vascular risk reduction and should be considered part of the stroke specialist’s armamentarium.”<br/><br/>Vascular neurologists can play an important role in managing metabolic disease and obesity by recommending GLP-1 RAs for patients with a history of stroke, or by initiating these medications themselves, Dr. Elkind said. “These drugs are likely to become an important part of stroke patients’ medication regimens, along with antithrombotic agents, blood pressure control, and statins. Neurologists are well-positioned to educate other physicians about the important connections among brain, heart, and metabolic health.”<br/><br/>To that end, he said, the AHA will update guidelines for both primary and <a href="https://www.ahajournals.org/doi/10.1161/STR.0000000000000375">secondary stroke prevention</a> as warranted by evidence supporting GLP-1 RAs and other medications that could impact stroke risk in type 2 diabetes and related metabolic disorders. However, no guidelines concerning use of GLP-1 RAs for secondary stroke prevention in obesity exist. Here, said Dr. Elkind, the AHA will continue building on its innovative <a href="https://www.heart.org/en/professional/cardiovascular-kidney-metabolic-health/our-commitment-to-cardiovascular-kidney-metabolic-health">Cardiovascular-Kidney Metabolic Health</a> program, which includes clinical suggestions and may include more formal clinical practice guidelines as the evidence evolves. <br/><br/>Among the main drivers of the initiative, he said, is the recognition that cardiovascular disease — including stroke — is the major cause of death and morbidity among patients with obesity, type 2 diabetes, and metabolic disorders. “Stroke should be considered an important part of overall cardiovascular risk, and the findings that these drugs can help to reduce the risk of stroke specifically is an important additional reason for their use.”<br/><br/>Dr. Elkind and Dr. Adamou reported no conflicting interests. The authors received no financial support for the study. </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM THE INTERNATIONAL JOURNAL OF STROKE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Solving Restless Legs: Largest Genetic Study to Date May Help

Article Type
Changed
Fri, 06/14/2024 - 15:46

For decades, scientists have been trying to unravel the mysteries of restless legs syndrome (RLS), a poorly understood and underdiagnosed neurological disorder causing itching, crawling, and aching sensations in the limbs that can only be relieved with movement.

A sweeping new genetic study, coauthored by an international team of 70 — including the world’s leading RLS experts — marks a significant advance in that pursuit. Published in Nature Genetics, it is the largest genetic study of the disease to date.

“It’s a huge step forward for patients as well as the scientific community,” said lead author Juliane Winkelmann, MD, a neurologist and geneticist with the Technical University of Munich, Munich, Germany, who’s been studying and treating patients with RLS for 30 years. “We believe it will allow us to better predict the likelihood of developing RLS and investigate new ways to prevent and modify it.”

The common condition, affecting about 1 in 10 adults, was first described centuries ago — by English physician Thomas Willis in the late 1600s. And while we know a lot more about it today — it’s familial in about half of all patients and has been linked to iron deficiency, among other conditions — its exact cause remains unknown.

With preferred drugs long prescribed to quell symptoms shown in recent years to actually worsen the disorder over time, doctors and patients are hungry for alternatives to treat or prevent the sleep-sabotaging condition.

“The main treatments that everybody continues to use are actually making people worse,” said Andrew Berkowski, MD, a Michigan-based neurologist and RLS specialist not involved in the study. These drugs — dopamine agonists such as levodopa and pramipexole — can also potentially cause drug dependence, Dr. Berkowski said.
 

How This Could Lead to New Treatments

In the new study, the group analyzed three genome-wide association studies, collectively including genetic information from 116,647 patients with RLS and more than 1.5 million people without it.

They identified 161 gene regions believed to contribute to RLS, about a dozen of which are already targets for existing drugs for other conditions. Previously, scientists knew of only 22 associated genes.

“It’s useful in that it identifies new genes we haven’t looked at yet and reinforces the science behind some of the older genes,” said Dr. Berkowski. “It’s given us some ideas for different things we should look into more closely.”

Among the top candidates are genes that influence glutamate — a key chemical messenger that helps move signals between nerve cells in the brain.

Several anticonvulsant and antiseizure drugs, including perampanellamotrigine, and gabapentin, target glutamate receptors. And at least one small study has shown perampanel prescribed off-label can improve RLS symptoms.

“Compared to starting at the beginning and developing an entirely new chemical entity, we could run clinical trials using these alternatives in RLS patients,” said the study’s first author, Steven Bell, PhD, an epidemiologist with the University of Cambridge, Cambridge, England.

The study also confirmed the MIES1 gene, which is related to dopamine expression and iron homeostasis, as a key genetic contributor to RLS risk. Low levels of iron in the blood have long been thought to trigger RLS.
 

The Role of Gene-Environment Interactions

Through additional data analysis, the team confirmed that many of the genes associated with RLS play a role in development of the central nervous system.

“This strongly supports the hypothesis that restless legs syndrome is a neurodevelopmental disorder that develops during the embryo stage but doesn’t clinically manifest until later in life,” said Dr. Winkelmann.

About half of people with RLS report some family history of it.

But not all with a genetic predisposition will develop symptoms.

For instance, the study found that while the same gene regions seem to be associated with risk in both men and women, in practice, RLS is twice as common among women. This suggests that something about women’s lives — menstruation, childbirth, metabolism — may switch a preexisting risk into a reality.

“We know that genetic factors play an important role in making people susceptible to the disease,” said Dr. Winkelmann, “but in the end, it is the interaction between genetic and environmental factors that may lead to its manifestation.”

The study also found associations between RLS and depression and suggests that RLS may increase the risk for type 2 diabetes.
 

Improving RLS Care

A potentially useful tool coming out of the study was a “polygenic risk score,” which the researchers developed based on the genes identified. When they tested how accurately the score could predict whether someone would develop RLS within the next 5 years, the model got it right about 90% of the time.

Dr. Winkelmann imagines a day when someone could use such a polygenic risk score to flag the high risk for RLS early enough to take action to try to prevent it. More research is necessary to determine precisely what that action would be.

As for treatments, Dr. Berkowski thinks it’s unlikely that doctors will suddenly begin using existing, glutamate-targeting drugs off-label to treat RLS, as many are prohibitively expensive and wouldn’t be covered by insurance. But he’s optimistic that the study can spawn new research that could ultimately help fill the treatment gap.

Shalini Paruthi, MD, an adjunct professor at Saint Louis University, St. Louis, Missouri, and chair of the Restless Legs Syndrome Foundation’s board of directors, sees another benefit.

“The associations found in this study between RLS and other medical disorders may help patients and their physicians take RLS more seriously,” Dr. Paruthi said, “as treating RLS can lead to multiple other downstream improvements in their health.”

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

For decades, scientists have been trying to unravel the mysteries of restless legs syndrome (RLS), a poorly understood and underdiagnosed neurological disorder causing itching, crawling, and aching sensations in the limbs that can only be relieved with movement.

A sweeping new genetic study, coauthored by an international team of 70 — including the world’s leading RLS experts — marks a significant advance in that pursuit. Published in Nature Genetics, it is the largest genetic study of the disease to date.

“It’s a huge step forward for patients as well as the scientific community,” said lead author Juliane Winkelmann, MD, a neurologist and geneticist with the Technical University of Munich, Munich, Germany, who’s been studying and treating patients with RLS for 30 years. “We believe it will allow us to better predict the likelihood of developing RLS and investigate new ways to prevent and modify it.”

The common condition, affecting about 1 in 10 adults, was first described centuries ago — by English physician Thomas Willis in the late 1600s. And while we know a lot more about it today — it’s familial in about half of all patients and has been linked to iron deficiency, among other conditions — its exact cause remains unknown.

With preferred drugs long prescribed to quell symptoms shown in recent years to actually worsen the disorder over time, doctors and patients are hungry for alternatives to treat or prevent the sleep-sabotaging condition.

“The main treatments that everybody continues to use are actually making people worse,” said Andrew Berkowski, MD, a Michigan-based neurologist and RLS specialist not involved in the study. These drugs — dopamine agonists such as levodopa and pramipexole — can also potentially cause drug dependence, Dr. Berkowski said.
 

How This Could Lead to New Treatments

In the new study, the group analyzed three genome-wide association studies, collectively including genetic information from 116,647 patients with RLS and more than 1.5 million people without it.

They identified 161 gene regions believed to contribute to RLS, about a dozen of which are already targets for existing drugs for other conditions. Previously, scientists knew of only 22 associated genes.

“It’s useful in that it identifies new genes we haven’t looked at yet and reinforces the science behind some of the older genes,” said Dr. Berkowski. “It’s given us some ideas for different things we should look into more closely.”

Among the top candidates are genes that influence glutamate — a key chemical messenger that helps move signals between nerve cells in the brain.

Several anticonvulsant and antiseizure drugs, including perampanellamotrigine, and gabapentin, target glutamate receptors. And at least one small study has shown perampanel prescribed off-label can improve RLS symptoms.

“Compared to starting at the beginning and developing an entirely new chemical entity, we could run clinical trials using these alternatives in RLS patients,” said the study’s first author, Steven Bell, PhD, an epidemiologist with the University of Cambridge, Cambridge, England.

The study also confirmed the MIES1 gene, which is related to dopamine expression and iron homeostasis, as a key genetic contributor to RLS risk. Low levels of iron in the blood have long been thought to trigger RLS.
 

The Role of Gene-Environment Interactions

Through additional data analysis, the team confirmed that many of the genes associated with RLS play a role in development of the central nervous system.

“This strongly supports the hypothesis that restless legs syndrome is a neurodevelopmental disorder that develops during the embryo stage but doesn’t clinically manifest until later in life,” said Dr. Winkelmann.

About half of people with RLS report some family history of it.

But not all with a genetic predisposition will develop symptoms.

For instance, the study found that while the same gene regions seem to be associated with risk in both men and women, in practice, RLS is twice as common among women. This suggests that something about women’s lives — menstruation, childbirth, metabolism — may switch a preexisting risk into a reality.

“We know that genetic factors play an important role in making people susceptible to the disease,” said Dr. Winkelmann, “but in the end, it is the interaction between genetic and environmental factors that may lead to its manifestation.”

The study also found associations between RLS and depression and suggests that RLS may increase the risk for type 2 diabetes.
 

Improving RLS Care

A potentially useful tool coming out of the study was a “polygenic risk score,” which the researchers developed based on the genes identified. When they tested how accurately the score could predict whether someone would develop RLS within the next 5 years, the model got it right about 90% of the time.

Dr. Winkelmann imagines a day when someone could use such a polygenic risk score to flag the high risk for RLS early enough to take action to try to prevent it. More research is necessary to determine precisely what that action would be.

As for treatments, Dr. Berkowski thinks it’s unlikely that doctors will suddenly begin using existing, glutamate-targeting drugs off-label to treat RLS, as many are prohibitively expensive and wouldn’t be covered by insurance. But he’s optimistic that the study can spawn new research that could ultimately help fill the treatment gap.

Shalini Paruthi, MD, an adjunct professor at Saint Louis University, St. Louis, Missouri, and chair of the Restless Legs Syndrome Foundation’s board of directors, sees another benefit.

“The associations found in this study between RLS and other medical disorders may help patients and their physicians take RLS more seriously,” Dr. Paruthi said, “as treating RLS can lead to multiple other downstream improvements in their health.”

A version of this article appeared on Medscape.com.

For decades, scientists have been trying to unravel the mysteries of restless legs syndrome (RLS), a poorly understood and underdiagnosed neurological disorder causing itching, crawling, and aching sensations in the limbs that can only be relieved with movement.

A sweeping new genetic study, coauthored by an international team of 70 — including the world’s leading RLS experts — marks a significant advance in that pursuit. Published in Nature Genetics, it is the largest genetic study of the disease to date.

“It’s a huge step forward for patients as well as the scientific community,” said lead author Juliane Winkelmann, MD, a neurologist and geneticist with the Technical University of Munich, Munich, Germany, who’s been studying and treating patients with RLS for 30 years. “We believe it will allow us to better predict the likelihood of developing RLS and investigate new ways to prevent and modify it.”

The common condition, affecting about 1 in 10 adults, was first described centuries ago — by English physician Thomas Willis in the late 1600s. And while we know a lot more about it today — it’s familial in about half of all patients and has been linked to iron deficiency, among other conditions — its exact cause remains unknown.

With preferred drugs long prescribed to quell symptoms shown in recent years to actually worsen the disorder over time, doctors and patients are hungry for alternatives to treat or prevent the sleep-sabotaging condition.

“The main treatments that everybody continues to use are actually making people worse,” said Andrew Berkowski, MD, a Michigan-based neurologist and RLS specialist not involved in the study. These drugs — dopamine agonists such as levodopa and pramipexole — can also potentially cause drug dependence, Dr. Berkowski said.
 

How This Could Lead to New Treatments

In the new study, the group analyzed three genome-wide association studies, collectively including genetic information from 116,647 patients with RLS and more than 1.5 million people without it.

They identified 161 gene regions believed to contribute to RLS, about a dozen of which are already targets for existing drugs for other conditions. Previously, scientists knew of only 22 associated genes.

“It’s useful in that it identifies new genes we haven’t looked at yet and reinforces the science behind some of the older genes,” said Dr. Berkowski. “It’s given us some ideas for different things we should look into more closely.”

Among the top candidates are genes that influence glutamate — a key chemical messenger that helps move signals between nerve cells in the brain.

Several anticonvulsant and antiseizure drugs, including perampanellamotrigine, and gabapentin, target glutamate receptors. And at least one small study has shown perampanel prescribed off-label can improve RLS symptoms.

“Compared to starting at the beginning and developing an entirely new chemical entity, we could run clinical trials using these alternatives in RLS patients,” said the study’s first author, Steven Bell, PhD, an epidemiologist with the University of Cambridge, Cambridge, England.

The study also confirmed the MIES1 gene, which is related to dopamine expression and iron homeostasis, as a key genetic contributor to RLS risk. Low levels of iron in the blood have long been thought to trigger RLS.
 

The Role of Gene-Environment Interactions

Through additional data analysis, the team confirmed that many of the genes associated with RLS play a role in development of the central nervous system.

“This strongly supports the hypothesis that restless legs syndrome is a neurodevelopmental disorder that develops during the embryo stage but doesn’t clinically manifest until later in life,” said Dr. Winkelmann.

About half of people with RLS report some family history of it.

But not all with a genetic predisposition will develop symptoms.

For instance, the study found that while the same gene regions seem to be associated with risk in both men and women, in practice, RLS is twice as common among women. This suggests that something about women’s lives — menstruation, childbirth, metabolism — may switch a preexisting risk into a reality.

“We know that genetic factors play an important role in making people susceptible to the disease,” said Dr. Winkelmann, “but in the end, it is the interaction between genetic and environmental factors that may lead to its manifestation.”

The study also found associations between RLS and depression and suggests that RLS may increase the risk for type 2 diabetes.
 

Improving RLS Care

A potentially useful tool coming out of the study was a “polygenic risk score,” which the researchers developed based on the genes identified. When they tested how accurately the score could predict whether someone would develop RLS within the next 5 years, the model got it right about 90% of the time.

Dr. Winkelmann imagines a day when someone could use such a polygenic risk score to flag the high risk for RLS early enough to take action to try to prevent it. More research is necessary to determine precisely what that action would be.

As for treatments, Dr. Berkowski thinks it’s unlikely that doctors will suddenly begin using existing, glutamate-targeting drugs off-label to treat RLS, as many are prohibitively expensive and wouldn’t be covered by insurance. But he’s optimistic that the study can spawn new research that could ultimately help fill the treatment gap.

Shalini Paruthi, MD, an adjunct professor at Saint Louis University, St. Louis, Missouri, and chair of the Restless Legs Syndrome Foundation’s board of directors, sees another benefit.

“The associations found in this study between RLS and other medical disorders may help patients and their physicians take RLS more seriously,” Dr. Paruthi said, “as treating RLS can lead to multiple other downstream improvements in their health.”

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168420</fileName> <TBEID>0C050903.SIG</TBEID> <TBUniqueIdentifier>MD_0C050903</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240614T153849</QCDate> <firstPublished>20240614T154155</firstPublished> <LastPublished>20240614T154155</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240614T154155</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Lisa Marshall</byline> <bylineText>LISA MARSHALL</bylineText> <bylineFull>LISA MARSHALL</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>For decades, scientists have been trying to unravel the mysteries of restless legs syndrome (RLS), a poorly understood and underdiagnosed neurological disorder </metaDescription> <articlePDF/> <teaserImage/> <teaser>Experts identified 161 gene regions believed to contribute to RLS, about a dozen of which are already targets for existing drugs for other conditions.</teaser> <title>Solving Restless Legs: Largest Genetic Study to Date May Help</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>15</term> <term>21</term> <term canonical="true">22</term> <term>6</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">259</term> <term>296</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Solving Restless Legs: Largest Genetic Study to Date May Help</title> <deck/> </itemMeta> <itemContent> <p>For <span class="Hyperlink"><a href="https://www.sciencedirect.com/science/article/abs/pii/S1389945704000127?via%3Dihub">decades</a></span>, scientists have been trying to unravel the mysteries of <span class="Hyperlink">restless legs syndrome</span> (RLS), a poorly understood and underdiagnosed neurological disorder causing itching, crawling, and aching sensations in the limbs that can only be relieved with movement.</p> <p>A sweeping new genetic study, coauthored by an international team of 70 — including the world’s leading RLS experts — marks a significant advance in that pursuit. <span class="Hyperlink"><a href="https://www.nature.com/articles/s41588-024-01763-1">Published</a></span> in <em>Nature Genetics</em>, it is the largest genetic study of the disease to date.<br/><br/>“It’s a huge step forward for patients as well as the scientific community,” said lead author Juliane Winkelmann, MD, a neurologist and geneticist with the Technical University of Munich, Munich, Germany, who’s been studying and treating patients with RLS for 30 years. “We believe it will allow us to better predict the likelihood of developing RLS and investigate new ways to prevent and modify it.”<br/><br/>The common condition, affecting about 1 in 10 adults, was first described centuries ago — by English physician Thomas Willis in the <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140269/">late 1600s</a></span>. And while we know a lot more about it today — it’s familial in about <span class="Hyperlink"><a href="https://www.mayoclinicproceedings.org/article/S0025-6196(20)31489-0/fulltext">half</a></span> of all patients and has been <span class="Hyperlink"><a href="https://www.mayoclinic.org/diseases-conditions/restless-legs-syndrome/symptoms-causes/syc-20377168">linked to</a></span> iron deficiency, among other conditions — its exact cause remains unknown.<br/><br/>With preferred drugs long prescribed to quell symptoms shown in recent years to actually worsen the disorder over time, doctors and patients are hungry for alternatives to treat or prevent the sleep-sabotaging condition.<br/><br/>“The main treatments that everybody continues to use are actually making people worse,” said Andrew Berkowski, MD, a Michigan-based neurologist and RLS specialist not involved in the study. These drugs — <span class="Hyperlink"><a href="https://www.mayoclinicproceedings.org/article/S0025-6196(20)31489-0/fulltext">dopamine agonists</a></span> such as <span class="Hyperlink">levodopa</span> and <span class="Hyperlink">pramipexole</span> — can also potentially cause drug dependence, Dr. Berkowski said.<br/><br/></p> <h2>How This Could Lead to New Treatments</h2> <p>In the new study, the group analyzed three genome-wide association studies, collectively including genetic information from 116,647 patients with RLS and more than 1.5 million people without it.</p> <p>They identified 161 gene regions believed to contribute to RLS, about a dozen of which are already targets for existing drugs for other conditions. Previously, scientists knew of only 22 associated genes.<br/><br/>“It’s useful in that it identifies new genes we haven’t looked at yet and reinforces the science behind some of the older genes,” said Dr. Berkowski. “It’s given us some ideas for different things we should look into more closely.”<br/><br/>Among the top candidates are genes that influence glutamate — a key chemical messenger that helps move signals between nerve cells in the brain.<br/><br/>Several anticonvulsant and antiseizure drugs, including <span class="Hyperlink">perampanel</span>, <span class="Hyperlink">lamotrigine</span>, and <span class="Hyperlink">gabapentin</span>, target glutamate receptors. And at least one small <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/28522077/">study</a></span> has shown perampanel prescribed off-label can improve RLS symptoms.<br/><br/>“Compared to starting at the beginning and developing an entirely new chemical entity, we could run clinical trials using these alternatives in RLS patients,” said the study’s first author, Steven Bell, PhD, an epidemiologist with the University of Cambridge, Cambridge, England.<br/><br/>The study also confirmed the MIES1 gene, which is related to dopamine expression and iron homeostasis, as a key genetic contributor to RLS risk. Low levels of iron in the blood have long been thought to trigger RLS.<br/><br/></p> <h2>The Role of Gene-Environment Interactions</h2> <p>Through additional data analysis, the team confirmed that many of the genes associated with RLS play a role in development of the central nervous system.</p> <p>“This strongly supports the hypothesis that restless legs syndrome is a neurodevelopmental disorder that develops during the embryo stage but doesn’t clinically manifest until later in life,” said Dr. Winkelmann.<br/><br/>About half of people with RLS report some family history of it.<br/><br/>But not all with a genetic predisposition will develop symptoms.<br/><br/>For instance, the study found that while the same gene regions seem to be associated with risk in both men and women, in practice, RLS is twice as common among women. This suggests that something about women’s lives — menstruation, childbirth, metabolism — may switch a preexisting risk into a reality.<br/><br/>“We know that genetic factors play an important role in making people susceptible to the disease,” said Dr. Winkelmann, “but in the end, it is the interaction between genetic and environmental factors that may lead to its manifestation.”<br/><br/>The study also found associations between RLS and <span class="Hyperlink">depression</span> and suggests that RLS may increase the risk for <span class="Hyperlink">type 2 diabetes</span>.<br/><br/></p> <h2>Improving RLS Care</h2> <p>A potentially useful tool coming out of the study was a “polygenic risk score,” which the researchers developed based on the genes identified. When they tested how accurately the score could predict whether someone would develop RLS within the next 5 years, the model got it right about 90% of the time.</p> <p>Dr. Winkelmann imagines a day when someone could use such a polygenic risk score to flag the high risk for RLS early enough to take action to try to prevent it. More research is necessary to determine precisely what that action would be.<br/><br/>As for treatments, Dr. Berkowski thinks it’s unlikely that doctors will suddenly begin using existing, glutamate-targeting drugs off-label to treat RLS, as many are prohibitively expensive and wouldn’t be covered by insurance. But he’s optimistic that the study can spawn new research that could ultimately help fill the treatment gap.<br/><br/>Shalini Paruthi, MD, an adjunct professor at Saint Louis University, St. Louis, Missouri, and chair of the Restless Legs Syndrome Foundation’s board of directors, sees another benefit.<br/><br/>“The associations found in this study between RLS and other medical disorders may help patients and their physicians take RLS more seriously,” Dr. Paruthi said, “as treating RLS can lead to multiple other downstream improvements in their health.”<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/solving-restless-legs-largest-genetic-study-date-may-help-2024a1000b40">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Shockingly High’ Rate of TBI in Older Adults

Article Type
Changed
Fri, 06/14/2024 - 13:06

 

TOPLINE:

Nearly 13% of older adults in the United States were treated for traumatic brain injury (TBI) over an 18-year period, a new study showed.

METHODOLOGY:

  • Researchers analyzed data from approximately 9200 Medicare enrollees who were part of the Health and Retirement Study (HRS), aged 65 years and older, from 2000 to 2018.
  • The baseline date was the date of the first age eligible HRS core interview in the community in 2000 or later.
  • Incident TBI cases came from an updated list of the International Classification of Diseases (ICD), 9th and 10th edition codes, from the Defense and Veterans Brain Injury Center and the Armed Forces Health Surveillance Branch for TBI surveillance.
  • Codes corresponded with emergency department, CT, and/or fMRI visits.

TAKEAWAY:

  • Almost 13% of older individuals (n = 797) experienced TBI during the study, highlighting its significant prevalence in this population.
  • Older adults (mean age at baseline, 75 years) who experienced TBI during the study period were more likely to be women and White individuals as well as individuals having higher levels of education and normal cognition (P < .001), challenging previous assumptions about risk factors.
  • The study underscored the need for targeted interventions and research focused on TBI prevention and postdischarge care in older adults.

IN PRACTICE:

“The number of people 65 and older with TBI is shockingly high,” senior author Raquel Gardner, MD, said in a press release. “We need evidence-based guidelines to inform postdischarge care of this very large Medicare population and more research on post-TBI dementia prevention and repeat injury prevention.”

SOURCE:

The study was led by Erica Kornblith, PhD, of the University of California, San Francisco. It was published online in JAMA Network Open.

LIMITATIONS:

The study’s reliance on ICD codes for TBI identification may not capture the full spectrum of TBI severity. Self-reported data on sociodemographic factors may have introduced bias, affecting the accuracy of associations with TBI incidence. In addition, the findings’ generalizability may be limited due to the study’s focus on Medicare enrollees, potentially excluding those from diverse socioeconomic backgrounds.

DISCLOSURES:

The study was funded by the Alzheimer’s Association, the US Department of Veterans Affairs, the National Institute on Aging, and the Department of Defense. Disclosures are noted in the original study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Nearly 13% of older adults in the United States were treated for traumatic brain injury (TBI) over an 18-year period, a new study showed.

METHODOLOGY:

  • Researchers analyzed data from approximately 9200 Medicare enrollees who were part of the Health and Retirement Study (HRS), aged 65 years and older, from 2000 to 2018.
  • The baseline date was the date of the first age eligible HRS core interview in the community in 2000 or later.
  • Incident TBI cases came from an updated list of the International Classification of Diseases (ICD), 9th and 10th edition codes, from the Defense and Veterans Brain Injury Center and the Armed Forces Health Surveillance Branch for TBI surveillance.
  • Codes corresponded with emergency department, CT, and/or fMRI visits.

TAKEAWAY:

  • Almost 13% of older individuals (n = 797) experienced TBI during the study, highlighting its significant prevalence in this population.
  • Older adults (mean age at baseline, 75 years) who experienced TBI during the study period were more likely to be women and White individuals as well as individuals having higher levels of education and normal cognition (P < .001), challenging previous assumptions about risk factors.
  • The study underscored the need for targeted interventions and research focused on TBI prevention and postdischarge care in older adults.

IN PRACTICE:

“The number of people 65 and older with TBI is shockingly high,” senior author Raquel Gardner, MD, said in a press release. “We need evidence-based guidelines to inform postdischarge care of this very large Medicare population and more research on post-TBI dementia prevention and repeat injury prevention.”

SOURCE:

The study was led by Erica Kornblith, PhD, of the University of California, San Francisco. It was published online in JAMA Network Open.

LIMITATIONS:

The study’s reliance on ICD codes for TBI identification may not capture the full spectrum of TBI severity. Self-reported data on sociodemographic factors may have introduced bias, affecting the accuracy of associations with TBI incidence. In addition, the findings’ generalizability may be limited due to the study’s focus on Medicare enrollees, potentially excluding those from diverse socioeconomic backgrounds.

DISCLOSURES:

The study was funded by the Alzheimer’s Association, the US Department of Veterans Affairs, the National Institute on Aging, and the Department of Defense. Disclosures are noted in the original study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Nearly 13% of older adults in the United States were treated for traumatic brain injury (TBI) over an 18-year period, a new study showed.

METHODOLOGY:

  • Researchers analyzed data from approximately 9200 Medicare enrollees who were part of the Health and Retirement Study (HRS), aged 65 years and older, from 2000 to 2018.
  • The baseline date was the date of the first age eligible HRS core interview in the community in 2000 or later.
  • Incident TBI cases came from an updated list of the International Classification of Diseases (ICD), 9th and 10th edition codes, from the Defense and Veterans Brain Injury Center and the Armed Forces Health Surveillance Branch for TBI surveillance.
  • Codes corresponded with emergency department, CT, and/or fMRI visits.

TAKEAWAY:

  • Almost 13% of older individuals (n = 797) experienced TBI during the study, highlighting its significant prevalence in this population.
  • Older adults (mean age at baseline, 75 years) who experienced TBI during the study period were more likely to be women and White individuals as well as individuals having higher levels of education and normal cognition (P < .001), challenging previous assumptions about risk factors.
  • The study underscored the need for targeted interventions and research focused on TBI prevention and postdischarge care in older adults.

IN PRACTICE:

“The number of people 65 and older with TBI is shockingly high,” senior author Raquel Gardner, MD, said in a press release. “We need evidence-based guidelines to inform postdischarge care of this very large Medicare population and more research on post-TBI dementia prevention and repeat injury prevention.”

SOURCE:

The study was led by Erica Kornblith, PhD, of the University of California, San Francisco. It was published online in JAMA Network Open.

LIMITATIONS:

The study’s reliance on ICD codes for TBI identification may not capture the full spectrum of TBI severity. Self-reported data on sociodemographic factors may have introduced bias, affecting the accuracy of associations with TBI incidence. In addition, the findings’ generalizability may be limited due to the study’s focus on Medicare enrollees, potentially excluding those from diverse socioeconomic backgrounds.

DISCLOSURES:

The study was funded by the Alzheimer’s Association, the US Department of Veterans Affairs, the National Institute on Aging, and the Department of Defense. Disclosures are noted in the original study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168422</fileName> <TBEID>0C050907.SIG</TBEID> <TBUniqueIdentifier>MD_0C050907</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>TBI in Older Adults</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240614T123354</QCDate> <firstPublished>20240614T130148</firstPublished> <LastPublished>20240614T130148</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240614T130148</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Edited by EVE BENDER</byline> <bylineText>EDITED EVE BENDER</bylineText> <bylineFull>EDITED EVE BENDER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Nearly 13% of older adults in the United States were treated for traumatic brain injury (TBI) over an 18-year period</metaDescription> <articlePDF/> <teaserImage/> <teaser>The study underscored the need for targeted interventions and research focused on TBI prevention and postdischarge care in older adults.</teaser> <title>‘Shockingly High’ Rate of TBI in Older Adults</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>IM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>CPN</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>21</term> <term>15</term> <term>9</term> </publications> <sections> <term>86</term> <term>39313</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">309</term> <term>308</term> <term>215</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>‘Shockingly High’ Rate of TBI in Older Adults</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p><span class="tag metaDescription">Nearly 13% of older adults in the United States were treated for traumatic brain injury (TBI) over an 18-year period</span>, a new study showed.</p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>Researchers analyzed data from approximately 9200 Medicare enrollees who were part of the Health and Retirement Study (HRS), aged 65 years and older, from 2000 to 2018.</li> <li>The baseline date was the date of the first age eligible HRS core interview in the community in 2000 or later.</li> <li>Incident TBI cases came from an updated list of the International Classification of Diseases (ICD), 9th and 10th edition codes, from the Defense and Veterans Brain Injury Center and the Armed Forces Health Surveillance Branch for TBI surveillance.</li> <li>Codes corresponded with emergency department, CT, and/or fMRI visits.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>Almost 13% of older individuals (n = 797) experienced TBI during the study, highlighting its significant prevalence in this population.</li> <li>Older adults (mean age at baseline, 75 years) who experienced TBI during the study period were more likely to be women and White individuals as well as individuals having higher levels of education and normal cognition (<em>P</em> &lt; .001), challenging previous assumptions about risk factors.</li> <li>The study underscored the need for targeted interventions and research focused on TBI prevention and postdischarge care in older adults.</li> </ul> <h2>IN PRACTICE:</h2> <p>“The number of people 65 and older with TBI is shockingly high,” senior author Raquel Gardner, MD, said in a <span class="Hyperlink"><a href="https://www.eurekalert.org/news-releases/1046418#:~:text=Some">press release</a>.</span> “We need evidence-based guidelines to inform postdischarge care of this very large Medicare population and more research on post-TBI dementia prevention and repeat injury prevention.”</p> <h2>SOURCE:</h2> <p>The study was led by Erica Kornblith, PhD, of the University of California, San Francisco. It was <span class="Hyperlink"><a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2819338">published online</a> </span>in <em>JAMA Network Open</em>.</p> <h2>LIMITATIONS:</h2> <p>The study’s reliance on ICD codes for TBI identification may not capture the full spectrum of TBI severity. Self-reported data on sociodemographic factors may have introduced bias, affecting the accuracy of associations with TBI incidence. In addition, the findings’ generalizability may be limited due to the study’s focus on Medicare enrollees, potentially excluding those from diverse socioeconomic backgrounds.</p> <h2>DISCLOSURES:</h2> <p>The study was funded by the Alzheimer’s Association, the US Department of Veterans Affairs, the National Institute on Aging, and the Department of Defense. Disclosures are noted in the original study.<br/><br/><br/><br/><em>This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication</em>.<br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/shockingly-high-rate-tbi-older-adults-2024a1000asp">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Early-Life Excess Weight Tied to Subsequent Stroke Risk

Article Type
Changed
Thu, 06/13/2024 - 13:13

Women who had overweight or obesity as teens or young adults had more than a twofold increased risk for stroke before age 55, new research suggested.

An analysis of more than five decades of health data on 10,000 adults revealed that close to 5% experienced a stroke during the follow-up period, with the risk for ischemic stroke being more than twice as high in women who had obesity as teens or young adults. The risk was even higher for hemorrhagic stroke in both men and women with a history of obesity in youth.

“Our findings suggest that being overweight may have long-term health effects, even if the excess weight is temporary,” lead author Ursula Mikkola, BM, an investigator in the Research Unit of Population Health at the University of Oulu, Oulu, Finland, said in a news release.

tetheshakebanagechishocakusochostapuchasluclarojagohathomoshaclowrodricruspagaphucibepatroclakaslepraphurijuvulestogiprashomosudadrogupodraphichijauithiwaseganunebospuwrachihusteclohiheslospomouauespeswavoslomeuaroclotroswushuchuchuvecuuubauaslap
Dr. Ursula Mikkola


“Health care professionals should pay attention to overweight and obesity in young people and work with them to develop healthier eating patterns and physical activity — however, conversations with teens and young adults about weight should be approached in a nonjudgmental and nonstigmatizing manner,” she added.

The study was published online in Stroke.
 

Gender Differences

Childhood obesity has been associated with a heightened risk for cerebrovascular disease later in life, but most studies have focused on body mass index (BMI) at a single time point without considering its fluctuations throughout life, the investigators noted.

For the study, investigators used data from the Northern Finland Birth Cohort 1966, a prospective, general population-based birth cohort that followed 10,491 individuals (5185 women) until 2020 or the first stroke, death, or moving abroad, whichever came first.

Mean (SD) follow-up for each participant was 39 years from age 14 onward and 23 years from age 31 onward. The analysis was conducted between 1980 and 2020.

BMI data were collected from participants at the age of 14 and 31 years. Age 14 covariates included smoking, parental socioeconomic status, and age at menarche (for girls). Age 31 covariates included smoking and participants’ educational level.

During the follow-up period, 4.7% of participants experienced stroke. Of these events, 31% were ischemic strokes and 40% were transient ischemic attacks. The remainder were hemorrhagic or other cerebrovascular events.

Using normal weight as a reference, researchers found that the risk for ischemic stroke was over twice as high for women who had been overweight at ages 14 (hazard ratio [HR], 2.49; 95% confidence interval [CI], 1.44-4.31) and 31 (HR, 2.13; 95% CI, 1.14-3.97) years. The risk was also considerably higher for women who had obesity at ages 14 (HR, 1.87; 95% CI, 0.76-4.58) and 31 (HR, 2.67; 95% CI, 1.26-5.65) years.

The risk for hemorrhagic stroke was even higher, both among women (HR, 3.49; 95% CI, 1.13-10.7) and men (HR, 5.75; 95% CI, 1.43-23.1) who had obesity at age 31.

No similar associations were found among men, and the findings were independent of earlier or later BMI.

The risk for any cerebrovascular disease related to overweight at age 14 was twice as high among girls vs boys (HR, 2.09; 95% CI, 1.06-4.15), and the risk for ischemic stroke related to obesity at age 31 was nearly seven times higher among women vs men (HR, 6.96; 95% CI, 1.36-35.7).

“Stroke at a young age is rare, so the difference of just a few strokes could have an outsized impact on the risk estimates,” the study authors said. “Also, BMI relies solely on a person’s height and weight; therefore, a high BMI may be a misleading way to define obesity, especially in muscular people who may carry little fat even while weighing more.”
 

 

 

Caveats

In an accompanying editorial, Larry Goldstein, MD, chair of the Department of Neurology, University of Kentucky, Lexington, Kentucky, and codirector of the Kentucky Neuroscience Institute, said the study “provides additional evidence of an association between overweight/obesity and stroke in young adults.”

However, Dr. Goldstein added that “while it is tempting to assume that reductions in overweight/obesity in younger populations would translate to lower stroke rates in young adults, this remains to be proven.”

Moreover, it is “always important to acknowledge that associations found in observational studies may not reflect causality.”

This study was supported by Orion Research Foundation, Päivikki and Sakari Sohlberg Foundation, and Paulo Foundation. Dr. Mikkola reported no relevant financial relationships. The other authors’ disclosures are listed on the original paper. Dr. Goldstein reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Women who had overweight or obesity as teens or young adults had more than a twofold increased risk for stroke before age 55, new research suggested.

An analysis of more than five decades of health data on 10,000 adults revealed that close to 5% experienced a stroke during the follow-up period, with the risk for ischemic stroke being more than twice as high in women who had obesity as teens or young adults. The risk was even higher for hemorrhagic stroke in both men and women with a history of obesity in youth.

“Our findings suggest that being overweight may have long-term health effects, even if the excess weight is temporary,” lead author Ursula Mikkola, BM, an investigator in the Research Unit of Population Health at the University of Oulu, Oulu, Finland, said in a news release.

tetheshakebanagechishocakusochostapuchasluclarojagohathomoshaclowrodricruspagaphucibepatroclakaslepraphurijuvulestogiprashomosudadrogupodraphichijauithiwaseganunebospuwrachihusteclohiheslospomouauespeswavoslomeuaroclotroswushuchuchuvecuuubauaslap
Dr. Ursula Mikkola


“Health care professionals should pay attention to overweight and obesity in young people and work with them to develop healthier eating patterns and physical activity — however, conversations with teens and young adults about weight should be approached in a nonjudgmental and nonstigmatizing manner,” she added.

The study was published online in Stroke.
 

Gender Differences

Childhood obesity has been associated with a heightened risk for cerebrovascular disease later in life, but most studies have focused on body mass index (BMI) at a single time point without considering its fluctuations throughout life, the investigators noted.

For the study, investigators used data from the Northern Finland Birth Cohort 1966, a prospective, general population-based birth cohort that followed 10,491 individuals (5185 women) until 2020 or the first stroke, death, or moving abroad, whichever came first.

Mean (SD) follow-up for each participant was 39 years from age 14 onward and 23 years from age 31 onward. The analysis was conducted between 1980 and 2020.

BMI data were collected from participants at the age of 14 and 31 years. Age 14 covariates included smoking, parental socioeconomic status, and age at menarche (for girls). Age 31 covariates included smoking and participants’ educational level.

During the follow-up period, 4.7% of participants experienced stroke. Of these events, 31% were ischemic strokes and 40% were transient ischemic attacks. The remainder were hemorrhagic or other cerebrovascular events.

Using normal weight as a reference, researchers found that the risk for ischemic stroke was over twice as high for women who had been overweight at ages 14 (hazard ratio [HR], 2.49; 95% confidence interval [CI], 1.44-4.31) and 31 (HR, 2.13; 95% CI, 1.14-3.97) years. The risk was also considerably higher for women who had obesity at ages 14 (HR, 1.87; 95% CI, 0.76-4.58) and 31 (HR, 2.67; 95% CI, 1.26-5.65) years.

The risk for hemorrhagic stroke was even higher, both among women (HR, 3.49; 95% CI, 1.13-10.7) and men (HR, 5.75; 95% CI, 1.43-23.1) who had obesity at age 31.

No similar associations were found among men, and the findings were independent of earlier or later BMI.

The risk for any cerebrovascular disease related to overweight at age 14 was twice as high among girls vs boys (HR, 2.09; 95% CI, 1.06-4.15), and the risk for ischemic stroke related to obesity at age 31 was nearly seven times higher among women vs men (HR, 6.96; 95% CI, 1.36-35.7).

“Stroke at a young age is rare, so the difference of just a few strokes could have an outsized impact on the risk estimates,” the study authors said. “Also, BMI relies solely on a person’s height and weight; therefore, a high BMI may be a misleading way to define obesity, especially in muscular people who may carry little fat even while weighing more.”
 

 

 

Caveats

In an accompanying editorial, Larry Goldstein, MD, chair of the Department of Neurology, University of Kentucky, Lexington, Kentucky, and codirector of the Kentucky Neuroscience Institute, said the study “provides additional evidence of an association between overweight/obesity and stroke in young adults.”

However, Dr. Goldstein added that “while it is tempting to assume that reductions in overweight/obesity in younger populations would translate to lower stroke rates in young adults, this remains to be proven.”

Moreover, it is “always important to acknowledge that associations found in observational studies may not reflect causality.”

This study was supported by Orion Research Foundation, Päivikki and Sakari Sohlberg Foundation, and Paulo Foundation. Dr. Mikkola reported no relevant financial relationships. The other authors’ disclosures are listed on the original paper. Dr. Goldstein reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Women who had overweight or obesity as teens or young adults had more than a twofold increased risk for stroke before age 55, new research suggested.

An analysis of more than five decades of health data on 10,000 adults revealed that close to 5% experienced a stroke during the follow-up period, with the risk for ischemic stroke being more than twice as high in women who had obesity as teens or young adults. The risk was even higher for hemorrhagic stroke in both men and women with a history of obesity in youth.

“Our findings suggest that being overweight may have long-term health effects, even if the excess weight is temporary,” lead author Ursula Mikkola, BM, an investigator in the Research Unit of Population Health at the University of Oulu, Oulu, Finland, said in a news release.

tetheshakebanagechishocakusochostapuchasluclarojagohathomoshaclowrodricruspagaphucibepatroclakaslepraphurijuvulestogiprashomosudadrogupodraphichijauithiwaseganunebospuwrachihusteclohiheslospomouauespeswavoslomeuaroclotroswushuchuchuvecuuubauaslap
Dr. Ursula Mikkola


“Health care professionals should pay attention to overweight and obesity in young people and work with them to develop healthier eating patterns and physical activity — however, conversations with teens and young adults about weight should be approached in a nonjudgmental and nonstigmatizing manner,” she added.

The study was published online in Stroke.
 

Gender Differences

Childhood obesity has been associated with a heightened risk for cerebrovascular disease later in life, but most studies have focused on body mass index (BMI) at a single time point without considering its fluctuations throughout life, the investigators noted.

For the study, investigators used data from the Northern Finland Birth Cohort 1966, a prospective, general population-based birth cohort that followed 10,491 individuals (5185 women) until 2020 or the first stroke, death, or moving abroad, whichever came first.

Mean (SD) follow-up for each participant was 39 years from age 14 onward and 23 years from age 31 onward. The analysis was conducted between 1980 and 2020.

BMI data were collected from participants at the age of 14 and 31 years. Age 14 covariates included smoking, parental socioeconomic status, and age at menarche (for girls). Age 31 covariates included smoking and participants’ educational level.

During the follow-up period, 4.7% of participants experienced stroke. Of these events, 31% were ischemic strokes and 40% were transient ischemic attacks. The remainder were hemorrhagic or other cerebrovascular events.

Using normal weight as a reference, researchers found that the risk for ischemic stroke was over twice as high for women who had been overweight at ages 14 (hazard ratio [HR], 2.49; 95% confidence interval [CI], 1.44-4.31) and 31 (HR, 2.13; 95% CI, 1.14-3.97) years. The risk was also considerably higher for women who had obesity at ages 14 (HR, 1.87; 95% CI, 0.76-4.58) and 31 (HR, 2.67; 95% CI, 1.26-5.65) years.

The risk for hemorrhagic stroke was even higher, both among women (HR, 3.49; 95% CI, 1.13-10.7) and men (HR, 5.75; 95% CI, 1.43-23.1) who had obesity at age 31.

No similar associations were found among men, and the findings were independent of earlier or later BMI.

The risk for any cerebrovascular disease related to overweight at age 14 was twice as high among girls vs boys (HR, 2.09; 95% CI, 1.06-4.15), and the risk for ischemic stroke related to obesity at age 31 was nearly seven times higher among women vs men (HR, 6.96; 95% CI, 1.36-35.7).

“Stroke at a young age is rare, so the difference of just a few strokes could have an outsized impact on the risk estimates,” the study authors said. “Also, BMI relies solely on a person’s height and weight; therefore, a high BMI may be a misleading way to define obesity, especially in muscular people who may carry little fat even while weighing more.”
 

 

 

Caveats

In an accompanying editorial, Larry Goldstein, MD, chair of the Department of Neurology, University of Kentucky, Lexington, Kentucky, and codirector of the Kentucky Neuroscience Institute, said the study “provides additional evidence of an association between overweight/obesity and stroke in young adults.”

However, Dr. Goldstein added that “while it is tempting to assume that reductions in overweight/obesity in younger populations would translate to lower stroke rates in young adults, this remains to be proven.”

Moreover, it is “always important to acknowledge that associations found in observational studies may not reflect causality.”

This study was supported by Orion Research Foundation, Päivikki and Sakari Sohlberg Foundation, and Paulo Foundation. Dr. Mikkola reported no relevant financial relationships. The other authors’ disclosures are listed on the original paper. Dr. Goldstein reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168411</fileName> <TBEID>0C0508AB.SIG</TBEID> <TBUniqueIdentifier>MD_0C0508AB</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Weight and Stroke</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240613T130305</QCDate> <firstPublished>20240613T130827</firstPublished> <LastPublished>20240613T130827</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240613T130827</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Batya Swift Yasgur</byline> <bylineText>BATYA SWIFT YASGUR</bylineText> <bylineFull>BATYA SWIFT YASGUR</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Women who had overweight or obesity as teens or young adults had more than a twofold increased risk for stroke before age 55</metaDescription> <articlePDF/> <teaserImage>301914</teaserImage> <teaser>“Being overweight may have long-term health effects, even if the excess weight is temporary.”</teaser> <title>Early-Life Excess Weight Tied to Subsequent Stroke Risk</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>CARD</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle>Cardiology news</journalFullTitle> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>PN</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>IM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term>5</term> <term canonical="true">22</term> <term>25</term> <term>15</term> <term>21</term> </publications> <sections> <term>86</term> <term>39313</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">301</term> <term>271</term> <term>258</term> <term>194</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/24012a19.jpg</altRep> <description role="drol:caption">Dr. Ursula Mikkola</description> <description role="drol:credit"/> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Early-Life Excess Weight Tied to Subsequent Stroke Risk</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">Women who had overweight or obesity as teens or young adults had more than a twofold increased risk for stroke before age 55</span>, new research suggested.</p> <p>An analysis of more than five decades of health data on 10,000 adults revealed that close to 5% experienced a stroke during the follow-up period, with the risk for ischemic stroke being more than twice as high in women who had obesity as teens or young adults. The risk was even higher for hemorrhagic stroke in both men and women with a history of obesity in youth.<br/><br/>“Our findings suggest that being overweight may have long-term health effects, even if the excess weight is temporary,” lead author Ursula Mikkola, BM, an investigator in the Research Unit of Population Health at the University of Oulu, Oulu, Finland, said in a news release.[[{"fid":"301914","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Ursula Mikkola, BM, is investigator in the Research Unit of Population Health at the University of Oulu in Finland.","field_file_image_credit[und][0][value]":"","field_file_image_caption[und][0][value]":"Dr. Ursula Mikkola"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]]<br/><br/>“Health care professionals should pay attention to overweight and obesity in young people and work with them to develop healthier eating patterns and physical activity — however, conversations with teens and young adults about weight should be approached in a nonjudgmental and nonstigmatizing manner,” she added.<br/><br/>The study was <a href="https://www.ahajournals.org/doi/10.1161/STROKEAHA.123.045444">published online</a> in <em>Stroke</em>.<br/><br/></p> <h2>Gender Differences</h2> <p>Childhood obesity has been associated with a heightened risk for cerebrovascular disease later in life, but most studies have focused on body mass index (BMI) at a single time point without considering its fluctuations throughout life, the investigators noted.</p> <p>For the study, investigators used data from the Northern Finland Birth Cohort 1966, a prospective, general population-based birth cohort that followed 10,491 individuals (5185 women) until 2020 or the first stroke, death, or moving abroad, whichever came first.<br/><br/>Mean (SD) follow-up for each participant was 39 years from age 14 onward and 23 years from age 31 onward. The analysis was conducted between 1980 and 2020.<br/><br/>BMI data were collected from participants at the age of 14 and 31 years. Age 14 covariates included smoking, parental socioeconomic status, and age at menarche (for girls). Age 31 covariates included smoking and participants’ educational level.<br/><br/>During the follow-up period, 4.7% of participants experienced stroke. Of these events, 31% were ischemic strokes and 40% were transient ischemic attacks. The remainder were hemorrhagic or other cerebrovascular events.<br/><br/>Using normal weight as a reference, researchers found that the risk for ischemic stroke was over twice as high for women who had been overweight at ages 14 (hazard ratio [HR], 2.49; 95% confidence interval [CI], 1.44-4.31) and 31 (HR, 2.13; 95% CI, 1.14-3.97) years. The risk was also considerably higher for women who had obesity at ages 14 (HR, 1.87; 95% CI, 0.76-4.58) and 31 (HR, 2.67; 95% CI, 1.26-5.65) years.<br/><br/>The risk for hemorrhagic stroke was even higher, both among women (HR, 3.49; 95% CI, 1.13-10.7) and men (HR, 5.75; 95% CI, 1.43-23.1) who had obesity at age 31.<br/><br/>No similar associations were found among men, and the findings were independent of earlier or later BMI.<br/><br/>The risk for any cerebrovascular disease related to overweight at age 14 was twice as high among girls vs boys (HR, 2.09; 95% CI, 1.06-4.15), and the risk for ischemic stroke related to obesity at age 31 was nearly seven times higher among women vs men (HR, 6.96; 95% CI, 1.36-35.7).<br/><br/>“Stroke at a young age is rare, so the difference of just a few strokes could have an outsized impact on the risk estimates,” the study authors said. “Also, BMI relies solely on a person’s height and weight; therefore, a high BMI may be a misleading way to define obesity, especially in muscular people who may carry little fat even while weighing more.”<br/><br/></p> <h2>Caveats</h2> <p>In an accompanying <a href="https://www.ahajournals.org/doi/10.1161/STROKEAHA.124.047353">editorial</a>, Larry Goldstein, MD, chair of the Department of Neurology, University of Kentucky, Lexington, Kentucky, and codirector of the Kentucky Neuroscience Institute, said the study “provides additional evidence of an association between overweight/obesity and stroke in young adults.” </p> <p>However, Dr. Goldstein added that “while it is tempting to assume that reductions in overweight/obesity in younger populations would translate to lower stroke rates in young adults, this remains to be proven.”<br/><br/>Moreover, it is “always important to acknowledge that associations found in observational studies may not reflect causality.”<br/><br/>This study was supported by Orion Research Foundation, Päivikki and Sakari Sohlberg Foundation, and Paulo Foundation. Dr. Mikkola reported no relevant financial relationships. The other authors’ disclosures are listed on the original paper. Dr. Goldstein reported no relevant financial relationships.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/early-life-excess-weight-tied-subsequent-stroke-risk-2024a1000b01">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Novel Method Able to Predict if, When, Dementia Will Develop

Article Type
Changed
Wed, 06/12/2024 - 16:09

Novel, noninvasive testing is able to predict dementia onset with 80% accuracy up to 9 years before clinical diagnosis.

The results suggest resting-state functional MRI (rs-fMRI) could be used to identify a neural network signature of dementia risk early in the pathological course of the disease, an important advance as disease-modifying drugs such as those targeting amyloid beta are now becoming available.

“The brain has been changing for a long time before people get symptoms of dementia, and if we’re very precise about how we do it, we can actually, in principle, detect those changes, which could be really exciting,” study investigator Charles R. Marshall, PhD, professor of clinical neurology, Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, England, told this news organization.

“This could become a platform for screening people for risk status in the future, and it could one day make all the difference in terms of being able to prevent dementia,” he added.

The findings were published online in Nature Mental Health.

The rs-fMRI measures fluctuations in blood oxygen level–dependent signals across the brain, which reflect functional connectivity.

Brain regions commonly implicated in altered functional connectivity in Alzheimer’s disease (AD) are within the default-mode network (DMN). This is the group of regions “connecting with each other and communicating with each other when someone is just lying in an MRI scanner doing nothing, which is how it came to be called the default-mode network,” explained Dr. Marshall.

The DMN encompasses the medial prefrontal cortex, posterior cingulate cortex or precuneus, and bilateral inferior parietal cortices, as well as supplementary brain regions including the medial temporal lobes and temporal poles.

This network is believed to be selectively vulnerable to AD neuropathology. “Something about that network starts to be disrupted in the very earliest stages of Alzheimer’s disease,” said Dr. Marshall.

While this has been known for some time, “what we’ve not been able to do before is build a precise enough model of how the network is connected to be able to tell whether individual participants were going to get dementia or not,” he added.

The investigators used data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from about a half a million UK volunteer participants.

The analysis included 103 individuals with dementia (22 with prevalent dementia and 81 later diagnosed with dementia over a median of 3.7 years) and 1030 matched participants without dementia. All participants had MRI imaging between 2006 and 2010.

The total sample had a mean age of 70.4 years at the time of MRI data acquisition. For each participant, researchers extracted relevant data from 10 predefined regions of interest in the brain, which together defined their DMN. This included two midline regions and four regions in each hemisphere.
 

Greater Predictive Power

Researchers built a model using an approach related to how brain regions communicate with each other. “The model sort of incorporates what we know about how the changes that you see on a functional MRI scan relate to changes in the firing of brain cells, in a very precise way,” said Dr. Marshall.

The researchers then used a machine learning approach to develop a model for effective connectivity, which describes the causal influence of one brain region over another. “We trained a machine learning tool to recognize what a dementia-like pattern of connectivity looks like,” said Dr. Marshall.

Investigators controlled for potential confounders, including age, sex, handedness, in-scanner head motion, and geographical location of data acquisition.

The model was able to determine the difference in brain connectivity patterns between those who would go on to develop dementia and those who would not, with an accuracy of 82% up to 9 years before an official diagnosis was made.

When the researchers trained a model to use brain connections to predict time to diagnosis, the predicted time to diagnosis and actual time to diagnosis were within about 2 years.

This effective connectivity approach has much more predictive power than memory test scores or brain structural measures, said Dr. Marshall. “We looked at brain volumes and they performed very poorly, only just better than tossing a coin, and the same with cognitive test scores, which were only just better than chance.”

As for markers of amyloid beta and tau in the brain, these are “very useful diagnostically” but only when someone has symptoms, said Dr. Marshall. He noted people live for years with these proteins without developing dementia symptoms.

“We wouldn’t necessarily want to expose somebody who has a brain full of amyloid but was not going to get symptoms for the next 20 years to a treatment, but if we knew that person was highly likely to develop symptoms of dementia in the next 5 years, then we probably would,” he said.

Dr. Marshall believes the predictive power of all these diagnostic tools could be boosted if they were used together.
 

Potential for Early Detection, Treatment

Researchers examined a number of modifiable dementia risk factors, including hearing loss, depression, hypertension, and physical inactivity. They found self-reported social isolation was the only variable that showed a significant association with effective connectivity, meaning those who are socially isolated were more likely to have a “dementia-like” pattern of DMN effective connectivity. This finding suggests social isolation is a cause, rather than a consequence, of dementia.

The study also revealed associations between DMN effective connectivity and AD polygenic risk score, derived from meta-analysis of multiple external genome-wide association study sources.

A predictive tool that uses rs-fMRI could also help select participants at a high risk for dementia to investigate potential treatments. “There’s good reason to think that if we could go in earlier with, for example, anti-amyloid treatments, they’re more likely to be effective,” said Dr. Marshall.

The new test might eventually have value as a population screening tool, something akin to colon cancer screening, he added. “We don’t send everyone for a colonoscopy; you do a kind of pre-screening test at home, and if that’s positive, then you get called in for a colonoscopy.”

The researchers looked at all-cause dementia and not just AD because dementia subtype diagnoses in the UK Biobank “are not at all reliable,” said Dr. Marshall.

Study limitations included the fact that UK Biobank participants are healthier and less socioeconomically deprived than the general population and are predominantly White. Another study limitation was that labeling of cases and controls depended on clinician coding rather than on standardized diagnostic criteria.
 

 

 

Kudos, Caveats

In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Sebastian Walsh, National Institute for Health and Care Research doctoral fellow in Public Health Medicine, University of Cambridge, Cambridge, England, said the results are “potentially exciting,” and he praised the way the team conducted the study.

However, he noted some caveats, including the small sample size, with only about 100 people with dementia, and the relatively short time between the brain scan and diagnosis (an average of 3.7 years).

Dr. Walsh emphasized the importance of replicating the findings “in bigger samples with a much longer delay between scan and onset of cognitive symptoms.”

He also noted the average age of study participants was 70 years, whereas the average age at which individuals in the United Kingdom develop dementia is mid to late 80s, “so we need to see these results repeated for more diverse and older samples.”

He also noted that MRI scans are expensive, and the approach used in the study needs “a high-quality scan which requires people to keep their head still.”

Also commenting, Andrew Doig, PhD, professor, Division of Neuroscience, the University of Manchester, Manchester, England, said the MRI connectivity method used in the study might form part of a broader diagnostic approach.

“Dementia is a complex condition, and it is unlikely that we will ever find one simple test that can accurately diagnose it,” Dr. Doig noted. “Within a few years, however, there is good reason to believe that we will be routinely testing for dementia in middle-aged people, using a combination of methods, such as a blood test, followed by imaging.”

“The MRI connectivity method described here could form part of this diagnostic platform. We will then have an excellent understanding of which people are likely to benefit most from the new generation of dementia drugs,” he said.

Dr. Marshall and Dr. Walsh reported no relevant disclosures. Dr. Doig reported that he is a founder, shareholder, and consultant for PharmaKure Ltd, which is developing new diagnostics for neurodegenerative diseases using blood biomarkers.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Novel, noninvasive testing is able to predict dementia onset with 80% accuracy up to 9 years before clinical diagnosis.

The results suggest resting-state functional MRI (rs-fMRI) could be used to identify a neural network signature of dementia risk early in the pathological course of the disease, an important advance as disease-modifying drugs such as those targeting amyloid beta are now becoming available.

“The brain has been changing for a long time before people get symptoms of dementia, and if we’re very precise about how we do it, we can actually, in principle, detect those changes, which could be really exciting,” study investigator Charles R. Marshall, PhD, professor of clinical neurology, Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, England, told this news organization.

“This could become a platform for screening people for risk status in the future, and it could one day make all the difference in terms of being able to prevent dementia,” he added.

The findings were published online in Nature Mental Health.

The rs-fMRI measures fluctuations in blood oxygen level–dependent signals across the brain, which reflect functional connectivity.

Brain regions commonly implicated in altered functional connectivity in Alzheimer’s disease (AD) are within the default-mode network (DMN). This is the group of regions “connecting with each other and communicating with each other when someone is just lying in an MRI scanner doing nothing, which is how it came to be called the default-mode network,” explained Dr. Marshall.

The DMN encompasses the medial prefrontal cortex, posterior cingulate cortex or precuneus, and bilateral inferior parietal cortices, as well as supplementary brain regions including the medial temporal lobes and temporal poles.

This network is believed to be selectively vulnerable to AD neuropathology. “Something about that network starts to be disrupted in the very earliest stages of Alzheimer’s disease,” said Dr. Marshall.

While this has been known for some time, “what we’ve not been able to do before is build a precise enough model of how the network is connected to be able to tell whether individual participants were going to get dementia or not,” he added.

The investigators used data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from about a half a million UK volunteer participants.

The analysis included 103 individuals with dementia (22 with prevalent dementia and 81 later diagnosed with dementia over a median of 3.7 years) and 1030 matched participants without dementia. All participants had MRI imaging between 2006 and 2010.

The total sample had a mean age of 70.4 years at the time of MRI data acquisition. For each participant, researchers extracted relevant data from 10 predefined regions of interest in the brain, which together defined their DMN. This included two midline regions and four regions in each hemisphere.
 

Greater Predictive Power

Researchers built a model using an approach related to how brain regions communicate with each other. “The model sort of incorporates what we know about how the changes that you see on a functional MRI scan relate to changes in the firing of brain cells, in a very precise way,” said Dr. Marshall.

The researchers then used a machine learning approach to develop a model for effective connectivity, which describes the causal influence of one brain region over another. “We trained a machine learning tool to recognize what a dementia-like pattern of connectivity looks like,” said Dr. Marshall.

Investigators controlled for potential confounders, including age, sex, handedness, in-scanner head motion, and geographical location of data acquisition.

The model was able to determine the difference in brain connectivity patterns between those who would go on to develop dementia and those who would not, with an accuracy of 82% up to 9 years before an official diagnosis was made.

When the researchers trained a model to use brain connections to predict time to diagnosis, the predicted time to diagnosis and actual time to diagnosis were within about 2 years.

This effective connectivity approach has much more predictive power than memory test scores or brain structural measures, said Dr. Marshall. “We looked at brain volumes and they performed very poorly, only just better than tossing a coin, and the same with cognitive test scores, which were only just better than chance.”

As for markers of amyloid beta and tau in the brain, these are “very useful diagnostically” but only when someone has symptoms, said Dr. Marshall. He noted people live for years with these proteins without developing dementia symptoms.

“We wouldn’t necessarily want to expose somebody who has a brain full of amyloid but was not going to get symptoms for the next 20 years to a treatment, but if we knew that person was highly likely to develop symptoms of dementia in the next 5 years, then we probably would,” he said.

Dr. Marshall believes the predictive power of all these diagnostic tools could be boosted if they were used together.
 

Potential for Early Detection, Treatment

Researchers examined a number of modifiable dementia risk factors, including hearing loss, depression, hypertension, and physical inactivity. They found self-reported social isolation was the only variable that showed a significant association with effective connectivity, meaning those who are socially isolated were more likely to have a “dementia-like” pattern of DMN effective connectivity. This finding suggests social isolation is a cause, rather than a consequence, of dementia.

The study also revealed associations between DMN effective connectivity and AD polygenic risk score, derived from meta-analysis of multiple external genome-wide association study sources.

A predictive tool that uses rs-fMRI could also help select participants at a high risk for dementia to investigate potential treatments. “There’s good reason to think that if we could go in earlier with, for example, anti-amyloid treatments, they’re more likely to be effective,” said Dr. Marshall.

The new test might eventually have value as a population screening tool, something akin to colon cancer screening, he added. “We don’t send everyone for a colonoscopy; you do a kind of pre-screening test at home, and if that’s positive, then you get called in for a colonoscopy.”

The researchers looked at all-cause dementia and not just AD because dementia subtype diagnoses in the UK Biobank “are not at all reliable,” said Dr. Marshall.

Study limitations included the fact that UK Biobank participants are healthier and less socioeconomically deprived than the general population and are predominantly White. Another study limitation was that labeling of cases and controls depended on clinician coding rather than on standardized diagnostic criteria.
 

 

 

Kudos, Caveats

In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Sebastian Walsh, National Institute for Health and Care Research doctoral fellow in Public Health Medicine, University of Cambridge, Cambridge, England, said the results are “potentially exciting,” and he praised the way the team conducted the study.

However, he noted some caveats, including the small sample size, with only about 100 people with dementia, and the relatively short time between the brain scan and diagnosis (an average of 3.7 years).

Dr. Walsh emphasized the importance of replicating the findings “in bigger samples with a much longer delay between scan and onset of cognitive symptoms.”

He also noted the average age of study participants was 70 years, whereas the average age at which individuals in the United Kingdom develop dementia is mid to late 80s, “so we need to see these results repeated for more diverse and older samples.”

He also noted that MRI scans are expensive, and the approach used in the study needs “a high-quality scan which requires people to keep their head still.”

Also commenting, Andrew Doig, PhD, professor, Division of Neuroscience, the University of Manchester, Manchester, England, said the MRI connectivity method used in the study might form part of a broader diagnostic approach.

“Dementia is a complex condition, and it is unlikely that we will ever find one simple test that can accurately diagnose it,” Dr. Doig noted. “Within a few years, however, there is good reason to believe that we will be routinely testing for dementia in middle-aged people, using a combination of methods, such as a blood test, followed by imaging.”

“The MRI connectivity method described here could form part of this diagnostic platform. We will then have an excellent understanding of which people are likely to benefit most from the new generation of dementia drugs,” he said.

Dr. Marshall and Dr. Walsh reported no relevant disclosures. Dr. Doig reported that he is a founder, shareholder, and consultant for PharmaKure Ltd, which is developing new diagnostics for neurodegenerative diseases using blood biomarkers.

A version of this article first appeared on Medscape.com.

Novel, noninvasive testing is able to predict dementia onset with 80% accuracy up to 9 years before clinical diagnosis.

The results suggest resting-state functional MRI (rs-fMRI) could be used to identify a neural network signature of dementia risk early in the pathological course of the disease, an important advance as disease-modifying drugs such as those targeting amyloid beta are now becoming available.

“The brain has been changing for a long time before people get symptoms of dementia, and if we’re very precise about how we do it, we can actually, in principle, detect those changes, which could be really exciting,” study investigator Charles R. Marshall, PhD, professor of clinical neurology, Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, England, told this news organization.

“This could become a platform for screening people for risk status in the future, and it could one day make all the difference in terms of being able to prevent dementia,” he added.

The findings were published online in Nature Mental Health.

The rs-fMRI measures fluctuations in blood oxygen level–dependent signals across the brain, which reflect functional connectivity.

Brain regions commonly implicated in altered functional connectivity in Alzheimer’s disease (AD) are within the default-mode network (DMN). This is the group of regions “connecting with each other and communicating with each other when someone is just lying in an MRI scanner doing nothing, which is how it came to be called the default-mode network,” explained Dr. Marshall.

The DMN encompasses the medial prefrontal cortex, posterior cingulate cortex or precuneus, and bilateral inferior parietal cortices, as well as supplementary brain regions including the medial temporal lobes and temporal poles.

This network is believed to be selectively vulnerable to AD neuropathology. “Something about that network starts to be disrupted in the very earliest stages of Alzheimer’s disease,” said Dr. Marshall.

While this has been known for some time, “what we’ve not been able to do before is build a precise enough model of how the network is connected to be able to tell whether individual participants were going to get dementia or not,” he added.

The investigators used data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from about a half a million UK volunteer participants.

The analysis included 103 individuals with dementia (22 with prevalent dementia and 81 later diagnosed with dementia over a median of 3.7 years) and 1030 matched participants without dementia. All participants had MRI imaging between 2006 and 2010.

The total sample had a mean age of 70.4 years at the time of MRI data acquisition. For each participant, researchers extracted relevant data from 10 predefined regions of interest in the brain, which together defined their DMN. This included two midline regions and four regions in each hemisphere.
 

Greater Predictive Power

Researchers built a model using an approach related to how brain regions communicate with each other. “The model sort of incorporates what we know about how the changes that you see on a functional MRI scan relate to changes in the firing of brain cells, in a very precise way,” said Dr. Marshall.

The researchers then used a machine learning approach to develop a model for effective connectivity, which describes the causal influence of one brain region over another. “We trained a machine learning tool to recognize what a dementia-like pattern of connectivity looks like,” said Dr. Marshall.

Investigators controlled for potential confounders, including age, sex, handedness, in-scanner head motion, and geographical location of data acquisition.

The model was able to determine the difference in brain connectivity patterns between those who would go on to develop dementia and those who would not, with an accuracy of 82% up to 9 years before an official diagnosis was made.

When the researchers trained a model to use brain connections to predict time to diagnosis, the predicted time to diagnosis and actual time to diagnosis were within about 2 years.

This effective connectivity approach has much more predictive power than memory test scores or brain structural measures, said Dr. Marshall. “We looked at brain volumes and they performed very poorly, only just better than tossing a coin, and the same with cognitive test scores, which were only just better than chance.”

As for markers of amyloid beta and tau in the brain, these are “very useful diagnostically” but only when someone has symptoms, said Dr. Marshall. He noted people live for years with these proteins without developing dementia symptoms.

“We wouldn’t necessarily want to expose somebody who has a brain full of amyloid but was not going to get symptoms for the next 20 years to a treatment, but if we knew that person was highly likely to develop symptoms of dementia in the next 5 years, then we probably would,” he said.

Dr. Marshall believes the predictive power of all these diagnostic tools could be boosted if they were used together.
 

Potential for Early Detection, Treatment

Researchers examined a number of modifiable dementia risk factors, including hearing loss, depression, hypertension, and physical inactivity. They found self-reported social isolation was the only variable that showed a significant association with effective connectivity, meaning those who are socially isolated were more likely to have a “dementia-like” pattern of DMN effective connectivity. This finding suggests social isolation is a cause, rather than a consequence, of dementia.

The study also revealed associations between DMN effective connectivity and AD polygenic risk score, derived from meta-analysis of multiple external genome-wide association study sources.

A predictive tool that uses rs-fMRI could also help select participants at a high risk for dementia to investigate potential treatments. “There’s good reason to think that if we could go in earlier with, for example, anti-amyloid treatments, they’re more likely to be effective,” said Dr. Marshall.

The new test might eventually have value as a population screening tool, something akin to colon cancer screening, he added. “We don’t send everyone for a colonoscopy; you do a kind of pre-screening test at home, and if that’s positive, then you get called in for a colonoscopy.”

The researchers looked at all-cause dementia and not just AD because dementia subtype diagnoses in the UK Biobank “are not at all reliable,” said Dr. Marshall.

Study limitations included the fact that UK Biobank participants are healthier and less socioeconomically deprived than the general population and are predominantly White. Another study limitation was that labeling of cases and controls depended on clinician coding rather than on standardized diagnostic criteria.
 

 

 

Kudos, Caveats

In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Sebastian Walsh, National Institute for Health and Care Research doctoral fellow in Public Health Medicine, University of Cambridge, Cambridge, England, said the results are “potentially exciting,” and he praised the way the team conducted the study.

However, he noted some caveats, including the small sample size, with only about 100 people with dementia, and the relatively short time between the brain scan and diagnosis (an average of 3.7 years).

Dr. Walsh emphasized the importance of replicating the findings “in bigger samples with a much longer delay between scan and onset of cognitive symptoms.”

He also noted the average age of study participants was 70 years, whereas the average age at which individuals in the United Kingdom develop dementia is mid to late 80s, “so we need to see these results repeated for more diverse and older samples.”

He also noted that MRI scans are expensive, and the approach used in the study needs “a high-quality scan which requires people to keep their head still.”

Also commenting, Andrew Doig, PhD, professor, Division of Neuroscience, the University of Manchester, Manchester, England, said the MRI connectivity method used in the study might form part of a broader diagnostic approach.

“Dementia is a complex condition, and it is unlikely that we will ever find one simple test that can accurately diagnose it,” Dr. Doig noted. “Within a few years, however, there is good reason to believe that we will be routinely testing for dementia in middle-aged people, using a combination of methods, such as a blood test, followed by imaging.”

“The MRI connectivity method described here could form part of this diagnostic platform. We will then have an excellent understanding of which people are likely to benefit most from the new generation of dementia drugs,” he said.

Dr. Marshall and Dr. Walsh reported no relevant disclosures. Dr. Doig reported that he is a founder, shareholder, and consultant for PharmaKure Ltd, which is developing new diagnostics for neurodegenerative diseases using blood biomarkers.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168387</fileName> <TBEID>0C050845.SIG</TBEID> <TBUniqueIdentifier>MD_0C050845</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240612T115703</QCDate> <firstPublished>20240612T160528</firstPublished> <LastPublished>20240612T160528</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240612T160528</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Pauline Anderson</byline> <bylineText>PAULINE ANDERSON</bylineText> <bylineFull>PAULINE ANDERSON</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Novel, noninvasive testing is able to predict dementia onset with 80% accuracy up to 9 years before clinical diagnosis.</metaDescription> <articlePDF/> <teaserImage/> <teaser>Resting-state functional MRI could be used to identify a neural network signature of dementia risk early in the pathological course of the disease. </teaser> <title>Novel Method Able to Predict if, When, Dementia Will Develop</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">9</term> <term>15</term> <term>21</term> <term>22</term> </publications> <sections> <term>27970</term> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">180</term> <term>215</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Novel Method Able to Predict if, When, Dementia Will Develop</title> <deck/> </itemMeta> <itemContent> <p>Novel, noninvasive testing is able to predict dementia onset with 80% accuracy up to 9 years before clinical diagnosis.</p> <p>The results suggest resting-state functional MRI (rs-fMRI) could be used to identify a neural network signature of dementia risk early in the pathological course of the disease, an important advance as disease-modifying drugs such as those targeting amyloid beta are now becoming available.<br/><br/>“The brain has been changing for a long time before people get symptoms of dementia, and if we’re very precise about how we do it, we can actually, in principle, detect those changes, which could be really exciting,” study investigator Charles R. Marshall, PhD, professor of clinical neurology, Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, England, told this news organization.<br/><br/>“This could become a platform for screening people for risk status in the future, and it could one day make all the difference in terms of being able to prevent dementia,” he added.<br/><br/>The findings were published online in <em><a href="https://www.nature.com/articles/s44220-024-00259-5">Nature Mental Health</a></em>.<br/><br/>The rs-fMRI measures fluctuations in blood oxygen level–dependent signals across the brain, which reflect functional connectivity.<br/><br/>Brain regions commonly implicated in altered functional connectivity in Alzheimer’s disease (AD) are within the default-mode network (DMN). This is the group of regions “connecting with each other and communicating with each other when someone is just lying in an MRI scanner doing nothing, which is how it came to be called the default-mode network,” explained Dr. Marshall.<br/><br/>The DMN encompasses the medial prefrontal cortex, posterior cingulate cortex or precuneus, and bilateral inferior parietal cortices, as well as supplementary brain regions including the medial temporal lobes and temporal poles.<br/><br/>This network is believed to be selectively vulnerable to AD neuropathology. “Something about that network starts to be disrupted in the very earliest stages of Alzheimer’s disease,” said Dr. Marshall.<br/><br/>While this has been known for some time, “what we’ve not been able to do before is build a precise enough model of how the network is connected to be able to tell whether individual participants were going to get dementia or not,” he added.<br/><br/>The investigators used data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from about a half a million UK volunteer participants.<br/><br/>The analysis included 103 individuals with dementia (22 with prevalent dementia and 81 later diagnosed with dementia over a median of 3.7 years) and 1030 matched participants without dementia. All participants had MRI imaging between 2006 and 2010.<br/><br/>The total sample had a mean age of 70.4 years at the time of MRI data acquisition. For each participant, researchers extracted relevant data from 10 predefined regions of interest in the brain, which together defined their DMN. This included two midline regions and four regions in each hemisphere.<br/><br/></p> <h2>Greater Predictive Power</h2> <p>Researchers built a model using an approach related to how brain regions communicate with each other. “The model sort of incorporates what we know about how the changes that you see on a functional MRI scan relate to changes in the firing of brain cells, in a very precise way,” said Dr. Marshall.</p> <p>The researchers then used a machine learning approach to develop a model for effective connectivity, which describes the causal influence of one brain region over another. “We trained a machine learning tool to recognize what a dementia-like pattern of connectivity looks like,” said Dr. Marshall.<br/><br/>Investigators controlled for potential confounders, including age, sex, handedness, in-scanner head motion, and geographical location of data acquisition.<br/><br/>The model was able to determine the difference in brain connectivity patterns between those who would go on to develop dementia and those who would not, with an accuracy of 82% up to 9 years before an official diagnosis was made.<br/><br/>When the researchers trained a model to use brain connections to predict time to diagnosis, the predicted time to diagnosis and actual time to diagnosis were within about 2 years.<br/><br/>This effective connectivity approach has much more predictive power than memory test scores or brain structural measures, said Dr. Marshall. “We looked at brain volumes and they performed very poorly, only just better than tossing a coin, and the same with cognitive test scores, which were only just better than chance.”<br/><br/>As for markers of amyloid beta and tau in the brain, these are “very useful diagnostically” but only when someone has symptoms, said Dr. Marshall. He noted people live for years with these proteins without developing dementia symptoms.<br/><br/>“We wouldn’t necessarily want to expose somebody who has a brain full of amyloid but was not going to get symptoms for the next 20 years to a treatment, but if we knew that person was highly likely to develop symptoms of dementia in the next 5 years, then we probably would,” he said.<br/><br/>Dr. Marshall believes the predictive power of all these diagnostic tools could be boosted if they were used together.<br/><br/></p> <h2>Potential for Early Detection, Treatment</h2> <p>Researchers examined a number of modifiable dementia risk factors, including hearing loss, depression, hypertension, and physical inactivity. They found self-reported social isolation was the only variable that showed a significant association with effective connectivity, meaning those who are socially isolated were more likely to have a “dementia-like” pattern of DMN effective connectivity. This finding suggests social isolation is a cause, rather than a consequence, of dementia.</p> <p>The study also revealed associations between DMN effective connectivity and AD polygenic risk score, derived from meta-analysis of multiple external genome-wide association study sources.<br/><br/>A predictive tool that uses rs-fMRI could also help select participants at a high risk for dementia to investigate potential treatments. “There’s good reason to think that if we could go in earlier with, for example, anti-amyloid treatments, they’re more likely to be effective,” said Dr. Marshall.<br/><br/>The new test might eventually have value as a population screening tool, something akin to colon cancer screening, he added. “We don’t send everyone for a colonoscopy; you do a kind of pre-screening test at home, and if that’s positive, then you get called in for a colonoscopy.”<br/><br/>The researchers looked at all-cause dementia and not just AD because dementia subtype diagnoses in the UK Biobank “are not at all reliable,” said Dr. Marshall.<br/><br/>Study limitations included the fact that UK Biobank participants are healthier and less socioeconomically deprived than the general population and are predominantly White. Another study limitation was that labeling of cases and controls depended on clinician coding rather than on standardized diagnostic criteria.<br/><br/></p> <h2>Kudos, Caveats</h2> <p>In a release from the Science Media Center, a nonprofit organization promoting voices and views of the scientific community, Sebastian Walsh, National Institute for Health and Care Research doctoral fellow in Public Health Medicine, University of Cambridge, Cambridge, England, said the results are “potentially exciting,” and he praised the way the team conducted the study.</p> <p>However, he noted some caveats, including the small sample size, with only about 100 people with dementia, and the relatively short time between the brain scan and diagnosis (an average of 3.7 years).<br/><br/>Dr. Walsh emphasized the importance of replicating the findings “in bigger samples with a much longer delay between scan and onset of cognitive symptoms.”<br/><br/>He also noted the average age of study participants was 70 years, whereas the average age at which individuals in the United Kingdom develop dementia is mid to late 80s, “so we need to see these results repeated for more diverse and older samples.”<br/><br/>He also noted that MRI scans are expensive, and the approach used in the study needs “a high-quality scan which requires people to keep their head still.”<br/><br/>Also commenting, Andrew Doig, PhD, professor, Division of Neuroscience, the University of Manchester, Manchester, England, said the MRI connectivity method used in the study might form part of a broader diagnostic approach.<br/><br/>“Dementia is a complex condition, and it is unlikely that we will ever find one simple test that can accurately diagnose it,” Dr. Doig noted. “Within a few years, however, there is good reason to believe that we will be routinely testing for dementia in middle-aged people, using a combination of methods, such as a blood test, followed by imaging.”<br/><br/>“The MRI connectivity method described here could form part of this diagnostic platform. We will then have an excellent understanding of which people are likely to benefit most from the new generation of dementia drugs,” he said.<br/><br/>Dr. Marshall and Dr. Walsh reported no relevant disclosures. Dr. Doig reported that he is a founder, shareholder, and consultant for PharmaKure Ltd, which is developing new diagnostics for neurodegenerative diseases using blood biomarkers.<span class="end"/></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/novel-method-able-predict-if-when-dementia-will-develop-2024a1000aw4">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Chronotherapy: Why Timing Drugs to Our Body Clocks May Work

Article Type
Changed
Mon, 06/10/2024 - 16:37

Do drugs work better if taken by the clock?

A new analysis published in The Lancet journal’s eClinicalMedicine suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.

The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is rarely considered in writing prescriptions.

“We are really just at the beginning of an exciting new way of looking at patient care,” said Kenneth A. Dyar, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.

“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”
 

The ‘Missing Piece’ in Chronotherapy Research

Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.

That healthy overnight dip can disappear in people with diabeteskidney disease, and obstructive sleep apnea. Some physicians have suggested a bed-time dose to restore that dip. But studies have had mixed results, so “take at bedtime” has become a less common recommendation in recent years.

But the debate continued. After a large 2019 Spanish study found that bedtime doses had benefits so big that the results drew questions, an even larger, 2022 randomized, controlled trial from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.

Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.

“We did this study thinking nocturnal blood pressure tablets might be better,” said Thomas MacDonald, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”

So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”

Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.

The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.

“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author Filippo Pigazzani, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”

The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.
 

 

 

Looking Beyond Blood Pressure

What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.

An estimated 50% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.

handful of US Food and Drug Administration–approved drugs already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.

Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the Society for Research on Biological Rhythms featured a day-long session aimed at bringing clinicians up to speed. An organization called the International Association of Circadian Health Clinics is trying to bring circadian medicine findings to clinicians and their patients and to support research.

Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.

In a Massachusetts Institute of Technology study published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers said.
 

Timing and the Immune System

Circadian rhythms are also seen in immune processes. In a 2023 study in The Journal of Clinical Investigation of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.

“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher Jeffrey Haspel, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.

In a multicenter, 2024 analysis of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.

“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”

Other research suggests or is investigating possible chronotherapy benefits for depressionglaucomarespiratory diseasesstroke treatmentepilepsy, and sedatives used in surgery. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.
 

 

 

Should You Use Chronotherapy Now?

Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:

Night owls whose blood pressure isn’t well controlled. Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.

In their study, the researchers determined participants’ chronotype with a few questions from the Munich Chronotype Questionnaire about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)

If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”

Children and older adults getting vaccines. Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Do drugs work better if taken by the clock?

A new analysis published in The Lancet journal’s eClinicalMedicine suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.

The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is rarely considered in writing prescriptions.

“We are really just at the beginning of an exciting new way of looking at patient care,” said Kenneth A. Dyar, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.

“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”
 

The ‘Missing Piece’ in Chronotherapy Research

Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.

That healthy overnight dip can disappear in people with diabeteskidney disease, and obstructive sleep apnea. Some physicians have suggested a bed-time dose to restore that dip. But studies have had mixed results, so “take at bedtime” has become a less common recommendation in recent years.

But the debate continued. After a large 2019 Spanish study found that bedtime doses had benefits so big that the results drew questions, an even larger, 2022 randomized, controlled trial from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.

Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.

“We did this study thinking nocturnal blood pressure tablets might be better,” said Thomas MacDonald, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”

So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”

Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.

The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.

“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author Filippo Pigazzani, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”

The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.
 

 

 

Looking Beyond Blood Pressure

What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.

An estimated 50% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.

handful of US Food and Drug Administration–approved drugs already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.

Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the Society for Research on Biological Rhythms featured a day-long session aimed at bringing clinicians up to speed. An organization called the International Association of Circadian Health Clinics is trying to bring circadian medicine findings to clinicians and their patients and to support research.

Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.

In a Massachusetts Institute of Technology study published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers said.
 

Timing and the Immune System

Circadian rhythms are also seen in immune processes. In a 2023 study in The Journal of Clinical Investigation of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.

“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher Jeffrey Haspel, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.

In a multicenter, 2024 analysis of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.

“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”

Other research suggests or is investigating possible chronotherapy benefits for depressionglaucomarespiratory diseasesstroke treatmentepilepsy, and sedatives used in surgery. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.
 

 

 

Should You Use Chronotherapy Now?

Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:

Night owls whose blood pressure isn’t well controlled. Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.

In their study, the researchers determined participants’ chronotype with a few questions from the Munich Chronotype Questionnaire about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)

If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”

Children and older adults getting vaccines. Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”
 

A version of this article appeared on Medscape.com.

Do drugs work better if taken by the clock?

A new analysis published in The Lancet journal’s eClinicalMedicine suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.

The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is rarely considered in writing prescriptions.

“We are really just at the beginning of an exciting new way of looking at patient care,” said Kenneth A. Dyar, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.

“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”
 

The ‘Missing Piece’ in Chronotherapy Research

Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.

That healthy overnight dip can disappear in people with diabeteskidney disease, and obstructive sleep apnea. Some physicians have suggested a bed-time dose to restore that dip. But studies have had mixed results, so “take at bedtime” has become a less common recommendation in recent years.

But the debate continued. After a large 2019 Spanish study found that bedtime doses had benefits so big that the results drew questions, an even larger, 2022 randomized, controlled trial from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.

Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.

“We did this study thinking nocturnal blood pressure tablets might be better,” said Thomas MacDonald, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”

So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”

Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.

The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.

“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author Filippo Pigazzani, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”

The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.
 

 

 

Looking Beyond Blood Pressure

What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.

An estimated 50% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.

handful of US Food and Drug Administration–approved drugs already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.

Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the Society for Research on Biological Rhythms featured a day-long session aimed at bringing clinicians up to speed. An organization called the International Association of Circadian Health Clinics is trying to bring circadian medicine findings to clinicians and their patients and to support research.

Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.

In a Massachusetts Institute of Technology study published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers said.
 

Timing and the Immune System

Circadian rhythms are also seen in immune processes. In a 2023 study in The Journal of Clinical Investigation of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.

“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher Jeffrey Haspel, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.

In a multicenter, 2024 analysis of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.

“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”

Other research suggests or is investigating possible chronotherapy benefits for depressionglaucomarespiratory diseasesstroke treatmentepilepsy, and sedatives used in surgery. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.
 

 

 

Should You Use Chronotherapy Now?

Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:

Night owls whose blood pressure isn’t well controlled. Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.

In their study, the researchers determined participants’ chronotype with a few questions from the Munich Chronotype Questionnaire about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)

If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”

Children and older adults getting vaccines. Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168359</fileName> <TBEID>0C05079F.SIG</TBEID> <TBUniqueIdentifier>MD_0C05079F</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240610T162923</QCDate> <firstPublished>20240610T163113</firstPublished> <LastPublished>20240610T163113</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240610T163113</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Sari Harrar</byline> <bylineText>SARI HARRAR</bylineText> <bylineFull>SARI HARRAR</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>Feature</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Do drugs work better if taken by the clock?</metaDescription> <articlePDF/> <teaserImage/> <teaser>More research showed circadian medicine — timing drug-taking to one’s body clock — could reduce side effects and improve the effectiveness of a wide range of therapies.</teaser> <title>Chronotherapy: Why Timing Drugs to Our Body Clocks May Work</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdid</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>rn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term>21</term> <term canonical="true">5</term> <term>6</term> <term>9</term> <term>15</term> <term>51892</term> <term>22</term> <term>26</term> <term>25</term> <term>31</term> <term>34</term> </publications> <sections> <term canonical="true">27980</term> <term>39313</term> </sections> <topics> <term>194</term> <term>296</term> <term>258</term> <term>255</term> <term>263</term> <term>268</term> <term>248</term> <term>311</term> <term>284</term> <term canonical="true">229</term> <term>175</term> <term>202</term> <term>211</term> <term>232</term> <term>205</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Chronotherapy: Why Timing Drugs to Our Body Clocks May Work</title> <deck/> </itemMeta> <itemContent> <p>Do drugs work better if taken by the clock?</p> <p>A new <span class="Hyperlink"><a href="https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(24)00212-8/fulltext">analysis</a> </span>published in <em>The Lancet</em> journal’s <em>eClinicalMedicine</em> suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.<br/><br/>The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is <span class="Hyperlink"><a href="https://www.science.org/doi/abs/10.1126/science.aax7621">rarely considered</a></span> in writing prescriptions.<br/><br/>“We are really just at the beginning of an exciting new way of looking at patient care,” said <span class="Hyperlink"><a href="https://www.helmholtz-munich.de/en/idc/pi/kenneth-dyar">Kenneth A. Dyar</a></span>, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.<br/><br/>“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”<br/><br/></p> <h2>The ‘Missing Piece’ in Chronotherapy Research</h2> <p>Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.</p> <p>That healthy overnight dip can disappear in people with <span class="Hyperlink"><a href="https://www.tandfonline.com/doi/full/10.1080/08037051.2019.1615369">diabetes</a></span>, <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231441/">kidney disease</a></span>, and <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780266/">obstructive sleep apnea</a></span>. Some physicians have suggested a bed-time dose to restore that dip. But studies have had <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/35983870/">mixed results</a></span>, so “take at bedtime” has become a <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/36448463/">less common</a></span> recommendation in recent years.<br/><br/>But the debate continued. After a large 2019 Spanish <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/31641769/">study</a></span> found that bedtime doses had benefits so big that the results <span class="Hyperlink"><a href="https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.121.16501">drew questions</a></span>, an even larger, 2022 randomized, controlled <span class="Hyperlink"><a href="https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(22)01786-X/fulltext">trial</a></span> from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.<br/><br/>Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.<br/><br/>“We did this study thinking nocturnal blood pressure tablets might be better,” said <span class="Hyperlink"><a href="https://discovery.dundee.ac.uk/en/persons/thomas-macdonald">Thomas MacDonald</a></span>, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”<br/><br/>So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”<br/><br/>Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.<br/><br/>The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.<br/><br/>“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author <span class="Hyperlink"><a href="https://discovery.dundee.ac.uk/en/persons/filippo-pigazzani">Filippo Pigazzani</a></span>, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”<br/><br/>The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.<br/><br/></p> <h2>Looking Beyond Blood Pressure</h2> <p>What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.</p> <p>An estimated <span class="Hyperlink"><a href="https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011779">50</a></span>% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.<br/><br/>A <span class="Hyperlink"><a href="https://journals.sagepub.com/doi/full/10.1177/0748730419892099">handful of US Food and Drug Administration–approved drugs</a></span> already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.<br/><br/>Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the <span class="Hyperlink"><a href="https://srbr.org/2024-biennial-meeting/">Society for Research on Biological Rhythms</a></span> featured a day-long session aimed at bringing clinicians up to speed. An organization called the <span class="Hyperlink"><a href="https://circadianhealthclinics.com/">International Association of Circadian Health Clinics</a></span> is trying to bring circadian medicine findings to clinicians and their patients and to support research.<br/><br/>Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.<br/><br/>In a Massachusetts Institute of Technology <span class="Hyperlink"><a href="https://www.science.org/doi/10.1126/sciadv.adm9281">study</a></span> published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers <span class="Hyperlink">said</span>.<br/><br/></p> <h2>Timing and the Immune System</h2> <p>Circadian rhythms are also seen in immune processes. In a <span class="Hyperlink"><a href="https://www.jci.org/articles/view/167339">2023 study</a></span> in <em>The Journal of Clinical Investigation</em> of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.</p> <p>“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher <span class="Hyperlink"><a href="https://pulmonary.wustl.edu/people/jeff-haspel-md-phd/">Jeffrey Haspel</a></span>, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.<br/><br/>In a multicenter, 2024 <span class="Hyperlink"><a href="https://www.esmoopen.com/article/S2059-7029(23)01461-8/fulltext">analysis</a></span> of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.<br/><br/>“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”<br/><br/>Other research suggests or is investigating possible chronotherapy benefits for <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/38171633/">depression</a></span>, <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/38431563/">glaucoma</a></span>, <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704788/">respiratory diseases</a></span>, <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/38484031/">stroke treatment</a></span>, <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197224/">epilepsy</a></span>, and <span class="Hyperlink"><a href="https://www.frontiersin.org/articles/10.3389/fcvm.2022.982209/full">sedatives used in surgery</a></span>. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.<br/><br/></p> <h2>Should You Use Chronotherapy Now?</h2> <p>Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:</p> <p><strong>Night owls whose blood pressure isn’t well controlled.</strong> Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.<br/><br/>In their study, the researchers determined participants’ chronotype with a few questions from the <span class="Hyperlink"><a href="https://journals.sagepub.com/doi/10.1177/0748730419886986">Munich Chronotype Questionnaire</a></span> about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)<br/><br/>If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”<br/><br/><strong>Children and older adults getting vaccines.</strong> Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”<br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/chronotherapy-why-timing-drugs-our-body-clocks-may-work-2024a1000at3">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Blood Test for Large Vessel Stroke Could Be a ‘Game Changer’

Article Type
Changed
Mon, 06/10/2024 - 15:36

 

When combined with clinical scores, a “game-changing” blood test can expedite the diagnosis and treatment of large vessel occlusion (LVO) stroke, potentially saving many lives, new data suggested.

Using cutoff levels of two blood biomarkers, glial fibrillary acidic protein (GFAP; 213 pg/mL) and D-dimer (600 ng/mL), and the field assessment stroke triage for emergency destination (FAST-ED) (score, > 2), investigators were able to detect LVOs with 81% sensitivity and 93% specificity less than 6 hours from the onset of symptoms.

GFAP has previously been linked to brain bleeds and traumatic brain injury.

The test also ruled out all patients with brain bleeds, and investigators noted that it could also be used to detect intracerebral hemorrhage.

“We have developed a game-changing, accessible tool that could help ensure that more people suffering from stroke are in the right place at the right time to receive critical, life-restoring care,” senior author Joshua Bernstock, MD, PhD, MPH, a clinical fellow in the department of neurosurgery at Brigham and Women’s Hospital in Boston, said in a press release.

The findings were published online on May 17 in Stroke: Vascular and Interventional Neurology.
 

Early Identification Crucial

Acute LVO stroke is one of the most treatable stroke types because of the availability of endovascular thrombectomy (EVT). However, EVT requires specialized equipment and teams that represent a small subset of accredited stroke centers and an even smaller subset of emergency medical facilities, so early identification of LVO is crucial, the investigators noted.

Dr. Bernstock and his team developed the TIME trial to assess the sensitivity and specificity of the blood biomarkers and scale cutoff values for identifying LVO vs non-LVO stroke.

As part of the observational prospective cohort trial, investigators included consecutive patients admitted to the Brandon Regional Hospital Emergency Department in Brandon, Florida, between May 2021 and August 2022 if they were referred for a suspected stroke and the time from symptom onset was under 18 hours.

Patients were excluded if they received thrombolytic therapy before blood was collected or if it was anticipated that blood collection would be difficult.

Investigators gathered information on patients’ clinical data, hematology results, time since last known well, and imaging findings to construct a clinical diagnosis (LVO, non-LVO, ischemic stroke, hemorrhagic stroke, or transient ischemic attack [TIA]).

In addition to the National Institutes of Health Stroke Scale, patients were assessed with the FAST-ED, the Rapid Arterial oCclusion Evaluation (RACE), the Cincinnati Stroke Triage Assessment Tool, and the Emergency Medical Stroke Assessment.

Of 323 patients in the final study sample, 29 (9%) had LVO ischemic stroke, and 48 (15%) had non-LVO ischemic stroke. Another 13 (4%) had hemorrhagic stroke, 12 had TIA (3.7%), and the largest proportion of patients had stroke mimic (n = 220; 68%), which included encephalopathy, hyperglycemia, hypertensive emergency, migraine, posterior reversible encephalopathy syndrome, and undetermined.
 

The Case for Biomarkers

When investigators looked at those with LVO ischemic stroke, they found the concentration of plasma D-dimer was significantly higher than that in patients with non-LVO suspected stroke (LVO suspected stroke, 1213 ng/mL; interquartile range [IQR], 733-1609 vs non-LVO suspected stroke, 617 ng/mL; IQR, 377-1345; P < .001).

 

 

In addition, GFAP was significantly increased in the plasma of patients with hemorrhagic stroke vs all other patients with suspected stroke (hemorrhagic stroke, 1464 pg/mL; IQR, 292-2580 vs nonhemorrhagic suspected stroke, 48 pg/mL; IQR, 12-98; P < .005).

Combinations of the blood biomarkers with the scales FAST-ED or RACE showed the best performance for LVO detection, with a specificity of 94% (for either scale combination) and a sensitivity of 71% for both scales.

When investigators analyzed data for just those patients identified within 6 hours of symptom onset, the combination of biomarkers plus FAST-ED resulted in a specificity of 93% and a sensitivity of 81%.

Given that clinical stroke scales in patients with hemorrhagic stroke frequently suggest LVO and that these patients are not candidates for EVT, a tool capable of ruling out hemorrhage and identifying only nonhemorrhagic ischemic LVO is essential, the investigators noted.

“In stroke care, time is brain,” Dr. Bernstock said. “The sooner a patient is put on the right care pathway, the better they are going to do. Whether that means ruling out bleeds or ruling in something that needs an intervention, being able to do this in a prehospital setting with the technology that we built is going to be truly transformative.”

The study was funded by the Innovate UK grant and private funding. Dr. Bernstock has positions and equity in Pockit Diagnostics Ltd. and Treovir Inc. and is on the boards of Centile Bio and NeuroX1. Other disclosures are noted in the original article.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

When combined with clinical scores, a “game-changing” blood test can expedite the diagnosis and treatment of large vessel occlusion (LVO) stroke, potentially saving many lives, new data suggested.

Using cutoff levels of two blood biomarkers, glial fibrillary acidic protein (GFAP; 213 pg/mL) and D-dimer (600 ng/mL), and the field assessment stroke triage for emergency destination (FAST-ED) (score, > 2), investigators were able to detect LVOs with 81% sensitivity and 93% specificity less than 6 hours from the onset of symptoms.

GFAP has previously been linked to brain bleeds and traumatic brain injury.

The test also ruled out all patients with brain bleeds, and investigators noted that it could also be used to detect intracerebral hemorrhage.

“We have developed a game-changing, accessible tool that could help ensure that more people suffering from stroke are in the right place at the right time to receive critical, life-restoring care,” senior author Joshua Bernstock, MD, PhD, MPH, a clinical fellow in the department of neurosurgery at Brigham and Women’s Hospital in Boston, said in a press release.

The findings were published online on May 17 in Stroke: Vascular and Interventional Neurology.
 

Early Identification Crucial

Acute LVO stroke is one of the most treatable stroke types because of the availability of endovascular thrombectomy (EVT). However, EVT requires specialized equipment and teams that represent a small subset of accredited stroke centers and an even smaller subset of emergency medical facilities, so early identification of LVO is crucial, the investigators noted.

Dr. Bernstock and his team developed the TIME trial to assess the sensitivity and specificity of the blood biomarkers and scale cutoff values for identifying LVO vs non-LVO stroke.

As part of the observational prospective cohort trial, investigators included consecutive patients admitted to the Brandon Regional Hospital Emergency Department in Brandon, Florida, between May 2021 and August 2022 if they were referred for a suspected stroke and the time from symptom onset was under 18 hours.

Patients were excluded if they received thrombolytic therapy before blood was collected or if it was anticipated that blood collection would be difficult.

Investigators gathered information on patients’ clinical data, hematology results, time since last known well, and imaging findings to construct a clinical diagnosis (LVO, non-LVO, ischemic stroke, hemorrhagic stroke, or transient ischemic attack [TIA]).

In addition to the National Institutes of Health Stroke Scale, patients were assessed with the FAST-ED, the Rapid Arterial oCclusion Evaluation (RACE), the Cincinnati Stroke Triage Assessment Tool, and the Emergency Medical Stroke Assessment.

Of 323 patients in the final study sample, 29 (9%) had LVO ischemic stroke, and 48 (15%) had non-LVO ischemic stroke. Another 13 (4%) had hemorrhagic stroke, 12 had TIA (3.7%), and the largest proportion of patients had stroke mimic (n = 220; 68%), which included encephalopathy, hyperglycemia, hypertensive emergency, migraine, posterior reversible encephalopathy syndrome, and undetermined.
 

The Case for Biomarkers

When investigators looked at those with LVO ischemic stroke, they found the concentration of plasma D-dimer was significantly higher than that in patients with non-LVO suspected stroke (LVO suspected stroke, 1213 ng/mL; interquartile range [IQR], 733-1609 vs non-LVO suspected stroke, 617 ng/mL; IQR, 377-1345; P < .001).

 

 

In addition, GFAP was significantly increased in the plasma of patients with hemorrhagic stroke vs all other patients with suspected stroke (hemorrhagic stroke, 1464 pg/mL; IQR, 292-2580 vs nonhemorrhagic suspected stroke, 48 pg/mL; IQR, 12-98; P < .005).

Combinations of the blood biomarkers with the scales FAST-ED or RACE showed the best performance for LVO detection, with a specificity of 94% (for either scale combination) and a sensitivity of 71% for both scales.

When investigators analyzed data for just those patients identified within 6 hours of symptom onset, the combination of biomarkers plus FAST-ED resulted in a specificity of 93% and a sensitivity of 81%.

Given that clinical stroke scales in patients with hemorrhagic stroke frequently suggest LVO and that these patients are not candidates for EVT, a tool capable of ruling out hemorrhage and identifying only nonhemorrhagic ischemic LVO is essential, the investigators noted.

“In stroke care, time is brain,” Dr. Bernstock said. “The sooner a patient is put on the right care pathway, the better they are going to do. Whether that means ruling out bleeds or ruling in something that needs an intervention, being able to do this in a prehospital setting with the technology that we built is going to be truly transformative.”

The study was funded by the Innovate UK grant and private funding. Dr. Bernstock has positions and equity in Pockit Diagnostics Ltd. and Treovir Inc. and is on the boards of Centile Bio and NeuroX1. Other disclosures are noted in the original article.
 

A version of this article appeared on Medscape.com.

 

When combined with clinical scores, a “game-changing” blood test can expedite the diagnosis and treatment of large vessel occlusion (LVO) stroke, potentially saving many lives, new data suggested.

Using cutoff levels of two blood biomarkers, glial fibrillary acidic protein (GFAP; 213 pg/mL) and D-dimer (600 ng/mL), and the field assessment stroke triage for emergency destination (FAST-ED) (score, > 2), investigators were able to detect LVOs with 81% sensitivity and 93% specificity less than 6 hours from the onset of symptoms.

GFAP has previously been linked to brain bleeds and traumatic brain injury.

The test also ruled out all patients with brain bleeds, and investigators noted that it could also be used to detect intracerebral hemorrhage.

“We have developed a game-changing, accessible tool that could help ensure that more people suffering from stroke are in the right place at the right time to receive critical, life-restoring care,” senior author Joshua Bernstock, MD, PhD, MPH, a clinical fellow in the department of neurosurgery at Brigham and Women’s Hospital in Boston, said in a press release.

The findings were published online on May 17 in Stroke: Vascular and Interventional Neurology.
 

Early Identification Crucial

Acute LVO stroke is one of the most treatable stroke types because of the availability of endovascular thrombectomy (EVT). However, EVT requires specialized equipment and teams that represent a small subset of accredited stroke centers and an even smaller subset of emergency medical facilities, so early identification of LVO is crucial, the investigators noted.

Dr. Bernstock and his team developed the TIME trial to assess the sensitivity and specificity of the blood biomarkers and scale cutoff values for identifying LVO vs non-LVO stroke.

As part of the observational prospective cohort trial, investigators included consecutive patients admitted to the Brandon Regional Hospital Emergency Department in Brandon, Florida, between May 2021 and August 2022 if they were referred for a suspected stroke and the time from symptom onset was under 18 hours.

Patients were excluded if they received thrombolytic therapy before blood was collected or if it was anticipated that blood collection would be difficult.

Investigators gathered information on patients’ clinical data, hematology results, time since last known well, and imaging findings to construct a clinical diagnosis (LVO, non-LVO, ischemic stroke, hemorrhagic stroke, or transient ischemic attack [TIA]).

In addition to the National Institutes of Health Stroke Scale, patients were assessed with the FAST-ED, the Rapid Arterial oCclusion Evaluation (RACE), the Cincinnati Stroke Triage Assessment Tool, and the Emergency Medical Stroke Assessment.

Of 323 patients in the final study sample, 29 (9%) had LVO ischemic stroke, and 48 (15%) had non-LVO ischemic stroke. Another 13 (4%) had hemorrhagic stroke, 12 had TIA (3.7%), and the largest proportion of patients had stroke mimic (n = 220; 68%), which included encephalopathy, hyperglycemia, hypertensive emergency, migraine, posterior reversible encephalopathy syndrome, and undetermined.
 

The Case for Biomarkers

When investigators looked at those with LVO ischemic stroke, they found the concentration of plasma D-dimer was significantly higher than that in patients with non-LVO suspected stroke (LVO suspected stroke, 1213 ng/mL; interquartile range [IQR], 733-1609 vs non-LVO suspected stroke, 617 ng/mL; IQR, 377-1345; P < .001).

 

 

In addition, GFAP was significantly increased in the plasma of patients with hemorrhagic stroke vs all other patients with suspected stroke (hemorrhagic stroke, 1464 pg/mL; IQR, 292-2580 vs nonhemorrhagic suspected stroke, 48 pg/mL; IQR, 12-98; P < .005).

Combinations of the blood biomarkers with the scales FAST-ED or RACE showed the best performance for LVO detection, with a specificity of 94% (for either scale combination) and a sensitivity of 71% for both scales.

When investigators analyzed data for just those patients identified within 6 hours of symptom onset, the combination of biomarkers plus FAST-ED resulted in a specificity of 93% and a sensitivity of 81%.

Given that clinical stroke scales in patients with hemorrhagic stroke frequently suggest LVO and that these patients are not candidates for EVT, a tool capable of ruling out hemorrhage and identifying only nonhemorrhagic ischemic LVO is essential, the investigators noted.

“In stroke care, time is brain,” Dr. Bernstock said. “The sooner a patient is put on the right care pathway, the better they are going to do. Whether that means ruling out bleeds or ruling in something that needs an intervention, being able to do this in a prehospital setting with the technology that we built is going to be truly transformative.”

The study was funded by the Innovate UK grant and private funding. Dr. Bernstock has positions and equity in Pockit Diagnostics Ltd. and Treovir Inc. and is on the boards of Centile Bio and NeuroX1. Other disclosures are noted in the original article.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168360</fileName> <TBEID>0C0507A1.SIG</TBEID> <TBUniqueIdentifier>MD_0C0507A1</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240610T153324</QCDate> <firstPublished>20240610T153346</firstPublished> <LastPublished>20240610T153346</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240610T153346</CMSDate> <articleSource>FROM STROKE: VASCULAR AND INTERVENTIONAL NEUROLOGY</articleSource> <facebookInfo/> <meetingNumber/> <byline>Eve Bender</byline> <bylineText>EVE BENDER</bylineText> <bylineFull>EVE BENDER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>When combined with clinical scores, a “game-changing” blood test can expedite the diagnosis and treatment of large vessel occlusion (LVO) stroke, potentially sa</metaDescription> <articlePDF/> <teaserImage/> <teaser>When combined with clinical scores, a “game-changing” blood test can expedite the diagnosis and treatment of large vessel occlusion (LVO) stroke, new data suggested.</teaser> <title>New Blood Test for Large Vessel Stroke Could Be a ‘Game Changer’</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdemed</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>5</term> <term>58877</term> </publications> <sections> <term>39313</term> <term>86</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">301</term> <term>258</term> <term>279</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>New Blood Test for Large Vessel Stroke Could Be a ‘Game Changer’</title> <deck/> </itemMeta> <itemContent> <p>When combined with clinical scores, a “game-changing” blood test can expedite the diagnosis and treatment of large vessel occlusion (LVO) stroke, potentially saving many lives, new data suggested.</p> <p>Using cutoff levels of two blood biomarkers, glial fibrillary acidic protein (GFAP; 213 pg/mL) and D-dimer (600 ng/mL), and the field assessment stroke triage for emergency destination (FAST-ED) (score, &gt; 2), investigators were able to detect LVOs with 81% sensitivity and 93% specificity less than 6 hours from the onset of symptoms.<br/><br/>GFAP has previously been linked to brain bleeds and traumatic brain injury.<br/><br/>The test also ruled out all patients with brain bleeds, and investigators noted that it could also be used to detect intracerebral hemorrhage.<br/><br/>“We have developed a game-changing, accessible tool that could help ensure that more people suffering from stroke are in the right place at the right time to receive critical, life-restoring care,” senior author Joshua Bernstock, MD, PhD, MPH, a clinical fellow in the department of neurosurgery at Brigham and Women’s Hospital in Boston, said in a <span class="Hyperlink"><a href="https://www.eurekalert.org/news-releases/1044874">press release</a></span>.<br/><br/>The findings were <span class="Hyperlink"><a href="https://www.ahajournals.org/doi/10.1161/SVIN.123.001304">published online</a></span> on May 17 in <em>Stroke: Vascular and Interventional Neurology</em>.<br/><br/></p> <h2>Early Identification Crucial</h2> <p>Acute LVO stroke is one of the most treatable stroke types because of the availability of endovascular thrombectomy (EVT). However, EVT requires specialized equipment and teams that represent a small subset of accredited stroke centers and an even smaller subset of emergency medical facilities, so early identification of LVO is crucial, the investigators noted.</p> <p>Dr. Bernstock and his team developed the TIME trial to assess the sensitivity and specificity of the blood biomarkers and scale cutoff values for identifying LVO vs non-LVO stroke.<br/><br/>As part of the observational prospective cohort trial, investigators included consecutive patients admitted to the Brandon Regional Hospital Emergency Department in Brandon, Florida, between May 2021 and August 2022 if they were referred for a suspected stroke and the time from symptom onset was under 18 hours.<br/><br/>Patients were excluded if they received thrombolytic therapy before blood was collected or if it was anticipated that blood collection would be difficult.<br/><br/>Investigators gathered information on patients’ clinical data, hematology results, time since last known well, and imaging findings to construct a clinical diagnosis (LVO, non-LVO, ischemic stroke, hemorrhagic stroke, or transient ischemic attack [TIA]).<br/><br/>In addition to the National Institutes of Health Stroke Scale, patients were assessed with the FAST-ED, the Rapid Arterial oCclusion Evaluation (RACE), the Cincinnati Stroke Triage Assessment Tool, and the Emergency Medical Stroke Assessment.<br/><br/>Of 323 patients in the final study sample, 29 (9%) had LVO ischemic stroke, and 48 (15%) had non-LVO ischemic stroke. Another 13 (4%) had hemorrhagic stroke, 12 had TIA (3.7%), and the largest proportion of patients had stroke mimic (n = 220; 68%), which included encephalopathy, hyperglycemia, hypertensive emergency, migraine, posterior reversible encephalopathy syndrome, and undetermined.<br/><br/></p> <h2>The Case for Biomarkers</h2> <p>When investigators looked at those with LVO ischemic stroke, they found the concentration of plasma D-dimer was significantly higher than that in patients with non-LVO suspected stroke (LVO suspected stroke, 1213 ng/mL; interquartile range [IQR], 733-1609 vs non-LVO suspected stroke, 617 ng/mL; IQR, 377-1345; <em>P</em> &lt; .001).</p> <p>In addition, GFAP was significantly increased in the plasma of patients with hemorrhagic stroke vs all other patients with suspected stroke (hemorrhagic stroke, 1464 pg/mL; IQR, 292-2580 vs nonhemorrhagic suspected stroke, 48 pg/mL; IQR, 12-98; <em>P</em> &lt; .005).<br/><br/>Combinations of the blood biomarkers with the scales FAST-ED or RACE showed the best performance for LVO detection, with a specificity of 94% (for either scale combination) and a sensitivity of 71% for both scales.<br/><br/>When investigators analyzed data for just those patients identified within 6 hours of symptom onset, the combination of biomarkers plus FAST-ED resulted in a specificity of 93% and a sensitivity of 81%.<br/><br/>Given that clinical stroke scales in patients with hemorrhagic stroke frequently suggest LVO and that these patients are not candidates for EVT, a tool capable of ruling out hemorrhage and identifying only nonhemorrhagic ischemic LVO is essential, the investigators noted.<br/><br/>“In stroke care, time is brain,” Dr. Bernstock said. “The sooner a patient is put on the right care pathway, the better they are going to do. Whether that means ruling out bleeds or ruling in something that needs an intervention, being able to do this in a prehospital setting with the technology that we built is going to be truly transformative.”<br/><br/>The study was funded by the Innovate UK grant and private funding. Dr. Bernstock has positions and equity in Pockit Diagnostics Ltd. and Treovir Inc. and is on the boards of Centile Bio and NeuroX1. Other disclosures are noted in the original article.<br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/blood-test-game-changer-faster-diagnosis-treatment-lvo-2024a1000asr">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM STROKE: VASCULAR AND INTERVENTIONAL NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article