What is the best approach to a high systolic pulmonary artery pressure on echocardiography?

Article Type
Changed
Wed, 08/16/2017 - 11:33
Display Headline
What is the best approach to a high systolic pulmonary artery pressure on echocardiography?

The incidental finding of high systolic pulmonary artery pressure on echocardiography is common. What we should do about it varies according to clinical presentation, comorbidities, and results of other tests, including assessment of the right ventricle. Thus, the optimal approach ranges from no further investigation to right heart catheterization and, in some cases, referral to a pulmonary hypertension center.

THE TWO MEASUREMENTS COMPARED

ahmed_highsystolicpulmonaryarterypressure_t1.gif

Although it raises concern, the finding of high systolic pulmonary artery pressure is not enough to diagnose pulmonary hypertension. In fact, several other conditions are associated with high systolic pulmonary artery pressure on echocardiography (Table 1). The diagnosis must be confirmed with right heart catheterization.1

Echocardiography provides an estimate of the systolic pulmonary artery pressure that is calculated from other values, whereas right heart catheterization gives a direct measurement of the mean pulmonary artery pressure, which is necessary for diagnosing pulmonary hypertension. The two values are correlated, but the differences are noteworthy.

WHAT IS PULMONARY HYPERTENSION?

Pulmonary hypertension is defined by a resting mean pulmonary artery pressure 25 mm Hg or greater during right heart catheterization.1 The large number of conditions associated with pulmonary hypertension can be divided into five groups2:

  • Group 1, pulmonary artery hypertension
  • Group 2, pulmonary hypertension associated with left heart disease
  • Group 3, pulmonary hypertension due to chronic lung disease or hypoxia
  • Group 4, chronic thromboembolic pulmonary hypertension
  • Group 5, pulmonary hypertension due to unclear multifactorial mechanisms.2

Pulmonary artery hypertension (group 1) is a syndrome characterized by a restricted flow of small pulmonary arteries that can be idiopathic, heritable, or induced by anorexigens, connective tissue disease, congenital heart disease, portal hypertension, human immunodeficiency virus (HIV), or schistosomiasis.2,3 In spite of significant advances in therapy in the last 3 decades, pulmonary artery hypertension continues to lead to right heart failure and death,4 and the diagnosis has adverse prognostic implications. Therefore, it is essential to be attentive when reviewing the echocardiogram, since an elevated systolic pulmonary artery pressure may be an important clue to pulmonary hypertension.

ESTIMATED PRESSURE: HOW HIGH IS TOO HIGH?

There is no consensus on the optimal cutoff of echocardiographic systolic pulmonary artery pressure to trigger a further evaluation for pulmonary hypertension.

A retrospective evaluation of nearly 16,000 normal echocardiograms found that the 95% upper limit for systolic pulmonary artery pressure was 37 mm Hg.5

European guidelines6 propose that pulmonary hypertension is unlikely if the estimated systolic pulmonary artery pressure is 36 mm Hg or lower, possible if it is 37 to 50 mm Hg, and likely if it is higher than 50 mm Hg.6

The 2009 consensus document of the American College of Cardiology Foundation and American Heart Association3 recommends a systolic pulmonary artery pressure greater than 40 mm Hg as the threshold to suggest further evaluation in a patient with unexplained dyspnea.

Converting the systolic pulmonary artery pressure to the mean pressure

Although not validated to use with echocardiography, the most accurate estimate of mean pulmonary artery pressure was shown in one study7 to be obtained with the equation:

0.61 × systolic pulmonary artery pressure
+ 2 mm Hg

Using this formula, a systolic pulmonary artery pressure of 37 mm Hg would correspond to a mean pulmonary artery pressure of 24.6 mm Hg. A systolic pulmonary artery pressure of 40 mm Hg would correspond to a mean pulmonary artery pressure of 26.4 mm Hg.

Estimated systolic pulmonary artery pressure depends on several variables

Systolic pulmonary artery pressure is estimated using the simplified Bernoulli equation8:

4 × tricuspid regurgitation jet velocity2 (m/s)
+ right atrial pressure (mm Hg)

Tricuspid regurgitation is present in over 75% of the normal population. The regurgitation velocity across the tricuspid valve must be measured to estimate the pressure gradient between the right ventricle and the right atrium. The right atrial pressure is estimated from the diameter of the inferior vena cava and the degree of inspiratory collapse with the sniff test. As the right atrial pressure increases, the inferior vena cava dilates and inspiratory collapse decreases.8 If there is no gradient across the right ventricular outflow tract or pulmonary valve, the right ventricular systolic pressure is equal to the systolic pulmonary artery pressure.

Since tricuspid regurgitation velocity is squared and then multiplied by 4, small deviations of this measurement lead to markedly different systolic pulmonary artery pressure values. To avoid this problem, the tricuspid regurgitation velocity needs to be looked at in multiple echocardiographic views to find the best alignment with the flow and an adequate envelope.

 

 

Many causes of high estimated systolic pulmonary artery pressure

Table 1 shows conditions associated with a high estimated systolic pulmonary artery pressure. Echocardiographic limitations, constitutional factors, and high cardiac output states can lead to an apparent elevation in systolic pulmonary artery pressure, which is not confirmed later during right heart catheterization.

Systolic pulmonary artery pressure increases with age and body mass index as a result of worsening left ventricular diastolic dysfunction.8 In fact, an estimated pressure greater than 40 mm Hg is found5 in 6% of people over age 50 and in 5% of people with a body mass index greater than 30 kg/m2. It can also be high in conditions in which there is an increase in cardiac output, such as pregnancy, anemia (sickle cell disease, thalassemia), cirrhosis, and arteriovenous fistula.

The estimated systolic value often differs from the measured value

Studies have compared the systolic pulmonary artery pressure measured during right heart catheterization with the estimated value on echocardiography.9,10 These studies noted a reasonable degree of agreement between the tests but a substantial variability.

Both underestimation and overestimation of the systolic pulmonary artery pressure by echocardiography were common, with 95% limits of agreement ranging from minus 40 mm Hg to plus 40 mm Hg.9,10 A difference of plus or minus 10 mm Hg in systolic pulmonary artery pressure between echocardiography and catheterization was observed in 48% to 51% of patients with pulmonary hypertension, particularly in those with higher systolic pulmonary artery pressure.9,10

An important reason for overestimation of systolic pulmonary artery pressure is the inaccurate estimation of the right atrial pressure by echocardiography.9,10 Indeed, this factor may account for half of the cases in which the systolic pulmonary artery pressure is overestimated.10 Although the traditional methods to estimate the right atrial pressure have been revisited,8,11 this estimation is less reliable for intermediate pressure values, for patients on mechanical ventilation, and for young athletes.8

Other explanations for the variability between measured and estimated systolic pulmonary artery pressure include suboptimal alignment between the Doppler beam and the regurgitant jet, severe tricuspid regurgitation, arrhythmias, and limitations inherent to the simplified Bernoulli equation.12 The estimated value is particularly inaccurate in patients with advanced lung disease, possibly owing to lung hyperinflation and alteration in the thoracic cavity and position of the heart—all factors that limit visualization and measurement of the tricuspid regurgitant jet.13

OTHER SIGNS OF PULMONARY HYPERTENSION ON ECHOCARDIOGRAPHY

Echocardiography provides information that is useful in assessing the accuracy of the estimated systolic pulmonary artery pressure, particularly right ventricular size and function.

As pulmonary hypertension progresses, the right ventricle dilates, and its function is compromised. Therefore, it is important to determine the right ventricular size and function by using objective echocardiographic findings such as right ventricular diameters (basal, mid, apical) and area, right ventricular fractional area change, tricuspid annular plane systolic excursion, myocardial performance index, and the pulsed tissue Doppler tricuspid annular peak systolic excursion velocity.8

Other echocardiographic features that suggest pulmonary hypertension include a dilated right atrial area, flattening of the interventricular septum, notching of the right ventricular outflow tract flow, and dilation of the main pulmonary artery. Interestingly, left ventricular diastolic dysfunction of the impaired relaxation type (grade I) is commonly observed in pulmonary hypertension14; however, more advanced degrees of diastolic dysfunction, ie, pseudonormalization (grade II) or restrictive left ventricular filling (grade III),15 particularly when associated with a left atrial enlargement, suggest pulmonary hypertension associated with left heart disease and not pulmonary artery hypertension.

WHAT TO DO IF ECHOCARDIOGRAPHY INDICATES PULMONARY HYPERTENSION

ahmed_highsystolicpulmonaryarterypressure_f1.gif
Figure 1. An algorithmic approach to the assessment of systolic pulmonary artery pressure on echocardiography.

An algorithm showing the approach to an elevated systolic pulmonary artery pressure on echocardiography is presented in Figure 1.

In the appropriate clinical setting, if the systolic pulmonary artery pressure is 40 mm Hg or greater or if other echocardiographic variables suggest pulmonary hypertension, our practice is to proceed with right heart catheterization.

Clinical variables that suggest pulmonary hypertension include progressive dyspnea, chest pain, presyncope-syncope, lower extremity edema, hepatomegaly, jugular vein distention, hepatojugular reflux, sternal heave, loud second heart sound (P2), murmur of tricuspid or pulmonary regurgitation, and right ventricular third heart sound.16 These are of particular interest when associated with conditions known to cause pulmonary hypertension,2such as connective tissue disease, portal hypertension, congenital heart disease, HIV infection, and certain drugs and toxins.

Other tests that raise suspicion of pulmonary hypertension are an electrocardiogram suggesting a dilated right atrium or ventricle, an elevated brain natriuretic peptide level, a low carbon monoxide diffusing capacity on pulmonary function testing, and an enlarged pulmonary artery diameter on imaging.

Given the high prevalence of pulmonary hypertension, the Fifth World Symposium on Pulmonary Hypertension recommended first considering heart or parenchymal lung disease when an echocardiogram suggests pulmonary hypertension.6 If there are signs of severe pulmonary hypertension or right ventricular dysfunction, referral to a center specializing in pulmonary hypertension is recommended. Referral is also appropriate when there is no major heart or lung disease and the echocardiogram shows an elevated systolic pulmonary artery pressure, particularly when the clinical presentation or results of other testing suggest pulmonary hypertension.

TAKE-HOME POINTS

In the appropriate context, a high systolic pulmonary artery pressure on echocardiography suggests pulmonary hypertension, but right heart catheterization is needed to confirm the diagnosis. Estimating the systolic pulmonary artery pressure with echocardiography has limitations, including false-positive results, predominantly when the pretest probability of pulmonary hypertension is low.

References
  1. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013; 62(suppl D):D42–D50.
  2. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62(suppl D):D34–D41.
  3. McLaughlin VV, Archer SL, Badesch DB, et al; American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009; 53:1573–1619.
  4. Tonelli AR, Arelli V, Minai OA, et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 188:365–369.
  5. McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001; 104:2797–2802.
  6. Galiè N, Hoeper MM, Humbert M, et al; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30:2493–2537.
  7. Chemla D, Castelain V, Provencher S, Humbert M, Simonneau G, Herve P. Evaluation of various empirical formulas for estimating mean pulmonary artery pressure by using systolic pulmonary artery pressure in adults. Chest 2009; 135:760–768.
  8. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23:685–713.
  9. Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 2011; 139:988–993.
  10. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179:615–621.
  11. Brennan JM, Blair JE, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007; 20:857–861.
  12. Giardini A, Tacy TA. Non-invasive estimation of pressure gradients in regurgitant jets: an overdue consideration. Eur J Echocardiogr 2008; 9:578–584.
  13. Arcasoy SM, Christie JD, Ferrari VA, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 2003; 167:735–740.
  14. Tonelli AR, Plana JC, Heresi GA, Dweik RA. Prevalence and prognostic value of left ventricular diastolic dysfunction in idiopathic and heritable pulmonary arterial hypertension. Chest 2012; 141:1457–1465.
  15. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22:107–133.
  16. Barst RJ, McGoon M, Torbicki A, et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(suppl S):40S–47S.
Article PDF
Author and Disclosure Information

Mostafa Ahmed, MD
Research Fellow, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH; Assistant Lecturer, Department of Chest Diseases, Faculty of Medicine, Assiut University, Assiut, Egypt

Raed A. Dweik, MD
Director of Pulmonary Vascular Diseases Program, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH

Adriano R. Tonelli, MD
Staff, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH

Address: Raed A. Dweik, MD, Department of Pulmonary, Allergy, and Critical Care Medicine. Respiratory Institute, A90, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Issue
Cleveland Clinic Journal of Medicine - 83(4)
Publications
Topics
Page Number
256-260
Legacy Keywords
Pulmonary artery pressure, pulmonary arterial hypertension, echocardiography, m. ahmed, r.a. dweik, a.r. tonelli
Sections
Author and Disclosure Information

Mostafa Ahmed, MD
Research Fellow, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH; Assistant Lecturer, Department of Chest Diseases, Faculty of Medicine, Assiut University, Assiut, Egypt

Raed A. Dweik, MD
Director of Pulmonary Vascular Diseases Program, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH

Adriano R. Tonelli, MD
Staff, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH

Address: Raed A. Dweik, MD, Department of Pulmonary, Allergy, and Critical Care Medicine. Respiratory Institute, A90, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Author and Disclosure Information

Mostafa Ahmed, MD
Research Fellow, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH; Assistant Lecturer, Department of Chest Diseases, Faculty of Medicine, Assiut University, Assiut, Egypt

Raed A. Dweik, MD
Director of Pulmonary Vascular Diseases Program, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH

Adriano R. Tonelli, MD
Staff, Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH

Address: Raed A. Dweik, MD, Department of Pulmonary, Allergy, and Critical Care Medicine. Respiratory Institute, A90, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Article PDF
Article PDF

The incidental finding of high systolic pulmonary artery pressure on echocardiography is common. What we should do about it varies according to clinical presentation, comorbidities, and results of other tests, including assessment of the right ventricle. Thus, the optimal approach ranges from no further investigation to right heart catheterization and, in some cases, referral to a pulmonary hypertension center.

THE TWO MEASUREMENTS COMPARED

ahmed_highsystolicpulmonaryarterypressure_t1.gif

Although it raises concern, the finding of high systolic pulmonary artery pressure is not enough to diagnose pulmonary hypertension. In fact, several other conditions are associated with high systolic pulmonary artery pressure on echocardiography (Table 1). The diagnosis must be confirmed with right heart catheterization.1

Echocardiography provides an estimate of the systolic pulmonary artery pressure that is calculated from other values, whereas right heart catheterization gives a direct measurement of the mean pulmonary artery pressure, which is necessary for diagnosing pulmonary hypertension. The two values are correlated, but the differences are noteworthy.

WHAT IS PULMONARY HYPERTENSION?

Pulmonary hypertension is defined by a resting mean pulmonary artery pressure 25 mm Hg or greater during right heart catheterization.1 The large number of conditions associated with pulmonary hypertension can be divided into five groups2:

  • Group 1, pulmonary artery hypertension
  • Group 2, pulmonary hypertension associated with left heart disease
  • Group 3, pulmonary hypertension due to chronic lung disease or hypoxia
  • Group 4, chronic thromboembolic pulmonary hypertension
  • Group 5, pulmonary hypertension due to unclear multifactorial mechanisms.2

Pulmonary artery hypertension (group 1) is a syndrome characterized by a restricted flow of small pulmonary arteries that can be idiopathic, heritable, or induced by anorexigens, connective tissue disease, congenital heart disease, portal hypertension, human immunodeficiency virus (HIV), or schistosomiasis.2,3 In spite of significant advances in therapy in the last 3 decades, pulmonary artery hypertension continues to lead to right heart failure and death,4 and the diagnosis has adverse prognostic implications. Therefore, it is essential to be attentive when reviewing the echocardiogram, since an elevated systolic pulmonary artery pressure may be an important clue to pulmonary hypertension.

ESTIMATED PRESSURE: HOW HIGH IS TOO HIGH?

There is no consensus on the optimal cutoff of echocardiographic systolic pulmonary artery pressure to trigger a further evaluation for pulmonary hypertension.

A retrospective evaluation of nearly 16,000 normal echocardiograms found that the 95% upper limit for systolic pulmonary artery pressure was 37 mm Hg.5

European guidelines6 propose that pulmonary hypertension is unlikely if the estimated systolic pulmonary artery pressure is 36 mm Hg or lower, possible if it is 37 to 50 mm Hg, and likely if it is higher than 50 mm Hg.6

The 2009 consensus document of the American College of Cardiology Foundation and American Heart Association3 recommends a systolic pulmonary artery pressure greater than 40 mm Hg as the threshold to suggest further evaluation in a patient with unexplained dyspnea.

Converting the systolic pulmonary artery pressure to the mean pressure

Although not validated to use with echocardiography, the most accurate estimate of mean pulmonary artery pressure was shown in one study7 to be obtained with the equation:

0.61 × systolic pulmonary artery pressure
+ 2 mm Hg

Using this formula, a systolic pulmonary artery pressure of 37 mm Hg would correspond to a mean pulmonary artery pressure of 24.6 mm Hg. A systolic pulmonary artery pressure of 40 mm Hg would correspond to a mean pulmonary artery pressure of 26.4 mm Hg.

Estimated systolic pulmonary artery pressure depends on several variables

Systolic pulmonary artery pressure is estimated using the simplified Bernoulli equation8:

4 × tricuspid regurgitation jet velocity2 (m/s)
+ right atrial pressure (mm Hg)

Tricuspid regurgitation is present in over 75% of the normal population. The regurgitation velocity across the tricuspid valve must be measured to estimate the pressure gradient between the right ventricle and the right atrium. The right atrial pressure is estimated from the diameter of the inferior vena cava and the degree of inspiratory collapse with the sniff test. As the right atrial pressure increases, the inferior vena cava dilates and inspiratory collapse decreases.8 If there is no gradient across the right ventricular outflow tract or pulmonary valve, the right ventricular systolic pressure is equal to the systolic pulmonary artery pressure.

Since tricuspid regurgitation velocity is squared and then multiplied by 4, small deviations of this measurement lead to markedly different systolic pulmonary artery pressure values. To avoid this problem, the tricuspid regurgitation velocity needs to be looked at in multiple echocardiographic views to find the best alignment with the flow and an adequate envelope.

 

 

Many causes of high estimated systolic pulmonary artery pressure

Table 1 shows conditions associated with a high estimated systolic pulmonary artery pressure. Echocardiographic limitations, constitutional factors, and high cardiac output states can lead to an apparent elevation in systolic pulmonary artery pressure, which is not confirmed later during right heart catheterization.

Systolic pulmonary artery pressure increases with age and body mass index as a result of worsening left ventricular diastolic dysfunction.8 In fact, an estimated pressure greater than 40 mm Hg is found5 in 6% of people over age 50 and in 5% of people with a body mass index greater than 30 kg/m2. It can also be high in conditions in which there is an increase in cardiac output, such as pregnancy, anemia (sickle cell disease, thalassemia), cirrhosis, and arteriovenous fistula.

The estimated systolic value often differs from the measured value

Studies have compared the systolic pulmonary artery pressure measured during right heart catheterization with the estimated value on echocardiography.9,10 These studies noted a reasonable degree of agreement between the tests but a substantial variability.

Both underestimation and overestimation of the systolic pulmonary artery pressure by echocardiography were common, with 95% limits of agreement ranging from minus 40 mm Hg to plus 40 mm Hg.9,10 A difference of plus or minus 10 mm Hg in systolic pulmonary artery pressure between echocardiography and catheterization was observed in 48% to 51% of patients with pulmonary hypertension, particularly in those with higher systolic pulmonary artery pressure.9,10

An important reason for overestimation of systolic pulmonary artery pressure is the inaccurate estimation of the right atrial pressure by echocardiography.9,10 Indeed, this factor may account for half of the cases in which the systolic pulmonary artery pressure is overestimated.10 Although the traditional methods to estimate the right atrial pressure have been revisited,8,11 this estimation is less reliable for intermediate pressure values, for patients on mechanical ventilation, and for young athletes.8

Other explanations for the variability between measured and estimated systolic pulmonary artery pressure include suboptimal alignment between the Doppler beam and the regurgitant jet, severe tricuspid regurgitation, arrhythmias, and limitations inherent to the simplified Bernoulli equation.12 The estimated value is particularly inaccurate in patients with advanced lung disease, possibly owing to lung hyperinflation and alteration in the thoracic cavity and position of the heart—all factors that limit visualization and measurement of the tricuspid regurgitant jet.13

OTHER SIGNS OF PULMONARY HYPERTENSION ON ECHOCARDIOGRAPHY

Echocardiography provides information that is useful in assessing the accuracy of the estimated systolic pulmonary artery pressure, particularly right ventricular size and function.

As pulmonary hypertension progresses, the right ventricle dilates, and its function is compromised. Therefore, it is important to determine the right ventricular size and function by using objective echocardiographic findings such as right ventricular diameters (basal, mid, apical) and area, right ventricular fractional area change, tricuspid annular plane systolic excursion, myocardial performance index, and the pulsed tissue Doppler tricuspid annular peak systolic excursion velocity.8

Other echocardiographic features that suggest pulmonary hypertension include a dilated right atrial area, flattening of the interventricular septum, notching of the right ventricular outflow tract flow, and dilation of the main pulmonary artery. Interestingly, left ventricular diastolic dysfunction of the impaired relaxation type (grade I) is commonly observed in pulmonary hypertension14; however, more advanced degrees of diastolic dysfunction, ie, pseudonormalization (grade II) or restrictive left ventricular filling (grade III),15 particularly when associated with a left atrial enlargement, suggest pulmonary hypertension associated with left heart disease and not pulmonary artery hypertension.

WHAT TO DO IF ECHOCARDIOGRAPHY INDICATES PULMONARY HYPERTENSION

ahmed_highsystolicpulmonaryarterypressure_f1.gif
Figure 1. An algorithmic approach to the assessment of systolic pulmonary artery pressure on echocardiography.

An algorithm showing the approach to an elevated systolic pulmonary artery pressure on echocardiography is presented in Figure 1.

In the appropriate clinical setting, if the systolic pulmonary artery pressure is 40 mm Hg or greater or if other echocardiographic variables suggest pulmonary hypertension, our practice is to proceed with right heart catheterization.

Clinical variables that suggest pulmonary hypertension include progressive dyspnea, chest pain, presyncope-syncope, lower extremity edema, hepatomegaly, jugular vein distention, hepatojugular reflux, sternal heave, loud second heart sound (P2), murmur of tricuspid or pulmonary regurgitation, and right ventricular third heart sound.16 These are of particular interest when associated with conditions known to cause pulmonary hypertension,2such as connective tissue disease, portal hypertension, congenital heart disease, HIV infection, and certain drugs and toxins.

Other tests that raise suspicion of pulmonary hypertension are an electrocardiogram suggesting a dilated right atrium or ventricle, an elevated brain natriuretic peptide level, a low carbon monoxide diffusing capacity on pulmonary function testing, and an enlarged pulmonary artery diameter on imaging.

Given the high prevalence of pulmonary hypertension, the Fifth World Symposium on Pulmonary Hypertension recommended first considering heart or parenchymal lung disease when an echocardiogram suggests pulmonary hypertension.6 If there are signs of severe pulmonary hypertension or right ventricular dysfunction, referral to a center specializing in pulmonary hypertension is recommended. Referral is also appropriate when there is no major heart or lung disease and the echocardiogram shows an elevated systolic pulmonary artery pressure, particularly when the clinical presentation or results of other testing suggest pulmonary hypertension.

TAKE-HOME POINTS

In the appropriate context, a high systolic pulmonary artery pressure on echocardiography suggests pulmonary hypertension, but right heart catheterization is needed to confirm the diagnosis. Estimating the systolic pulmonary artery pressure with echocardiography has limitations, including false-positive results, predominantly when the pretest probability of pulmonary hypertension is low.

The incidental finding of high systolic pulmonary artery pressure on echocardiography is common. What we should do about it varies according to clinical presentation, comorbidities, and results of other tests, including assessment of the right ventricle. Thus, the optimal approach ranges from no further investigation to right heart catheterization and, in some cases, referral to a pulmonary hypertension center.

THE TWO MEASUREMENTS COMPARED

ahmed_highsystolicpulmonaryarterypressure_t1.gif

Although it raises concern, the finding of high systolic pulmonary artery pressure is not enough to diagnose pulmonary hypertension. In fact, several other conditions are associated with high systolic pulmonary artery pressure on echocardiography (Table 1). The diagnosis must be confirmed with right heart catheterization.1

Echocardiography provides an estimate of the systolic pulmonary artery pressure that is calculated from other values, whereas right heart catheterization gives a direct measurement of the mean pulmonary artery pressure, which is necessary for diagnosing pulmonary hypertension. The two values are correlated, but the differences are noteworthy.

WHAT IS PULMONARY HYPERTENSION?

Pulmonary hypertension is defined by a resting mean pulmonary artery pressure 25 mm Hg or greater during right heart catheterization.1 The large number of conditions associated with pulmonary hypertension can be divided into five groups2:

  • Group 1, pulmonary artery hypertension
  • Group 2, pulmonary hypertension associated with left heart disease
  • Group 3, pulmonary hypertension due to chronic lung disease or hypoxia
  • Group 4, chronic thromboembolic pulmonary hypertension
  • Group 5, pulmonary hypertension due to unclear multifactorial mechanisms.2

Pulmonary artery hypertension (group 1) is a syndrome characterized by a restricted flow of small pulmonary arteries that can be idiopathic, heritable, or induced by anorexigens, connective tissue disease, congenital heart disease, portal hypertension, human immunodeficiency virus (HIV), or schistosomiasis.2,3 In spite of significant advances in therapy in the last 3 decades, pulmonary artery hypertension continues to lead to right heart failure and death,4 and the diagnosis has adverse prognostic implications. Therefore, it is essential to be attentive when reviewing the echocardiogram, since an elevated systolic pulmonary artery pressure may be an important clue to pulmonary hypertension.

ESTIMATED PRESSURE: HOW HIGH IS TOO HIGH?

There is no consensus on the optimal cutoff of echocardiographic systolic pulmonary artery pressure to trigger a further evaluation for pulmonary hypertension.

A retrospective evaluation of nearly 16,000 normal echocardiograms found that the 95% upper limit for systolic pulmonary artery pressure was 37 mm Hg.5

European guidelines6 propose that pulmonary hypertension is unlikely if the estimated systolic pulmonary artery pressure is 36 mm Hg or lower, possible if it is 37 to 50 mm Hg, and likely if it is higher than 50 mm Hg.6

The 2009 consensus document of the American College of Cardiology Foundation and American Heart Association3 recommends a systolic pulmonary artery pressure greater than 40 mm Hg as the threshold to suggest further evaluation in a patient with unexplained dyspnea.

Converting the systolic pulmonary artery pressure to the mean pressure

Although not validated to use with echocardiography, the most accurate estimate of mean pulmonary artery pressure was shown in one study7 to be obtained with the equation:

0.61 × systolic pulmonary artery pressure
+ 2 mm Hg

Using this formula, a systolic pulmonary artery pressure of 37 mm Hg would correspond to a mean pulmonary artery pressure of 24.6 mm Hg. A systolic pulmonary artery pressure of 40 mm Hg would correspond to a mean pulmonary artery pressure of 26.4 mm Hg.

Estimated systolic pulmonary artery pressure depends on several variables

Systolic pulmonary artery pressure is estimated using the simplified Bernoulli equation8:

4 × tricuspid regurgitation jet velocity2 (m/s)
+ right atrial pressure (mm Hg)

Tricuspid regurgitation is present in over 75% of the normal population. The regurgitation velocity across the tricuspid valve must be measured to estimate the pressure gradient between the right ventricle and the right atrium. The right atrial pressure is estimated from the diameter of the inferior vena cava and the degree of inspiratory collapse with the sniff test. As the right atrial pressure increases, the inferior vena cava dilates and inspiratory collapse decreases.8 If there is no gradient across the right ventricular outflow tract or pulmonary valve, the right ventricular systolic pressure is equal to the systolic pulmonary artery pressure.

Since tricuspid regurgitation velocity is squared and then multiplied by 4, small deviations of this measurement lead to markedly different systolic pulmonary artery pressure values. To avoid this problem, the tricuspid regurgitation velocity needs to be looked at in multiple echocardiographic views to find the best alignment with the flow and an adequate envelope.

 

 

Many causes of high estimated systolic pulmonary artery pressure

Table 1 shows conditions associated with a high estimated systolic pulmonary artery pressure. Echocardiographic limitations, constitutional factors, and high cardiac output states can lead to an apparent elevation in systolic pulmonary artery pressure, which is not confirmed later during right heart catheterization.

Systolic pulmonary artery pressure increases with age and body mass index as a result of worsening left ventricular diastolic dysfunction.8 In fact, an estimated pressure greater than 40 mm Hg is found5 in 6% of people over age 50 and in 5% of people with a body mass index greater than 30 kg/m2. It can also be high in conditions in which there is an increase in cardiac output, such as pregnancy, anemia (sickle cell disease, thalassemia), cirrhosis, and arteriovenous fistula.

The estimated systolic value often differs from the measured value

Studies have compared the systolic pulmonary artery pressure measured during right heart catheterization with the estimated value on echocardiography.9,10 These studies noted a reasonable degree of agreement between the tests but a substantial variability.

Both underestimation and overestimation of the systolic pulmonary artery pressure by echocardiography were common, with 95% limits of agreement ranging from minus 40 mm Hg to plus 40 mm Hg.9,10 A difference of plus or minus 10 mm Hg in systolic pulmonary artery pressure between echocardiography and catheterization was observed in 48% to 51% of patients with pulmonary hypertension, particularly in those with higher systolic pulmonary artery pressure.9,10

An important reason for overestimation of systolic pulmonary artery pressure is the inaccurate estimation of the right atrial pressure by echocardiography.9,10 Indeed, this factor may account for half of the cases in which the systolic pulmonary artery pressure is overestimated.10 Although the traditional methods to estimate the right atrial pressure have been revisited,8,11 this estimation is less reliable for intermediate pressure values, for patients on mechanical ventilation, and for young athletes.8

Other explanations for the variability between measured and estimated systolic pulmonary artery pressure include suboptimal alignment between the Doppler beam and the regurgitant jet, severe tricuspid regurgitation, arrhythmias, and limitations inherent to the simplified Bernoulli equation.12 The estimated value is particularly inaccurate in patients with advanced lung disease, possibly owing to lung hyperinflation and alteration in the thoracic cavity and position of the heart—all factors that limit visualization and measurement of the tricuspid regurgitant jet.13

OTHER SIGNS OF PULMONARY HYPERTENSION ON ECHOCARDIOGRAPHY

Echocardiography provides information that is useful in assessing the accuracy of the estimated systolic pulmonary artery pressure, particularly right ventricular size and function.

As pulmonary hypertension progresses, the right ventricle dilates, and its function is compromised. Therefore, it is important to determine the right ventricular size and function by using objective echocardiographic findings such as right ventricular diameters (basal, mid, apical) and area, right ventricular fractional area change, tricuspid annular plane systolic excursion, myocardial performance index, and the pulsed tissue Doppler tricuspid annular peak systolic excursion velocity.8

Other echocardiographic features that suggest pulmonary hypertension include a dilated right atrial area, flattening of the interventricular septum, notching of the right ventricular outflow tract flow, and dilation of the main pulmonary artery. Interestingly, left ventricular diastolic dysfunction of the impaired relaxation type (grade I) is commonly observed in pulmonary hypertension14; however, more advanced degrees of diastolic dysfunction, ie, pseudonormalization (grade II) or restrictive left ventricular filling (grade III),15 particularly when associated with a left atrial enlargement, suggest pulmonary hypertension associated with left heart disease and not pulmonary artery hypertension.

WHAT TO DO IF ECHOCARDIOGRAPHY INDICATES PULMONARY HYPERTENSION

ahmed_highsystolicpulmonaryarterypressure_f1.gif
Figure 1. An algorithmic approach to the assessment of systolic pulmonary artery pressure on echocardiography.

An algorithm showing the approach to an elevated systolic pulmonary artery pressure on echocardiography is presented in Figure 1.

In the appropriate clinical setting, if the systolic pulmonary artery pressure is 40 mm Hg or greater or if other echocardiographic variables suggest pulmonary hypertension, our practice is to proceed with right heart catheterization.

Clinical variables that suggest pulmonary hypertension include progressive dyspnea, chest pain, presyncope-syncope, lower extremity edema, hepatomegaly, jugular vein distention, hepatojugular reflux, sternal heave, loud second heart sound (P2), murmur of tricuspid or pulmonary regurgitation, and right ventricular third heart sound.16 These are of particular interest when associated with conditions known to cause pulmonary hypertension,2such as connective tissue disease, portal hypertension, congenital heart disease, HIV infection, and certain drugs and toxins.

Other tests that raise suspicion of pulmonary hypertension are an electrocardiogram suggesting a dilated right atrium or ventricle, an elevated brain natriuretic peptide level, a low carbon monoxide diffusing capacity on pulmonary function testing, and an enlarged pulmonary artery diameter on imaging.

Given the high prevalence of pulmonary hypertension, the Fifth World Symposium on Pulmonary Hypertension recommended first considering heart or parenchymal lung disease when an echocardiogram suggests pulmonary hypertension.6 If there are signs of severe pulmonary hypertension or right ventricular dysfunction, referral to a center specializing in pulmonary hypertension is recommended. Referral is also appropriate when there is no major heart or lung disease and the echocardiogram shows an elevated systolic pulmonary artery pressure, particularly when the clinical presentation or results of other testing suggest pulmonary hypertension.

TAKE-HOME POINTS

In the appropriate context, a high systolic pulmonary artery pressure on echocardiography suggests pulmonary hypertension, but right heart catheterization is needed to confirm the diagnosis. Estimating the systolic pulmonary artery pressure with echocardiography has limitations, including false-positive results, predominantly when the pretest probability of pulmonary hypertension is low.

References
  1. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013; 62(suppl D):D42–D50.
  2. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62(suppl D):D34–D41.
  3. McLaughlin VV, Archer SL, Badesch DB, et al; American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009; 53:1573–1619.
  4. Tonelli AR, Arelli V, Minai OA, et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 188:365–369.
  5. McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001; 104:2797–2802.
  6. Galiè N, Hoeper MM, Humbert M, et al; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30:2493–2537.
  7. Chemla D, Castelain V, Provencher S, Humbert M, Simonneau G, Herve P. Evaluation of various empirical formulas for estimating mean pulmonary artery pressure by using systolic pulmonary artery pressure in adults. Chest 2009; 135:760–768.
  8. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23:685–713.
  9. Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 2011; 139:988–993.
  10. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179:615–621.
  11. Brennan JM, Blair JE, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007; 20:857–861.
  12. Giardini A, Tacy TA. Non-invasive estimation of pressure gradients in regurgitant jets: an overdue consideration. Eur J Echocardiogr 2008; 9:578–584.
  13. Arcasoy SM, Christie JD, Ferrari VA, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 2003; 167:735–740.
  14. Tonelli AR, Plana JC, Heresi GA, Dweik RA. Prevalence and prognostic value of left ventricular diastolic dysfunction in idiopathic and heritable pulmonary arterial hypertension. Chest 2012; 141:1457–1465.
  15. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22:107–133.
  16. Barst RJ, McGoon M, Torbicki A, et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(suppl S):40S–47S.
References
  1. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013; 62(suppl D):D42–D50.
  2. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62(suppl D):D34–D41.
  3. McLaughlin VV, Archer SL, Badesch DB, et al; American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009; 53:1573–1619.
  4. Tonelli AR, Arelli V, Minai OA, et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 188:365–369.
  5. McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001; 104:2797–2802.
  6. Galiè N, Hoeper MM, Humbert M, et al; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30:2493–2537.
  7. Chemla D, Castelain V, Provencher S, Humbert M, Simonneau G, Herve P. Evaluation of various empirical formulas for estimating mean pulmonary artery pressure by using systolic pulmonary artery pressure in adults. Chest 2009; 135:760–768.
  8. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23:685–713.
  9. Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 2011; 139:988–993.
  10. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179:615–621.
  11. Brennan JM, Blair JE, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007; 20:857–861.
  12. Giardini A, Tacy TA. Non-invasive estimation of pressure gradients in regurgitant jets: an overdue consideration. Eur J Echocardiogr 2008; 9:578–584.
  13. Arcasoy SM, Christie JD, Ferrari VA, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 2003; 167:735–740.
  14. Tonelli AR, Plana JC, Heresi GA, Dweik RA. Prevalence and prognostic value of left ventricular diastolic dysfunction in idiopathic and heritable pulmonary arterial hypertension. Chest 2012; 141:1457–1465.
  15. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22:107–133.
  16. Barst RJ, McGoon M, Torbicki A, et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(suppl S):40S–47S.
Issue
Cleveland Clinic Journal of Medicine - 83(4)
Issue
Cleveland Clinic Journal of Medicine - 83(4)
Page Number
256-260
Page Number
256-260
Publications
Publications
Topics
Article Type
Display Headline
What is the best approach to a high systolic pulmonary artery pressure on echocardiography?
Display Headline
What is the best approach to a high systolic pulmonary artery pressure on echocardiography?
Legacy Keywords
Pulmonary artery pressure, pulmonary arterial hypertension, echocardiography, m. ahmed, r.a. dweik, a.r. tonelli
Legacy Keywords
Pulmonary artery pressure, pulmonary arterial hypertension, echocardiography, m. ahmed, r.a. dweik, a.r. tonelli
Sections
Disallow All Ads
Alternative CME
Article PDF Media
Image
Disable zoom
Off

Pleural effusions: Evaluation and management

Article Type
Changed
Tue, 09/11/2018 - 12:18
Display Headline
Pleural effusions: Evaluation and management
Article PDF
Author and Disclosure Information

José C. Yataco, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation

Raed A. Dweik, MD
Director, Pulmonary Vascular Program, Department of Pulmonary, Allergy and Critical Care Medicine, The Cleveland Clinic Foundation

Address: Raed A. Dweik, MD, Department of Pulmonary, Allergy and Critical Care Medicine, A90, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195-5038; e-mail dweikr@ccf.org

Issue
Cleveland Clinic Journal of Medicine - 72(10)
Publications
Topics
Page Number
854-856, 858, 862-864, 867-868, 870-872
Sections
Author and Disclosure Information

José C. Yataco, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation

Raed A. Dweik, MD
Director, Pulmonary Vascular Program, Department of Pulmonary, Allergy and Critical Care Medicine, The Cleveland Clinic Foundation

Address: Raed A. Dweik, MD, Department of Pulmonary, Allergy and Critical Care Medicine, A90, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195-5038; e-mail dweikr@ccf.org

Author and Disclosure Information

José C. Yataco, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation

Raed A. Dweik, MD
Director, Pulmonary Vascular Program, Department of Pulmonary, Allergy and Critical Care Medicine, The Cleveland Clinic Foundation

Address: Raed A. Dweik, MD, Department of Pulmonary, Allergy and Critical Care Medicine, A90, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195-5038; e-mail dweikr@ccf.org

Article PDF
Article PDF
Issue
Cleveland Clinic Journal of Medicine - 72(10)
Issue
Cleveland Clinic Journal of Medicine - 72(10)
Page Number
854-856, 858, 862-864, 867-868, 870-872
Page Number
854-856, 858, 862-864, 867-868, 870-872
Publications
Publications
Topics
Article Type
Display Headline
Pleural effusions: Evaluation and management
Display Headline
Pleural effusions: Evaluation and management
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media
Image
Disable zoom
Off

Primary pulmonary hypertension: An overview of epidemiology and pathogenesis

Article Type
Changed
Wed, 12/12/2018 - 09:34
Display Headline
Primary pulmonary hypertension: An overview of epidemiology and pathogenesis
Article PDF
Author and Disclosure Information

Ziad W. Ghamra, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio

Correspondence: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail: dweikr@ccf.org

Both authors have indicated that they have no commercial affiliations or interests that pose a potential conflict of interest with this article.

Publications
Page Number
S2-S8
Author and Disclosure Information

Ziad W. Ghamra, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio

Correspondence: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail: dweikr@ccf.org

Both authors have indicated that they have no commercial affiliations or interests that pose a potential conflict of interest with this article.

Author and Disclosure Information

Ziad W. Ghamra, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio

Correspondence: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail: dweikr@ccf.org

Both authors have indicated that they have no commercial affiliations or interests that pose a potential conflict of interest with this article.

Article PDF
Article PDF
Related Articles
Page Number
S2-S8
Page Number
S2-S8
Publications
Publications
Article Type
Display Headline
Primary pulmonary hypertension: An overview of epidemiology and pathogenesis
Display Headline
Primary pulmonary hypertension: An overview of epidemiology and pathogenesis
Citation Override
Cleveland Clinic Journal of Medicine 2003 April;70(suppl 1):
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media
Image
Disable zoom
Off

Drug-induced lung disease

Article Type
Changed
Tue, 01/29/2019 - 13:10
Display Headline
Drug-induced lung disease
Article PDF
Author and Disclosure Information

Metin Özkan, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Muzaffar Ahmad, MD
Department of Pulmonary and Critical Care Medicine, Chairman, Division of Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Issue
Cleveland Clinic Journal of Medicine - 68(9)
Publications
Topics
Page Number
782-785, 789-795
Sections
Author and Disclosure Information

Metin Özkan, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Muzaffar Ahmad, MD
Department of Pulmonary and Critical Care Medicine, Chairman, Division of Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Author and Disclosure Information

Metin Özkan, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Muzaffar Ahmad, MD
Department of Pulmonary and Critical Care Medicine, Chairman, Division of Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Article PDF
Article PDF
Related Articles
Issue
Cleveland Clinic Journal of Medicine - 68(9)
Issue
Cleveland Clinic Journal of Medicine - 68(9)
Page Number
782-785, 789-795
Page Number
782-785, 789-795
Publications
Publications
Topics
Article Type
Display Headline
Drug-induced lung disease
Display Headline
Drug-induced lung disease
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media
Image
Disable zoom
Off

The promise and reality of nitric oxide in the diagnosis and treatment of lung disease

Article Type
Changed
Fri, 01/25/2019 - 06:39
Display Headline
The promise and reality of nitric oxide in the diagnosis and treatment of lung disease
Article PDF
Author and Disclosure Information

Raed A. Dweik, MD
Staff Physician, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195; dweikr@ccf.org

Dr. Dweik discusses therapies that are not yet labeled (FDA-approved) for the use under discussion or products that are still investigational.

Issue
Cleveland Clinic Journal of Medicine - 68(6)
Publications
Topics
Page Number
486, 488, 490, 493
Sections
Author and Disclosure Information

Raed A. Dweik, MD
Staff Physician, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195; dweikr@ccf.org

Dr. Dweik discusses therapies that are not yet labeled (FDA-approved) for the use under discussion or products that are still investigational.

Author and Disclosure Information

Raed A. Dweik, MD
Staff Physician, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195; dweikr@ccf.org

Dr. Dweik discusses therapies that are not yet labeled (FDA-approved) for the use under discussion or products that are still investigational.

Article PDF
Article PDF
Issue
Cleveland Clinic Journal of Medicine - 68(6)
Issue
Cleveland Clinic Journal of Medicine - 68(6)
Page Number
486, 488, 490, 493
Page Number
486, 488, 490, 493
Publications
Publications
Topics
Article Type
Display Headline
The promise and reality of nitric oxide in the diagnosis and treatment of lung disease
Display Headline
The promise and reality of nitric oxide in the diagnosis and treatment of lung disease
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media
Image
Disable zoom
Off

A 65-year-old factory worker with dyspnea on exertion and a normal chest x-ray

Article Type
Changed
Mon, 02/18/2019 - 08:25
Display Headline
A 65-year-old factory worker with dyspnea on exertion and a normal chest x-ray
Article PDF
Author and Disclosure Information

Walid Saber, MD
Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, A90, 9500 Euclid Avenue, Cleveland, OH 44195

Issue
Cleveland Clinic Journal of Medicine - 67(11)
Publications
Topics
Page Number
791-792, 794, 797-798, 800
Sections
Author and Disclosure Information

Walid Saber, MD
Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, A90, 9500 Euclid Avenue, Cleveland, OH 44195

Author and Disclosure Information

Walid Saber, MD
Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, A90, 9500 Euclid Avenue, Cleveland, OH 44195

Article PDF
Article PDF
Issue
Cleveland Clinic Journal of Medicine - 67(11)
Issue
Cleveland Clinic Journal of Medicine - 67(11)
Page Number
791-792, 794, 797-798, 800
Page Number
791-792, 794, 797-798, 800
Publications
Publications
Topics
Article Type
Display Headline
A 65-year-old factory worker with dyspnea on exertion and a normal chest x-ray
Display Headline
A 65-year-old factory worker with dyspnea on exertion and a normal chest x-ray
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media

Primary pulmonary hypertension: Update on pathogenesis and novel therapies

Article Type
Changed
Wed, 02/13/2019 - 14:02
Display Headline
Primary pulmonary hypertension: Update on pathogenesis and novel therapies
Article PDF
Author and Disclosure Information

Alejandro C. Arroliga, MD
Director, Medical Intensive Care Unit, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

F. J. Takao Kaneko, MD
Department of Critical Care Medicine, Central Military Hospital, Mexico City, Mexico

Serpil C. Erzurum, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Alejandro C. Arroliga, MD, Medical Intensive Care Unit, G62, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195; arrolia@ccf.org

Issue
Cleveland Clinic Journal of Medicine - 67(3)
Publications
Topics
Page Number
175-178, 181-182, 184-185, 189-190
Sections
Author and Disclosure Information

Alejandro C. Arroliga, MD
Director, Medical Intensive Care Unit, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

F. J. Takao Kaneko, MD
Department of Critical Care Medicine, Central Military Hospital, Mexico City, Mexico

Serpil C. Erzurum, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Alejandro C. Arroliga, MD, Medical Intensive Care Unit, G62, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195; arrolia@ccf.org

Author and Disclosure Information

Alejandro C. Arroliga, MD
Director, Medical Intensive Care Unit, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

F. J. Takao Kaneko, MD
Department of Critical Care Medicine, Central Military Hospital, Mexico City, Mexico

Serpil C. Erzurum, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Alejandro C. Arroliga, MD, Medical Intensive Care Unit, G62, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195; arrolia@ccf.org

Article PDF
Article PDF
Issue
Cleveland Clinic Journal of Medicine - 67(3)
Issue
Cleveland Clinic Journal of Medicine - 67(3)
Page Number
175-178, 181-182, 184-185, 189-190
Page Number
175-178, 181-182, 184-185, 189-190
Publications
Publications
Topics
Article Type
Display Headline
Primary pulmonary hypertension: Update on pathogenesis and novel therapies
Display Headline
Primary pulmonary hypertension: Update on pathogenesis and novel therapies
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Article PDF Media

A 57-year-old woman with pulmonary infiltrates and eosinophilia

Article Type
Changed
Mon, 03/11/2019 - 10:57
Display Headline
A 57-year-old woman with pulmonary infiltrates and eosinophilia
Article PDF
Author and Disclosure Information

Arlene Lobo, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Issue
Cleveland Clinic Journal of Medicine - 66(6)
Publications
Page Number
335-339
Sections
Author and Disclosure Information

Arlene Lobo, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Author and Disclosure Information

Arlene Lobo, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Raed A. Dweik, MD
Department of Pulmonary and Critical Care Medicine, Cleveland Clinic

Address: Raed A. Dweik, MD, Department of Pulmonary and Critical Care Medicine, A90,  Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; dweikr@ccf.org

Article PDF
Article PDF
Issue
Cleveland Clinic Journal of Medicine - 66(6)
Issue
Cleveland Clinic Journal of Medicine - 66(6)
Page Number
335-339
Page Number
335-339
Publications
Publications
Article Type
Display Headline
A 57-year-old woman with pulmonary infiltrates and eosinophilia
Display Headline
A 57-year-old woman with pulmonary infiltrates and eosinophilia
Sections
PURLs Copyright

Disallow All Ads
Alternative CME
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Article PDF Media