Affiliations
Department of Medicine, Cook County (Stroger) Hospital, Chicago, Illinois
Given name(s)
Marjorie
Family name
Charles‐Damte
Degrees
RN

Accuracy of Hospitalist‐Performed HCUE

Article Type
Changed
Sun, 05/28/2017 - 21:39
Display Headline
Diagnostic accuracy of hospitalist‐performed hand‐carried ultrasound echocardiography after a brief training program

Hand‐carried ultrasound echocardiography (HCUE) can help noncardiologists answer well‐defined questions at patients' bedsides in less than 10 minutes.1, 2 Indeed, intensivists3 and emergency department physicians4 already use HCUE to make rapid, point‐of‐care assessments. Since cardiovascular diagnoses are common among general medicine inpatients, HCUE may become an important skill for hospitalists to learn.5

However, uncertainty exists about the duration of HCUE training for hospitalists. In 2002, experts from the American Society of Echocardiography (ASE) published recommendations on training requirements for HCUE.6 With limited data on the safety or performance of HCUE training programs, which had just begun to emerge, the ASE borrowed from the proven training recommendations for standard echocardiography (SE). They recommended that all HCUE trainees, cardiologist and noncardiologist alike, complete level 1 SE training: 75 personally‐performed and 150 personally‐interpreted echocardiographic examinations. Since then, however, several HCUE training programs designed for noncardiologists have emerged.2, 5, 710 These alternative programs suggest that the ASE's recommended duration of training may be too long, particularly for focused HCUE that is limited to a few relatively simple assessments. It is important not to overshoot the requirements of HCUE training, because doing so may discourage groups of noncardiologists, like hospitalists, who may derive great benefits from HCUE.11

To address this uncertainty for hospitalists, we first developed a brief HCUE training program to assess 6 important cardiac abnormalities. We then studied the diagnostic accuracy of HCUE by hospitalists as a test of these 6 cardiac abnormalities assessed by SE.

Patients and Methods

Setting and Subjects

This prospective cohort study was performed at Stroger Hospital of Cook County, a 500‐bed public teaching hospital in Chicago, IL, from March through May of 2007. The cohort was adult inpatients who were referred for SE on weekdays from 3 distinct patient care units (Figure 1). We used 2 sampling modes to balance practical constraints (short‐stay unit [SSU] patients were more localized and, therefore, easier to study) with clinical diversity. We consecutively sampled patients from our SSU, where adults with provisional cardiovascular diagnoses are admitted if they might be eligible for discharge with in 3 days.12 But we used random number tables with a daily unique starting point to randomly sample patients from the general medical wards and the coronary care unit (CCU). Patients were excluded if repositioning them for HCUE was potentially harmful. The study was approved by our hospital's institutional review board, and we obtained written informed consent from all enrolled patients.

Figure 1
Flow diagram of HCUE results. (a) Among those excluded, 23 patients were unable to consent due to language (n = 13), current imprisonment (n = 6), or altered mental status (n = 4). The remaining 21 patients were excluded because of a requirement for immobilization (n = 8), an intraaortic balloon pump (n = 4), an external pacemaker (n = 3), endotracheal intubation (n = 3), severe pain (n = 2), or ongoing thrombolytic therapy (n = 1). (b) Twenty‐two patients were neither excluded nor refused but nevertheless had no HCUE. Among these patients, 15 were not available for hand‐carried ultrasound echocardiograms because they were discharged home from the hospital (n = 10) or undergoing other procedures (n = 5); 7 patients were never approached by study investigators. (c) Among the 322 patients who received HCUE, 8 did not receive SE. In addition, SE was not interpretable due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients. Abbreviations: CCU, cardiac care unit; echo, standard transthoracic echocardiography; HCUE, hand‐carried ultrasound echocardiography; IVC, inferior vena cava; LA, left atrium; LV, left ventricle.

SE Protocol

As part of enrolled patients' routine clinical care, SE images were acquired and interpreted in the usual fashion in our hospital's echocardiography laboratory, which performs SE on over 7,000 patients per year. Echocardiographic technicians acquired images with a General Electric Vivid 7 cardiac ultrasound machine (General Electric, Milwaukee, WI) equipped with a GE M4S 1.8 to 3.4 MHz cardiac transducer (General Electric). Technicians followed the standard adult transthoracic echocardiography scanning protocol to acquire 40 to 100 images on every patient using all available echocardiographic modalities: 2‐dimensional, M‐mode, color Doppler, continuous‐wave Doppler, pulse‐wave Doppler, and tissue Doppler.13 Blinded to HCUE results, attending physician cardiologist echocardiographers then interpreted archived images using computer software (Centricity System; General Electric) to generate final reports that were entered into patients' medical records. This software ensured that final reports were standardized, because echocardiographers' final qualitative assessments were limited to short lists of standard options; for example, in reporting left atrium (LA) size, echocardiographers chose from only 5 standard options: normal, mildly dilated, moderately dilated, severely dilated, and not interpretable. Investigators, who were also blinded to HCUE results, later abstracted SE results from these standardized report forms in patients' medical records. All echocardiographers fulfilled ASE training guidelines to independently interpret SE: a minimum of 150 personally‐performed and 300 personally‐interpreted echocardiographic examinations (training level 2).14

HCUE Training

Based on the recommendations of our cardiologist investigator (B.M.), we developed a training program for 1 hospitalist to become an HCUE instructor. Our instructor trainee (C.C.) was board‐eligible in internal medicine but had no previous formal training in cardiology or echocardiography. We a priori established that her training would continue until our cardiologist investigator determined that she was ready to train other hospitalists; this determination occurred after 5 weeks. She learned image acquisition by performing focused SE on 30 patients under the direct supervision of an echocardiographic technician. She also performed focused HCUE on 65 inpatients without direct supervision but with ongoing access to consult the technician to review archived images and troubleshoot difficulties with acquisition. She learned image interpretation by reading relevant chapters from a SE textbook15 and by participating in daily didactic sessions in which attending cardiologist echocardiographers train cardiology fellows in SE interpretation.

This hospitalist then served as the HCUE instructor for 8 other attending physician hospitalists who were board‐certified internists with no previous formal training in cardiology or echocardiography. The training program was limited to acquisition and interpretation of 2‐dimensional grayscale and color Doppler images for the 6 cardiac assessments under study (Table 1). The instructor marshaled pairs of hospitalists through the 3 components of the training program, which lasted a total of 27 hours.

Twenty‐Seven‐Hour Training Program in Hand‐Carried Ultrasound Echocardiography
  • Abbreviations: HCUE, hand‐carried ultrasound echocardiography.

  • Slides from this lecture and additional images of normal and abnormal findings were provided on a digital video disc.

Six cardiac assessments learned using 2‐dimensional gray scale and color Doppler imaging
Left ventricular systolic dysfunction
Mitral valve regurgitation
Left atrium enlargement
Left ventricular hypertrophy
Pericardial effusion
Inferior vena cava diameter
Lecture (2 hours)*
Basic principles of echocardiography
HCUE scanning protocol and helpful techniques to optimize image quality
Hands‐on training with instructor
Orientation to machine and demonstration of scanning protocol (1 hour)
Sessions 1 through 3: HCUE performed on 1 patient per hour (6 patients in 6 hours)
Sessions 4 through 10: HCUE performed on 2 patients per hour (28 patients in 14 hours)
Feedback sessions on image quality and interpretation with cardiologist
After hands‐on training session 3 (2 hours)
After hands‐on training session 10 (2 hours)

First, hospitalists attended a 2‐hour lecture on the basic principles of HCUE. Slides from this lecture and additional images of normal and abnormal findings were provided to each hospitalist on a digital video disc. Second, each hospitalist underwent 20 hours of hands‐on training in 2‐hour sessions scheduled over 2 weeks. Willing inpatients from our hospital's emergency department were used as volunteers for these hand‐on training sessions. During these sessions the instructor provided practical suggestions to optimize image quality, such as transducer location and patient positioning. In the first 3 sessions, the minimum pace was 1 patient per hour; thereafter, the pace was increased to 1 patient per half‐hour. We chose 20 hours of hands‐on training and these minimum paces because they allowed each hospitalist to attain a cumulative experience of no less than 30 patientsan amount that heralds a flattening of the HCUE learning curve among medical trainees.9 Third, each pair of hospitalists received feedback from a cardiologist investigator (B.M.) who critiqued the quality and interpretation of images acquired by hospitalists during hands‐on training sessions. Since image quality varies by patient,16 hospitalists' images were compared side‐by‐side to images recorded by the instructor on the same patients. The cardiologist also critiqued hospitalists' interpretations of both their own images and additional sets of archived images from patients with abnormal findings.

HCUE Protocol

After completing the training program and blinded to the results of SE, the 8 hospitalists performed HCUE on enrolled patients within hours of SE. We limited the time interval between tests to minimize the effect that changes in physiologic variables, such as blood pressure and intravascular volume, have on the reliability of serial echocardiographic measurements.16 Hospitalists performed HCUE with a MicroMaxx 3.4 hand‐carried ultrasound machine equipped with a cardiology software package and a 1 to 5 MHz P17 cardiac transducer (Sonosite, Inc., Bothell, WA); simultaneous electrocardiographic recording, though available, was not used. While patients laid on their own standard hospital beds or on a standard hospital gurney in a room adjacent to the SE waiting room, hospitalists positioned them without assistance from nursing staff and recorded 7 best‐quality images per patient. Patients were first positioned in a partial (3045 degrees) left lateral decubitus position to record 4 grayscale images of the short‐axis and long‐axis parasternal and 2‐chamber and 4‐chamber apical views; 2 color Doppler images of the mitral inflow were also recorded from the long‐axis parasternal and the 4‐chamber apical views. Patients were then positioned supine to record 1 grayscale image of the inferior vena cava (IVC) from the transhepatic view. Hospitalists did not perform a history or physical exam on enrolled patients, nor did they review patients' medical records.

Immediately following the HCUE, hospitalists replayed the recorded images as often as needed and entered final interpretations on data collection forms. Linear measurements were made manually with a caliper held directly to the hand‐carried ultrasound monitor. These measurements were then translated into qualitative assessments based on standard values used by our hospital's echocardiographers (Table 2).17 When a hospitalist could not confidently assess a cardiac abnormality, the final HCUE assessment was recorded as indeterminate. Hospitalists also recorded the time to perform each HCUE, which included the time to record 7 best‐quality images, to interpret the findings, and to fill out the data collection form.

Definitions of Hand‐Carried Ultrasound Echocardiography Results
  Hand‐Carried Ultrasound Echocardiography Results
Cardiac Abnormality by Standard EchocardiographyHand‐Carried Ultrasound Echocardiography Operator's Method of AssessmentPositiveNegative
  • Abbreviation: cm, centimeters.

Left ventricle systolic dysfunction, mild or greaterGrade degree of abnormal wall movement and thickening during systoleSevereMild or moderateNormalVigorous
Mitral valve regurgitation, severeClassify regurgitant jet as central or eccentric, then measure as percentage of left atrium area  
 Central jet20%<20%
 Eccentric jet20%indeterminate 20%
Left atrium enlargement, moderate or severeMeasure left atrium in 3 dimensions at end diastole, then use the most abnormal dimensionExtremeBorderline 
 Anteroposterior or mediolateral (cm)5.14.55.04.4
 Superior‐inferior (cm)7.16.17.06.0
Left ventricle hypertrophy, moderate or severeMeasure thickest dimension of posterior or septal wall at end diastoleExtreme: 1.4 cmBorderline: 1.21.3 cm1.1 cm
Pericardial effusion, medium or largeMeasure largest dimension in any view at end diastole1 cm<1 cm
Inferior vena cava dilatationMeasure largest respirophasic diameter within 2 cm of right atrium2.1 cmNormal: 1 to 2 cmContracted: 0.9 cm

Data Analysis

We based our sample size calculations on earlier reports of HCUE by noncardiologist trainees for assessment of left ventricular (LV) systolic function.7, 10 From these reports, we estimated a negative likelihood ratio of 0.3. In addition, we expected about a quarter of our patients to have LV systolic dysfunction (B.M., personal communication). Therefore, to achieve 95% confidence intervals (CIs) around the point estimate of a negative likelihood ratio that excluded 0.50, our upper bound for a clinically meaningful result, we needed a sample size of approximately 300 patients.18

We defined threshold levels of ordinal severity for the 6 cardiac abnormalities under study based on their clinical pertinence to hospitalists (Table 2). Here, we reasoned that abnormalities at or above these levels would likely lead to important changes in hospitalists' management of inpatients; abnormalities below these levels rarely represent cardiac disease that is worthy of an immediate change in management. Since even mild degrees of LV dysfunction have important diagnostic and therapeutic implications for most general medicine inpatients, particularly those presenting with heart failure,19 we set our threshold for LV dysfunction at mild or greater. In contrast, since neither mild nor moderate mitral regurgitation (MR) has immediate implications for medical or surgical therapy even if symptoms or LV dysfunction are present,20 we set our threshold for MR at severe. Similarly, though mild LA enlargement21 and mild LV hypertrophy22 have clear prognostic implications for patients' chronic medical conditions, we reasoned that only moderate or severe versions likely reflect underlying abnormalities that affect hospitalists' point‐of‐care decision‐making. Since cardiac tamponade is rarely both subclinical23 and due to a small pericardial effusion,24 we set our threshold for pericardial effusion size at moderate or large. Finally, we set our threshold IVC diameter, a marker of central venous volume status,25 at dilated, because volume overload is an important consideration in hospitalized cardiac patients.

Using these thresholds, investigators dichotomized echocardiographers' SE readings as normal or abnormal for each of the 6 cardiac abnormalities under study to serve as the reference standards. Hospitalists' HCUE results were then compared to the reference standards in 2 different ways. We first analyzed HCUE results as dichotomous values to calculate conventional sensitivity, specificity, and positive and negative likelihood ratios. Here we considered indeterminate HCUE results positive in a clinically conservative tradeoff that neither ignores indeterminate results nor risks falsely classifying them as negative.26 We then analyzed hospitalists' HCUE results as ordinal values for receiver operating characteristic (ROC) curve analysis. Here we considered an indeterminate result as 1 possible test result.27

To examine interobserver variability of HCUE, we first chose from the 6 possible assessments only those with a mean number of abnormal patients per hospitalist greater than 5. We reasoned that variability among assessments with lower prevalence would be predictably wide and inconclusive. We then expressed variability as standard deviations (SDs) around mean sensitivity and specificity for the 8 hospitalists.

The CIs for likelihood ratios were constructed using the likelihood‐based approach to binomial proportions of Koopman.28 The areas under ROC curves were computed using the trapezoidal rule, and the CIs for these areas were constructed using the algorithm described by DeLong et al.29 All analyses were conducted with Stata Statistical Software, Release 10 (StataCorp, College Station, TX).

Results

During the 3 month study period, 654 patients were referred for SE from the 3 participating patient care units (Figure 1). Among these, 65 patients were ineligible because their SE was performed on the weekend and 178 other patients were not randomized from the general medical wards and CCU. From the remaining eligible patients, 322 underwent HCUE and 314 (98% of 322) underwent both SE and HCUE. Individual SE assessments were not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and IVC dilatation in 30 patients. Eighty‐three percent of patients who underwent SE (260/314) were referred to assess LV function (Table 3). The prevalence of the 6 clinically pertinent cardiac abnormalities under study ranged from 1% for moderate or large pericardial effusion to 25% for LV systolic dysfunction. Overall, 40% of patients had at least 1 out of 6 cardiac abnormalities.

Patients Who Underwent Both Standard Echocardiography and Hand‐Carried Ultrasound Echocardiography
Characteristic 
  • NOTE: Values are n (%) unless otherwise indicated. Total number of patients is 322.

  • Abbreviations: HCUE, hand‐carried ultrasound echocardiography; SD, standard deviation.

  • Ordering physicians listed 2 indications for 103 patients, 3 indications for 10 patients, and 4 indications for 2 patients; therefore, the total number of indications (n = 443) is greater than the total number of patients (n = 314).

  • Other indications include mural thrombus (n = 13), left ventricular hypertrophy (n = 10), pericardial disease (n = 6), intracardiac shunt (n = 4), cardiomegaly (n = 4), and follow‐up of known atrial septal aneurysm (n = 1).

  • Standard echocardiography demonstrated 2 abnormal findings in 23 patients, 3 abnormal findings in 13 patients, and 4 abnormal findings in 5 patients; therefore, the total number of abnormal findings (n = 191) is greater than the total number of patients who had at least 1 abnormal finding (n = 127).

  • Includes time to record 7 best‐quality images and fill out data collection forms.

Age, year SD (25th to 75th percentiles)56 13 (48 to 64)
Women146 (47)
Chronic obstructive pulmonary disease47 (15)
Body mass index 
24.9 or less: underweight or normal74 (24)
25 to 29.9: overweight94 (30)
30 to 34.9: mild obesity75 (24)
35 or greater: moderate or severe obesity71 (23)
Patient care unit 
Short‐stay unit175 (56)
General medical wards89 (28)
Cardiac care unit50 (16)
Indication for standard echocardiography* 
Left ventricular function260 (83)
Valvular function56 (18)
Wall motion abnormality29 (9)
Valvular vegetations22 (7)
Any structural heart disease20 (6)
Right ventricular function18 (6)
Other38 (12)
Standard echocardiography findings 
Left ventricular systolic dysfunction mild80 (25)
Inferior vena cava dilated45 (14)
Left ventricular wall thickness moderate33 (11)
Left atrium enlargement moderate19 (6)
Mitral valve regurgitation severe11 (4)
Pericardial effusion moderate3 (1)
At least 1 of the above findings127 (40)
Time difference between HCUE and standard echocardiogram, median hours (25th to 75th percentiles)2.8 (1.4 to 5.1)
Time to complete HCUE, median minutes (25th to 75th percentiles)28 (20 to 35)

Each hospitalist performed a similar total number of HCUE examinations (range, 3447). The median time difference between performance of SE and HCUE was 2.8 hours (25th75th percentiles, 1.45.1). Despite the high prevalence of chronic obstructive pulmonary disease and obesity, hospitalists considered HCUE assessments indeterminate in only 2% to 6% of the 6 assessments made for each patient (Table 4). Among the 38 patients (12% of 322) with any indeterminate HCUE assessment, 24 patients had only 1 out of 6 possible. Hospitalists completed HCUE in a median time of 28 minutes (25th‐75th percentiles, 2035), which included the time to record 7 best‐quality moving images and to fill out the research data collection form.

Indeterminate Findings from Hand‐Carried Ultrasound Echocardiography
 n (%)*
  • n = 322.

Number of indeterminate findings per patient 
0284 (88)
124 (7)
24 (1)
3 or more10 (3)
Indeterminate findings by cardiac assessment 
Mitral valve regurgitation18 (6)
Inferior vena cava diameter16 (5)
Left ventricular hypertrophy15 (5)
Pericardial effusion9 (3)
Left atrium size5 (2)
Left ventricle systolic function5 (2)

When HCUE results were analyzed as dichotomous values, positive likelihood ratios ranged from 2.5 to 21, and negative likelihood ratios ranged from 0 to 0.4 (Table 5). Positive and negative likelihood ratios were both sufficiency high and low to respectively increase and decrease by 5‐fold the prior odds of 3 out of 6 cardiac abnormalities: LV systolic dysfunction, moderate or severe MR regurgitation, and moderate or large pericardial effusion. Considering HCUE results as ordinal values for ROC analysis yielded additional diagnostic information (Figure 2). For example, the likelihood ratio of 1.0 (95% CI, 0.42.0) for borderline positive moderate or severe LA enlargement increased to 29 (range, 1362) for extreme positive results. Areas under the ROC curves were 0.9 for 4 out of 6 cardiac abnormalities.

Figure 2
ROC curves of hand‐carried ultrasound echocardiography (HCUE) results. Includes all 314 patients who underwent both SE and HCUE, although SE was not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients. Conventional likelihood ratios are presented with 95% CI for each test result. Each likelihood ratio is calculated by dividing the probability of the test result in patients with the abnormality by the probability of the test result in patients without the abnormality. In addition, the likelihood ratios are equivalent to the slopes of the corresponding segments of the curves. An “indeterminate” HCUE result was considered 1 of the possible test results (*); likelihood ratios for these indeterminate HCUE results, which occurred in 2% to 6% of assessments, were not presented because the CIs widely spanned above and below 1. Abbreviations: AUC, area under receiver‐operating characteristic curve; LR, conventional likelihood ratio.
Diagnostic Test Characteristics of Hand‐Carried Ultrasound Echocardiography for Detecting Cardiac Abnormalities
Clinically Pertinent Cardiac Abnormality by Standard EchocardiographyPrevalence n/total nSensitivity* % (95% CI)Specificity* % (95% CI)LRpositive*, (95% CI)LRnegative*, (95% CI)
  • NOTE: Includes all 314 patients who underwent both standard echocardiography and hand‐carried ultrasound echocardiography, although standard echocardiography was not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients.

  • Indeterminate results from hand‐carried ultrasound echocardiography (which occurred in 2% to 6% of assessments) were considered positive test results in calculating the test characteristics.

  • LRx is the conventional likelihood ratio of test result x, which is equal to the probability of test result x in patients with the abnormality divided by probability of test result x in patients without the abnormality; x is positive or negative.

Left ventricular systolic dysfunction80/31485 (7592)88 (8392)6.9 (4.99.8)0.2 (0.10.3)
Mitral valve regurgitation, severe11/314100 (72100)83 (7987)5.9 (3.97.4)0 (00.3)
Left atrium enlargement, moderate or severe19/31390 (6799)74 (6879)3.4 (2.54.3)0.1 (0.040.4)
Left ventricular hypertrophy, moderate or severe33/31470 (5184)73 (6778)2.5 (1.83.3)0.4 (0.20.7)
Pericardial effusion, moderate or large3/314100 (29100)95 (9297)21 (6.731)0 (00.6)
Inferior vena cava, dilated45/28456 (4070)86 (8190)4.0 (2.66.0)0.5 (0.40.7)

LV systolic dysfunction and IVC dilatation were both prevalent enough to meet our criterion to examine interobserver variability; the mean number of abnormal patients per hospitalist was 10 patients for LV systolic dysfunction and 6 patients for IVC dilatation. For LV systolic dysfunction, SDs around mean sensitivity (84%) and specificity (87%) were 12% and 6%, respectively. For IVC dilatation, SDs around mean sensitivity (58%) and specificity (86%) were 24% and 7%, respectively.

Discussion

We found that, after a 27‐hour training program, hospitalists performed HCUE with moderate to excellent diagnostic accuracy for 6 important cardiac abnormalities. For example, hospitalists' assessments of LV systolic function yielded positive and negative likelihood ratios of 6.9 (95% CI, 4.99.8) and 0.2 (95% CI, 0.10.3), respectively. At the bedsides of patients with acute heart failure, therefore, hospitalists could use HCUE to lower or raise the 50:50 chance of LV systolic dysfunction30 to 15% or 85%, respectively. Whether or not these posttest likelihoods are extreme enough to cross important thresholds will depend on the clinical context. Yet these findings demonstrate how HCUE has the potential to provide hospitalists with valuable point‐of‐care data that are otherwise unavailableeither because routine clinical assessments are unreliable31 or because echocardiographic services are not immediately accessible.1

In fact, recent data from the Joint Commission on Accreditation of Healthcare Organizations shows how inaccessible SE may be. Approximately one‐quarter of hospitals in the United States send home about 10% of patients with acute heart failure without echocardiographic assessment of LV systolic function before, during, or immediately after hospitalization.32 In doing so, these hospitals leave unmet the 2002 National Quality Improvement Goal of universal assessment of LV systolic function for all heart failure patients. Hospitalists could close this quality gap with routine, 10‐minute HCUE assessments in all patients admitted with acute heart failure. (Our research HCUE protocol required a median time of 28 minutes, but this included time to assess 5 other cardiac abnormalities and collect data for research purposes). Until the clinical consequences of introducing hospitalist‐performed HCUE are studied, potential benefits like this are tentative. But our findings suggest that training hospitalists to accurately perform HCUE can be successfully accomplished in just 27 hours.

Other studies of HCUE training programs for noncardiologists have also challenged the opinion that learning to perform HCUE requires more than 100 hours of training.2, 711 Yet only 1 prior study has examined an HCUE training program for hospitalists.5 In this study by Martin et al.,5 hospitalists completed 5 supervised HCUE examinations and 6 hours of interpretation training before investigators scored their image acquisition and interpretation skills from 30 unsupervised HCUE examinations. To estimate their final skill levels at the completion of all 35 examinations by accounting for an initially steep learning curve, investigators then adjusted these scores with regression models. Despite these upward adjustments, hospitalists' image acquisition and interpretation scores were low in comparison to echocardiographic technicians and cardiology fellows. Besides these adjusted measurements of hospitalists' skills, however, Martin et al.5 unfortunately did not also report standard measures of diagnostic accuracy, like those proposed by the Standards for Reporting of Diagnostic Accuracy (STARD) initiative.33 Therefore, direct comparisons to the present study are difficult. Nevertheless, their findings suggest that a training program limited to 5 supervised HCUE examinations may be inadequate for hospitalists. In fact, the same group's earlier study of medical trainees suggested a minimum of 30 supervised HCUE examinations.9 We chose to design our hospitalist training program based on this minimum, though they surprisingly did not.5 As others continue to refine the components of hospitalist HCUE training programs, such as the optimal number of supervised examinations, our program could serve as a reasonable comparative example: more rigorous than the program designed by Martin et al.5 but more feasible than ASE level 1 training.

The number and complexity of assessments taught in HCUE training programs will determine their duration. With ongoing advancements in HCUE technology, there is a growing list of potential assessments to choose from. Although HCUE training programs ought to include assessments with proven clinical applications, there are no trials of HCUE‐directed care to inform such decisions. In their absence, therefore, we chose 6 assessments based on the following 3 criteria. First, our assessments were otherwise not reliably available from routine clinical data, such as the physical examination. Second, our assessments were straightforward: easy to learn and simple to perform. Here, we based our reasoning on an expectation that the value of HCUE lies not in highly complex, state‐of‐the‐art assessmentswhich are best left to echocardiographers equipped with SEbut in simple, routine assessments made with highly portable machines that grant noncardiologists newfound access to point‐of‐care data.34 Third, our assessments were clinically pertinent and, where appropriate, defined by cut‐points at levels of severity that often lead to changes in management. We suspect that setting high cut‐points has the salutary effects of making assessments easier to learn and more accurate, because distinguishing mild abnormalities is likely the most challenging aspect of echocardiographic interpretation.35 Whether or not our choices of assessments, and their cut‐points, are optimal has yet to be determined by future research designed to study how they affect patient outcomes. Given our hospitalists' performance in the present study, these assessments seem worthy of such future research.

Our study had several limitations. We studied physicians and patients from only 1 hospital; similar studies performed in different settings, particularly among patients with different proportions and manifestations of disease, may find different results. Nevertheless, our sampling method of prospectively enrolling consecutive patients strengthens our findings. Some echocardiographic measurement methods used by our hospitalists differed in subtle ways from echocardiography guideline recommendations.35 We chose our methods (Table 2) for 2 reasons. First, whenever possible, we chose methods of interpretation that coincided with our local cardiologists'. Second, we chose simplicity over precision. For example, the biplane method of disks, or modified Simpson's rule, is the preferred volumetric method of calculating LA size.35 This method requires tracing the contours of the LA in 2 planes and then dividing the LA volume into stacked oval disks for calculation. We chose instead to train our hospitalists in a simpler method based on 2 linear measurements. Any loss of precision, however, was balanced by a large gain in simplicity. Regardless, minor variations in LA size are not likely to affect hospitalists' bedside evaluations. Finally, we did not validate the results of our reference standard (SE) by documenting interobserver reliability. Yet, because SE is generally accurate for the 6 cardiac abnormalities under study, the effect of this bias should be small.

These limitations can be addressed best by controlled trials of HCUE‐directed care. These trials will determine the clinical impact of hospitalist‐performed HCUE and, in turn, inform our design of HCUE training programs. As the current study shows, training hospitalists to participate in such trials is feasible: like other groups of noncardiologists, hospitalists can accurately perform HCUE after a brief training program. Whether or not hospitalists should perform HCUE requires further study.

Acknowledgements

The authors thank Sonosite, Inc., Bothell, WA, for loaning us 2 MicroMaxx machines throughout the study period. They also thank the staff of the Internal Medicine Research Mentoring Program at Rush Medical College for their technical support and the staff of the Division of Neurology at Stroger Hospital for granting them access to a procedure room.

References
  1. Popp RL.The physical examination of the future: echocardiography as part of the assessment.ACC Curr J Rev.1998;7:7981.
  2. DeCara JM,Lang RM,Spencer KT.The hand‐carried echocardiographic device as an aid to the physical examination.Echocardiography.2003;20:477485.
  3. Beaulieu Y,Marik PE.Bedside ultrasonography in the ICU: Part 2.Chest.2005;128:17661781.
  4. Cosby KS,Kendall JL.Practical Guide to Emergency Ultrasound.1st ed.Philadelphia, PA:Lippincott Williams 2006.
  5. Martin LD,Howell EE,Ziegelstein RC,Martire C,Shapiro EP,Hellmann DB.Hospitalist performance of cardiac hand‐carried ultrasound after focused training.Am J Med.2007;120:10001004.
  6. Seward JB,Douglas PS,Erbel R, et al.Hand‐carried cardiac ultrasound (HCU) device: recommendations regarding new technology. A report from the echocardiography task force on new technology of the Nomenclature and Standards Committee of the American Society of Echocardiography.J Am Soc Echocardiogr.2002;15:369373.
  7. DeCara JM,Lang RM,Koch R,Bala R,Penzotti J,Spencer KT.The use of small personal ultrasound devices with internists without formal training in echocardiography.Eur J Echocardiogr.2003;4:141147.
  8. Alexander JH,Peterson ED,Chen AY, et al.Feasibility of point‐of‐care echocardiography by internal medicine house staff.Am Heart J.2004;147:476481.
  9. Hellman DB,Whiting‐O'Keefe Q,Shapiro EP,Martin LD,Martire C,Ziegelstein RC.The rate at which residents learn to use hand‐held echocardiography at the bedside.Am J Med.2005;118:10101018.
  10. Kobal SL,Trento L,Baharami S, et al.Comparison of effectiveness of hand‐carried ultrasound to bedside cardiovascular physical examination.Am J Cardiol.2005;96:10021006.
  11. Duvall WL,Croft LB,Goldman ME.Can hand‐carried ultrasound devices be extended for use by the noncardiology medical community?Echocardiography.2003;20:471476.
  12. Lucas BP,Kumapley R,Mba B, et al.A hospitalist‐run short stay unit: features that predict patients' length‐of‐stay and eventual admission to traditional inpatient services.J Hosp Med.2009;4:276284.
  13. McDonald ME.Adult echocardiography scanning protocol. In: Templin BB, ed.Ultrasound Scanning: Principles and Protocols.2nd ed.Philadelphia, PA:Saunders;1999:426.
  14. Beller GA,Bonow RO,Fuster V, et al.ACCF 2008 Recommendations for training in adult cardiovascular medicine core cardiology training (COCATS 3) (revision of the 2002 COCATS training statement).J Am Coll Cardiol.2008;51:333414.
  15. Oh JK,Seward JB,Tajik AJ.The Echo Manual.2nd ed.Philadelphia, PA:Lippincott Williams 1999.
  16. Kuecherer HF,Kee LL,Modin G, et al.Echocardiography in serial evaluation of left ventricular systolic and diastolic function: importance of image acquisition, quantitation, and physiologic variability in clinical and investigational applications.J Am Soc Echocardiogr.1991;4:203214.
  17. Otto CM.Textbook of Clinical Echocardiography.3rd ed.Philadelphia, PA:Elsevier Saunders;2004.
  18. Simel DL,Samsa GP,Matchar DB.Likelihood ratios with confidence: sample size estimation for diagnostic test studies.J Clin Epidemiol.1991;44:763770.
  19. Hunt SA,Abraham WT,Chin MH, et al.ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation.2005;112;154235.
  20. Bonow RO,Carabello BA,Chatterjee K, et al.ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation.2006;114:e84e231.
  21. Abhayaratna WP,Seward JB,Appleton CP, et al.Left atrial size: physiologic determinants and clinical applications.J Am Coll Cardiol.2006;47:23572363.
  22. Levy D,Garrison RJ,Savage DD,Kannel WB,Castelli WP.Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.N Engl J Med.1990;322:15611566.
  23. Roy CL,Minor MA,Brookhart MA,Choudhry NK.Does this patient with a pericardial effusion have cardiac tamponade?JAMA.2007;297:18101818.
  24. Spodick DH.Acute cardiac tamponade.N Engl J Med.2003;349:685690.
  25. Moreno FL,Hagan AD,Holmen JR,Pryor TA,Strickland RD,Castle CH.Evaluation of size and dynamics of the inferior vena cava as an index of right‐sided cardiac function.Am J Cardiol.1984;53:579585.
  26. Begg CB,Greenes RA,Iglewicz B.The influence of uninterpretability on the assessment of diagnostic tests.J Chronic Dis.1986;39:575584.
  27. Poynard T,Chaput J‐C,Etienne J‐P.Relations between effectiveness of a diagnostic test, prevalence of the disease, and percentages of uninterpretable results. An example in the diagnosis of jaundice.Med Decis Making.1982;2:285297.
  28. Koopman PAR.Confidence intervals for the ratio of two binomial proportions.Biometrics.1984;40:513517.
  29. DeLong ER,DeLong DM,Clarke‐Pearson DL.Comparing the areas under two or more correlated receiver operating curves: a nonparametric approach.Biometrics.1988;44:837845.
  30. Gheorghiade M,Abraham WT,Albert NM, et al.Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure.JAMA.2006;296:22172226.
  31. Thomas JT,Kelly RF,Thomas SJ, et al.Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure.Am J Med.2002;112:437445.
  32. Joint Commission on Accreditation of Healthcare Organizations. Health Care Quality Data Download Website. Available at: http://www.healthcarequalitydata.org. Accessed December2008.
  33. Bossuyt PM,Reitsma JB,Burns DE, et al.Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative.Clin Chem.2003;49:16.
  34. Christensen CM,Bohmer R,Kenagy J.Will disruptive innovations cure health care?Harv Bus Rev.2000;78:102112.
  35. Lang RM,Bierig M,Devereux RB, et al.Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.J Am Soc Echocardiogr.2005;18:14401463.
Article PDF
Issue
Journal of Hospital Medicine - 4(6)
Publications
Page Number
340-349
Legacy Keywords
echocardiography, hospitalists, point‐of‐care systems, sensitivity and specificity
Sections
Article PDF
Article PDF

Hand‐carried ultrasound echocardiography (HCUE) can help noncardiologists answer well‐defined questions at patients' bedsides in less than 10 minutes.1, 2 Indeed, intensivists3 and emergency department physicians4 already use HCUE to make rapid, point‐of‐care assessments. Since cardiovascular diagnoses are common among general medicine inpatients, HCUE may become an important skill for hospitalists to learn.5

However, uncertainty exists about the duration of HCUE training for hospitalists. In 2002, experts from the American Society of Echocardiography (ASE) published recommendations on training requirements for HCUE.6 With limited data on the safety or performance of HCUE training programs, which had just begun to emerge, the ASE borrowed from the proven training recommendations for standard echocardiography (SE). They recommended that all HCUE trainees, cardiologist and noncardiologist alike, complete level 1 SE training: 75 personally‐performed and 150 personally‐interpreted echocardiographic examinations. Since then, however, several HCUE training programs designed for noncardiologists have emerged.2, 5, 710 These alternative programs suggest that the ASE's recommended duration of training may be too long, particularly for focused HCUE that is limited to a few relatively simple assessments. It is important not to overshoot the requirements of HCUE training, because doing so may discourage groups of noncardiologists, like hospitalists, who may derive great benefits from HCUE.11

To address this uncertainty for hospitalists, we first developed a brief HCUE training program to assess 6 important cardiac abnormalities. We then studied the diagnostic accuracy of HCUE by hospitalists as a test of these 6 cardiac abnormalities assessed by SE.

Patients and Methods

Setting and Subjects

This prospective cohort study was performed at Stroger Hospital of Cook County, a 500‐bed public teaching hospital in Chicago, IL, from March through May of 2007. The cohort was adult inpatients who were referred for SE on weekdays from 3 distinct patient care units (Figure 1). We used 2 sampling modes to balance practical constraints (short‐stay unit [SSU] patients were more localized and, therefore, easier to study) with clinical diversity. We consecutively sampled patients from our SSU, where adults with provisional cardiovascular diagnoses are admitted if they might be eligible for discharge with in 3 days.12 But we used random number tables with a daily unique starting point to randomly sample patients from the general medical wards and the coronary care unit (CCU). Patients were excluded if repositioning them for HCUE was potentially harmful. The study was approved by our hospital's institutional review board, and we obtained written informed consent from all enrolled patients.

Figure 1
Flow diagram of HCUE results. (a) Among those excluded, 23 patients were unable to consent due to language (n = 13), current imprisonment (n = 6), or altered mental status (n = 4). The remaining 21 patients were excluded because of a requirement for immobilization (n = 8), an intraaortic balloon pump (n = 4), an external pacemaker (n = 3), endotracheal intubation (n = 3), severe pain (n = 2), or ongoing thrombolytic therapy (n = 1). (b) Twenty‐two patients were neither excluded nor refused but nevertheless had no HCUE. Among these patients, 15 were not available for hand‐carried ultrasound echocardiograms because they were discharged home from the hospital (n = 10) or undergoing other procedures (n = 5); 7 patients were never approached by study investigators. (c) Among the 322 patients who received HCUE, 8 did not receive SE. In addition, SE was not interpretable due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients. Abbreviations: CCU, cardiac care unit; echo, standard transthoracic echocardiography; HCUE, hand‐carried ultrasound echocardiography; IVC, inferior vena cava; LA, left atrium; LV, left ventricle.

SE Protocol

As part of enrolled patients' routine clinical care, SE images were acquired and interpreted in the usual fashion in our hospital's echocardiography laboratory, which performs SE on over 7,000 patients per year. Echocardiographic technicians acquired images with a General Electric Vivid 7 cardiac ultrasound machine (General Electric, Milwaukee, WI) equipped with a GE M4S 1.8 to 3.4 MHz cardiac transducer (General Electric). Technicians followed the standard adult transthoracic echocardiography scanning protocol to acquire 40 to 100 images on every patient using all available echocardiographic modalities: 2‐dimensional, M‐mode, color Doppler, continuous‐wave Doppler, pulse‐wave Doppler, and tissue Doppler.13 Blinded to HCUE results, attending physician cardiologist echocardiographers then interpreted archived images using computer software (Centricity System; General Electric) to generate final reports that were entered into patients' medical records. This software ensured that final reports were standardized, because echocardiographers' final qualitative assessments were limited to short lists of standard options; for example, in reporting left atrium (LA) size, echocardiographers chose from only 5 standard options: normal, mildly dilated, moderately dilated, severely dilated, and not interpretable. Investigators, who were also blinded to HCUE results, later abstracted SE results from these standardized report forms in patients' medical records. All echocardiographers fulfilled ASE training guidelines to independently interpret SE: a minimum of 150 personally‐performed and 300 personally‐interpreted echocardiographic examinations (training level 2).14

HCUE Training

Based on the recommendations of our cardiologist investigator (B.M.), we developed a training program for 1 hospitalist to become an HCUE instructor. Our instructor trainee (C.C.) was board‐eligible in internal medicine but had no previous formal training in cardiology or echocardiography. We a priori established that her training would continue until our cardiologist investigator determined that she was ready to train other hospitalists; this determination occurred after 5 weeks. She learned image acquisition by performing focused SE on 30 patients under the direct supervision of an echocardiographic technician. She also performed focused HCUE on 65 inpatients without direct supervision but with ongoing access to consult the technician to review archived images and troubleshoot difficulties with acquisition. She learned image interpretation by reading relevant chapters from a SE textbook15 and by participating in daily didactic sessions in which attending cardiologist echocardiographers train cardiology fellows in SE interpretation.

This hospitalist then served as the HCUE instructor for 8 other attending physician hospitalists who were board‐certified internists with no previous formal training in cardiology or echocardiography. The training program was limited to acquisition and interpretation of 2‐dimensional grayscale and color Doppler images for the 6 cardiac assessments under study (Table 1). The instructor marshaled pairs of hospitalists through the 3 components of the training program, which lasted a total of 27 hours.

Twenty‐Seven‐Hour Training Program in Hand‐Carried Ultrasound Echocardiography
  • Abbreviations: HCUE, hand‐carried ultrasound echocardiography.

  • Slides from this lecture and additional images of normal and abnormal findings were provided on a digital video disc.

Six cardiac assessments learned using 2‐dimensional gray scale and color Doppler imaging
Left ventricular systolic dysfunction
Mitral valve regurgitation
Left atrium enlargement
Left ventricular hypertrophy
Pericardial effusion
Inferior vena cava diameter
Lecture (2 hours)*
Basic principles of echocardiography
HCUE scanning protocol and helpful techniques to optimize image quality
Hands‐on training with instructor
Orientation to machine and demonstration of scanning protocol (1 hour)
Sessions 1 through 3: HCUE performed on 1 patient per hour (6 patients in 6 hours)
Sessions 4 through 10: HCUE performed on 2 patients per hour (28 patients in 14 hours)
Feedback sessions on image quality and interpretation with cardiologist
After hands‐on training session 3 (2 hours)
After hands‐on training session 10 (2 hours)

First, hospitalists attended a 2‐hour lecture on the basic principles of HCUE. Slides from this lecture and additional images of normal and abnormal findings were provided to each hospitalist on a digital video disc. Second, each hospitalist underwent 20 hours of hands‐on training in 2‐hour sessions scheduled over 2 weeks. Willing inpatients from our hospital's emergency department were used as volunteers for these hand‐on training sessions. During these sessions the instructor provided practical suggestions to optimize image quality, such as transducer location and patient positioning. In the first 3 sessions, the minimum pace was 1 patient per hour; thereafter, the pace was increased to 1 patient per half‐hour. We chose 20 hours of hands‐on training and these minimum paces because they allowed each hospitalist to attain a cumulative experience of no less than 30 patientsan amount that heralds a flattening of the HCUE learning curve among medical trainees.9 Third, each pair of hospitalists received feedback from a cardiologist investigator (B.M.) who critiqued the quality and interpretation of images acquired by hospitalists during hands‐on training sessions. Since image quality varies by patient,16 hospitalists' images were compared side‐by‐side to images recorded by the instructor on the same patients. The cardiologist also critiqued hospitalists' interpretations of both their own images and additional sets of archived images from patients with abnormal findings.

HCUE Protocol

After completing the training program and blinded to the results of SE, the 8 hospitalists performed HCUE on enrolled patients within hours of SE. We limited the time interval between tests to minimize the effect that changes in physiologic variables, such as blood pressure and intravascular volume, have on the reliability of serial echocardiographic measurements.16 Hospitalists performed HCUE with a MicroMaxx 3.4 hand‐carried ultrasound machine equipped with a cardiology software package and a 1 to 5 MHz P17 cardiac transducer (Sonosite, Inc., Bothell, WA); simultaneous electrocardiographic recording, though available, was not used. While patients laid on their own standard hospital beds or on a standard hospital gurney in a room adjacent to the SE waiting room, hospitalists positioned them without assistance from nursing staff and recorded 7 best‐quality images per patient. Patients were first positioned in a partial (3045 degrees) left lateral decubitus position to record 4 grayscale images of the short‐axis and long‐axis parasternal and 2‐chamber and 4‐chamber apical views; 2 color Doppler images of the mitral inflow were also recorded from the long‐axis parasternal and the 4‐chamber apical views. Patients were then positioned supine to record 1 grayscale image of the inferior vena cava (IVC) from the transhepatic view. Hospitalists did not perform a history or physical exam on enrolled patients, nor did they review patients' medical records.

Immediately following the HCUE, hospitalists replayed the recorded images as often as needed and entered final interpretations on data collection forms. Linear measurements were made manually with a caliper held directly to the hand‐carried ultrasound monitor. These measurements were then translated into qualitative assessments based on standard values used by our hospital's echocardiographers (Table 2).17 When a hospitalist could not confidently assess a cardiac abnormality, the final HCUE assessment was recorded as indeterminate. Hospitalists also recorded the time to perform each HCUE, which included the time to record 7 best‐quality images, to interpret the findings, and to fill out the data collection form.

Definitions of Hand‐Carried Ultrasound Echocardiography Results
  Hand‐Carried Ultrasound Echocardiography Results
Cardiac Abnormality by Standard EchocardiographyHand‐Carried Ultrasound Echocardiography Operator's Method of AssessmentPositiveNegative
  • Abbreviation: cm, centimeters.

Left ventricle systolic dysfunction, mild or greaterGrade degree of abnormal wall movement and thickening during systoleSevereMild or moderateNormalVigorous
Mitral valve regurgitation, severeClassify regurgitant jet as central or eccentric, then measure as percentage of left atrium area  
 Central jet20%<20%
 Eccentric jet20%indeterminate 20%
Left atrium enlargement, moderate or severeMeasure left atrium in 3 dimensions at end diastole, then use the most abnormal dimensionExtremeBorderline 
 Anteroposterior or mediolateral (cm)5.14.55.04.4
 Superior‐inferior (cm)7.16.17.06.0
Left ventricle hypertrophy, moderate or severeMeasure thickest dimension of posterior or septal wall at end diastoleExtreme: 1.4 cmBorderline: 1.21.3 cm1.1 cm
Pericardial effusion, medium or largeMeasure largest dimension in any view at end diastole1 cm<1 cm
Inferior vena cava dilatationMeasure largest respirophasic diameter within 2 cm of right atrium2.1 cmNormal: 1 to 2 cmContracted: 0.9 cm

Data Analysis

We based our sample size calculations on earlier reports of HCUE by noncardiologist trainees for assessment of left ventricular (LV) systolic function.7, 10 From these reports, we estimated a negative likelihood ratio of 0.3. In addition, we expected about a quarter of our patients to have LV systolic dysfunction (B.M., personal communication). Therefore, to achieve 95% confidence intervals (CIs) around the point estimate of a negative likelihood ratio that excluded 0.50, our upper bound for a clinically meaningful result, we needed a sample size of approximately 300 patients.18

We defined threshold levels of ordinal severity for the 6 cardiac abnormalities under study based on their clinical pertinence to hospitalists (Table 2). Here, we reasoned that abnormalities at or above these levels would likely lead to important changes in hospitalists' management of inpatients; abnormalities below these levels rarely represent cardiac disease that is worthy of an immediate change in management. Since even mild degrees of LV dysfunction have important diagnostic and therapeutic implications for most general medicine inpatients, particularly those presenting with heart failure,19 we set our threshold for LV dysfunction at mild or greater. In contrast, since neither mild nor moderate mitral regurgitation (MR) has immediate implications for medical or surgical therapy even if symptoms or LV dysfunction are present,20 we set our threshold for MR at severe. Similarly, though mild LA enlargement21 and mild LV hypertrophy22 have clear prognostic implications for patients' chronic medical conditions, we reasoned that only moderate or severe versions likely reflect underlying abnormalities that affect hospitalists' point‐of‐care decision‐making. Since cardiac tamponade is rarely both subclinical23 and due to a small pericardial effusion,24 we set our threshold for pericardial effusion size at moderate or large. Finally, we set our threshold IVC diameter, a marker of central venous volume status,25 at dilated, because volume overload is an important consideration in hospitalized cardiac patients.

Using these thresholds, investigators dichotomized echocardiographers' SE readings as normal or abnormal for each of the 6 cardiac abnormalities under study to serve as the reference standards. Hospitalists' HCUE results were then compared to the reference standards in 2 different ways. We first analyzed HCUE results as dichotomous values to calculate conventional sensitivity, specificity, and positive and negative likelihood ratios. Here we considered indeterminate HCUE results positive in a clinically conservative tradeoff that neither ignores indeterminate results nor risks falsely classifying them as negative.26 We then analyzed hospitalists' HCUE results as ordinal values for receiver operating characteristic (ROC) curve analysis. Here we considered an indeterminate result as 1 possible test result.27

To examine interobserver variability of HCUE, we first chose from the 6 possible assessments only those with a mean number of abnormal patients per hospitalist greater than 5. We reasoned that variability among assessments with lower prevalence would be predictably wide and inconclusive. We then expressed variability as standard deviations (SDs) around mean sensitivity and specificity for the 8 hospitalists.

The CIs for likelihood ratios were constructed using the likelihood‐based approach to binomial proportions of Koopman.28 The areas under ROC curves were computed using the trapezoidal rule, and the CIs for these areas were constructed using the algorithm described by DeLong et al.29 All analyses were conducted with Stata Statistical Software, Release 10 (StataCorp, College Station, TX).

Results

During the 3 month study period, 654 patients were referred for SE from the 3 participating patient care units (Figure 1). Among these, 65 patients were ineligible because their SE was performed on the weekend and 178 other patients were not randomized from the general medical wards and CCU. From the remaining eligible patients, 322 underwent HCUE and 314 (98% of 322) underwent both SE and HCUE. Individual SE assessments were not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and IVC dilatation in 30 patients. Eighty‐three percent of patients who underwent SE (260/314) were referred to assess LV function (Table 3). The prevalence of the 6 clinically pertinent cardiac abnormalities under study ranged from 1% for moderate or large pericardial effusion to 25% for LV systolic dysfunction. Overall, 40% of patients had at least 1 out of 6 cardiac abnormalities.

Patients Who Underwent Both Standard Echocardiography and Hand‐Carried Ultrasound Echocardiography
Characteristic 
  • NOTE: Values are n (%) unless otherwise indicated. Total number of patients is 322.

  • Abbreviations: HCUE, hand‐carried ultrasound echocardiography; SD, standard deviation.

  • Ordering physicians listed 2 indications for 103 patients, 3 indications for 10 patients, and 4 indications for 2 patients; therefore, the total number of indications (n = 443) is greater than the total number of patients (n = 314).

  • Other indications include mural thrombus (n = 13), left ventricular hypertrophy (n = 10), pericardial disease (n = 6), intracardiac shunt (n = 4), cardiomegaly (n = 4), and follow‐up of known atrial septal aneurysm (n = 1).

  • Standard echocardiography demonstrated 2 abnormal findings in 23 patients, 3 abnormal findings in 13 patients, and 4 abnormal findings in 5 patients; therefore, the total number of abnormal findings (n = 191) is greater than the total number of patients who had at least 1 abnormal finding (n = 127).

  • Includes time to record 7 best‐quality images and fill out data collection forms.

Age, year SD (25th to 75th percentiles)56 13 (48 to 64)
Women146 (47)
Chronic obstructive pulmonary disease47 (15)
Body mass index 
24.9 or less: underweight or normal74 (24)
25 to 29.9: overweight94 (30)
30 to 34.9: mild obesity75 (24)
35 or greater: moderate or severe obesity71 (23)
Patient care unit 
Short‐stay unit175 (56)
General medical wards89 (28)
Cardiac care unit50 (16)
Indication for standard echocardiography* 
Left ventricular function260 (83)
Valvular function56 (18)
Wall motion abnormality29 (9)
Valvular vegetations22 (7)
Any structural heart disease20 (6)
Right ventricular function18 (6)
Other38 (12)
Standard echocardiography findings 
Left ventricular systolic dysfunction mild80 (25)
Inferior vena cava dilated45 (14)
Left ventricular wall thickness moderate33 (11)
Left atrium enlargement moderate19 (6)
Mitral valve regurgitation severe11 (4)
Pericardial effusion moderate3 (1)
At least 1 of the above findings127 (40)
Time difference between HCUE and standard echocardiogram, median hours (25th to 75th percentiles)2.8 (1.4 to 5.1)
Time to complete HCUE, median minutes (25th to 75th percentiles)28 (20 to 35)

Each hospitalist performed a similar total number of HCUE examinations (range, 3447). The median time difference between performance of SE and HCUE was 2.8 hours (25th75th percentiles, 1.45.1). Despite the high prevalence of chronic obstructive pulmonary disease and obesity, hospitalists considered HCUE assessments indeterminate in only 2% to 6% of the 6 assessments made for each patient (Table 4). Among the 38 patients (12% of 322) with any indeterminate HCUE assessment, 24 patients had only 1 out of 6 possible. Hospitalists completed HCUE in a median time of 28 minutes (25th‐75th percentiles, 2035), which included the time to record 7 best‐quality moving images and to fill out the research data collection form.

Indeterminate Findings from Hand‐Carried Ultrasound Echocardiography
 n (%)*
  • n = 322.

Number of indeterminate findings per patient 
0284 (88)
124 (7)
24 (1)
3 or more10 (3)
Indeterminate findings by cardiac assessment 
Mitral valve regurgitation18 (6)
Inferior vena cava diameter16 (5)
Left ventricular hypertrophy15 (5)
Pericardial effusion9 (3)
Left atrium size5 (2)
Left ventricle systolic function5 (2)

When HCUE results were analyzed as dichotomous values, positive likelihood ratios ranged from 2.5 to 21, and negative likelihood ratios ranged from 0 to 0.4 (Table 5). Positive and negative likelihood ratios were both sufficiency high and low to respectively increase and decrease by 5‐fold the prior odds of 3 out of 6 cardiac abnormalities: LV systolic dysfunction, moderate or severe MR regurgitation, and moderate or large pericardial effusion. Considering HCUE results as ordinal values for ROC analysis yielded additional diagnostic information (Figure 2). For example, the likelihood ratio of 1.0 (95% CI, 0.42.0) for borderline positive moderate or severe LA enlargement increased to 29 (range, 1362) for extreme positive results. Areas under the ROC curves were 0.9 for 4 out of 6 cardiac abnormalities.

Figure 2
ROC curves of hand‐carried ultrasound echocardiography (HCUE) results. Includes all 314 patients who underwent both SE and HCUE, although SE was not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients. Conventional likelihood ratios are presented with 95% CI for each test result. Each likelihood ratio is calculated by dividing the probability of the test result in patients with the abnormality by the probability of the test result in patients without the abnormality. In addition, the likelihood ratios are equivalent to the slopes of the corresponding segments of the curves. An “indeterminate” HCUE result was considered 1 of the possible test results (*); likelihood ratios for these indeterminate HCUE results, which occurred in 2% to 6% of assessments, were not presented because the CIs widely spanned above and below 1. Abbreviations: AUC, area under receiver‐operating characteristic curve; LR, conventional likelihood ratio.
Diagnostic Test Characteristics of Hand‐Carried Ultrasound Echocardiography for Detecting Cardiac Abnormalities
Clinically Pertinent Cardiac Abnormality by Standard EchocardiographyPrevalence n/total nSensitivity* % (95% CI)Specificity* % (95% CI)LRpositive*, (95% CI)LRnegative*, (95% CI)
  • NOTE: Includes all 314 patients who underwent both standard echocardiography and hand‐carried ultrasound echocardiography, although standard echocardiography was not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients.

  • Indeterminate results from hand‐carried ultrasound echocardiography (which occurred in 2% to 6% of assessments) were considered positive test results in calculating the test characteristics.

  • LRx is the conventional likelihood ratio of test result x, which is equal to the probability of test result x in patients with the abnormality divided by probability of test result x in patients without the abnormality; x is positive or negative.

Left ventricular systolic dysfunction80/31485 (7592)88 (8392)6.9 (4.99.8)0.2 (0.10.3)
Mitral valve regurgitation, severe11/314100 (72100)83 (7987)5.9 (3.97.4)0 (00.3)
Left atrium enlargement, moderate or severe19/31390 (6799)74 (6879)3.4 (2.54.3)0.1 (0.040.4)
Left ventricular hypertrophy, moderate or severe33/31470 (5184)73 (6778)2.5 (1.83.3)0.4 (0.20.7)
Pericardial effusion, moderate or large3/314100 (29100)95 (9297)21 (6.731)0 (00.6)
Inferior vena cava, dilated45/28456 (4070)86 (8190)4.0 (2.66.0)0.5 (0.40.7)

LV systolic dysfunction and IVC dilatation were both prevalent enough to meet our criterion to examine interobserver variability; the mean number of abnormal patients per hospitalist was 10 patients for LV systolic dysfunction and 6 patients for IVC dilatation. For LV systolic dysfunction, SDs around mean sensitivity (84%) and specificity (87%) were 12% and 6%, respectively. For IVC dilatation, SDs around mean sensitivity (58%) and specificity (86%) were 24% and 7%, respectively.

Discussion

We found that, after a 27‐hour training program, hospitalists performed HCUE with moderate to excellent diagnostic accuracy for 6 important cardiac abnormalities. For example, hospitalists' assessments of LV systolic function yielded positive and negative likelihood ratios of 6.9 (95% CI, 4.99.8) and 0.2 (95% CI, 0.10.3), respectively. At the bedsides of patients with acute heart failure, therefore, hospitalists could use HCUE to lower or raise the 50:50 chance of LV systolic dysfunction30 to 15% or 85%, respectively. Whether or not these posttest likelihoods are extreme enough to cross important thresholds will depend on the clinical context. Yet these findings demonstrate how HCUE has the potential to provide hospitalists with valuable point‐of‐care data that are otherwise unavailableeither because routine clinical assessments are unreliable31 or because echocardiographic services are not immediately accessible.1

In fact, recent data from the Joint Commission on Accreditation of Healthcare Organizations shows how inaccessible SE may be. Approximately one‐quarter of hospitals in the United States send home about 10% of patients with acute heart failure without echocardiographic assessment of LV systolic function before, during, or immediately after hospitalization.32 In doing so, these hospitals leave unmet the 2002 National Quality Improvement Goal of universal assessment of LV systolic function for all heart failure patients. Hospitalists could close this quality gap with routine, 10‐minute HCUE assessments in all patients admitted with acute heart failure. (Our research HCUE protocol required a median time of 28 minutes, but this included time to assess 5 other cardiac abnormalities and collect data for research purposes). Until the clinical consequences of introducing hospitalist‐performed HCUE are studied, potential benefits like this are tentative. But our findings suggest that training hospitalists to accurately perform HCUE can be successfully accomplished in just 27 hours.

Other studies of HCUE training programs for noncardiologists have also challenged the opinion that learning to perform HCUE requires more than 100 hours of training.2, 711 Yet only 1 prior study has examined an HCUE training program for hospitalists.5 In this study by Martin et al.,5 hospitalists completed 5 supervised HCUE examinations and 6 hours of interpretation training before investigators scored their image acquisition and interpretation skills from 30 unsupervised HCUE examinations. To estimate their final skill levels at the completion of all 35 examinations by accounting for an initially steep learning curve, investigators then adjusted these scores with regression models. Despite these upward adjustments, hospitalists' image acquisition and interpretation scores were low in comparison to echocardiographic technicians and cardiology fellows. Besides these adjusted measurements of hospitalists' skills, however, Martin et al.5 unfortunately did not also report standard measures of diagnostic accuracy, like those proposed by the Standards for Reporting of Diagnostic Accuracy (STARD) initiative.33 Therefore, direct comparisons to the present study are difficult. Nevertheless, their findings suggest that a training program limited to 5 supervised HCUE examinations may be inadequate for hospitalists. In fact, the same group's earlier study of medical trainees suggested a minimum of 30 supervised HCUE examinations.9 We chose to design our hospitalist training program based on this minimum, though they surprisingly did not.5 As others continue to refine the components of hospitalist HCUE training programs, such as the optimal number of supervised examinations, our program could serve as a reasonable comparative example: more rigorous than the program designed by Martin et al.5 but more feasible than ASE level 1 training.

The number and complexity of assessments taught in HCUE training programs will determine their duration. With ongoing advancements in HCUE technology, there is a growing list of potential assessments to choose from. Although HCUE training programs ought to include assessments with proven clinical applications, there are no trials of HCUE‐directed care to inform such decisions. In their absence, therefore, we chose 6 assessments based on the following 3 criteria. First, our assessments were otherwise not reliably available from routine clinical data, such as the physical examination. Second, our assessments were straightforward: easy to learn and simple to perform. Here, we based our reasoning on an expectation that the value of HCUE lies not in highly complex, state‐of‐the‐art assessmentswhich are best left to echocardiographers equipped with SEbut in simple, routine assessments made with highly portable machines that grant noncardiologists newfound access to point‐of‐care data.34 Third, our assessments were clinically pertinent and, where appropriate, defined by cut‐points at levels of severity that often lead to changes in management. We suspect that setting high cut‐points has the salutary effects of making assessments easier to learn and more accurate, because distinguishing mild abnormalities is likely the most challenging aspect of echocardiographic interpretation.35 Whether or not our choices of assessments, and their cut‐points, are optimal has yet to be determined by future research designed to study how they affect patient outcomes. Given our hospitalists' performance in the present study, these assessments seem worthy of such future research.

Our study had several limitations. We studied physicians and patients from only 1 hospital; similar studies performed in different settings, particularly among patients with different proportions and manifestations of disease, may find different results. Nevertheless, our sampling method of prospectively enrolling consecutive patients strengthens our findings. Some echocardiographic measurement methods used by our hospitalists differed in subtle ways from echocardiography guideline recommendations.35 We chose our methods (Table 2) for 2 reasons. First, whenever possible, we chose methods of interpretation that coincided with our local cardiologists'. Second, we chose simplicity over precision. For example, the biplane method of disks, or modified Simpson's rule, is the preferred volumetric method of calculating LA size.35 This method requires tracing the contours of the LA in 2 planes and then dividing the LA volume into stacked oval disks for calculation. We chose instead to train our hospitalists in a simpler method based on 2 linear measurements. Any loss of precision, however, was balanced by a large gain in simplicity. Regardless, minor variations in LA size are not likely to affect hospitalists' bedside evaluations. Finally, we did not validate the results of our reference standard (SE) by documenting interobserver reliability. Yet, because SE is generally accurate for the 6 cardiac abnormalities under study, the effect of this bias should be small.

These limitations can be addressed best by controlled trials of HCUE‐directed care. These trials will determine the clinical impact of hospitalist‐performed HCUE and, in turn, inform our design of HCUE training programs. As the current study shows, training hospitalists to participate in such trials is feasible: like other groups of noncardiologists, hospitalists can accurately perform HCUE after a brief training program. Whether or not hospitalists should perform HCUE requires further study.

Acknowledgements

The authors thank Sonosite, Inc., Bothell, WA, for loaning us 2 MicroMaxx machines throughout the study period. They also thank the staff of the Internal Medicine Research Mentoring Program at Rush Medical College for their technical support and the staff of the Division of Neurology at Stroger Hospital for granting them access to a procedure room.

Hand‐carried ultrasound echocardiography (HCUE) can help noncardiologists answer well‐defined questions at patients' bedsides in less than 10 minutes.1, 2 Indeed, intensivists3 and emergency department physicians4 already use HCUE to make rapid, point‐of‐care assessments. Since cardiovascular diagnoses are common among general medicine inpatients, HCUE may become an important skill for hospitalists to learn.5

However, uncertainty exists about the duration of HCUE training for hospitalists. In 2002, experts from the American Society of Echocardiography (ASE) published recommendations on training requirements for HCUE.6 With limited data on the safety or performance of HCUE training programs, which had just begun to emerge, the ASE borrowed from the proven training recommendations for standard echocardiography (SE). They recommended that all HCUE trainees, cardiologist and noncardiologist alike, complete level 1 SE training: 75 personally‐performed and 150 personally‐interpreted echocardiographic examinations. Since then, however, several HCUE training programs designed for noncardiologists have emerged.2, 5, 710 These alternative programs suggest that the ASE's recommended duration of training may be too long, particularly for focused HCUE that is limited to a few relatively simple assessments. It is important not to overshoot the requirements of HCUE training, because doing so may discourage groups of noncardiologists, like hospitalists, who may derive great benefits from HCUE.11

To address this uncertainty for hospitalists, we first developed a brief HCUE training program to assess 6 important cardiac abnormalities. We then studied the diagnostic accuracy of HCUE by hospitalists as a test of these 6 cardiac abnormalities assessed by SE.

Patients and Methods

Setting and Subjects

This prospective cohort study was performed at Stroger Hospital of Cook County, a 500‐bed public teaching hospital in Chicago, IL, from March through May of 2007. The cohort was adult inpatients who were referred for SE on weekdays from 3 distinct patient care units (Figure 1). We used 2 sampling modes to balance practical constraints (short‐stay unit [SSU] patients were more localized and, therefore, easier to study) with clinical diversity. We consecutively sampled patients from our SSU, where adults with provisional cardiovascular diagnoses are admitted if they might be eligible for discharge with in 3 days.12 But we used random number tables with a daily unique starting point to randomly sample patients from the general medical wards and the coronary care unit (CCU). Patients were excluded if repositioning them for HCUE was potentially harmful. The study was approved by our hospital's institutional review board, and we obtained written informed consent from all enrolled patients.

Figure 1
Flow diagram of HCUE results. (a) Among those excluded, 23 patients were unable to consent due to language (n = 13), current imprisonment (n = 6), or altered mental status (n = 4). The remaining 21 patients were excluded because of a requirement for immobilization (n = 8), an intraaortic balloon pump (n = 4), an external pacemaker (n = 3), endotracheal intubation (n = 3), severe pain (n = 2), or ongoing thrombolytic therapy (n = 1). (b) Twenty‐two patients were neither excluded nor refused but nevertheless had no HCUE. Among these patients, 15 were not available for hand‐carried ultrasound echocardiograms because they were discharged home from the hospital (n = 10) or undergoing other procedures (n = 5); 7 patients were never approached by study investigators. (c) Among the 322 patients who received HCUE, 8 did not receive SE. In addition, SE was not interpretable due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients. Abbreviations: CCU, cardiac care unit; echo, standard transthoracic echocardiography; HCUE, hand‐carried ultrasound echocardiography; IVC, inferior vena cava; LA, left atrium; LV, left ventricle.

SE Protocol

As part of enrolled patients' routine clinical care, SE images were acquired and interpreted in the usual fashion in our hospital's echocardiography laboratory, which performs SE on over 7,000 patients per year. Echocardiographic technicians acquired images with a General Electric Vivid 7 cardiac ultrasound machine (General Electric, Milwaukee, WI) equipped with a GE M4S 1.8 to 3.4 MHz cardiac transducer (General Electric). Technicians followed the standard adult transthoracic echocardiography scanning protocol to acquire 40 to 100 images on every patient using all available echocardiographic modalities: 2‐dimensional, M‐mode, color Doppler, continuous‐wave Doppler, pulse‐wave Doppler, and tissue Doppler.13 Blinded to HCUE results, attending physician cardiologist echocardiographers then interpreted archived images using computer software (Centricity System; General Electric) to generate final reports that were entered into patients' medical records. This software ensured that final reports were standardized, because echocardiographers' final qualitative assessments were limited to short lists of standard options; for example, in reporting left atrium (LA) size, echocardiographers chose from only 5 standard options: normal, mildly dilated, moderately dilated, severely dilated, and not interpretable. Investigators, who were also blinded to HCUE results, later abstracted SE results from these standardized report forms in patients' medical records. All echocardiographers fulfilled ASE training guidelines to independently interpret SE: a minimum of 150 personally‐performed and 300 personally‐interpreted echocardiographic examinations (training level 2).14

HCUE Training

Based on the recommendations of our cardiologist investigator (B.M.), we developed a training program for 1 hospitalist to become an HCUE instructor. Our instructor trainee (C.C.) was board‐eligible in internal medicine but had no previous formal training in cardiology or echocardiography. We a priori established that her training would continue until our cardiologist investigator determined that she was ready to train other hospitalists; this determination occurred after 5 weeks. She learned image acquisition by performing focused SE on 30 patients under the direct supervision of an echocardiographic technician. She also performed focused HCUE on 65 inpatients without direct supervision but with ongoing access to consult the technician to review archived images and troubleshoot difficulties with acquisition. She learned image interpretation by reading relevant chapters from a SE textbook15 and by participating in daily didactic sessions in which attending cardiologist echocardiographers train cardiology fellows in SE interpretation.

This hospitalist then served as the HCUE instructor for 8 other attending physician hospitalists who were board‐certified internists with no previous formal training in cardiology or echocardiography. The training program was limited to acquisition and interpretation of 2‐dimensional grayscale and color Doppler images for the 6 cardiac assessments under study (Table 1). The instructor marshaled pairs of hospitalists through the 3 components of the training program, which lasted a total of 27 hours.

Twenty‐Seven‐Hour Training Program in Hand‐Carried Ultrasound Echocardiography
  • Abbreviations: HCUE, hand‐carried ultrasound echocardiography.

  • Slides from this lecture and additional images of normal and abnormal findings were provided on a digital video disc.

Six cardiac assessments learned using 2‐dimensional gray scale and color Doppler imaging
Left ventricular systolic dysfunction
Mitral valve regurgitation
Left atrium enlargement
Left ventricular hypertrophy
Pericardial effusion
Inferior vena cava diameter
Lecture (2 hours)*
Basic principles of echocardiography
HCUE scanning protocol and helpful techniques to optimize image quality
Hands‐on training with instructor
Orientation to machine and demonstration of scanning protocol (1 hour)
Sessions 1 through 3: HCUE performed on 1 patient per hour (6 patients in 6 hours)
Sessions 4 through 10: HCUE performed on 2 patients per hour (28 patients in 14 hours)
Feedback sessions on image quality and interpretation with cardiologist
After hands‐on training session 3 (2 hours)
After hands‐on training session 10 (2 hours)

First, hospitalists attended a 2‐hour lecture on the basic principles of HCUE. Slides from this lecture and additional images of normal and abnormal findings were provided to each hospitalist on a digital video disc. Second, each hospitalist underwent 20 hours of hands‐on training in 2‐hour sessions scheduled over 2 weeks. Willing inpatients from our hospital's emergency department were used as volunteers for these hand‐on training sessions. During these sessions the instructor provided practical suggestions to optimize image quality, such as transducer location and patient positioning. In the first 3 sessions, the minimum pace was 1 patient per hour; thereafter, the pace was increased to 1 patient per half‐hour. We chose 20 hours of hands‐on training and these minimum paces because they allowed each hospitalist to attain a cumulative experience of no less than 30 patientsan amount that heralds a flattening of the HCUE learning curve among medical trainees.9 Third, each pair of hospitalists received feedback from a cardiologist investigator (B.M.) who critiqued the quality and interpretation of images acquired by hospitalists during hands‐on training sessions. Since image quality varies by patient,16 hospitalists' images were compared side‐by‐side to images recorded by the instructor on the same patients. The cardiologist also critiqued hospitalists' interpretations of both their own images and additional sets of archived images from patients with abnormal findings.

HCUE Protocol

After completing the training program and blinded to the results of SE, the 8 hospitalists performed HCUE on enrolled patients within hours of SE. We limited the time interval between tests to minimize the effect that changes in physiologic variables, such as blood pressure and intravascular volume, have on the reliability of serial echocardiographic measurements.16 Hospitalists performed HCUE with a MicroMaxx 3.4 hand‐carried ultrasound machine equipped with a cardiology software package and a 1 to 5 MHz P17 cardiac transducer (Sonosite, Inc., Bothell, WA); simultaneous electrocardiographic recording, though available, was not used. While patients laid on their own standard hospital beds or on a standard hospital gurney in a room adjacent to the SE waiting room, hospitalists positioned them without assistance from nursing staff and recorded 7 best‐quality images per patient. Patients were first positioned in a partial (3045 degrees) left lateral decubitus position to record 4 grayscale images of the short‐axis and long‐axis parasternal and 2‐chamber and 4‐chamber apical views; 2 color Doppler images of the mitral inflow were also recorded from the long‐axis parasternal and the 4‐chamber apical views. Patients were then positioned supine to record 1 grayscale image of the inferior vena cava (IVC) from the transhepatic view. Hospitalists did not perform a history or physical exam on enrolled patients, nor did they review patients' medical records.

Immediately following the HCUE, hospitalists replayed the recorded images as often as needed and entered final interpretations on data collection forms. Linear measurements were made manually with a caliper held directly to the hand‐carried ultrasound monitor. These measurements were then translated into qualitative assessments based on standard values used by our hospital's echocardiographers (Table 2).17 When a hospitalist could not confidently assess a cardiac abnormality, the final HCUE assessment was recorded as indeterminate. Hospitalists also recorded the time to perform each HCUE, which included the time to record 7 best‐quality images, to interpret the findings, and to fill out the data collection form.

Definitions of Hand‐Carried Ultrasound Echocardiography Results
  Hand‐Carried Ultrasound Echocardiography Results
Cardiac Abnormality by Standard EchocardiographyHand‐Carried Ultrasound Echocardiography Operator's Method of AssessmentPositiveNegative
  • Abbreviation: cm, centimeters.

Left ventricle systolic dysfunction, mild or greaterGrade degree of abnormal wall movement and thickening during systoleSevereMild or moderateNormalVigorous
Mitral valve regurgitation, severeClassify regurgitant jet as central or eccentric, then measure as percentage of left atrium area  
 Central jet20%<20%
 Eccentric jet20%indeterminate 20%
Left atrium enlargement, moderate or severeMeasure left atrium in 3 dimensions at end diastole, then use the most abnormal dimensionExtremeBorderline 
 Anteroposterior or mediolateral (cm)5.14.55.04.4
 Superior‐inferior (cm)7.16.17.06.0
Left ventricle hypertrophy, moderate or severeMeasure thickest dimension of posterior or septal wall at end diastoleExtreme: 1.4 cmBorderline: 1.21.3 cm1.1 cm
Pericardial effusion, medium or largeMeasure largest dimension in any view at end diastole1 cm<1 cm
Inferior vena cava dilatationMeasure largest respirophasic diameter within 2 cm of right atrium2.1 cmNormal: 1 to 2 cmContracted: 0.9 cm

Data Analysis

We based our sample size calculations on earlier reports of HCUE by noncardiologist trainees for assessment of left ventricular (LV) systolic function.7, 10 From these reports, we estimated a negative likelihood ratio of 0.3. In addition, we expected about a quarter of our patients to have LV systolic dysfunction (B.M., personal communication). Therefore, to achieve 95% confidence intervals (CIs) around the point estimate of a negative likelihood ratio that excluded 0.50, our upper bound for a clinically meaningful result, we needed a sample size of approximately 300 patients.18

We defined threshold levels of ordinal severity for the 6 cardiac abnormalities under study based on their clinical pertinence to hospitalists (Table 2). Here, we reasoned that abnormalities at or above these levels would likely lead to important changes in hospitalists' management of inpatients; abnormalities below these levels rarely represent cardiac disease that is worthy of an immediate change in management. Since even mild degrees of LV dysfunction have important diagnostic and therapeutic implications for most general medicine inpatients, particularly those presenting with heart failure,19 we set our threshold for LV dysfunction at mild or greater. In contrast, since neither mild nor moderate mitral regurgitation (MR) has immediate implications for medical or surgical therapy even if symptoms or LV dysfunction are present,20 we set our threshold for MR at severe. Similarly, though mild LA enlargement21 and mild LV hypertrophy22 have clear prognostic implications for patients' chronic medical conditions, we reasoned that only moderate or severe versions likely reflect underlying abnormalities that affect hospitalists' point‐of‐care decision‐making. Since cardiac tamponade is rarely both subclinical23 and due to a small pericardial effusion,24 we set our threshold for pericardial effusion size at moderate or large. Finally, we set our threshold IVC diameter, a marker of central venous volume status,25 at dilated, because volume overload is an important consideration in hospitalized cardiac patients.

Using these thresholds, investigators dichotomized echocardiographers' SE readings as normal or abnormal for each of the 6 cardiac abnormalities under study to serve as the reference standards. Hospitalists' HCUE results were then compared to the reference standards in 2 different ways. We first analyzed HCUE results as dichotomous values to calculate conventional sensitivity, specificity, and positive and negative likelihood ratios. Here we considered indeterminate HCUE results positive in a clinically conservative tradeoff that neither ignores indeterminate results nor risks falsely classifying them as negative.26 We then analyzed hospitalists' HCUE results as ordinal values for receiver operating characteristic (ROC) curve analysis. Here we considered an indeterminate result as 1 possible test result.27

To examine interobserver variability of HCUE, we first chose from the 6 possible assessments only those with a mean number of abnormal patients per hospitalist greater than 5. We reasoned that variability among assessments with lower prevalence would be predictably wide and inconclusive. We then expressed variability as standard deviations (SDs) around mean sensitivity and specificity for the 8 hospitalists.

The CIs for likelihood ratios were constructed using the likelihood‐based approach to binomial proportions of Koopman.28 The areas under ROC curves were computed using the trapezoidal rule, and the CIs for these areas were constructed using the algorithm described by DeLong et al.29 All analyses were conducted with Stata Statistical Software, Release 10 (StataCorp, College Station, TX).

Results

During the 3 month study period, 654 patients were referred for SE from the 3 participating patient care units (Figure 1). Among these, 65 patients were ineligible because their SE was performed on the weekend and 178 other patients were not randomized from the general medical wards and CCU. From the remaining eligible patients, 322 underwent HCUE and 314 (98% of 322) underwent both SE and HCUE. Individual SE assessments were not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and IVC dilatation in 30 patients. Eighty‐three percent of patients who underwent SE (260/314) were referred to assess LV function (Table 3). The prevalence of the 6 clinically pertinent cardiac abnormalities under study ranged from 1% for moderate or large pericardial effusion to 25% for LV systolic dysfunction. Overall, 40% of patients had at least 1 out of 6 cardiac abnormalities.

Patients Who Underwent Both Standard Echocardiography and Hand‐Carried Ultrasound Echocardiography
Characteristic 
  • NOTE: Values are n (%) unless otherwise indicated. Total number of patients is 322.

  • Abbreviations: HCUE, hand‐carried ultrasound echocardiography; SD, standard deviation.

  • Ordering physicians listed 2 indications for 103 patients, 3 indications for 10 patients, and 4 indications for 2 patients; therefore, the total number of indications (n = 443) is greater than the total number of patients (n = 314).

  • Other indications include mural thrombus (n = 13), left ventricular hypertrophy (n = 10), pericardial disease (n = 6), intracardiac shunt (n = 4), cardiomegaly (n = 4), and follow‐up of known atrial septal aneurysm (n = 1).

  • Standard echocardiography demonstrated 2 abnormal findings in 23 patients, 3 abnormal findings in 13 patients, and 4 abnormal findings in 5 patients; therefore, the total number of abnormal findings (n = 191) is greater than the total number of patients who had at least 1 abnormal finding (n = 127).

  • Includes time to record 7 best‐quality images and fill out data collection forms.

Age, year SD (25th to 75th percentiles)56 13 (48 to 64)
Women146 (47)
Chronic obstructive pulmonary disease47 (15)
Body mass index 
24.9 or less: underweight or normal74 (24)
25 to 29.9: overweight94 (30)
30 to 34.9: mild obesity75 (24)
35 or greater: moderate or severe obesity71 (23)
Patient care unit 
Short‐stay unit175 (56)
General medical wards89 (28)
Cardiac care unit50 (16)
Indication for standard echocardiography* 
Left ventricular function260 (83)
Valvular function56 (18)
Wall motion abnormality29 (9)
Valvular vegetations22 (7)
Any structural heart disease20 (6)
Right ventricular function18 (6)
Other38 (12)
Standard echocardiography findings 
Left ventricular systolic dysfunction mild80 (25)
Inferior vena cava dilated45 (14)
Left ventricular wall thickness moderate33 (11)
Left atrium enlargement moderate19 (6)
Mitral valve regurgitation severe11 (4)
Pericardial effusion moderate3 (1)
At least 1 of the above findings127 (40)
Time difference between HCUE and standard echocardiogram, median hours (25th to 75th percentiles)2.8 (1.4 to 5.1)
Time to complete HCUE, median minutes (25th to 75th percentiles)28 (20 to 35)

Each hospitalist performed a similar total number of HCUE examinations (range, 3447). The median time difference between performance of SE and HCUE was 2.8 hours (25th75th percentiles, 1.45.1). Despite the high prevalence of chronic obstructive pulmonary disease and obesity, hospitalists considered HCUE assessments indeterminate in only 2% to 6% of the 6 assessments made for each patient (Table 4). Among the 38 patients (12% of 322) with any indeterminate HCUE assessment, 24 patients had only 1 out of 6 possible. Hospitalists completed HCUE in a median time of 28 minutes (25th‐75th percentiles, 2035), which included the time to record 7 best‐quality moving images and to fill out the research data collection form.

Indeterminate Findings from Hand‐Carried Ultrasound Echocardiography
 n (%)*
  • n = 322.

Number of indeterminate findings per patient 
0284 (88)
124 (7)
24 (1)
3 or more10 (3)
Indeterminate findings by cardiac assessment 
Mitral valve regurgitation18 (6)
Inferior vena cava diameter16 (5)
Left ventricular hypertrophy15 (5)
Pericardial effusion9 (3)
Left atrium size5 (2)
Left ventricle systolic function5 (2)

When HCUE results were analyzed as dichotomous values, positive likelihood ratios ranged from 2.5 to 21, and negative likelihood ratios ranged from 0 to 0.4 (Table 5). Positive and negative likelihood ratios were both sufficiency high and low to respectively increase and decrease by 5‐fold the prior odds of 3 out of 6 cardiac abnormalities: LV systolic dysfunction, moderate or severe MR regurgitation, and moderate or large pericardial effusion. Considering HCUE results as ordinal values for ROC analysis yielded additional diagnostic information (Figure 2). For example, the likelihood ratio of 1.0 (95% CI, 0.42.0) for borderline positive moderate or severe LA enlargement increased to 29 (range, 1362) for extreme positive results. Areas under the ROC curves were 0.9 for 4 out of 6 cardiac abnormalities.

Figure 2
ROC curves of hand‐carried ultrasound echocardiography (HCUE) results. Includes all 314 patients who underwent both SE and HCUE, although SE was not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients. Conventional likelihood ratios are presented with 95% CI for each test result. Each likelihood ratio is calculated by dividing the probability of the test result in patients with the abnormality by the probability of the test result in patients without the abnormality. In addition, the likelihood ratios are equivalent to the slopes of the corresponding segments of the curves. An “indeterminate” HCUE result was considered 1 of the possible test results (*); likelihood ratios for these indeterminate HCUE results, which occurred in 2% to 6% of assessments, were not presented because the CIs widely spanned above and below 1. Abbreviations: AUC, area under receiver‐operating characteristic curve; LR, conventional likelihood ratio.
Diagnostic Test Characteristics of Hand‐Carried Ultrasound Echocardiography for Detecting Cardiac Abnormalities
Clinically Pertinent Cardiac Abnormality by Standard EchocardiographyPrevalence n/total nSensitivity* % (95% CI)Specificity* % (95% CI)LRpositive*, (95% CI)LRnegative*, (95% CI)
  • NOTE: Includes all 314 patients who underwent both standard echocardiography and hand‐carried ultrasound echocardiography, although standard echocardiography was not interpretable (and therefore excluded) due to poor image quality for LA enlargement in 1 patient and for IVC dilatation in 30 patients.

  • Indeterminate results from hand‐carried ultrasound echocardiography (which occurred in 2% to 6% of assessments) were considered positive test results in calculating the test characteristics.

  • LRx is the conventional likelihood ratio of test result x, which is equal to the probability of test result x in patients with the abnormality divided by probability of test result x in patients without the abnormality; x is positive or negative.

Left ventricular systolic dysfunction80/31485 (7592)88 (8392)6.9 (4.99.8)0.2 (0.10.3)
Mitral valve regurgitation, severe11/314100 (72100)83 (7987)5.9 (3.97.4)0 (00.3)
Left atrium enlargement, moderate or severe19/31390 (6799)74 (6879)3.4 (2.54.3)0.1 (0.040.4)
Left ventricular hypertrophy, moderate or severe33/31470 (5184)73 (6778)2.5 (1.83.3)0.4 (0.20.7)
Pericardial effusion, moderate or large3/314100 (29100)95 (9297)21 (6.731)0 (00.6)
Inferior vena cava, dilated45/28456 (4070)86 (8190)4.0 (2.66.0)0.5 (0.40.7)

LV systolic dysfunction and IVC dilatation were both prevalent enough to meet our criterion to examine interobserver variability; the mean number of abnormal patients per hospitalist was 10 patients for LV systolic dysfunction and 6 patients for IVC dilatation. For LV systolic dysfunction, SDs around mean sensitivity (84%) and specificity (87%) were 12% and 6%, respectively. For IVC dilatation, SDs around mean sensitivity (58%) and specificity (86%) were 24% and 7%, respectively.

Discussion

We found that, after a 27‐hour training program, hospitalists performed HCUE with moderate to excellent diagnostic accuracy for 6 important cardiac abnormalities. For example, hospitalists' assessments of LV systolic function yielded positive and negative likelihood ratios of 6.9 (95% CI, 4.99.8) and 0.2 (95% CI, 0.10.3), respectively. At the bedsides of patients with acute heart failure, therefore, hospitalists could use HCUE to lower or raise the 50:50 chance of LV systolic dysfunction30 to 15% or 85%, respectively. Whether or not these posttest likelihoods are extreme enough to cross important thresholds will depend on the clinical context. Yet these findings demonstrate how HCUE has the potential to provide hospitalists with valuable point‐of‐care data that are otherwise unavailableeither because routine clinical assessments are unreliable31 or because echocardiographic services are not immediately accessible.1

In fact, recent data from the Joint Commission on Accreditation of Healthcare Organizations shows how inaccessible SE may be. Approximately one‐quarter of hospitals in the United States send home about 10% of patients with acute heart failure without echocardiographic assessment of LV systolic function before, during, or immediately after hospitalization.32 In doing so, these hospitals leave unmet the 2002 National Quality Improvement Goal of universal assessment of LV systolic function for all heart failure patients. Hospitalists could close this quality gap with routine, 10‐minute HCUE assessments in all patients admitted with acute heart failure. (Our research HCUE protocol required a median time of 28 minutes, but this included time to assess 5 other cardiac abnormalities and collect data for research purposes). Until the clinical consequences of introducing hospitalist‐performed HCUE are studied, potential benefits like this are tentative. But our findings suggest that training hospitalists to accurately perform HCUE can be successfully accomplished in just 27 hours.

Other studies of HCUE training programs for noncardiologists have also challenged the opinion that learning to perform HCUE requires more than 100 hours of training.2, 711 Yet only 1 prior study has examined an HCUE training program for hospitalists.5 In this study by Martin et al.,5 hospitalists completed 5 supervised HCUE examinations and 6 hours of interpretation training before investigators scored their image acquisition and interpretation skills from 30 unsupervised HCUE examinations. To estimate their final skill levels at the completion of all 35 examinations by accounting for an initially steep learning curve, investigators then adjusted these scores with regression models. Despite these upward adjustments, hospitalists' image acquisition and interpretation scores were low in comparison to echocardiographic technicians and cardiology fellows. Besides these adjusted measurements of hospitalists' skills, however, Martin et al.5 unfortunately did not also report standard measures of diagnostic accuracy, like those proposed by the Standards for Reporting of Diagnostic Accuracy (STARD) initiative.33 Therefore, direct comparisons to the present study are difficult. Nevertheless, their findings suggest that a training program limited to 5 supervised HCUE examinations may be inadequate for hospitalists. In fact, the same group's earlier study of medical trainees suggested a minimum of 30 supervised HCUE examinations.9 We chose to design our hospitalist training program based on this minimum, though they surprisingly did not.5 As others continue to refine the components of hospitalist HCUE training programs, such as the optimal number of supervised examinations, our program could serve as a reasonable comparative example: more rigorous than the program designed by Martin et al.5 but more feasible than ASE level 1 training.

The number and complexity of assessments taught in HCUE training programs will determine their duration. With ongoing advancements in HCUE technology, there is a growing list of potential assessments to choose from. Although HCUE training programs ought to include assessments with proven clinical applications, there are no trials of HCUE‐directed care to inform such decisions. In their absence, therefore, we chose 6 assessments based on the following 3 criteria. First, our assessments were otherwise not reliably available from routine clinical data, such as the physical examination. Second, our assessments were straightforward: easy to learn and simple to perform. Here, we based our reasoning on an expectation that the value of HCUE lies not in highly complex, state‐of‐the‐art assessmentswhich are best left to echocardiographers equipped with SEbut in simple, routine assessments made with highly portable machines that grant noncardiologists newfound access to point‐of‐care data.34 Third, our assessments were clinically pertinent and, where appropriate, defined by cut‐points at levels of severity that often lead to changes in management. We suspect that setting high cut‐points has the salutary effects of making assessments easier to learn and more accurate, because distinguishing mild abnormalities is likely the most challenging aspect of echocardiographic interpretation.35 Whether or not our choices of assessments, and their cut‐points, are optimal has yet to be determined by future research designed to study how they affect patient outcomes. Given our hospitalists' performance in the present study, these assessments seem worthy of such future research.

Our study had several limitations. We studied physicians and patients from only 1 hospital; similar studies performed in different settings, particularly among patients with different proportions and manifestations of disease, may find different results. Nevertheless, our sampling method of prospectively enrolling consecutive patients strengthens our findings. Some echocardiographic measurement methods used by our hospitalists differed in subtle ways from echocardiography guideline recommendations.35 We chose our methods (Table 2) for 2 reasons. First, whenever possible, we chose methods of interpretation that coincided with our local cardiologists'. Second, we chose simplicity over precision. For example, the biplane method of disks, or modified Simpson's rule, is the preferred volumetric method of calculating LA size.35 This method requires tracing the contours of the LA in 2 planes and then dividing the LA volume into stacked oval disks for calculation. We chose instead to train our hospitalists in a simpler method based on 2 linear measurements. Any loss of precision, however, was balanced by a large gain in simplicity. Regardless, minor variations in LA size are not likely to affect hospitalists' bedside evaluations. Finally, we did not validate the results of our reference standard (SE) by documenting interobserver reliability. Yet, because SE is generally accurate for the 6 cardiac abnormalities under study, the effect of this bias should be small.

These limitations can be addressed best by controlled trials of HCUE‐directed care. These trials will determine the clinical impact of hospitalist‐performed HCUE and, in turn, inform our design of HCUE training programs. As the current study shows, training hospitalists to participate in such trials is feasible: like other groups of noncardiologists, hospitalists can accurately perform HCUE after a brief training program. Whether or not hospitalists should perform HCUE requires further study.

Acknowledgements

The authors thank Sonosite, Inc., Bothell, WA, for loaning us 2 MicroMaxx machines throughout the study period. They also thank the staff of the Internal Medicine Research Mentoring Program at Rush Medical College for their technical support and the staff of the Division of Neurology at Stroger Hospital for granting them access to a procedure room.

References
  1. Popp RL.The physical examination of the future: echocardiography as part of the assessment.ACC Curr J Rev.1998;7:7981.
  2. DeCara JM,Lang RM,Spencer KT.The hand‐carried echocardiographic device as an aid to the physical examination.Echocardiography.2003;20:477485.
  3. Beaulieu Y,Marik PE.Bedside ultrasonography in the ICU: Part 2.Chest.2005;128:17661781.
  4. Cosby KS,Kendall JL.Practical Guide to Emergency Ultrasound.1st ed.Philadelphia, PA:Lippincott Williams 2006.
  5. Martin LD,Howell EE,Ziegelstein RC,Martire C,Shapiro EP,Hellmann DB.Hospitalist performance of cardiac hand‐carried ultrasound after focused training.Am J Med.2007;120:10001004.
  6. Seward JB,Douglas PS,Erbel R, et al.Hand‐carried cardiac ultrasound (HCU) device: recommendations regarding new technology. A report from the echocardiography task force on new technology of the Nomenclature and Standards Committee of the American Society of Echocardiography.J Am Soc Echocardiogr.2002;15:369373.
  7. DeCara JM,Lang RM,Koch R,Bala R,Penzotti J,Spencer KT.The use of small personal ultrasound devices with internists without formal training in echocardiography.Eur J Echocardiogr.2003;4:141147.
  8. Alexander JH,Peterson ED,Chen AY, et al.Feasibility of point‐of‐care echocardiography by internal medicine house staff.Am Heart J.2004;147:476481.
  9. Hellman DB,Whiting‐O'Keefe Q,Shapiro EP,Martin LD,Martire C,Ziegelstein RC.The rate at which residents learn to use hand‐held echocardiography at the bedside.Am J Med.2005;118:10101018.
  10. Kobal SL,Trento L,Baharami S, et al.Comparison of effectiveness of hand‐carried ultrasound to bedside cardiovascular physical examination.Am J Cardiol.2005;96:10021006.
  11. Duvall WL,Croft LB,Goldman ME.Can hand‐carried ultrasound devices be extended for use by the noncardiology medical community?Echocardiography.2003;20:471476.
  12. Lucas BP,Kumapley R,Mba B, et al.A hospitalist‐run short stay unit: features that predict patients' length‐of‐stay and eventual admission to traditional inpatient services.J Hosp Med.2009;4:276284.
  13. McDonald ME.Adult echocardiography scanning protocol. In: Templin BB, ed.Ultrasound Scanning: Principles and Protocols.2nd ed.Philadelphia, PA:Saunders;1999:426.
  14. Beller GA,Bonow RO,Fuster V, et al.ACCF 2008 Recommendations for training in adult cardiovascular medicine core cardiology training (COCATS 3) (revision of the 2002 COCATS training statement).J Am Coll Cardiol.2008;51:333414.
  15. Oh JK,Seward JB,Tajik AJ.The Echo Manual.2nd ed.Philadelphia, PA:Lippincott Williams 1999.
  16. Kuecherer HF,Kee LL,Modin G, et al.Echocardiography in serial evaluation of left ventricular systolic and diastolic function: importance of image acquisition, quantitation, and physiologic variability in clinical and investigational applications.J Am Soc Echocardiogr.1991;4:203214.
  17. Otto CM.Textbook of Clinical Echocardiography.3rd ed.Philadelphia, PA:Elsevier Saunders;2004.
  18. Simel DL,Samsa GP,Matchar DB.Likelihood ratios with confidence: sample size estimation for diagnostic test studies.J Clin Epidemiol.1991;44:763770.
  19. Hunt SA,Abraham WT,Chin MH, et al.ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation.2005;112;154235.
  20. Bonow RO,Carabello BA,Chatterjee K, et al.ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation.2006;114:e84e231.
  21. Abhayaratna WP,Seward JB,Appleton CP, et al.Left atrial size: physiologic determinants and clinical applications.J Am Coll Cardiol.2006;47:23572363.
  22. Levy D,Garrison RJ,Savage DD,Kannel WB,Castelli WP.Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.N Engl J Med.1990;322:15611566.
  23. Roy CL,Minor MA,Brookhart MA,Choudhry NK.Does this patient with a pericardial effusion have cardiac tamponade?JAMA.2007;297:18101818.
  24. Spodick DH.Acute cardiac tamponade.N Engl J Med.2003;349:685690.
  25. Moreno FL,Hagan AD,Holmen JR,Pryor TA,Strickland RD,Castle CH.Evaluation of size and dynamics of the inferior vena cava as an index of right‐sided cardiac function.Am J Cardiol.1984;53:579585.
  26. Begg CB,Greenes RA,Iglewicz B.The influence of uninterpretability on the assessment of diagnostic tests.J Chronic Dis.1986;39:575584.
  27. Poynard T,Chaput J‐C,Etienne J‐P.Relations between effectiveness of a diagnostic test, prevalence of the disease, and percentages of uninterpretable results. An example in the diagnosis of jaundice.Med Decis Making.1982;2:285297.
  28. Koopman PAR.Confidence intervals for the ratio of two binomial proportions.Biometrics.1984;40:513517.
  29. DeLong ER,DeLong DM,Clarke‐Pearson DL.Comparing the areas under two or more correlated receiver operating curves: a nonparametric approach.Biometrics.1988;44:837845.
  30. Gheorghiade M,Abraham WT,Albert NM, et al.Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure.JAMA.2006;296:22172226.
  31. Thomas JT,Kelly RF,Thomas SJ, et al.Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure.Am J Med.2002;112:437445.
  32. Joint Commission on Accreditation of Healthcare Organizations. Health Care Quality Data Download Website. Available at: http://www.healthcarequalitydata.org. Accessed December2008.
  33. Bossuyt PM,Reitsma JB,Burns DE, et al.Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative.Clin Chem.2003;49:16.
  34. Christensen CM,Bohmer R,Kenagy J.Will disruptive innovations cure health care?Harv Bus Rev.2000;78:102112.
  35. Lang RM,Bierig M,Devereux RB, et al.Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.J Am Soc Echocardiogr.2005;18:14401463.
References
  1. Popp RL.The physical examination of the future: echocardiography as part of the assessment.ACC Curr J Rev.1998;7:7981.
  2. DeCara JM,Lang RM,Spencer KT.The hand‐carried echocardiographic device as an aid to the physical examination.Echocardiography.2003;20:477485.
  3. Beaulieu Y,Marik PE.Bedside ultrasonography in the ICU: Part 2.Chest.2005;128:17661781.
  4. Cosby KS,Kendall JL.Practical Guide to Emergency Ultrasound.1st ed.Philadelphia, PA:Lippincott Williams 2006.
  5. Martin LD,Howell EE,Ziegelstein RC,Martire C,Shapiro EP,Hellmann DB.Hospitalist performance of cardiac hand‐carried ultrasound after focused training.Am J Med.2007;120:10001004.
  6. Seward JB,Douglas PS,Erbel R, et al.Hand‐carried cardiac ultrasound (HCU) device: recommendations regarding new technology. A report from the echocardiography task force on new technology of the Nomenclature and Standards Committee of the American Society of Echocardiography.J Am Soc Echocardiogr.2002;15:369373.
  7. DeCara JM,Lang RM,Koch R,Bala R,Penzotti J,Spencer KT.The use of small personal ultrasound devices with internists without formal training in echocardiography.Eur J Echocardiogr.2003;4:141147.
  8. Alexander JH,Peterson ED,Chen AY, et al.Feasibility of point‐of‐care echocardiography by internal medicine house staff.Am Heart J.2004;147:476481.
  9. Hellman DB,Whiting‐O'Keefe Q,Shapiro EP,Martin LD,Martire C,Ziegelstein RC.The rate at which residents learn to use hand‐held echocardiography at the bedside.Am J Med.2005;118:10101018.
  10. Kobal SL,Trento L,Baharami S, et al.Comparison of effectiveness of hand‐carried ultrasound to bedside cardiovascular physical examination.Am J Cardiol.2005;96:10021006.
  11. Duvall WL,Croft LB,Goldman ME.Can hand‐carried ultrasound devices be extended for use by the noncardiology medical community?Echocardiography.2003;20:471476.
  12. Lucas BP,Kumapley R,Mba B, et al.A hospitalist‐run short stay unit: features that predict patients' length‐of‐stay and eventual admission to traditional inpatient services.J Hosp Med.2009;4:276284.
  13. McDonald ME.Adult echocardiography scanning protocol. In: Templin BB, ed.Ultrasound Scanning: Principles and Protocols.2nd ed.Philadelphia, PA:Saunders;1999:426.
  14. Beller GA,Bonow RO,Fuster V, et al.ACCF 2008 Recommendations for training in adult cardiovascular medicine core cardiology training (COCATS 3) (revision of the 2002 COCATS training statement).J Am Coll Cardiol.2008;51:333414.
  15. Oh JK,Seward JB,Tajik AJ.The Echo Manual.2nd ed.Philadelphia, PA:Lippincott Williams 1999.
  16. Kuecherer HF,Kee LL,Modin G, et al.Echocardiography in serial evaluation of left ventricular systolic and diastolic function: importance of image acquisition, quantitation, and physiologic variability in clinical and investigational applications.J Am Soc Echocardiogr.1991;4:203214.
  17. Otto CM.Textbook of Clinical Echocardiography.3rd ed.Philadelphia, PA:Elsevier Saunders;2004.
  18. Simel DL,Samsa GP,Matchar DB.Likelihood ratios with confidence: sample size estimation for diagnostic test studies.J Clin Epidemiol.1991;44:763770.
  19. Hunt SA,Abraham WT,Chin MH, et al.ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation.2005;112;154235.
  20. Bonow RO,Carabello BA,Chatterjee K, et al.ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation.2006;114:e84e231.
  21. Abhayaratna WP,Seward JB,Appleton CP, et al.Left atrial size: physiologic determinants and clinical applications.J Am Coll Cardiol.2006;47:23572363.
  22. Levy D,Garrison RJ,Savage DD,Kannel WB,Castelli WP.Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.N Engl J Med.1990;322:15611566.
  23. Roy CL,Minor MA,Brookhart MA,Choudhry NK.Does this patient with a pericardial effusion have cardiac tamponade?JAMA.2007;297:18101818.
  24. Spodick DH.Acute cardiac tamponade.N Engl J Med.2003;349:685690.
  25. Moreno FL,Hagan AD,Holmen JR,Pryor TA,Strickland RD,Castle CH.Evaluation of size and dynamics of the inferior vena cava as an index of right‐sided cardiac function.Am J Cardiol.1984;53:579585.
  26. Begg CB,Greenes RA,Iglewicz B.The influence of uninterpretability on the assessment of diagnostic tests.J Chronic Dis.1986;39:575584.
  27. Poynard T,Chaput J‐C,Etienne J‐P.Relations between effectiveness of a diagnostic test, prevalence of the disease, and percentages of uninterpretable results. An example in the diagnosis of jaundice.Med Decis Making.1982;2:285297.
  28. Koopman PAR.Confidence intervals for the ratio of two binomial proportions.Biometrics.1984;40:513517.
  29. DeLong ER,DeLong DM,Clarke‐Pearson DL.Comparing the areas under two or more correlated receiver operating curves: a nonparametric approach.Biometrics.1988;44:837845.
  30. Gheorghiade M,Abraham WT,Albert NM, et al.Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure.JAMA.2006;296:22172226.
  31. Thomas JT,Kelly RF,Thomas SJ, et al.Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure.Am J Med.2002;112:437445.
  32. Joint Commission on Accreditation of Healthcare Organizations. Health Care Quality Data Download Website. Available at: http://www.healthcarequalitydata.org. Accessed December2008.
  33. Bossuyt PM,Reitsma JB,Burns DE, et al.Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative.Clin Chem.2003;49:16.
  34. Christensen CM,Bohmer R,Kenagy J.Will disruptive innovations cure health care?Harv Bus Rev.2000;78:102112.
  35. Lang RM,Bierig M,Devereux RB, et al.Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology.J Am Soc Echocardiogr.2005;18:14401463.
Issue
Journal of Hospital Medicine - 4(6)
Issue
Journal of Hospital Medicine - 4(6)
Page Number
340-349
Page Number
340-349
Publications
Publications
Article Type
Display Headline
Diagnostic accuracy of hospitalist‐performed hand‐carried ultrasound echocardiography after a brief training program
Display Headline
Diagnostic accuracy of hospitalist‐performed hand‐carried ultrasound echocardiography after a brief training program
Legacy Keywords
echocardiography, hospitalists, point‐of‐care systems, sensitivity and specificity
Legacy Keywords
echocardiography, hospitalists, point‐of‐care systems, sensitivity and specificity
Sections
Article Source

Copyright © 2009 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
1900 West Polk Street, Room 520, Chicago, IL 60612
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Improving Central Venous Catheterization

Article Type
Changed
Sun, 05/28/2017 - 22:38
Display Headline
Firm‐based trial to improve central venous catheter insertion practices

At times central venous catheters are essential to the delivery of appropriate medical care. Because catheter‐related complications are associated with limited operator experience,1 insertion technique,2 and venous site of insertion (eg, femoral, internal jugular, or subclavian vein),3 house staff training programs strive to provide their residents with appropriate training and oversight for this skill. Most quality improvement initiatives directed at reducing complications associated with central venous catheters have focused on patients in the intensive care unit (ICU).4, 5 However, in some hospitals more central venous catheters are inserted in patients not in the ICU,6 and practices that increase the risk of complications may be more common on wards.7

In our hospital, most catheters are placed in the femoral vein. Because femoral venous placement likely increases a patient's risk of thrombosis, hematoma, and bloodstream infection,8 we developed a program to change residents' choice of venous insertion site and improve their infection‐control practices during their general medicine ward rotation. The program provided simulated hands‐on experience in a simulation laboratory. We evaluated our intervention through a firm‐based clinical trial that compared the usual practice to our intervention. We compared infection‐control practices and resident choice of venous insertion site between the intervention and control groups; we also assessed residents' knowledge about catheter‐related complications, and we monitored patients for catheter‐related complications.

METHODS

Setting and Study Design

We conducted a prospective, firm‐based clinical trial approved by the institutional review board at Cook County Hospital, a 464‐bed public teaching hospital. We evaluated all central venous catheters inserted by residents on the general medicine service from November 15, 2004, to March 31, 2005. The internal medicine residency program assigns residents to 1 of 3 firms for their entire 3 years of training. We designated 1 firm as the intervention group; the other 2 firms constituted the control group.

Educational Intervention

At the beginning of each 4‐week general medicine ward rotation, intervention‐firm residents attended an educational and simulation laboratory session. Control‐firm residents received the usual ward orientation. We conducted 6 sessions, with total attendance of 40 intervention‐firm residents, or approximately 7 residents per session. A chief medical resident experienced in catheter placement and an attending internist led and supervised each 2‐hour training session. The sessions were conducted at the Simulation Laboratory of Rush University and included a presentation about indications for central venous catheter insertion, insertion techniques, common complications, and practice placing catheters in mannequins. During the hands‐on session, each participant observed the expert insert a triple‐lumen catheter in the mannequin's internal jugular and subclavian veins. Then, with supervision, each participant practiced catheter insertion using recommended infection‐control practices (eg, use of gloves, mask, and large drape, and chlorhexidine skin preparation).

Resident Survey

Before each session, we administered a survey that assessed residents' knowledge of insertion techniques and their confidence in placing catheters at each venous insertion site. To measure change in the confidence level of residents, we distributed an abbreviated survey 2 additional times, immediately after the session and at the end of the study period. We measured confidence with answers to survey questions, which were rated on a 5‐point Likert scale, from strongly disagree to strongly agree. In addition to measuring the change in residents' confidence, the final survey repeated knowledge assessment questions, evaluated residents' attitudes regarding venous insertion sites, and asked about potential strategies to improve insertion practices.

Central Venous Catheter Detection and Monitoring

At the end of each day, residents reported catheter insertions to chief residents during routine sign‐out rounds. If a catheter had been inserted, the chief resident interviewed the resident about type of catheter, venous insertion site, duration of attempt, patient location, immediate complications, number of inserters, inserter attendance at an educational session, inserter specialty, and professional designation (eg, resident, fellow, attending), indication for insertion, and adherence to infection‐control practices. For all insertion attempts, the research team reviewed the medical record and recorded patient characteristics that might influence venous insertion site (eg, thrombocytopenia, coagulopathy, and body mass index) and evaluated patients for insertion‐related complications.

We prospectively monitored patients for mechanical (ie, pneumothorax or hematoma), thromboembolic, or infectious complications. To evaluate for pneumothorax, postinsertion chest radiographs were reviewed by a physician‐investigator, and radiologists' interpretations and progress notes were reviewed. To evaluate for infectious or other mechanical complications, progress notes also were reviewed. We required radiographic confirmation of venous thromboembolism. To categorize potential bloodstream infections, we used Centers for Disease Control and Prevention definitions.9 All medical record and radiograph reviews were performed by investigators who were masked to patient firm assignment. We monitored patients until catheter removal or hospital discharge. After patient discharge, we reviewed the electronic record, including emergency room visits and repeat hospitalizations, for 30 days after the earlier of hospital discharge or catheter removal.

Statistics

Because we were aware that temporary dialysis catheters are sometimes placed in femoral veins to preserve the subclavian or internal jugular venous sites for more permanent tunneled intravascular catheters, our prespecified plans were to compare venous insertion sites between intervention and control groups after excluding temporary dialysis catheters. To more completely describe catheter use, we also collected data on temporary dialysis catheters, and we present the results both with and without inclusion of data on temporary dialysis catheters. If multiple residents attempted to insert a catheter, we would have used the group that the final inserter was in to determine intervention versus control group assignment; however, this never occurred.

To determine resident confidence in inserting catheters, we collapsed the responses of agree and strongly agree and of disagree and strongly disagree into single categories; thus, frequency of agreement was evaluated as a dichotomous outcome. To test whether residents' confidence changed between the 3 surveys, we analyzed responses using the matched‐pair signed rank test, with the initial survey used as the referent.

We dichotomized certain continuous variables using the following cut points: body mass index 30 kg/m2; coagulopathy, international normalized ratio (INR) > 1.5; thrombocytopenia, platelets < 100 109/L. Data were entered into a relational database (Microsoft Access, Microsoft Inc., Redmond, WA) and merged analyzed using Stata software, version 8.2 (Stata Corporation, College Station, TX).

RESULTS

Patient and Catheter Characteristics

Fifty‐four catheters were inserted in 48 patients during the study period, 16 (30%) in the intervention group and 38 (70%) in the control group. Mean number of catheters inserted per resident for each 4‐week rotation was 0.24; therefore, on average, a resident would insert 1 catheter every 4 general‐medicine rotations. Most catheters were inserted between 7:00 AM and 5:00 PM; the most common reason for insertion was to administer intravenous medications to a patient without intravenous access, followed by the need for a temporary dialysis catheter. Most catheters were inserted by the medicine team rather than radiology or a subspecialty service (Table 1). Most patient characteristics and reasons for insertion were similar between groups; however, more patients in the control group had thrombocytopenia (Table 1).

Comparison of Central Venous Catheter and Characteristics of Patients Treated by Residents in Educational Intervention Group Versus Those in Control Group
CharacteristicCentral venous catheters inserted
Intervention (n = 16), n (%)Control (n = 38), n (%)P
  • One intervention group catheter was inserted by the attending after an unsuccessful resident attempt; inserter unspecified for 1 catheter inserted by control group.

  • Reasons for placement were temporary dialysis (n = 16), plasmapheresis (n = 4), or leukapheresis (n = 1)

  • Placed for fluid resuscitation (n = 2) or exchange transfusion (n = 1).

Patient   
Body mass index 30 kg/m25 (31)11 (29)1.0
INR > 1.53 (19)3 (7.9)0.37
Platelet count < 100k0 (0)9 (24)0.05
Charlson index, mean (interquartile range)2 (24)2 (14)0.58
Physician inserting catheter   
Resident on general medicine servicea15 (100)34/37 (92)1.0
Subspecialty fellow0 (0)2/37 (5.3)1.0
Radiology fellow or attending0 (0)1/37 (2.6)1.0
Reason for insertion   
No intravenous access7 (44)19 (50)0.67
Temporary dialysis catheterb7 (44)14 (37)0.63
Total parenteral nutrition1 (6.2)3 (7.9)1.0
Otherc1 (6.2)2 (5.3)1.0
Time of day of insertion   
Between 7 AM and 5 PM12/14 (86)25/37 (68)0.30

Insertion Practices

Femoral venous insertion was the most common type of catheter insertion (67%), followed by internal jugular (26%) and subclavian (7%); there were no differences in insertion site between the intervention and control groups (Table 2). When we excluded temporary dialysis catheters, 39% of central venous catheters were inserted in the internal jugular vein. Although a smaller proportion of catheters inserted by the intervention group were placed in a femoral vein, the difference was not significant (Table 2).

Comparison of Central Venous Catheter (CVC) Insertion Practices of Residents in Control and Intervention Groups
 Intervention (n = 16), n (%)Control (n = 38), n (%)Risk ratio (95% CI)P
  • We compared venous insertions at the femoral site versus at the subclavian or internal jugular sites.

Self‐reported practices during CVC insertion
Mask worn12 (75)13 (34)2.2 (1.33.7)0.008
Large drape used15 (94)28 (74)1.3 (1.01.6)0.14
Cap worn3 (19)5 (13)1.4 (0.45.3)0.6
Gown worn8 (50)18 (47)1.1 (0.61.9)0.9
Sterile gloves worn15 (94)36 (95)1.0 (0.81.2)1.0
Venous insertion sitea  Difference (95% CI) 
Femoral10 (62)26 (68)6% (34%22%)0.67
Internal jugular5 (31)9 (24)  
Subclavian1 (6.2)3 (7.9)  
Excluding dialysis cathetersan = 9n = 24  
Femoral4 (44)14 (58)14% (52%24%)0.7
Internal jugular5 (56)8 (33)  
Subclavian0 (0)2 (8)  

For most insertions, residents reported using sterile gloves (94%) and a large drape (80%); however, most did not report use of a sterile gown (48%), mask (46%), or cap (15%). Residents in the intervention group were more likely to report use of a mask, and there was a trend toward increased use of large drapes (Table 2). No patient characteristics predicted femoral venous insertion (data not shown).

Complications

The most frequent complication was arterial puncture (n = 4); all four occurred during femoral venous insertion attempts. Compared to subclavian or internal jugular venous placement, there was a trend toward more mechanical complications among femoral catheters (Table 3). One episode of clinical sepsis occurred, in an intervention‐group patient who had femoral and internal jugular catheters, and no pneumothoraxes or episodes of venous thromboembolism occurred (Table 3). The overall incidence of bloodstream infection was 2.7 per 1000 central‐line days; there was no difference between the intervention and control groups (9.2 versus 0 per 1000 central‐line days; P = .29).

Comparison of Complications for Femoral Versus Subclavian or Internal Jugular (IJ) Central Venous Catheter (CVC) Placement
ComplicationFemoral (n = 36), n (%)Subclavian or IJ (n = 18), n (%)Difference (95% CI)
  • There were 4 episodes of arterial puncture, one of which resulted in a clinically apparent hematoma. There were no pneumothoraxes. For comparison of insertion sites, P = .29 using Fisher's exact test.

  • One patient who had a subclavian catheter returned to the emergency department with a swollen upper extremity after catheter removal; the patient refused diagnostic tests, and no therapy was initiated.

  • Infection occurred in a patient who had femoral and internal jugular CVCs. There was no clinical evidence of infection at the exit site of either catheter. We attributed one infection to each site.

Mechanical (arterial puncture, hematoma, or pneumothorax)a4 (11)011% (1%21%)
Venous thromboembolismb0 (0)0 (0)0%
Infection rate (per 1000 central‐line days)c4.37.02.7 (1913)

Survey Responses

Before the educational session, many residents did not recognize that femoral venous catheter insertions had a higher risk of arterial puncture or venous thrombosis (Table 4); by the final survey, residents were more likely to recognize the higher risk of these complications during femoral venous insertions. Most residents recognized the higher risk of infectious complications at the femoral site (Table 4).

Results of Surveys Administered to Resident Attendees of Central Venous Catheter (CVC) Educational Session before (Presession), Immediately after (Postsession), and at Study Conclusion (Follow‐up)
 Respondents in Agreement, n (%)
Presession n = 35Postsession n = 34Follow‐up n = 35
  • One participant did not respond to these questions.

  • Significant at P < .05.

  • Statistical test performed using the matched‐pair signed rank test. Responses to the presession survey were considered the referent. There were 17 matched pairs for the pre‐ and postsession surveys and 14 for the presession and follow‐up session surveys.

  • Significant at P < .01.

Knowledge   
Complications are most frequent at the femoral site27 (77%)30 (86%) 
Arterial puncture risk is lowest at the femoral sitea16 (46%)7 (21%)b 
Thrombosis risk is lowest at the femoral sitea11 (31%)6 (18%) 
Infection risk is lowest at the femoral site1/33 (3%)0 (0%) 
Attitudes   
I feel confident:c   
Inserting a femoral CVC5359b89d
Inserting an internal jugular CVC4171d40
Inserting a subclavian CVC2465d34d
Options to increase placement in jugular or subclavian veins   
Availability of ultrasound machine  31 (89)
Expert supervisor available to assist with placement  30 (86)
Insert CVC within 2 weeks of educational session  30 (86)
Rotation through a service that often places CVCsa  26 (76)
I do not plan to use this skill after my residency  4 (11)
Barriers to inserting a subclavian or internal jugular CVC   
Preexisting internal jugular or subclavian CVC  11 (31)
For temporary dialysis, desire to preserve site  26 (74)
Practices   
More likely to remove unnecessary catheter  29 (83)
Improved infection‐control practices  28 (80)
Increased motivation for internal jugular or subclavian venous insertion  27 (78)
Less likely to place a CVC  9 (26)
Internal jugular or subclavian CVC inserted for the first time after training  7/30 (23)

Residents overwhelmingly responded that the lecture was useful (95%), that mannequins provided a valuable skill‐building exercise (90%), and that the session should be incorporated into the training program (95%). Immediately after the session, residents had increased confidence about inserting a central venous catheter at any venous site, especially for internal jugular or subclavian insertions. By the final survey, the confidence of residents about inserting catheters in the internal jugular or subclavian veins had returned to baseline but had increased for femoral‐site insertions (Table 4).

Most residents in the intervention group agreed that the educational session motivated them to remove unnecessary catheters, improve insertion‐related infection‐control practices, and place the catheter in an internal jugular or subclavian vein; some agreed because of the educational session, they were less likely to place a central venous catheter. Some reported successfully inserting a central venous catheter in the subclavian or internal jugular vein for the first time (Table 4).

DISCUSSION

An educational session designed to teach residents appropriate central venous catheter insertion practices that included simulated hands‐on training increased knowledge about insertion‐related complications and improved certain infection‐control practices. Although residents' confidence in inserting subclavian or internal jugular catheters initially improved, our training session did not change the choice of venous insertion site from femoral to subclavian or internal jugular veins, possibly because there were few opportunities for residents to insert a catheter during the 4‐week general medical ward rotations. Thus, although an active educational intervention improved the knowledge and confidence of residents, it had a minimal effect on behavior (only improved certain infection‐control practices). Catheter‐associated complications were infrequent and similar in the intervention and control groups.

Central venous catheter insertion is a skill that many general internists do not perform10; however, until recently the American Board of Internal Medicine considered it a requisite skill for internal medicine residents, and most residents at our hospital reported a desire to learn this skill. Although in our study complications were infrequent, suggesting that a change in venous insertion site is unlikely to dramatically improve patient safety, we believe that residents should become skilled at inserting catheters in internal jugular or subclavian veins, the currently recommended optimal venous insertion.8

There is evidence that single educational interventions are unlikely to result in substantial, sustained behavioral change, especially passive educational programs.11 However, a previous study documented a change in provider behavior and possibly a reduction in bloodstream infections after a single hands‐on training session.12 Our hands‐on educational format was very popular and likely improved some infection‐control practices but did not change provider behavior about choice of venous insertion site. In other institutions, mentoring residents on appropriate catheter insertion technique has been accomplished by establishing a procedure service13 or by resident rotation in a high‐volume location (eg, cardiac catheterization laboratory).14 Another option to facilitate behavioral change would be to provide a portable ultrasound machine, as requested by our residents, which may reduce complication rates.15, 16 At our hospital, we decided to supplement hands‐on training with expert bedside supervision during catheter insertion; the expert is provided through a procedure service that is led by hospitalists. The procedure service has a dedicated portable ultrasound machine to assist with internal jugular vein cannulation.

By the end of our study period, residents' confidence in subclavian or internal jugular catheter insertions had returned to presession levels; however, they reported increased confidence in femoral venous catheter insertions. These findings suggest that the session increased residents' confidence with catheter insertions in general, but not specifically for venous sites for which they had no previous experience. For subclavian or internal jugular catheter insertions, their confidence decayed to the presession baseline, likely because of few opportunities to insert catheters in patients; on average, each resident inserts 1 central venous catheter on the general medicine wards approximately every 4 months.

Our survey found that our intervention changed residents' attitudes about infection‐control practices. In particular, intervention‐group residents reported that they were more likely to remove unnecessary catheters and that they had used a mask and large drape during catheter insertion. Use of full‐barrier precautions (ie, sterile gloves and gown, large sterile drape, cap, and mask) has been shown to reduce the risk of bloodstream infection2 and is included in national guidelines.17 Adherence to these guidelines has been included in successful quality improvement initiatives.4, 5, 18 Compared to internists' adherence to recommendations for infection control reported in another survey,10 residents who attended our educational session reported more use of large sterile drapes (94% vs. 35%) or masks (75% vs. 66%); however, they were less likely to use a sterile gown (50% vs. 72%). Use of a large sterile drape is common in our hospital, likely because the drape is included in the central venous catheter package. We suspect that at our hospital, poor adherence to certain recommendations (eg, using a sterile gown) was due in part to difficulty accessing supplies. Another possibility is that use of a cap, compared to use of large drapes, is perceived as not giving the patient much additional protection. In fact, there is no evidence that using a cap provides benefit beyond that of other, more intuitively beneficial recommended infection‐control practices, such as using sterile gloves and a large sterile drape. The procedure service has addressed the supply problem by stocking hard‐to‐find items on a procedure cart.

Only 2 clinically evident complications associated with catheter insertion occurred (one patient with clinical sepsis and one with a hematoma). Although it is possible that we missed minor complications, our rates were similar to those reported by other investigators: clinically diagnosed venous thromboembolism, 0%2.2%3, 19, 20; pneumothorax, 1.4%21; catheter‐associated primary bloodstream infection, 1‐6/1000 catheter‐days.22, 23 Comparing complication rates was hindered by variability in definitions, methods of ascertainment, and populations evaluated. For example, the rate of venous thromboembolism was dramatically higher when routine diagnostic imaging was used, and detection of catheter‐associated infections likely increased when catheter‐tip cultures were routinely performed. We required clinical evidence of complications, and our study differs from others in that we evaluated general medicine ward patients.

This study had several limitations. Placement of central venous catheters on general medicine wards was less frequent than we anticipated based on a brief period of pilot data collection; therefore, our study was not powered to detect relatively small changes in venous insertion sites or differences in complications. Also, because direct observation was not possible, we relied on self‐reported adherence to infection‐control practices. However, intervention residents' self‐reported poor adherence to gown, glove, and cap use suggests that their responses were unbiased.

An educational session focused on central venous catheter insertion practices was well received by residents, increased their knowledge about complications, and improved infection‐control practices, but had no effect on increasing use of subclavian or internal jugular veins for catheter insertion. Despite continued frequent use of femoral venous catheters, clinically apparent complications were infrequent. However, we believe it is important to teach residents optimal catheter insertion techniques, including preferential placement of catheters in subclavian or internal jugular veins. Therefore, the section of hospital medicine at our hospital initiated a procedure service that provides expert bedside supervision, including use of a portable ultrasound machine, for catheter insertions.

Acknowledgements

The authors acknowledge Kathleen Murray for data collection and form development; Donald Blom for assistance with determining bloodstream infection; Laura Sadowski for developing and leading the focus group session; Yannis Guerra for assistance with the educational sessions; Oksana Barilyak, Anand Despande, and Saurabh Sharma for assistance with data collection; and chief residents Rony Ghaoui, Sean Halleran, Priya Kansal, Parag Sampat, and Sunita Nathan for interviewing residents about catheter insertions.

References
  1. Sznajder JI,Zveibil FR,Bitterman H,Weiner P,Bursztein S.Central vein catheterization. Failure and complication rates by three percutaneous approaches.Arch Intern Med.1986;146:259261.
  2. Raad II,Hohn DC,Gilbreath BJ, et al.Prevention of central venous catheter‐related infections by using maximal sterile barrier precautions during insertion.Infect Control Hosp Epidemiol.1994;15:231238.
  3. Merrer J,De Jonghe B,Golliot F, et al.Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial.JAMA.2001;286:700707.
  4. Berenholtz SM,Pronovost PJ,Lipsett PA, et al.Eliminating catheter‐related bloodstream infections in the intensive care unit.Crit Care Med.2004;32:20142020.
  5. Warren DK,Zack JE,Mayfield JL, et al.The effect of an education program on the incidence of central venous catheter‐associated bloodstream infection in a medical ICU.Chest.2004;126:16121618.
  6. Climo M,Diekema D,Warren DK, et al.Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention.Infect Control Hosp Epidemiol.2003;24:942945.
  7. Trick WE,Vernon MO,Welbel SF,Wisniewski MF,Jernigan JA,Weinstein RA.Unnecessary use of central venous catheters: the need to look outside the intensive care unit.Infect Control Hosp Epidemiol.2004;25:266268.
  8. McGee DC,Gould MK.Preventing complications of central venous catheterization.N Engl J Med.2003;348:11231133.
  9. Garner JS,Jarvis WR,Emori TG,Horan TC,Hughes JM.CDC definitions for nosocomial infections, 1988.Am J Infect Control.1988;16:128140.
  10. Rubinson L,Wu AW,Haponik EE,Diette GB.Why is it that internists do not follow guidelines for preventing intravascular catheter infections?Infect Control Hosp Epidemiol.2005;26:525533.
  11. Grimshaw JM,Shirran L,Thomas R, et al.Changing provider behavior: an overview of systematic reviews of interventions.Med Care.2001;39:II2II45.
  12. Sherertz RJ,Ely EW,Westbrook DM, et al.Education of physicians‐in‐training can decrease the risk for vascular catheter infection.Ann Intern Med.2000;132:641648.
  13. Smith CC,Gordon CE,Feller‐Kopman D et al.Creation of an innovative inpatient medical procedure service and a method to evaluate house staff competency.J Gen Intern Med.2004;19:510513.
  14. Ramakrishna G,Higano ST,McDonald FS,Schultz HJ.A curricular initiative for internal medicine residents to enhance proficiency in internal jugular central venous line placement.Mayo Clin Proc.2005;80:212218.
  15. Slama M,Novara A,Safavian A,Ossart M,Safar M,Fagon JY.Improvement of internal jugular vein cannulation using an ultrasound‐guided technique.Intensive Care Med.1997;23:916919.
  16. Gilbert TB,Seneff MG,Becker RB.Facilitation of internal jugular venous cannulation using an audio‐guided Doppler ultrasound vascular access device: results from a prospective, dual‐center, randomized, crossover clinical study.Crit Care Med.1995;23:6065.
  17. O'Grady NP,Alexander M,Dellinger EP, et al.Guidelines for the prevention of intravascular catheter‐related infections.MMWR Morb Mortal Wkly Rep.2002;1(RR10):126.
  18. Coopersmith CM,Zack JE,Ward MR, et al.The impact of bedside behavior on catheter‐related bacteremia in the intensive care unit.Arch Surg.2004;139:131136.
  19. Durbec O,Viviand X,Potie F,Vialet R,Albanese J,Martin C.A prospective evaluation of the use of femoral venous catheters in critically ill adults.Crit Care Med.1997;25:19861989.
  20. Joynt GM,Kew J,Gomersall CD,Leung VY,Liu EK.Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients.Chest.2000;117:178183.
  21. Ruesch S,Walder B,Tramer MR.Complications of central venous catheters: internal jugular versus subclavian access—a systematic review.Crit Care Med.2002;30:454460.
  22. Tokars JI,Cookson ST,McArthur MA,Boyer CL,McGeer AJ,Jarvis WR.Prospective evaluation of risk factors for bloodstream infection in patients receiving home infusion therapy.Ann Intern Med.1999;131:340347.
  23. Richards MJ,Edwards JR,Culver DH,Gaynes RP.Nosocomial infections in combined medical‐surgical intensive care units in the United States.Infect Control Hosp Epidemiol.2000;21:510515.
Article PDF
Issue
Journal of Hospital Medicine - 2(3)
Publications
Page Number
135-142
Legacy Keywords
central venous catheterization, medical education, internship and residency, infection control, patient simulation
Sections
Article PDF
Article PDF

At times central venous catheters are essential to the delivery of appropriate medical care. Because catheter‐related complications are associated with limited operator experience,1 insertion technique,2 and venous site of insertion (eg, femoral, internal jugular, or subclavian vein),3 house staff training programs strive to provide their residents with appropriate training and oversight for this skill. Most quality improvement initiatives directed at reducing complications associated with central venous catheters have focused on patients in the intensive care unit (ICU).4, 5 However, in some hospitals more central venous catheters are inserted in patients not in the ICU,6 and practices that increase the risk of complications may be more common on wards.7

In our hospital, most catheters are placed in the femoral vein. Because femoral venous placement likely increases a patient's risk of thrombosis, hematoma, and bloodstream infection,8 we developed a program to change residents' choice of venous insertion site and improve their infection‐control practices during their general medicine ward rotation. The program provided simulated hands‐on experience in a simulation laboratory. We evaluated our intervention through a firm‐based clinical trial that compared the usual practice to our intervention. We compared infection‐control practices and resident choice of venous insertion site between the intervention and control groups; we also assessed residents' knowledge about catheter‐related complications, and we monitored patients for catheter‐related complications.

METHODS

Setting and Study Design

We conducted a prospective, firm‐based clinical trial approved by the institutional review board at Cook County Hospital, a 464‐bed public teaching hospital. We evaluated all central venous catheters inserted by residents on the general medicine service from November 15, 2004, to March 31, 2005. The internal medicine residency program assigns residents to 1 of 3 firms for their entire 3 years of training. We designated 1 firm as the intervention group; the other 2 firms constituted the control group.

Educational Intervention

At the beginning of each 4‐week general medicine ward rotation, intervention‐firm residents attended an educational and simulation laboratory session. Control‐firm residents received the usual ward orientation. We conducted 6 sessions, with total attendance of 40 intervention‐firm residents, or approximately 7 residents per session. A chief medical resident experienced in catheter placement and an attending internist led and supervised each 2‐hour training session. The sessions were conducted at the Simulation Laboratory of Rush University and included a presentation about indications for central venous catheter insertion, insertion techniques, common complications, and practice placing catheters in mannequins. During the hands‐on session, each participant observed the expert insert a triple‐lumen catheter in the mannequin's internal jugular and subclavian veins. Then, with supervision, each participant practiced catheter insertion using recommended infection‐control practices (eg, use of gloves, mask, and large drape, and chlorhexidine skin preparation).

Resident Survey

Before each session, we administered a survey that assessed residents' knowledge of insertion techniques and their confidence in placing catheters at each venous insertion site. To measure change in the confidence level of residents, we distributed an abbreviated survey 2 additional times, immediately after the session and at the end of the study period. We measured confidence with answers to survey questions, which were rated on a 5‐point Likert scale, from strongly disagree to strongly agree. In addition to measuring the change in residents' confidence, the final survey repeated knowledge assessment questions, evaluated residents' attitudes regarding venous insertion sites, and asked about potential strategies to improve insertion practices.

Central Venous Catheter Detection and Monitoring

At the end of each day, residents reported catheter insertions to chief residents during routine sign‐out rounds. If a catheter had been inserted, the chief resident interviewed the resident about type of catheter, venous insertion site, duration of attempt, patient location, immediate complications, number of inserters, inserter attendance at an educational session, inserter specialty, and professional designation (eg, resident, fellow, attending), indication for insertion, and adherence to infection‐control practices. For all insertion attempts, the research team reviewed the medical record and recorded patient characteristics that might influence venous insertion site (eg, thrombocytopenia, coagulopathy, and body mass index) and evaluated patients for insertion‐related complications.

We prospectively monitored patients for mechanical (ie, pneumothorax or hematoma), thromboembolic, or infectious complications. To evaluate for pneumothorax, postinsertion chest radiographs were reviewed by a physician‐investigator, and radiologists' interpretations and progress notes were reviewed. To evaluate for infectious or other mechanical complications, progress notes also were reviewed. We required radiographic confirmation of venous thromboembolism. To categorize potential bloodstream infections, we used Centers for Disease Control and Prevention definitions.9 All medical record and radiograph reviews were performed by investigators who were masked to patient firm assignment. We monitored patients until catheter removal or hospital discharge. After patient discharge, we reviewed the electronic record, including emergency room visits and repeat hospitalizations, for 30 days after the earlier of hospital discharge or catheter removal.

Statistics

Because we were aware that temporary dialysis catheters are sometimes placed in femoral veins to preserve the subclavian or internal jugular venous sites for more permanent tunneled intravascular catheters, our prespecified plans were to compare venous insertion sites between intervention and control groups after excluding temporary dialysis catheters. To more completely describe catheter use, we also collected data on temporary dialysis catheters, and we present the results both with and without inclusion of data on temporary dialysis catheters. If multiple residents attempted to insert a catheter, we would have used the group that the final inserter was in to determine intervention versus control group assignment; however, this never occurred.

To determine resident confidence in inserting catheters, we collapsed the responses of agree and strongly agree and of disagree and strongly disagree into single categories; thus, frequency of agreement was evaluated as a dichotomous outcome. To test whether residents' confidence changed between the 3 surveys, we analyzed responses using the matched‐pair signed rank test, with the initial survey used as the referent.

We dichotomized certain continuous variables using the following cut points: body mass index 30 kg/m2; coagulopathy, international normalized ratio (INR) > 1.5; thrombocytopenia, platelets < 100 109/L. Data were entered into a relational database (Microsoft Access, Microsoft Inc., Redmond, WA) and merged analyzed using Stata software, version 8.2 (Stata Corporation, College Station, TX).

RESULTS

Patient and Catheter Characteristics

Fifty‐four catheters were inserted in 48 patients during the study period, 16 (30%) in the intervention group and 38 (70%) in the control group. Mean number of catheters inserted per resident for each 4‐week rotation was 0.24; therefore, on average, a resident would insert 1 catheter every 4 general‐medicine rotations. Most catheters were inserted between 7:00 AM and 5:00 PM; the most common reason for insertion was to administer intravenous medications to a patient without intravenous access, followed by the need for a temporary dialysis catheter. Most catheters were inserted by the medicine team rather than radiology or a subspecialty service (Table 1). Most patient characteristics and reasons for insertion were similar between groups; however, more patients in the control group had thrombocytopenia (Table 1).

Comparison of Central Venous Catheter and Characteristics of Patients Treated by Residents in Educational Intervention Group Versus Those in Control Group
CharacteristicCentral venous catheters inserted
Intervention (n = 16), n (%)Control (n = 38), n (%)P
  • One intervention group catheter was inserted by the attending after an unsuccessful resident attempt; inserter unspecified for 1 catheter inserted by control group.

  • Reasons for placement were temporary dialysis (n = 16), plasmapheresis (n = 4), or leukapheresis (n = 1)

  • Placed for fluid resuscitation (n = 2) or exchange transfusion (n = 1).

Patient   
Body mass index 30 kg/m25 (31)11 (29)1.0
INR > 1.53 (19)3 (7.9)0.37
Platelet count < 100k0 (0)9 (24)0.05
Charlson index, mean (interquartile range)2 (24)2 (14)0.58
Physician inserting catheter   
Resident on general medicine servicea15 (100)34/37 (92)1.0
Subspecialty fellow0 (0)2/37 (5.3)1.0
Radiology fellow or attending0 (0)1/37 (2.6)1.0
Reason for insertion   
No intravenous access7 (44)19 (50)0.67
Temporary dialysis catheterb7 (44)14 (37)0.63
Total parenteral nutrition1 (6.2)3 (7.9)1.0
Otherc1 (6.2)2 (5.3)1.0
Time of day of insertion   
Between 7 AM and 5 PM12/14 (86)25/37 (68)0.30

Insertion Practices

Femoral venous insertion was the most common type of catheter insertion (67%), followed by internal jugular (26%) and subclavian (7%); there were no differences in insertion site between the intervention and control groups (Table 2). When we excluded temporary dialysis catheters, 39% of central venous catheters were inserted in the internal jugular vein. Although a smaller proportion of catheters inserted by the intervention group were placed in a femoral vein, the difference was not significant (Table 2).

Comparison of Central Venous Catheter (CVC) Insertion Practices of Residents in Control and Intervention Groups
 Intervention (n = 16), n (%)Control (n = 38), n (%)Risk ratio (95% CI)P
  • We compared venous insertions at the femoral site versus at the subclavian or internal jugular sites.

Self‐reported practices during CVC insertion
Mask worn12 (75)13 (34)2.2 (1.33.7)0.008
Large drape used15 (94)28 (74)1.3 (1.01.6)0.14
Cap worn3 (19)5 (13)1.4 (0.45.3)0.6
Gown worn8 (50)18 (47)1.1 (0.61.9)0.9
Sterile gloves worn15 (94)36 (95)1.0 (0.81.2)1.0
Venous insertion sitea  Difference (95% CI) 
Femoral10 (62)26 (68)6% (34%22%)0.67
Internal jugular5 (31)9 (24)  
Subclavian1 (6.2)3 (7.9)  
Excluding dialysis cathetersan = 9n = 24  
Femoral4 (44)14 (58)14% (52%24%)0.7
Internal jugular5 (56)8 (33)  
Subclavian0 (0)2 (8)  

For most insertions, residents reported using sterile gloves (94%) and a large drape (80%); however, most did not report use of a sterile gown (48%), mask (46%), or cap (15%). Residents in the intervention group were more likely to report use of a mask, and there was a trend toward increased use of large drapes (Table 2). No patient characteristics predicted femoral venous insertion (data not shown).

Complications

The most frequent complication was arterial puncture (n = 4); all four occurred during femoral venous insertion attempts. Compared to subclavian or internal jugular venous placement, there was a trend toward more mechanical complications among femoral catheters (Table 3). One episode of clinical sepsis occurred, in an intervention‐group patient who had femoral and internal jugular catheters, and no pneumothoraxes or episodes of venous thromboembolism occurred (Table 3). The overall incidence of bloodstream infection was 2.7 per 1000 central‐line days; there was no difference between the intervention and control groups (9.2 versus 0 per 1000 central‐line days; P = .29).

Comparison of Complications for Femoral Versus Subclavian or Internal Jugular (IJ) Central Venous Catheter (CVC) Placement
ComplicationFemoral (n = 36), n (%)Subclavian or IJ (n = 18), n (%)Difference (95% CI)
  • There were 4 episodes of arterial puncture, one of which resulted in a clinically apparent hematoma. There were no pneumothoraxes. For comparison of insertion sites, P = .29 using Fisher's exact test.

  • One patient who had a subclavian catheter returned to the emergency department with a swollen upper extremity after catheter removal; the patient refused diagnostic tests, and no therapy was initiated.

  • Infection occurred in a patient who had femoral and internal jugular CVCs. There was no clinical evidence of infection at the exit site of either catheter. We attributed one infection to each site.

Mechanical (arterial puncture, hematoma, or pneumothorax)a4 (11)011% (1%21%)
Venous thromboembolismb0 (0)0 (0)0%
Infection rate (per 1000 central‐line days)c4.37.02.7 (1913)

Survey Responses

Before the educational session, many residents did not recognize that femoral venous catheter insertions had a higher risk of arterial puncture or venous thrombosis (Table 4); by the final survey, residents were more likely to recognize the higher risk of these complications during femoral venous insertions. Most residents recognized the higher risk of infectious complications at the femoral site (Table 4).

Results of Surveys Administered to Resident Attendees of Central Venous Catheter (CVC) Educational Session before (Presession), Immediately after (Postsession), and at Study Conclusion (Follow‐up)
 Respondents in Agreement, n (%)
Presession n = 35Postsession n = 34Follow‐up n = 35
  • One participant did not respond to these questions.

  • Significant at P < .05.

  • Statistical test performed using the matched‐pair signed rank test. Responses to the presession survey were considered the referent. There were 17 matched pairs for the pre‐ and postsession surveys and 14 for the presession and follow‐up session surveys.

  • Significant at P < .01.

Knowledge   
Complications are most frequent at the femoral site27 (77%)30 (86%) 
Arterial puncture risk is lowest at the femoral sitea16 (46%)7 (21%)b 
Thrombosis risk is lowest at the femoral sitea11 (31%)6 (18%) 
Infection risk is lowest at the femoral site1/33 (3%)0 (0%) 
Attitudes   
I feel confident:c   
Inserting a femoral CVC5359b89d
Inserting an internal jugular CVC4171d40
Inserting a subclavian CVC2465d34d
Options to increase placement in jugular or subclavian veins   
Availability of ultrasound machine  31 (89)
Expert supervisor available to assist with placement  30 (86)
Insert CVC within 2 weeks of educational session  30 (86)
Rotation through a service that often places CVCsa  26 (76)
I do not plan to use this skill after my residency  4 (11)
Barriers to inserting a subclavian or internal jugular CVC   
Preexisting internal jugular or subclavian CVC  11 (31)
For temporary dialysis, desire to preserve site  26 (74)
Practices   
More likely to remove unnecessary catheter  29 (83)
Improved infection‐control practices  28 (80)
Increased motivation for internal jugular or subclavian venous insertion  27 (78)
Less likely to place a CVC  9 (26)
Internal jugular or subclavian CVC inserted for the first time after training  7/30 (23)

Residents overwhelmingly responded that the lecture was useful (95%), that mannequins provided a valuable skill‐building exercise (90%), and that the session should be incorporated into the training program (95%). Immediately after the session, residents had increased confidence about inserting a central venous catheter at any venous site, especially for internal jugular or subclavian insertions. By the final survey, the confidence of residents about inserting catheters in the internal jugular or subclavian veins had returned to baseline but had increased for femoral‐site insertions (Table 4).

Most residents in the intervention group agreed that the educational session motivated them to remove unnecessary catheters, improve insertion‐related infection‐control practices, and place the catheter in an internal jugular or subclavian vein; some agreed because of the educational session, they were less likely to place a central venous catheter. Some reported successfully inserting a central venous catheter in the subclavian or internal jugular vein for the first time (Table 4).

DISCUSSION

An educational session designed to teach residents appropriate central venous catheter insertion practices that included simulated hands‐on training increased knowledge about insertion‐related complications and improved certain infection‐control practices. Although residents' confidence in inserting subclavian or internal jugular catheters initially improved, our training session did not change the choice of venous insertion site from femoral to subclavian or internal jugular veins, possibly because there were few opportunities for residents to insert a catheter during the 4‐week general medical ward rotations. Thus, although an active educational intervention improved the knowledge and confidence of residents, it had a minimal effect on behavior (only improved certain infection‐control practices). Catheter‐associated complications were infrequent and similar in the intervention and control groups.

Central venous catheter insertion is a skill that many general internists do not perform10; however, until recently the American Board of Internal Medicine considered it a requisite skill for internal medicine residents, and most residents at our hospital reported a desire to learn this skill. Although in our study complications were infrequent, suggesting that a change in venous insertion site is unlikely to dramatically improve patient safety, we believe that residents should become skilled at inserting catheters in internal jugular or subclavian veins, the currently recommended optimal venous insertion.8

There is evidence that single educational interventions are unlikely to result in substantial, sustained behavioral change, especially passive educational programs.11 However, a previous study documented a change in provider behavior and possibly a reduction in bloodstream infections after a single hands‐on training session.12 Our hands‐on educational format was very popular and likely improved some infection‐control practices but did not change provider behavior about choice of venous insertion site. In other institutions, mentoring residents on appropriate catheter insertion technique has been accomplished by establishing a procedure service13 or by resident rotation in a high‐volume location (eg, cardiac catheterization laboratory).14 Another option to facilitate behavioral change would be to provide a portable ultrasound machine, as requested by our residents, which may reduce complication rates.15, 16 At our hospital, we decided to supplement hands‐on training with expert bedside supervision during catheter insertion; the expert is provided through a procedure service that is led by hospitalists. The procedure service has a dedicated portable ultrasound machine to assist with internal jugular vein cannulation.

By the end of our study period, residents' confidence in subclavian or internal jugular catheter insertions had returned to presession levels; however, they reported increased confidence in femoral venous catheter insertions. These findings suggest that the session increased residents' confidence with catheter insertions in general, but not specifically for venous sites for which they had no previous experience. For subclavian or internal jugular catheter insertions, their confidence decayed to the presession baseline, likely because of few opportunities to insert catheters in patients; on average, each resident inserts 1 central venous catheter on the general medicine wards approximately every 4 months.

Our survey found that our intervention changed residents' attitudes about infection‐control practices. In particular, intervention‐group residents reported that they were more likely to remove unnecessary catheters and that they had used a mask and large drape during catheter insertion. Use of full‐barrier precautions (ie, sterile gloves and gown, large sterile drape, cap, and mask) has been shown to reduce the risk of bloodstream infection2 and is included in national guidelines.17 Adherence to these guidelines has been included in successful quality improvement initiatives.4, 5, 18 Compared to internists' adherence to recommendations for infection control reported in another survey,10 residents who attended our educational session reported more use of large sterile drapes (94% vs. 35%) or masks (75% vs. 66%); however, they were less likely to use a sterile gown (50% vs. 72%). Use of a large sterile drape is common in our hospital, likely because the drape is included in the central venous catheter package. We suspect that at our hospital, poor adherence to certain recommendations (eg, using a sterile gown) was due in part to difficulty accessing supplies. Another possibility is that use of a cap, compared to use of large drapes, is perceived as not giving the patient much additional protection. In fact, there is no evidence that using a cap provides benefit beyond that of other, more intuitively beneficial recommended infection‐control practices, such as using sterile gloves and a large sterile drape. The procedure service has addressed the supply problem by stocking hard‐to‐find items on a procedure cart.

Only 2 clinically evident complications associated with catheter insertion occurred (one patient with clinical sepsis and one with a hematoma). Although it is possible that we missed minor complications, our rates were similar to those reported by other investigators: clinically diagnosed venous thromboembolism, 0%2.2%3, 19, 20; pneumothorax, 1.4%21; catheter‐associated primary bloodstream infection, 1‐6/1000 catheter‐days.22, 23 Comparing complication rates was hindered by variability in definitions, methods of ascertainment, and populations evaluated. For example, the rate of venous thromboembolism was dramatically higher when routine diagnostic imaging was used, and detection of catheter‐associated infections likely increased when catheter‐tip cultures were routinely performed. We required clinical evidence of complications, and our study differs from others in that we evaluated general medicine ward patients.

This study had several limitations. Placement of central venous catheters on general medicine wards was less frequent than we anticipated based on a brief period of pilot data collection; therefore, our study was not powered to detect relatively small changes in venous insertion sites or differences in complications. Also, because direct observation was not possible, we relied on self‐reported adherence to infection‐control practices. However, intervention residents' self‐reported poor adherence to gown, glove, and cap use suggests that their responses were unbiased.

An educational session focused on central venous catheter insertion practices was well received by residents, increased their knowledge about complications, and improved infection‐control practices, but had no effect on increasing use of subclavian or internal jugular veins for catheter insertion. Despite continued frequent use of femoral venous catheters, clinically apparent complications were infrequent. However, we believe it is important to teach residents optimal catheter insertion techniques, including preferential placement of catheters in subclavian or internal jugular veins. Therefore, the section of hospital medicine at our hospital initiated a procedure service that provides expert bedside supervision, including use of a portable ultrasound machine, for catheter insertions.

Acknowledgements

The authors acknowledge Kathleen Murray for data collection and form development; Donald Blom for assistance with determining bloodstream infection; Laura Sadowski for developing and leading the focus group session; Yannis Guerra for assistance with the educational sessions; Oksana Barilyak, Anand Despande, and Saurabh Sharma for assistance with data collection; and chief residents Rony Ghaoui, Sean Halleran, Priya Kansal, Parag Sampat, and Sunita Nathan for interviewing residents about catheter insertions.

At times central venous catheters are essential to the delivery of appropriate medical care. Because catheter‐related complications are associated with limited operator experience,1 insertion technique,2 and venous site of insertion (eg, femoral, internal jugular, or subclavian vein),3 house staff training programs strive to provide their residents with appropriate training and oversight for this skill. Most quality improvement initiatives directed at reducing complications associated with central venous catheters have focused on patients in the intensive care unit (ICU).4, 5 However, in some hospitals more central venous catheters are inserted in patients not in the ICU,6 and practices that increase the risk of complications may be more common on wards.7

In our hospital, most catheters are placed in the femoral vein. Because femoral venous placement likely increases a patient's risk of thrombosis, hematoma, and bloodstream infection,8 we developed a program to change residents' choice of venous insertion site and improve their infection‐control practices during their general medicine ward rotation. The program provided simulated hands‐on experience in a simulation laboratory. We evaluated our intervention through a firm‐based clinical trial that compared the usual practice to our intervention. We compared infection‐control practices and resident choice of venous insertion site between the intervention and control groups; we also assessed residents' knowledge about catheter‐related complications, and we monitored patients for catheter‐related complications.

METHODS

Setting and Study Design

We conducted a prospective, firm‐based clinical trial approved by the institutional review board at Cook County Hospital, a 464‐bed public teaching hospital. We evaluated all central venous catheters inserted by residents on the general medicine service from November 15, 2004, to March 31, 2005. The internal medicine residency program assigns residents to 1 of 3 firms for their entire 3 years of training. We designated 1 firm as the intervention group; the other 2 firms constituted the control group.

Educational Intervention

At the beginning of each 4‐week general medicine ward rotation, intervention‐firm residents attended an educational and simulation laboratory session. Control‐firm residents received the usual ward orientation. We conducted 6 sessions, with total attendance of 40 intervention‐firm residents, or approximately 7 residents per session. A chief medical resident experienced in catheter placement and an attending internist led and supervised each 2‐hour training session. The sessions were conducted at the Simulation Laboratory of Rush University and included a presentation about indications for central venous catheter insertion, insertion techniques, common complications, and practice placing catheters in mannequins. During the hands‐on session, each participant observed the expert insert a triple‐lumen catheter in the mannequin's internal jugular and subclavian veins. Then, with supervision, each participant practiced catheter insertion using recommended infection‐control practices (eg, use of gloves, mask, and large drape, and chlorhexidine skin preparation).

Resident Survey

Before each session, we administered a survey that assessed residents' knowledge of insertion techniques and their confidence in placing catheters at each venous insertion site. To measure change in the confidence level of residents, we distributed an abbreviated survey 2 additional times, immediately after the session and at the end of the study period. We measured confidence with answers to survey questions, which were rated on a 5‐point Likert scale, from strongly disagree to strongly agree. In addition to measuring the change in residents' confidence, the final survey repeated knowledge assessment questions, evaluated residents' attitudes regarding venous insertion sites, and asked about potential strategies to improve insertion practices.

Central Venous Catheter Detection and Monitoring

At the end of each day, residents reported catheter insertions to chief residents during routine sign‐out rounds. If a catheter had been inserted, the chief resident interviewed the resident about type of catheter, venous insertion site, duration of attempt, patient location, immediate complications, number of inserters, inserter attendance at an educational session, inserter specialty, and professional designation (eg, resident, fellow, attending), indication for insertion, and adherence to infection‐control practices. For all insertion attempts, the research team reviewed the medical record and recorded patient characteristics that might influence venous insertion site (eg, thrombocytopenia, coagulopathy, and body mass index) and evaluated patients for insertion‐related complications.

We prospectively monitored patients for mechanical (ie, pneumothorax or hematoma), thromboembolic, or infectious complications. To evaluate for pneumothorax, postinsertion chest radiographs were reviewed by a physician‐investigator, and radiologists' interpretations and progress notes were reviewed. To evaluate for infectious or other mechanical complications, progress notes also were reviewed. We required radiographic confirmation of venous thromboembolism. To categorize potential bloodstream infections, we used Centers for Disease Control and Prevention definitions.9 All medical record and radiograph reviews were performed by investigators who were masked to patient firm assignment. We monitored patients until catheter removal or hospital discharge. After patient discharge, we reviewed the electronic record, including emergency room visits and repeat hospitalizations, for 30 days after the earlier of hospital discharge or catheter removal.

Statistics

Because we were aware that temporary dialysis catheters are sometimes placed in femoral veins to preserve the subclavian or internal jugular venous sites for more permanent tunneled intravascular catheters, our prespecified plans were to compare venous insertion sites between intervention and control groups after excluding temporary dialysis catheters. To more completely describe catheter use, we also collected data on temporary dialysis catheters, and we present the results both with and without inclusion of data on temporary dialysis catheters. If multiple residents attempted to insert a catheter, we would have used the group that the final inserter was in to determine intervention versus control group assignment; however, this never occurred.

To determine resident confidence in inserting catheters, we collapsed the responses of agree and strongly agree and of disagree and strongly disagree into single categories; thus, frequency of agreement was evaluated as a dichotomous outcome. To test whether residents' confidence changed between the 3 surveys, we analyzed responses using the matched‐pair signed rank test, with the initial survey used as the referent.

We dichotomized certain continuous variables using the following cut points: body mass index 30 kg/m2; coagulopathy, international normalized ratio (INR) > 1.5; thrombocytopenia, platelets < 100 109/L. Data were entered into a relational database (Microsoft Access, Microsoft Inc., Redmond, WA) and merged analyzed using Stata software, version 8.2 (Stata Corporation, College Station, TX).

RESULTS

Patient and Catheter Characteristics

Fifty‐four catheters were inserted in 48 patients during the study period, 16 (30%) in the intervention group and 38 (70%) in the control group. Mean number of catheters inserted per resident for each 4‐week rotation was 0.24; therefore, on average, a resident would insert 1 catheter every 4 general‐medicine rotations. Most catheters were inserted between 7:00 AM and 5:00 PM; the most common reason for insertion was to administer intravenous medications to a patient without intravenous access, followed by the need for a temporary dialysis catheter. Most catheters were inserted by the medicine team rather than radiology or a subspecialty service (Table 1). Most patient characteristics and reasons for insertion were similar between groups; however, more patients in the control group had thrombocytopenia (Table 1).

Comparison of Central Venous Catheter and Characteristics of Patients Treated by Residents in Educational Intervention Group Versus Those in Control Group
CharacteristicCentral venous catheters inserted
Intervention (n = 16), n (%)Control (n = 38), n (%)P
  • One intervention group catheter was inserted by the attending after an unsuccessful resident attempt; inserter unspecified for 1 catheter inserted by control group.

  • Reasons for placement were temporary dialysis (n = 16), plasmapheresis (n = 4), or leukapheresis (n = 1)

  • Placed for fluid resuscitation (n = 2) or exchange transfusion (n = 1).

Patient   
Body mass index 30 kg/m25 (31)11 (29)1.0
INR > 1.53 (19)3 (7.9)0.37
Platelet count < 100k0 (0)9 (24)0.05
Charlson index, mean (interquartile range)2 (24)2 (14)0.58
Physician inserting catheter   
Resident on general medicine servicea15 (100)34/37 (92)1.0
Subspecialty fellow0 (0)2/37 (5.3)1.0
Radiology fellow or attending0 (0)1/37 (2.6)1.0
Reason for insertion   
No intravenous access7 (44)19 (50)0.67
Temporary dialysis catheterb7 (44)14 (37)0.63
Total parenteral nutrition1 (6.2)3 (7.9)1.0
Otherc1 (6.2)2 (5.3)1.0
Time of day of insertion   
Between 7 AM and 5 PM12/14 (86)25/37 (68)0.30

Insertion Practices

Femoral venous insertion was the most common type of catheter insertion (67%), followed by internal jugular (26%) and subclavian (7%); there were no differences in insertion site between the intervention and control groups (Table 2). When we excluded temporary dialysis catheters, 39% of central venous catheters were inserted in the internal jugular vein. Although a smaller proportion of catheters inserted by the intervention group were placed in a femoral vein, the difference was not significant (Table 2).

Comparison of Central Venous Catheter (CVC) Insertion Practices of Residents in Control and Intervention Groups
 Intervention (n = 16), n (%)Control (n = 38), n (%)Risk ratio (95% CI)P
  • We compared venous insertions at the femoral site versus at the subclavian or internal jugular sites.

Self‐reported practices during CVC insertion
Mask worn12 (75)13 (34)2.2 (1.33.7)0.008
Large drape used15 (94)28 (74)1.3 (1.01.6)0.14
Cap worn3 (19)5 (13)1.4 (0.45.3)0.6
Gown worn8 (50)18 (47)1.1 (0.61.9)0.9
Sterile gloves worn15 (94)36 (95)1.0 (0.81.2)1.0
Venous insertion sitea  Difference (95% CI) 
Femoral10 (62)26 (68)6% (34%22%)0.67
Internal jugular5 (31)9 (24)  
Subclavian1 (6.2)3 (7.9)  
Excluding dialysis cathetersan = 9n = 24  
Femoral4 (44)14 (58)14% (52%24%)0.7
Internal jugular5 (56)8 (33)  
Subclavian0 (0)2 (8)  

For most insertions, residents reported using sterile gloves (94%) and a large drape (80%); however, most did not report use of a sterile gown (48%), mask (46%), or cap (15%). Residents in the intervention group were more likely to report use of a mask, and there was a trend toward increased use of large drapes (Table 2). No patient characteristics predicted femoral venous insertion (data not shown).

Complications

The most frequent complication was arterial puncture (n = 4); all four occurred during femoral venous insertion attempts. Compared to subclavian or internal jugular venous placement, there was a trend toward more mechanical complications among femoral catheters (Table 3). One episode of clinical sepsis occurred, in an intervention‐group patient who had femoral and internal jugular catheters, and no pneumothoraxes or episodes of venous thromboembolism occurred (Table 3). The overall incidence of bloodstream infection was 2.7 per 1000 central‐line days; there was no difference between the intervention and control groups (9.2 versus 0 per 1000 central‐line days; P = .29).

Comparison of Complications for Femoral Versus Subclavian or Internal Jugular (IJ) Central Venous Catheter (CVC) Placement
ComplicationFemoral (n = 36), n (%)Subclavian or IJ (n = 18), n (%)Difference (95% CI)
  • There were 4 episodes of arterial puncture, one of which resulted in a clinically apparent hematoma. There were no pneumothoraxes. For comparison of insertion sites, P = .29 using Fisher's exact test.

  • One patient who had a subclavian catheter returned to the emergency department with a swollen upper extremity after catheter removal; the patient refused diagnostic tests, and no therapy was initiated.

  • Infection occurred in a patient who had femoral and internal jugular CVCs. There was no clinical evidence of infection at the exit site of either catheter. We attributed one infection to each site.

Mechanical (arterial puncture, hematoma, or pneumothorax)a4 (11)011% (1%21%)
Venous thromboembolismb0 (0)0 (0)0%
Infection rate (per 1000 central‐line days)c4.37.02.7 (1913)

Survey Responses

Before the educational session, many residents did not recognize that femoral venous catheter insertions had a higher risk of arterial puncture or venous thrombosis (Table 4); by the final survey, residents were more likely to recognize the higher risk of these complications during femoral venous insertions. Most residents recognized the higher risk of infectious complications at the femoral site (Table 4).

Results of Surveys Administered to Resident Attendees of Central Venous Catheter (CVC) Educational Session before (Presession), Immediately after (Postsession), and at Study Conclusion (Follow‐up)
 Respondents in Agreement, n (%)
Presession n = 35Postsession n = 34Follow‐up n = 35
  • One participant did not respond to these questions.

  • Significant at P < .05.

  • Statistical test performed using the matched‐pair signed rank test. Responses to the presession survey were considered the referent. There were 17 matched pairs for the pre‐ and postsession surveys and 14 for the presession and follow‐up session surveys.

  • Significant at P < .01.

Knowledge   
Complications are most frequent at the femoral site27 (77%)30 (86%) 
Arterial puncture risk is lowest at the femoral sitea16 (46%)7 (21%)b 
Thrombosis risk is lowest at the femoral sitea11 (31%)6 (18%) 
Infection risk is lowest at the femoral site1/33 (3%)0 (0%) 
Attitudes   
I feel confident:c   
Inserting a femoral CVC5359b89d
Inserting an internal jugular CVC4171d40
Inserting a subclavian CVC2465d34d
Options to increase placement in jugular or subclavian veins   
Availability of ultrasound machine  31 (89)
Expert supervisor available to assist with placement  30 (86)
Insert CVC within 2 weeks of educational session  30 (86)
Rotation through a service that often places CVCsa  26 (76)
I do not plan to use this skill after my residency  4 (11)
Barriers to inserting a subclavian or internal jugular CVC   
Preexisting internal jugular or subclavian CVC  11 (31)
For temporary dialysis, desire to preserve site  26 (74)
Practices   
More likely to remove unnecessary catheter  29 (83)
Improved infection‐control practices  28 (80)
Increased motivation for internal jugular or subclavian venous insertion  27 (78)
Less likely to place a CVC  9 (26)
Internal jugular or subclavian CVC inserted for the first time after training  7/30 (23)

Residents overwhelmingly responded that the lecture was useful (95%), that mannequins provided a valuable skill‐building exercise (90%), and that the session should be incorporated into the training program (95%). Immediately after the session, residents had increased confidence about inserting a central venous catheter at any venous site, especially for internal jugular or subclavian insertions. By the final survey, the confidence of residents about inserting catheters in the internal jugular or subclavian veins had returned to baseline but had increased for femoral‐site insertions (Table 4).

Most residents in the intervention group agreed that the educational session motivated them to remove unnecessary catheters, improve insertion‐related infection‐control practices, and place the catheter in an internal jugular or subclavian vein; some agreed because of the educational session, they were less likely to place a central venous catheter. Some reported successfully inserting a central venous catheter in the subclavian or internal jugular vein for the first time (Table 4).

DISCUSSION

An educational session designed to teach residents appropriate central venous catheter insertion practices that included simulated hands‐on training increased knowledge about insertion‐related complications and improved certain infection‐control practices. Although residents' confidence in inserting subclavian or internal jugular catheters initially improved, our training session did not change the choice of venous insertion site from femoral to subclavian or internal jugular veins, possibly because there were few opportunities for residents to insert a catheter during the 4‐week general medical ward rotations. Thus, although an active educational intervention improved the knowledge and confidence of residents, it had a minimal effect on behavior (only improved certain infection‐control practices). Catheter‐associated complications were infrequent and similar in the intervention and control groups.

Central venous catheter insertion is a skill that many general internists do not perform10; however, until recently the American Board of Internal Medicine considered it a requisite skill for internal medicine residents, and most residents at our hospital reported a desire to learn this skill. Although in our study complications were infrequent, suggesting that a change in venous insertion site is unlikely to dramatically improve patient safety, we believe that residents should become skilled at inserting catheters in internal jugular or subclavian veins, the currently recommended optimal venous insertion.8

There is evidence that single educational interventions are unlikely to result in substantial, sustained behavioral change, especially passive educational programs.11 However, a previous study documented a change in provider behavior and possibly a reduction in bloodstream infections after a single hands‐on training session.12 Our hands‐on educational format was very popular and likely improved some infection‐control practices but did not change provider behavior about choice of venous insertion site. In other institutions, mentoring residents on appropriate catheter insertion technique has been accomplished by establishing a procedure service13 or by resident rotation in a high‐volume location (eg, cardiac catheterization laboratory).14 Another option to facilitate behavioral change would be to provide a portable ultrasound machine, as requested by our residents, which may reduce complication rates.15, 16 At our hospital, we decided to supplement hands‐on training with expert bedside supervision during catheter insertion; the expert is provided through a procedure service that is led by hospitalists. The procedure service has a dedicated portable ultrasound machine to assist with internal jugular vein cannulation.

By the end of our study period, residents' confidence in subclavian or internal jugular catheter insertions had returned to presession levels; however, they reported increased confidence in femoral venous catheter insertions. These findings suggest that the session increased residents' confidence with catheter insertions in general, but not specifically for venous sites for which they had no previous experience. For subclavian or internal jugular catheter insertions, their confidence decayed to the presession baseline, likely because of few opportunities to insert catheters in patients; on average, each resident inserts 1 central venous catheter on the general medicine wards approximately every 4 months.

Our survey found that our intervention changed residents' attitudes about infection‐control practices. In particular, intervention‐group residents reported that they were more likely to remove unnecessary catheters and that they had used a mask and large drape during catheter insertion. Use of full‐barrier precautions (ie, sterile gloves and gown, large sterile drape, cap, and mask) has been shown to reduce the risk of bloodstream infection2 and is included in national guidelines.17 Adherence to these guidelines has been included in successful quality improvement initiatives.4, 5, 18 Compared to internists' adherence to recommendations for infection control reported in another survey,10 residents who attended our educational session reported more use of large sterile drapes (94% vs. 35%) or masks (75% vs. 66%); however, they were less likely to use a sterile gown (50% vs. 72%). Use of a large sterile drape is common in our hospital, likely because the drape is included in the central venous catheter package. We suspect that at our hospital, poor adherence to certain recommendations (eg, using a sterile gown) was due in part to difficulty accessing supplies. Another possibility is that use of a cap, compared to use of large drapes, is perceived as not giving the patient much additional protection. In fact, there is no evidence that using a cap provides benefit beyond that of other, more intuitively beneficial recommended infection‐control practices, such as using sterile gloves and a large sterile drape. The procedure service has addressed the supply problem by stocking hard‐to‐find items on a procedure cart.

Only 2 clinically evident complications associated with catheter insertion occurred (one patient with clinical sepsis and one with a hematoma). Although it is possible that we missed minor complications, our rates were similar to those reported by other investigators: clinically diagnosed venous thromboembolism, 0%2.2%3, 19, 20; pneumothorax, 1.4%21; catheter‐associated primary bloodstream infection, 1‐6/1000 catheter‐days.22, 23 Comparing complication rates was hindered by variability in definitions, methods of ascertainment, and populations evaluated. For example, the rate of venous thromboembolism was dramatically higher when routine diagnostic imaging was used, and detection of catheter‐associated infections likely increased when catheter‐tip cultures were routinely performed. We required clinical evidence of complications, and our study differs from others in that we evaluated general medicine ward patients.

This study had several limitations. Placement of central venous catheters on general medicine wards was less frequent than we anticipated based on a brief period of pilot data collection; therefore, our study was not powered to detect relatively small changes in venous insertion sites or differences in complications. Also, because direct observation was not possible, we relied on self‐reported adherence to infection‐control practices. However, intervention residents' self‐reported poor adherence to gown, glove, and cap use suggests that their responses were unbiased.

An educational session focused on central venous catheter insertion practices was well received by residents, increased their knowledge about complications, and improved infection‐control practices, but had no effect on increasing use of subclavian or internal jugular veins for catheter insertion. Despite continued frequent use of femoral venous catheters, clinically apparent complications were infrequent. However, we believe it is important to teach residents optimal catheter insertion techniques, including preferential placement of catheters in subclavian or internal jugular veins. Therefore, the section of hospital medicine at our hospital initiated a procedure service that provides expert bedside supervision, including use of a portable ultrasound machine, for catheter insertions.

Acknowledgements

The authors acknowledge Kathleen Murray for data collection and form development; Donald Blom for assistance with determining bloodstream infection; Laura Sadowski for developing and leading the focus group session; Yannis Guerra for assistance with the educational sessions; Oksana Barilyak, Anand Despande, and Saurabh Sharma for assistance with data collection; and chief residents Rony Ghaoui, Sean Halleran, Priya Kansal, Parag Sampat, and Sunita Nathan for interviewing residents about catheter insertions.

References
  1. Sznajder JI,Zveibil FR,Bitterman H,Weiner P,Bursztein S.Central vein catheterization. Failure and complication rates by three percutaneous approaches.Arch Intern Med.1986;146:259261.
  2. Raad II,Hohn DC,Gilbreath BJ, et al.Prevention of central venous catheter‐related infections by using maximal sterile barrier precautions during insertion.Infect Control Hosp Epidemiol.1994;15:231238.
  3. Merrer J,De Jonghe B,Golliot F, et al.Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial.JAMA.2001;286:700707.
  4. Berenholtz SM,Pronovost PJ,Lipsett PA, et al.Eliminating catheter‐related bloodstream infections in the intensive care unit.Crit Care Med.2004;32:20142020.
  5. Warren DK,Zack JE,Mayfield JL, et al.The effect of an education program on the incidence of central venous catheter‐associated bloodstream infection in a medical ICU.Chest.2004;126:16121618.
  6. Climo M,Diekema D,Warren DK, et al.Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention.Infect Control Hosp Epidemiol.2003;24:942945.
  7. Trick WE,Vernon MO,Welbel SF,Wisniewski MF,Jernigan JA,Weinstein RA.Unnecessary use of central venous catheters: the need to look outside the intensive care unit.Infect Control Hosp Epidemiol.2004;25:266268.
  8. McGee DC,Gould MK.Preventing complications of central venous catheterization.N Engl J Med.2003;348:11231133.
  9. Garner JS,Jarvis WR,Emori TG,Horan TC,Hughes JM.CDC definitions for nosocomial infections, 1988.Am J Infect Control.1988;16:128140.
  10. Rubinson L,Wu AW,Haponik EE,Diette GB.Why is it that internists do not follow guidelines for preventing intravascular catheter infections?Infect Control Hosp Epidemiol.2005;26:525533.
  11. Grimshaw JM,Shirran L,Thomas R, et al.Changing provider behavior: an overview of systematic reviews of interventions.Med Care.2001;39:II2II45.
  12. Sherertz RJ,Ely EW,Westbrook DM, et al.Education of physicians‐in‐training can decrease the risk for vascular catheter infection.Ann Intern Med.2000;132:641648.
  13. Smith CC,Gordon CE,Feller‐Kopman D et al.Creation of an innovative inpatient medical procedure service and a method to evaluate house staff competency.J Gen Intern Med.2004;19:510513.
  14. Ramakrishna G,Higano ST,McDonald FS,Schultz HJ.A curricular initiative for internal medicine residents to enhance proficiency in internal jugular central venous line placement.Mayo Clin Proc.2005;80:212218.
  15. Slama M,Novara A,Safavian A,Ossart M,Safar M,Fagon JY.Improvement of internal jugular vein cannulation using an ultrasound‐guided technique.Intensive Care Med.1997;23:916919.
  16. Gilbert TB,Seneff MG,Becker RB.Facilitation of internal jugular venous cannulation using an audio‐guided Doppler ultrasound vascular access device: results from a prospective, dual‐center, randomized, crossover clinical study.Crit Care Med.1995;23:6065.
  17. O'Grady NP,Alexander M,Dellinger EP, et al.Guidelines for the prevention of intravascular catheter‐related infections.MMWR Morb Mortal Wkly Rep.2002;1(RR10):126.
  18. Coopersmith CM,Zack JE,Ward MR, et al.The impact of bedside behavior on catheter‐related bacteremia in the intensive care unit.Arch Surg.2004;139:131136.
  19. Durbec O,Viviand X,Potie F,Vialet R,Albanese J,Martin C.A prospective evaluation of the use of femoral venous catheters in critically ill adults.Crit Care Med.1997;25:19861989.
  20. Joynt GM,Kew J,Gomersall CD,Leung VY,Liu EK.Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients.Chest.2000;117:178183.
  21. Ruesch S,Walder B,Tramer MR.Complications of central venous catheters: internal jugular versus subclavian access—a systematic review.Crit Care Med.2002;30:454460.
  22. Tokars JI,Cookson ST,McArthur MA,Boyer CL,McGeer AJ,Jarvis WR.Prospective evaluation of risk factors for bloodstream infection in patients receiving home infusion therapy.Ann Intern Med.1999;131:340347.
  23. Richards MJ,Edwards JR,Culver DH,Gaynes RP.Nosocomial infections in combined medical‐surgical intensive care units in the United States.Infect Control Hosp Epidemiol.2000;21:510515.
References
  1. Sznajder JI,Zveibil FR,Bitterman H,Weiner P,Bursztein S.Central vein catheterization. Failure and complication rates by three percutaneous approaches.Arch Intern Med.1986;146:259261.
  2. Raad II,Hohn DC,Gilbreath BJ, et al.Prevention of central venous catheter‐related infections by using maximal sterile barrier precautions during insertion.Infect Control Hosp Epidemiol.1994;15:231238.
  3. Merrer J,De Jonghe B,Golliot F, et al.Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial.JAMA.2001;286:700707.
  4. Berenholtz SM,Pronovost PJ,Lipsett PA, et al.Eliminating catheter‐related bloodstream infections in the intensive care unit.Crit Care Med.2004;32:20142020.
  5. Warren DK,Zack JE,Mayfield JL, et al.The effect of an education program on the incidence of central venous catheter‐associated bloodstream infection in a medical ICU.Chest.2004;126:16121618.
  6. Climo M,Diekema D,Warren DK, et al.Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention.Infect Control Hosp Epidemiol.2003;24:942945.
  7. Trick WE,Vernon MO,Welbel SF,Wisniewski MF,Jernigan JA,Weinstein RA.Unnecessary use of central venous catheters: the need to look outside the intensive care unit.Infect Control Hosp Epidemiol.2004;25:266268.
  8. McGee DC,Gould MK.Preventing complications of central venous catheterization.N Engl J Med.2003;348:11231133.
  9. Garner JS,Jarvis WR,Emori TG,Horan TC,Hughes JM.CDC definitions for nosocomial infections, 1988.Am J Infect Control.1988;16:128140.
  10. Rubinson L,Wu AW,Haponik EE,Diette GB.Why is it that internists do not follow guidelines for preventing intravascular catheter infections?Infect Control Hosp Epidemiol.2005;26:525533.
  11. Grimshaw JM,Shirran L,Thomas R, et al.Changing provider behavior: an overview of systematic reviews of interventions.Med Care.2001;39:II2II45.
  12. Sherertz RJ,Ely EW,Westbrook DM, et al.Education of physicians‐in‐training can decrease the risk for vascular catheter infection.Ann Intern Med.2000;132:641648.
  13. Smith CC,Gordon CE,Feller‐Kopman D et al.Creation of an innovative inpatient medical procedure service and a method to evaluate house staff competency.J Gen Intern Med.2004;19:510513.
  14. Ramakrishna G,Higano ST,McDonald FS,Schultz HJ.A curricular initiative for internal medicine residents to enhance proficiency in internal jugular central venous line placement.Mayo Clin Proc.2005;80:212218.
  15. Slama M,Novara A,Safavian A,Ossart M,Safar M,Fagon JY.Improvement of internal jugular vein cannulation using an ultrasound‐guided technique.Intensive Care Med.1997;23:916919.
  16. Gilbert TB,Seneff MG,Becker RB.Facilitation of internal jugular venous cannulation using an audio‐guided Doppler ultrasound vascular access device: results from a prospective, dual‐center, randomized, crossover clinical study.Crit Care Med.1995;23:6065.
  17. O'Grady NP,Alexander M,Dellinger EP, et al.Guidelines for the prevention of intravascular catheter‐related infections.MMWR Morb Mortal Wkly Rep.2002;1(RR10):126.
  18. Coopersmith CM,Zack JE,Ward MR, et al.The impact of bedside behavior on catheter‐related bacteremia in the intensive care unit.Arch Surg.2004;139:131136.
  19. Durbec O,Viviand X,Potie F,Vialet R,Albanese J,Martin C.A prospective evaluation of the use of femoral venous catheters in critically ill adults.Crit Care Med.1997;25:19861989.
  20. Joynt GM,Kew J,Gomersall CD,Leung VY,Liu EK.Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients.Chest.2000;117:178183.
  21. Ruesch S,Walder B,Tramer MR.Complications of central venous catheters: internal jugular versus subclavian access—a systematic review.Crit Care Med.2002;30:454460.
  22. Tokars JI,Cookson ST,McArthur MA,Boyer CL,McGeer AJ,Jarvis WR.Prospective evaluation of risk factors for bloodstream infection in patients receiving home infusion therapy.Ann Intern Med.1999;131:340347.
  23. Richards MJ,Edwards JR,Culver DH,Gaynes RP.Nosocomial infections in combined medical‐surgical intensive care units in the United States.Infect Control Hosp Epidemiol.2000;21:510515.
Issue
Journal of Hospital Medicine - 2(3)
Issue
Journal of Hospital Medicine - 2(3)
Page Number
135-142
Page Number
135-142
Publications
Publications
Article Type
Display Headline
Firm‐based trial to improve central venous catheter insertion practices
Display Headline
Firm‐based trial to improve central venous catheter insertion practices
Legacy Keywords
central venous catheterization, medical education, internship and residency, infection control, patient simulation
Legacy Keywords
central venous catheterization, medical education, internship and residency, infection control, patient simulation
Sections
Article Source

Copyright © 2007 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Dartmouth‐Hitchcock Medical Center, Pulmonary and Critical Care Medicine, Suite 5C, One Medical Center Drive, Lebanon, NH 03756‐0001; Fax: (603) 650‐0580
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media