Clinical Endocrinology News is an independent news source that provides endocrinologists with timely and relevant news and commentary about clinical developments and the impact of health care policy on the endocrinologist's practice. Specialty topics include Diabetes, Lipid & Metabolic Disorders Menopause, Obesity, Osteoporosis, Pediatric Endocrinology, Pituitary, Thyroid & Adrenal Disorders, and Reproductive Endocrinology. Featured content includes Commentaries, Implementin Health Reform, Law & Medicine, and In the Loop, the blog of Clinical Endocrinology News. Clinical Endocrinology News is owned by Frontline Medical Communications.

Top Sections
Commentary
Law & Medicine
endo
Main menu
CEN Main Menu
Explore menu
CEN Explore Menu
Proclivity ID
18807001
Unpublish
Specialty Focus
Men's Health
Diabetes
Pituitary, Thyroid & Adrenal Disorders
Endocrine Cancer
Menopause
Negative Keywords
a child less than 6
addict
addicted
addicting
addiction
adult sites
alcohol
antibody
ass
attorney
audit
auditor
babies
babpa
baby
ban
banned
banning
best
bisexual
bitch
bleach
blog
blow job
bondage
boobs
booty
buy
cannabis
certificate
certification
certified
cheap
cheapest
class action
cocaine
cock
counterfeit drug
crack
crap
crime
criminal
cunt
curable
cure
dangerous
dangers
dead
deadly
death
defend
defended
depedent
dependence
dependent
detergent
dick
die
dildo
drug abuse
drug recall
dying
fag
fake
fatal
fatalities
fatality
free
fuck
gangs
gingivitis
guns
hardcore
herbal
herbs
heroin
herpes
home remedies
homo
horny
hypersensitivity
hypoglycemia treatment
illegal drug use
illegal use of prescription
incest
infant
infants
job
ketoacidosis
kill
killer
killing
kinky
law suit
lawsuit
lawyer
lesbian
marijuana
medicine for hypoglycemia
murder
naked
natural
newborn
nigger
noise
nude
nudity
orgy
over the counter
overdosage
overdose
overdosed
overdosing
penis
pimp
pistol
porn
porno
pornographic
pornography
prison
profanity
purchase
purchasing
pussy
queer
rape
rapist
recall
recreational drug
rob
robberies
sale
sales
sex
sexual
shit
shoot
slut
slutty
stole
stolen
store
sue
suicidal
suicide
supplements
supply company
theft
thief
thieves
tit
toddler
toddlers
toxic
toxin
tragedy
treating dka
treating hypoglycemia
treatment for hypoglycemia
vagina
violence
whore
withdrawal
without prescription
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-imn')]
div[contains(@class, 'pane-pub-home-imn')]
div[contains(@class, 'pane-pub-topic-imn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Clinical Endocrinology News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 09:12
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 09:12

See the Medical World Through Neurodivergent Doctors’ Eyes

Article Type
Changed
Mon, 06/24/2024 - 11:46

Some 15%-20% of the world’s population are neurodivergent, with conditions such as autism, dyslexia, Tourette syndrome, attention-deficit/hyperactivity disorder (ADHD), and others. With different strengths and challenges around learning, engaging socially, or completing certain tasks, neurodivergent people can face barriers in the workforce.

Meanwhile, studies suggest that neurodivergent people may be overrepresented in STEM fields such as medicine. The medical field may self-select for traits associated with neurodivergent conditions, researchers say, including a hyperfocus on intense interests, pattern recognition, increased curiosity and empathy, and thinking quickly under pressure.

But neurodivergent physicians report difficult, even damaging, experiences in the healthcare field. They struggle with stigma, a culture of nondisclosure, and lack of accommodations, which can lead to burnout and poor mental health.

“The medical system and the mental health system are some of the spaces that are holding on tightly to some of the outdated understandings of things like autism and ADHD,” says Megan Anna Neff, PsyD, a psychologist with autism and ADHD based in Portland, Oregon.

Situations can get dire: A 2023 survey of more than 200 autistic doctors from several countries found that 77% had considered suicide and 24% had attempted it.

But here’s the crux of it: Many neurodivergent doctors believe their unique ways of thinking and outside-the-box creativity are skills and strengths that can benefit the field. And they say making medicine more inclusive — and better understanding how a neurodivergent physician’s brain works — would allow them to thrive.
 

Blending In and Breaking Down

The exact number of neurodivergent physicians in the workforce remains unknown. Existing studies are small and focus mainly on autism. But researchers believe the percentage could be higher than we think, because neurodiversity can be underidentified.

Although autism can sometimes be diagnosed as early as 18 months, it’s not uncommon to receive a diagnosis well into adulthood. “Like many late-identified autistic adults, I got my autism diagnosis in the context of autistic burnout,” says Melissa Houser, MD, a primary care physician who received a diagnosis in 2021. Dr. Houser, who uses the pronouns she/they, explains that her experience is common, “a consequence of chronically having your life’s demands exceed your capacity.”

Dr. Houser, who also has ADHD and dyslexia, among other neurodivergent conditions, says that before her diagnosis, she worked in a traditional practice setting. Eventually, she began to notice intense dysregulation and fatigue. “I began to have a lot more difficulties with communication and my motor planning and sequencing,” Dr. Houser says. “I was sleep-deprived, and my needs were not being met. I was in a situation where I had a complete lack of autonomy over my practice.”

Deep in burnout, Dr. Houser says she lost her ability to “mask,” a term used to describe how some neurodivergent people work to “blend in” with societal expectations. This led to further communication breakdowns with her supervisor. Finally, Dr. Houser saw a psychiatrist.

Shortly after her diagnosis, Dr. Houser quit her job and founded All Brains Belong, a nonprofit that provides neurodiversity-affirming medical care, education, and advocacy. Research has found that people with autism are at increased risk for physical health conditions, including immune conditions, gastrointestinal disorders, metabolic conditions, and increased mortality in hospital settings. Understanding these connections can “mean the difference between life and death” for neurodivergent patients, Dr. Houser says.

Yet, in a 2015 study that assessed providers’ ability to recognize autism, a high proportion were not aware that they had patients with autism spectrum disorder, and most reported lacking both the skills and the tools to care for them.
 

 

 

Different as a Doctor and a Patient

Bernadette Grosjean, MD, a retired associate professor of psychiatry at David Geffen School of Medicine at UCLA and a distinguished Fellow of the American Psychiatric Association, also found insight into lifelong experiences as both a doctor and a patient with her autism diagnosis, which came when she was 61.

“Looking back, I was a smart kid but kind of clumsy and different in other ways,” Dr. Grosjean says. According to a 2021 survey by Cambridge University, autistic individuals are significantly more likely to identify as LGBTQ+, and Dr. Grosjean, who is gay, says that not being fully accepted by family or friends played a role in her struggles with mental health issues.

Throughout her mental health treatment, Dr. Grosjean felt as though her providers “were expecting from me things that I didn’t know how to do or fix. I didn’t know how to be a ‘good’ patient,” she recalls.

As a psychiatrist, Dr. Grosjean started to notice that many of the women she treated for borderline personality disorder, which is categorized by unstable relationships and emotions, were autistic. “I then started asking lots of questions about myself — the fact that I’ve always been very sensitive or that I’ve been accused of being both hypersensitive and not having emotions, and I understood a lot.”

When Dr. Grosjean came across Autistic Doctors International, a group of over 800 autistic doctors worldwide, she says, “I found my tribe.” She now serves as the US lead for psychiatry for the group, which is focused on support, advocacy, research, and education around neurodiversity.

Psychiatric comorbidities can accompany neurodivergent conditions. But a growing body of research, including a 2022 study published in the European Archives of Psychiatry and Clinical Neuroscience, indicates that autism and ADHD are frequently misdiagnosed as depression or anxiety.

Dr. Neff was unaware of her conditions until one of her children was diagnosed with autism in 2021. She started to research it. “As I was learning about autism and girls, I was like, ‘Oh, my gosh, this is me,’ ” Dr. Neff recalls. Within a few weeks, she had her own diagnosis.

In hindsight, Dr. Neff has more clarity regarding her struggles in the traditional medical space. She had found it difficult to fit patients into short appointment windows and keep their notes concise. Although she loved hospital work, the environment had been overwhelming and led to burnout.
 

‘A Deficit-Based Lens’

Dr. Houser believes that too often, autism is viewed through a “deficit-based lens.” Stressors like sensory overload, changes in routine, or unexpected events can exacerbate behavioral challenges for neurodivergent people in the workplace. The DSM-5 criteria for autism, she points out, are largely based on autistic “stress behaviors.”

The result, Dr. Houser says, is that neurodivergent doctors are judged by their response to stressors that put them at a disadvantage rather than their capabilities under more positive circumstances. “The more dysregulated someone is,” she says, “the more likely they are to manifest those observable behaviors.”

Dr. Neff notes that medicine is a very “sensory overwhelming work environment.” Working in ob.gyn. and primary care clinics, she remembers often coming home with a headache and a low-grade fever. “I had no idea why, but I now realize it’s because I was so sensory sick.”

Fearing for her job, Dr. Neff intentionally waited until she was in private practice to disclose her neurodiversity. “I don’t think it would have been received well if I was in a hospital system,” she says. “There’s a lot of invalidation that can come when someone chooses to self-disclose, and their colleagues don’t have a framework in mind to understand.” In one instance, after revealing her diagnosis, she remembers a well-known researcher telling her she wasn’t autistic.
Dr. Grosjean has also had former colleagues invalidate her diagnosis, something she says “keeps people quiet.”
 

 

 

Understanding the Neurodivergent Brain

The general lack of education on how neurodivergent brains work, physicians with these conditions say, means they are not often recognized for how they can function with certain accommodations and how they could contribute in unique ways if their workplace challenges were reduced.

“What we know about autistic brains is that we are systems-thinking pattern matchers,” says Dr. Houser, who formed an interdisciplinary task force to explore medical conditions that are more common in autistic people. Through that comprehensive approach, she has worked to find best practices to treat the constellation of conditions that can arise among these patients. “My autistic brain allowed me to do that,” Dr. Houser says.

Catriona McVey, a medical student in the United Kingdom and creator of the blog Attention Deficit Doctor, points out that “ADHD brains are interest-driven; they can be very focused when you’re doing something enjoyable or new due to increased dopaminergic stimulation.” Ms. McVey speaks from personal experience. “I’ve hyperfocused before on an essay that interested me for over 10 hours,” she recalls, “so I imagine if I was interested in surgery, I could easily hyperfocus on a long operation.” 

Empathy is another key part of medical practice. Contrary to stereotypes of neurodivergent people lacking empathy, current research suggests this isn’t true. A concept known as the “double empathy problem,” a term coined by British researcher Damian Milton in 2012, challenges the misconception that autistic people do not have empathy, explains Dr. Grosjean.

Mr. Milton theorized that there are two types of empathy: emotional, when you feel someone else’s pain, and cognitive, which involves critical thinking to understand someone’s emotions or thoughts. “Autistic people have, in general, a lot of emotional empathy,” Dr. Grosjean says, “but the cognitive empathy they don’t have as well.”

Dr. Neff has experienced this in her practice. “I will often feel what my clients are feeling as they’re feeling it,” she says, adding that she has always had an innate ability to analyze and connect with clients. She’s good at observing the interplay of health conditions, incorporating biology, psychology, and social conceptualizations of issues, with nuance. She feels that recognizing behavioral patterns or psychological triggers in her patients helps her see them holistically and provide better care. “That was a skill even before I realized I was autistic, but I always thought it was just intuitive to everyone,” she says. 
 

Support Can Lead to Success

The Americans with Disabilities Act requires employers to provide reasonable accommodations to neurodivergent employees. However, getting those accommodations involves disclosure, which many physicians have reasons to avoid.

It also means more work. Requesting and putting adjustments in place can take a lot of time and energy to organize. Ms. McVey says they can be “long-winded, multistep tasks” that are not very compatible with ADHD. “Some doctors report that service pressures and funding are used as excuses to refuse adjustments,” she adds. 

Ms. McVey lists several workplace accommodations that could be helpful, including flexible working hours, a quiet space to complete paperwork, dictation software, and extra time for medical students to complete written exams.

Neurodivergent physicians have also called for increased diversity of senior leadership and utilizing “cognitive apprenticeship models,” where employees explain their thought processes and receive timely feedback.

But far too often, there is little intervention until a doctor reaches a crisis point. “I look forward to the day when we don’t have to wait until people are profoundly depleted to discover how their brains work,” says Dr. Houser.

Beyond logistical and structural changes in the medical field, Dr. Grosjean speaks of the simple need to listen to colleagues with an open mind and believe them when they express their feelings and experiences. “Everyone has a role to play in challenging stigma, misconceptions, and stereotypes,” Ms. McVey agrees. Ask yourself the old question, she suggests: “If not me, then who? If not now, then when?”

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Some 15%-20% of the world’s population are neurodivergent, with conditions such as autism, dyslexia, Tourette syndrome, attention-deficit/hyperactivity disorder (ADHD), and others. With different strengths and challenges around learning, engaging socially, or completing certain tasks, neurodivergent people can face barriers in the workforce.

Meanwhile, studies suggest that neurodivergent people may be overrepresented in STEM fields such as medicine. The medical field may self-select for traits associated with neurodivergent conditions, researchers say, including a hyperfocus on intense interests, pattern recognition, increased curiosity and empathy, and thinking quickly under pressure.

But neurodivergent physicians report difficult, even damaging, experiences in the healthcare field. They struggle with stigma, a culture of nondisclosure, and lack of accommodations, which can lead to burnout and poor mental health.

“The medical system and the mental health system are some of the spaces that are holding on tightly to some of the outdated understandings of things like autism and ADHD,” says Megan Anna Neff, PsyD, a psychologist with autism and ADHD based in Portland, Oregon.

Situations can get dire: A 2023 survey of more than 200 autistic doctors from several countries found that 77% had considered suicide and 24% had attempted it.

But here’s the crux of it: Many neurodivergent doctors believe their unique ways of thinking and outside-the-box creativity are skills and strengths that can benefit the field. And they say making medicine more inclusive — and better understanding how a neurodivergent physician’s brain works — would allow them to thrive.
 

Blending In and Breaking Down

The exact number of neurodivergent physicians in the workforce remains unknown. Existing studies are small and focus mainly on autism. But researchers believe the percentage could be higher than we think, because neurodiversity can be underidentified.

Although autism can sometimes be diagnosed as early as 18 months, it’s not uncommon to receive a diagnosis well into adulthood. “Like many late-identified autistic adults, I got my autism diagnosis in the context of autistic burnout,” says Melissa Houser, MD, a primary care physician who received a diagnosis in 2021. Dr. Houser, who uses the pronouns she/they, explains that her experience is common, “a consequence of chronically having your life’s demands exceed your capacity.”

Dr. Houser, who also has ADHD and dyslexia, among other neurodivergent conditions, says that before her diagnosis, she worked in a traditional practice setting. Eventually, she began to notice intense dysregulation and fatigue. “I began to have a lot more difficulties with communication and my motor planning and sequencing,” Dr. Houser says. “I was sleep-deprived, and my needs were not being met. I was in a situation where I had a complete lack of autonomy over my practice.”

Deep in burnout, Dr. Houser says she lost her ability to “mask,” a term used to describe how some neurodivergent people work to “blend in” with societal expectations. This led to further communication breakdowns with her supervisor. Finally, Dr. Houser saw a psychiatrist.

Shortly after her diagnosis, Dr. Houser quit her job and founded All Brains Belong, a nonprofit that provides neurodiversity-affirming medical care, education, and advocacy. Research has found that people with autism are at increased risk for physical health conditions, including immune conditions, gastrointestinal disorders, metabolic conditions, and increased mortality in hospital settings. Understanding these connections can “mean the difference between life and death” for neurodivergent patients, Dr. Houser says.

Yet, in a 2015 study that assessed providers’ ability to recognize autism, a high proportion were not aware that they had patients with autism spectrum disorder, and most reported lacking both the skills and the tools to care for them.
 

 

 

Different as a Doctor and a Patient

Bernadette Grosjean, MD, a retired associate professor of psychiatry at David Geffen School of Medicine at UCLA and a distinguished Fellow of the American Psychiatric Association, also found insight into lifelong experiences as both a doctor and a patient with her autism diagnosis, which came when she was 61.

“Looking back, I was a smart kid but kind of clumsy and different in other ways,” Dr. Grosjean says. According to a 2021 survey by Cambridge University, autistic individuals are significantly more likely to identify as LGBTQ+, and Dr. Grosjean, who is gay, says that not being fully accepted by family or friends played a role in her struggles with mental health issues.

Throughout her mental health treatment, Dr. Grosjean felt as though her providers “were expecting from me things that I didn’t know how to do or fix. I didn’t know how to be a ‘good’ patient,” she recalls.

As a psychiatrist, Dr. Grosjean started to notice that many of the women she treated for borderline personality disorder, which is categorized by unstable relationships and emotions, were autistic. “I then started asking lots of questions about myself — the fact that I’ve always been very sensitive or that I’ve been accused of being both hypersensitive and not having emotions, and I understood a lot.”

When Dr. Grosjean came across Autistic Doctors International, a group of over 800 autistic doctors worldwide, she says, “I found my tribe.” She now serves as the US lead for psychiatry for the group, which is focused on support, advocacy, research, and education around neurodiversity.

Psychiatric comorbidities can accompany neurodivergent conditions. But a growing body of research, including a 2022 study published in the European Archives of Psychiatry and Clinical Neuroscience, indicates that autism and ADHD are frequently misdiagnosed as depression or anxiety.

Dr. Neff was unaware of her conditions until one of her children was diagnosed with autism in 2021. She started to research it. “As I was learning about autism and girls, I was like, ‘Oh, my gosh, this is me,’ ” Dr. Neff recalls. Within a few weeks, she had her own diagnosis.

In hindsight, Dr. Neff has more clarity regarding her struggles in the traditional medical space. She had found it difficult to fit patients into short appointment windows and keep their notes concise. Although she loved hospital work, the environment had been overwhelming and led to burnout.
 

‘A Deficit-Based Lens’

Dr. Houser believes that too often, autism is viewed through a “deficit-based lens.” Stressors like sensory overload, changes in routine, or unexpected events can exacerbate behavioral challenges for neurodivergent people in the workplace. The DSM-5 criteria for autism, she points out, are largely based on autistic “stress behaviors.”

The result, Dr. Houser says, is that neurodivergent doctors are judged by their response to stressors that put them at a disadvantage rather than their capabilities under more positive circumstances. “The more dysregulated someone is,” she says, “the more likely they are to manifest those observable behaviors.”

Dr. Neff notes that medicine is a very “sensory overwhelming work environment.” Working in ob.gyn. and primary care clinics, she remembers often coming home with a headache and a low-grade fever. “I had no idea why, but I now realize it’s because I was so sensory sick.”

Fearing for her job, Dr. Neff intentionally waited until she was in private practice to disclose her neurodiversity. “I don’t think it would have been received well if I was in a hospital system,” she says. “There’s a lot of invalidation that can come when someone chooses to self-disclose, and their colleagues don’t have a framework in mind to understand.” In one instance, after revealing her diagnosis, she remembers a well-known researcher telling her she wasn’t autistic.
Dr. Grosjean has also had former colleagues invalidate her diagnosis, something she says “keeps people quiet.”
 

 

 

Understanding the Neurodivergent Brain

The general lack of education on how neurodivergent brains work, physicians with these conditions say, means they are not often recognized for how they can function with certain accommodations and how they could contribute in unique ways if their workplace challenges were reduced.

“What we know about autistic brains is that we are systems-thinking pattern matchers,” says Dr. Houser, who formed an interdisciplinary task force to explore medical conditions that are more common in autistic people. Through that comprehensive approach, she has worked to find best practices to treat the constellation of conditions that can arise among these patients. “My autistic brain allowed me to do that,” Dr. Houser says.

Catriona McVey, a medical student in the United Kingdom and creator of the blog Attention Deficit Doctor, points out that “ADHD brains are interest-driven; they can be very focused when you’re doing something enjoyable or new due to increased dopaminergic stimulation.” Ms. McVey speaks from personal experience. “I’ve hyperfocused before on an essay that interested me for over 10 hours,” she recalls, “so I imagine if I was interested in surgery, I could easily hyperfocus on a long operation.” 

Empathy is another key part of medical practice. Contrary to stereotypes of neurodivergent people lacking empathy, current research suggests this isn’t true. A concept known as the “double empathy problem,” a term coined by British researcher Damian Milton in 2012, challenges the misconception that autistic people do not have empathy, explains Dr. Grosjean.

Mr. Milton theorized that there are two types of empathy: emotional, when you feel someone else’s pain, and cognitive, which involves critical thinking to understand someone’s emotions or thoughts. “Autistic people have, in general, a lot of emotional empathy,” Dr. Grosjean says, “but the cognitive empathy they don’t have as well.”

Dr. Neff has experienced this in her practice. “I will often feel what my clients are feeling as they’re feeling it,” she says, adding that she has always had an innate ability to analyze and connect with clients. She’s good at observing the interplay of health conditions, incorporating biology, psychology, and social conceptualizations of issues, with nuance. She feels that recognizing behavioral patterns or psychological triggers in her patients helps her see them holistically and provide better care. “That was a skill even before I realized I was autistic, but I always thought it was just intuitive to everyone,” she says. 
 

Support Can Lead to Success

The Americans with Disabilities Act requires employers to provide reasonable accommodations to neurodivergent employees. However, getting those accommodations involves disclosure, which many physicians have reasons to avoid.

It also means more work. Requesting and putting adjustments in place can take a lot of time and energy to organize. Ms. McVey says they can be “long-winded, multistep tasks” that are not very compatible with ADHD. “Some doctors report that service pressures and funding are used as excuses to refuse adjustments,” she adds. 

Ms. McVey lists several workplace accommodations that could be helpful, including flexible working hours, a quiet space to complete paperwork, dictation software, and extra time for medical students to complete written exams.

Neurodivergent physicians have also called for increased diversity of senior leadership and utilizing “cognitive apprenticeship models,” where employees explain their thought processes and receive timely feedback.

But far too often, there is little intervention until a doctor reaches a crisis point. “I look forward to the day when we don’t have to wait until people are profoundly depleted to discover how their brains work,” says Dr. Houser.

Beyond logistical and structural changes in the medical field, Dr. Grosjean speaks of the simple need to listen to colleagues with an open mind and believe them when they express their feelings and experiences. “Everyone has a role to play in challenging stigma, misconceptions, and stereotypes,” Ms. McVey agrees. Ask yourself the old question, she suggests: “If not me, then who? If not now, then when?”

A version of this article first appeared on Medscape.com.

Some 15%-20% of the world’s population are neurodivergent, with conditions such as autism, dyslexia, Tourette syndrome, attention-deficit/hyperactivity disorder (ADHD), and others. With different strengths and challenges around learning, engaging socially, or completing certain tasks, neurodivergent people can face barriers in the workforce.

Meanwhile, studies suggest that neurodivergent people may be overrepresented in STEM fields such as medicine. The medical field may self-select for traits associated with neurodivergent conditions, researchers say, including a hyperfocus on intense interests, pattern recognition, increased curiosity and empathy, and thinking quickly under pressure.

But neurodivergent physicians report difficult, even damaging, experiences in the healthcare field. They struggle with stigma, a culture of nondisclosure, and lack of accommodations, which can lead to burnout and poor mental health.

“The medical system and the mental health system are some of the spaces that are holding on tightly to some of the outdated understandings of things like autism and ADHD,” says Megan Anna Neff, PsyD, a psychologist with autism and ADHD based in Portland, Oregon.

Situations can get dire: A 2023 survey of more than 200 autistic doctors from several countries found that 77% had considered suicide and 24% had attempted it.

But here’s the crux of it: Many neurodivergent doctors believe their unique ways of thinking and outside-the-box creativity are skills and strengths that can benefit the field. And they say making medicine more inclusive — and better understanding how a neurodivergent physician’s brain works — would allow them to thrive.
 

Blending In and Breaking Down

The exact number of neurodivergent physicians in the workforce remains unknown. Existing studies are small and focus mainly on autism. But researchers believe the percentage could be higher than we think, because neurodiversity can be underidentified.

Although autism can sometimes be diagnosed as early as 18 months, it’s not uncommon to receive a diagnosis well into adulthood. “Like many late-identified autistic adults, I got my autism diagnosis in the context of autistic burnout,” says Melissa Houser, MD, a primary care physician who received a diagnosis in 2021. Dr. Houser, who uses the pronouns she/they, explains that her experience is common, “a consequence of chronically having your life’s demands exceed your capacity.”

Dr. Houser, who also has ADHD and dyslexia, among other neurodivergent conditions, says that before her diagnosis, she worked in a traditional practice setting. Eventually, she began to notice intense dysregulation and fatigue. “I began to have a lot more difficulties with communication and my motor planning and sequencing,” Dr. Houser says. “I was sleep-deprived, and my needs were not being met. I was in a situation where I had a complete lack of autonomy over my practice.”

Deep in burnout, Dr. Houser says she lost her ability to “mask,” a term used to describe how some neurodivergent people work to “blend in” with societal expectations. This led to further communication breakdowns with her supervisor. Finally, Dr. Houser saw a psychiatrist.

Shortly after her diagnosis, Dr. Houser quit her job and founded All Brains Belong, a nonprofit that provides neurodiversity-affirming medical care, education, and advocacy. Research has found that people with autism are at increased risk for physical health conditions, including immune conditions, gastrointestinal disorders, metabolic conditions, and increased mortality in hospital settings. Understanding these connections can “mean the difference between life and death” for neurodivergent patients, Dr. Houser says.

Yet, in a 2015 study that assessed providers’ ability to recognize autism, a high proportion were not aware that they had patients with autism spectrum disorder, and most reported lacking both the skills and the tools to care for them.
 

 

 

Different as a Doctor and a Patient

Bernadette Grosjean, MD, a retired associate professor of psychiatry at David Geffen School of Medicine at UCLA and a distinguished Fellow of the American Psychiatric Association, also found insight into lifelong experiences as both a doctor and a patient with her autism diagnosis, which came when she was 61.

“Looking back, I was a smart kid but kind of clumsy and different in other ways,” Dr. Grosjean says. According to a 2021 survey by Cambridge University, autistic individuals are significantly more likely to identify as LGBTQ+, and Dr. Grosjean, who is gay, says that not being fully accepted by family or friends played a role in her struggles with mental health issues.

Throughout her mental health treatment, Dr. Grosjean felt as though her providers “were expecting from me things that I didn’t know how to do or fix. I didn’t know how to be a ‘good’ patient,” she recalls.

As a psychiatrist, Dr. Grosjean started to notice that many of the women she treated for borderline personality disorder, which is categorized by unstable relationships and emotions, were autistic. “I then started asking lots of questions about myself — the fact that I’ve always been very sensitive or that I’ve been accused of being both hypersensitive and not having emotions, and I understood a lot.”

When Dr. Grosjean came across Autistic Doctors International, a group of over 800 autistic doctors worldwide, she says, “I found my tribe.” She now serves as the US lead for psychiatry for the group, which is focused on support, advocacy, research, and education around neurodiversity.

Psychiatric comorbidities can accompany neurodivergent conditions. But a growing body of research, including a 2022 study published in the European Archives of Psychiatry and Clinical Neuroscience, indicates that autism and ADHD are frequently misdiagnosed as depression or anxiety.

Dr. Neff was unaware of her conditions until one of her children was diagnosed with autism in 2021. She started to research it. “As I was learning about autism and girls, I was like, ‘Oh, my gosh, this is me,’ ” Dr. Neff recalls. Within a few weeks, she had her own diagnosis.

In hindsight, Dr. Neff has more clarity regarding her struggles in the traditional medical space. She had found it difficult to fit patients into short appointment windows and keep their notes concise. Although she loved hospital work, the environment had been overwhelming and led to burnout.
 

‘A Deficit-Based Lens’

Dr. Houser believes that too often, autism is viewed through a “deficit-based lens.” Stressors like sensory overload, changes in routine, or unexpected events can exacerbate behavioral challenges for neurodivergent people in the workplace. The DSM-5 criteria for autism, she points out, are largely based on autistic “stress behaviors.”

The result, Dr. Houser says, is that neurodivergent doctors are judged by their response to stressors that put them at a disadvantage rather than their capabilities under more positive circumstances. “The more dysregulated someone is,” she says, “the more likely they are to manifest those observable behaviors.”

Dr. Neff notes that medicine is a very “sensory overwhelming work environment.” Working in ob.gyn. and primary care clinics, she remembers often coming home with a headache and a low-grade fever. “I had no idea why, but I now realize it’s because I was so sensory sick.”

Fearing for her job, Dr. Neff intentionally waited until she was in private practice to disclose her neurodiversity. “I don’t think it would have been received well if I was in a hospital system,” she says. “There’s a lot of invalidation that can come when someone chooses to self-disclose, and their colleagues don’t have a framework in mind to understand.” In one instance, after revealing her diagnosis, she remembers a well-known researcher telling her she wasn’t autistic.
Dr. Grosjean has also had former colleagues invalidate her diagnosis, something she says “keeps people quiet.”
 

 

 

Understanding the Neurodivergent Brain

The general lack of education on how neurodivergent brains work, physicians with these conditions say, means they are not often recognized for how they can function with certain accommodations and how they could contribute in unique ways if their workplace challenges were reduced.

“What we know about autistic brains is that we are systems-thinking pattern matchers,” says Dr. Houser, who formed an interdisciplinary task force to explore medical conditions that are more common in autistic people. Through that comprehensive approach, she has worked to find best practices to treat the constellation of conditions that can arise among these patients. “My autistic brain allowed me to do that,” Dr. Houser says.

Catriona McVey, a medical student in the United Kingdom and creator of the blog Attention Deficit Doctor, points out that “ADHD brains are interest-driven; they can be very focused when you’re doing something enjoyable or new due to increased dopaminergic stimulation.” Ms. McVey speaks from personal experience. “I’ve hyperfocused before on an essay that interested me for over 10 hours,” she recalls, “so I imagine if I was interested in surgery, I could easily hyperfocus on a long operation.” 

Empathy is another key part of medical practice. Contrary to stereotypes of neurodivergent people lacking empathy, current research suggests this isn’t true. A concept known as the “double empathy problem,” a term coined by British researcher Damian Milton in 2012, challenges the misconception that autistic people do not have empathy, explains Dr. Grosjean.

Mr. Milton theorized that there are two types of empathy: emotional, when you feel someone else’s pain, and cognitive, which involves critical thinking to understand someone’s emotions or thoughts. “Autistic people have, in general, a lot of emotional empathy,” Dr. Grosjean says, “but the cognitive empathy they don’t have as well.”

Dr. Neff has experienced this in her practice. “I will often feel what my clients are feeling as they’re feeling it,” she says, adding that she has always had an innate ability to analyze and connect with clients. She’s good at observing the interplay of health conditions, incorporating biology, psychology, and social conceptualizations of issues, with nuance. She feels that recognizing behavioral patterns or psychological triggers in her patients helps her see them holistically and provide better care. “That was a skill even before I realized I was autistic, but I always thought it was just intuitive to everyone,” she says. 
 

Support Can Lead to Success

The Americans with Disabilities Act requires employers to provide reasonable accommodations to neurodivergent employees. However, getting those accommodations involves disclosure, which many physicians have reasons to avoid.

It also means more work. Requesting and putting adjustments in place can take a lot of time and energy to organize. Ms. McVey says they can be “long-winded, multistep tasks” that are not very compatible with ADHD. “Some doctors report that service pressures and funding are used as excuses to refuse adjustments,” she adds. 

Ms. McVey lists several workplace accommodations that could be helpful, including flexible working hours, a quiet space to complete paperwork, dictation software, and extra time for medical students to complete written exams.

Neurodivergent physicians have also called for increased diversity of senior leadership and utilizing “cognitive apprenticeship models,” where employees explain their thought processes and receive timely feedback.

But far too often, there is little intervention until a doctor reaches a crisis point. “I look forward to the day when we don’t have to wait until people are profoundly depleted to discover how their brains work,” says Dr. Houser.

Beyond logistical and structural changes in the medical field, Dr. Grosjean speaks of the simple need to listen to colleagues with an open mind and believe them when they express their feelings and experiences. “Everyone has a role to play in challenging stigma, misconceptions, and stereotypes,” Ms. McVey agrees. Ask yourself the old question, she suggests: “If not me, then who? If not now, then when?”

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

US Hospitals Prone to Cyberattacks Like One That Impacted Patient Care at Ascension, Experts Say

Article Type
Changed
Fri, 06/21/2024 - 14:19

In the wake of a debilitating cyberattack against one of the nation’s largest health care systems, Marvin Ruckle, a nurse at an Ascension hospital in Wichita, Kansas, said he had a frightening experience: He nearly gave a baby “the wrong dose of narcotic” because of confusing paperwork.

Ruckle, who has worked in the neonatal intensive care unit at Ascension Via Christi St. Joseph for two decades, said it was “hard to decipher which was the correct dose” on the medication record. He’d “never seen that happen,” he said, “when we were on the computer system” before the cyberattack.

A May 8 ransomware attack against Ascension, a Catholic health system with 140 hospitals in at least 10 states, locked providers out of systems that track and coordinate nearly every aspect of patient care. They include its systems for electronic health records, some phones, and ones “utilized to order certain tests, procedures and medications,” the company said in a May 9 statement.

More than a dozen doctors and nurses who work for the sprawling health system told Michigan Public and KFF Health News that patient care at its hospitals across the nation was compromised in the fallout of the cyberattack over the past several weeks. Clinicians working for hospitals in three states described harrowing lapses, including delayed or lost lab results, medication errors, and an absence of routine safety checks via technology to prevent potentially fatal mistakes.

Despite a precipitous rise in cyberattacks against the health sector in recent years, a weeks-long disruption of this magnitude is beyond what most health systems are prepared for, said John S. Clark, an associate chief pharmacy officer at the University of Michigan health system.

“I don’t believe that anyone is fully prepared,” he said. Most emergency management plans “are designed around long-term downtimes that are into one, two, or three days.”

Ascension in a public statement May 9 said its care teams were “trained for these kinds of disruptions,” but did not respond to questions in early June about whether it had prepared for longer periods of downtime. Ascension said June 14 it had restored access to electronic health records across its network, but that patient “medical records and other information collected between May 8” and when the service was restored “may be temporarily inaccessible as we work to update the portal with information collected during the system downtime.”

Ruckle said he “had no training” for the cyberattack.
 

Back to Paper

Lisa Watson, an intensive care unit nurse at Ascension Via Christi St. Francis hospital in Wichita, described her own close call. She said she nearly administered the wrong medication to a critically ill patient because she couldn’t scan it as she normally would. “My patient probably would have passed away had I not caught it,” she said.

Watson is no stranger to using paper for patients’ medical charts, saying she did so “for probably half of my career,” before electronic health records became ubiquitous in hospitals. What happened after the cyberattack was “by no means the same.”

“When we paper-charted, we had systems in place to get those orders to other departments in a timely manner,” she said, “and those have all gone away.”

Melissa LaRue, an ICU nurse at Ascension Saint Agnes Hospital in Baltimore, described a close call with “administering the wrong dosage” of a patient’s blood pressure medication. “Luckily,” she said, it was “triple-checked and remedied before that could happen. But I think the potential for harm is there when you have so much information and paperwork that you have to go through.”

Clinicians say their hospitals have relied on slapdash workarounds, using handwritten notes, faxes, sticky notes, and basic computer spreadsheets — many devised on the fly by doctors and nurses — to care for patients.

More than a dozen other nurses and doctors, some of them without union protections, at Ascension hospitals in Michigan recounted situations in which they say patient care was compromised. Those clinicians spoke on the condition that they not be named for fear of retaliation by their employer.

An Ascension hospital emergency room doctor in Detroit said a man on the city’s east side was given a dangerous narcotic intended for another patient because of a paperwork mix-up. As a result, the patient’s breathing slowed to the point that he had to be put on a ventilator. “We intubated him and we sent him to the ICU because he got the wrong medication.”

A nurse in a Michigan Ascension hospital ER said a woman with low blood sugar and “altered mental status” went into cardiac arrest and died after staff said they waited four hours for lab results they needed to determine how to treat her, but never received. “If I started having crushing chest pain in the middle of work and thought I was having a big one, I would grab someone to drive me down the street to another hospital,” the same ER nurse said.

Similar concerns reportedly led a travel nurse at an Ascension hospital in Indiana to quit. “I just want to warn those patients that are coming to any of the Ascension facilities that there will be delays in care. There is potential for error and for harm,” Justin Neisser told CBS4 in Indianapolis in May.

Several nurses and doctors at Ascension hospitals said they feared the errors they’ve witnessed since the cyberattack began could threaten their professional licenses. “This is how a RaDonda Vaught happens,” one nurse said, referring to the Tennessee nurse who was convicted of criminally negligent homicide in 2022 for a fatal drug error.

Reporters were not able to review records to verify clinicians’ claims because of privacy laws surrounding patients’ medical information that apply to health care professionals.

Ascension declined to answer questions about claims that care has been affected by the ransomware attack. “As we have made clear throughout this cyber attack which has impacted our system and our dedicated clinical providers, caring for our patients is our highest priority,” Sean Fitzpatrick, Ascension’s vice president of external communications, said via email on June 3. “We are confident that our care providers in our hospitals and facilities continue to provide quality medical care.”

The federal government requires hospitals to protect patients’ sensitive health data, according to cybersecurity experts. However, there are no federal requirements for hospitals to prevent or prepare for cyberattacks that could compromise their electronic systems.
 

 

 

Hospitals: ‘The No.1 Target of Ransomware’

“We’ve started to think about these as public health issues and disasters on the scale of earthquakes or hurricanes,” said Jeff Tully, a co-director of the Center for Healthcare Cybersecurity at the University of California-San Diego. “These types of cybersecurity incidents should be thought of as a matter of when, and not if.”

Josh Corman, a cybersecurity expert and advocate, said ransom crews regard hospitals as the perfect prey: “They have terrible security and they’ll pay. So almost immediately, hospitals went to the No. 1 target of ransomware.”

In 2023, the health sector experienced the largest share of ransomware attacks of 16 infrastructure sectors considered vital to national security or safety, according to an FBI report on internet crimes. In March, the federal Department of Health and Human Services said reported large breaches involving ransomware had jumped by 264% over the past five years.

A cyberattack this year on Change Healthcare, a unit of UnitedHealth Group’s Optum division that processes billions of health care transactions every year, crippled the business of providers, pharmacies, and hospitals.

In May, UnitedHealth Group CEO Andrew Witty told lawmakers the company paid a $22 million ransom as a result of the Change Healthcare attack — which occurred after hackers accessed a company portal that didn’t have multifactor authentication, a basic cybersecurity tool.

The Biden administration in recent months has pushed to bolster health care cybersecurity standards, but it’s not clear which new measures will be required.

In January, HHS nudged companies to improve email security, add multifactor authentication, and institute cybersecurity training and testing, among other voluntary measures. The Centers for Medicare & Medicaid Services is expected to release new requirements for hospitals, but the scope and timing are unclear. The same is true of an update HHS is expected to make to patient privacy regulations.

HHS said the voluntary measures “will inform the creation of new enforceable cybersecurity standards,” department spokesperson Jeff Nesbit said in a statement.

“The recent cyberattack at Ascension only underscores the need for everyone in the health care ecosystem to do their part to secure their systems and protect patients,” Nesbit said.

Meanwhile, lobbyists for the hospital industry contend cybersecurity mandates or penalties are misplaced and would curtail hospitals’ resources to fend off attacks.

“Hospitals and health systems are not the primary source of cyber risk exposure facing the health care sector,” the American Hospital Association, the largest lobbying group for U.S. hospitals, said in an April statement prepared for U.S. House lawmakers. Most large data breaches that hit hospitals in 2023 originated with third-party “business associates” or other health entities, including CMS itself, the AHA statement said.

Hospitals consolidating into large multistate health systems face increased risk of data breaches and ransomware attacks, according to one study. Ascension in 2022 was the third-largest hospital chain in the U.S. by number of beds, according to the most recent data from the federal Agency for Healthcare Research and Quality.

And while cybersecurity regulations can quickly become outdated, they can at least make it clear that if health systems fail to implement basic protections there “should be consequences for that,” Jim Bagian, a former director of the National Center for Patient Safety at the Veterans Health Administration, told Michigan Public’s Stateside.

Patients can pay the price when lapses occur. Those in hospital care face a greater likelihood of death during a cyberattack, according to researchers at the University of Minnesota School of Public Health.

Workers concerned about patient safety at Ascension hospitals in Michigan have called for the company to make changes.

“We implore Ascension to recognize the internal problems that continue to plague its hospitals, both publicly and transparently,” said Dina Carlisle, a nurse and the president of the OPEIU Local 40 union, which represents nurses at Ascension Providence Rochester. At least 125 staff members at that Ascension hospital have signed a petition asking administrators to temporarily reduce elective surgeries and nonemergency patient admissions, like under the protocols many hospitals adopted early in the covid-19 pandemic.

Watson, the Kansas ICU nurse, said in late May that nurses had urged management to bring in more nurses to help manage the workflow. “Everything that we say has fallen on deaf ears,” she said.

“It is very hard to be a nurse at Ascension right now,” Watson said in late May. “It is very hard to be a patient at Ascension right now.”

If you’re a patient or worker at an Ascension hospital and would like to tell KFF Health News about your experiences, click here to share your story with us.
 

KFF Health News is a national newsroom that produces in-depth journalism about health issues and is one of the core operating programs at KFF—an independent source of health policy research, polling, and journalism. Learn more about KFF.

Publications
Topics
Sections

In the wake of a debilitating cyberattack against one of the nation’s largest health care systems, Marvin Ruckle, a nurse at an Ascension hospital in Wichita, Kansas, said he had a frightening experience: He nearly gave a baby “the wrong dose of narcotic” because of confusing paperwork.

Ruckle, who has worked in the neonatal intensive care unit at Ascension Via Christi St. Joseph for two decades, said it was “hard to decipher which was the correct dose” on the medication record. He’d “never seen that happen,” he said, “when we were on the computer system” before the cyberattack.

A May 8 ransomware attack against Ascension, a Catholic health system with 140 hospitals in at least 10 states, locked providers out of systems that track and coordinate nearly every aspect of patient care. They include its systems for electronic health records, some phones, and ones “utilized to order certain tests, procedures and medications,” the company said in a May 9 statement.

More than a dozen doctors and nurses who work for the sprawling health system told Michigan Public and KFF Health News that patient care at its hospitals across the nation was compromised in the fallout of the cyberattack over the past several weeks. Clinicians working for hospitals in three states described harrowing lapses, including delayed or lost lab results, medication errors, and an absence of routine safety checks via technology to prevent potentially fatal mistakes.

Despite a precipitous rise in cyberattacks against the health sector in recent years, a weeks-long disruption of this magnitude is beyond what most health systems are prepared for, said John S. Clark, an associate chief pharmacy officer at the University of Michigan health system.

“I don’t believe that anyone is fully prepared,” he said. Most emergency management plans “are designed around long-term downtimes that are into one, two, or three days.”

Ascension in a public statement May 9 said its care teams were “trained for these kinds of disruptions,” but did not respond to questions in early June about whether it had prepared for longer periods of downtime. Ascension said June 14 it had restored access to electronic health records across its network, but that patient “medical records and other information collected between May 8” and when the service was restored “may be temporarily inaccessible as we work to update the portal with information collected during the system downtime.”

Ruckle said he “had no training” for the cyberattack.
 

Back to Paper

Lisa Watson, an intensive care unit nurse at Ascension Via Christi St. Francis hospital in Wichita, described her own close call. She said she nearly administered the wrong medication to a critically ill patient because she couldn’t scan it as she normally would. “My patient probably would have passed away had I not caught it,” she said.

Watson is no stranger to using paper for patients’ medical charts, saying she did so “for probably half of my career,” before electronic health records became ubiquitous in hospitals. What happened after the cyberattack was “by no means the same.”

“When we paper-charted, we had systems in place to get those orders to other departments in a timely manner,” she said, “and those have all gone away.”

Melissa LaRue, an ICU nurse at Ascension Saint Agnes Hospital in Baltimore, described a close call with “administering the wrong dosage” of a patient’s blood pressure medication. “Luckily,” she said, it was “triple-checked and remedied before that could happen. But I think the potential for harm is there when you have so much information and paperwork that you have to go through.”

Clinicians say their hospitals have relied on slapdash workarounds, using handwritten notes, faxes, sticky notes, and basic computer spreadsheets — many devised on the fly by doctors and nurses — to care for patients.

More than a dozen other nurses and doctors, some of them without union protections, at Ascension hospitals in Michigan recounted situations in which they say patient care was compromised. Those clinicians spoke on the condition that they not be named for fear of retaliation by their employer.

An Ascension hospital emergency room doctor in Detroit said a man on the city’s east side was given a dangerous narcotic intended for another patient because of a paperwork mix-up. As a result, the patient’s breathing slowed to the point that he had to be put on a ventilator. “We intubated him and we sent him to the ICU because he got the wrong medication.”

A nurse in a Michigan Ascension hospital ER said a woman with low blood sugar and “altered mental status” went into cardiac arrest and died after staff said they waited four hours for lab results they needed to determine how to treat her, but never received. “If I started having crushing chest pain in the middle of work and thought I was having a big one, I would grab someone to drive me down the street to another hospital,” the same ER nurse said.

Similar concerns reportedly led a travel nurse at an Ascension hospital in Indiana to quit. “I just want to warn those patients that are coming to any of the Ascension facilities that there will be delays in care. There is potential for error and for harm,” Justin Neisser told CBS4 in Indianapolis in May.

Several nurses and doctors at Ascension hospitals said they feared the errors they’ve witnessed since the cyberattack began could threaten their professional licenses. “This is how a RaDonda Vaught happens,” one nurse said, referring to the Tennessee nurse who was convicted of criminally negligent homicide in 2022 for a fatal drug error.

Reporters were not able to review records to verify clinicians’ claims because of privacy laws surrounding patients’ medical information that apply to health care professionals.

Ascension declined to answer questions about claims that care has been affected by the ransomware attack. “As we have made clear throughout this cyber attack which has impacted our system and our dedicated clinical providers, caring for our patients is our highest priority,” Sean Fitzpatrick, Ascension’s vice president of external communications, said via email on June 3. “We are confident that our care providers in our hospitals and facilities continue to provide quality medical care.”

The federal government requires hospitals to protect patients’ sensitive health data, according to cybersecurity experts. However, there are no federal requirements for hospitals to prevent or prepare for cyberattacks that could compromise their electronic systems.
 

 

 

Hospitals: ‘The No.1 Target of Ransomware’

“We’ve started to think about these as public health issues and disasters on the scale of earthquakes or hurricanes,” said Jeff Tully, a co-director of the Center for Healthcare Cybersecurity at the University of California-San Diego. “These types of cybersecurity incidents should be thought of as a matter of when, and not if.”

Josh Corman, a cybersecurity expert and advocate, said ransom crews regard hospitals as the perfect prey: “They have terrible security and they’ll pay. So almost immediately, hospitals went to the No. 1 target of ransomware.”

In 2023, the health sector experienced the largest share of ransomware attacks of 16 infrastructure sectors considered vital to national security or safety, according to an FBI report on internet crimes. In March, the federal Department of Health and Human Services said reported large breaches involving ransomware had jumped by 264% over the past five years.

A cyberattack this year on Change Healthcare, a unit of UnitedHealth Group’s Optum division that processes billions of health care transactions every year, crippled the business of providers, pharmacies, and hospitals.

In May, UnitedHealth Group CEO Andrew Witty told lawmakers the company paid a $22 million ransom as a result of the Change Healthcare attack — which occurred after hackers accessed a company portal that didn’t have multifactor authentication, a basic cybersecurity tool.

The Biden administration in recent months has pushed to bolster health care cybersecurity standards, but it’s not clear which new measures will be required.

In January, HHS nudged companies to improve email security, add multifactor authentication, and institute cybersecurity training and testing, among other voluntary measures. The Centers for Medicare & Medicaid Services is expected to release new requirements for hospitals, but the scope and timing are unclear. The same is true of an update HHS is expected to make to patient privacy regulations.

HHS said the voluntary measures “will inform the creation of new enforceable cybersecurity standards,” department spokesperson Jeff Nesbit said in a statement.

“The recent cyberattack at Ascension only underscores the need for everyone in the health care ecosystem to do their part to secure their systems and protect patients,” Nesbit said.

Meanwhile, lobbyists for the hospital industry contend cybersecurity mandates or penalties are misplaced and would curtail hospitals’ resources to fend off attacks.

“Hospitals and health systems are not the primary source of cyber risk exposure facing the health care sector,” the American Hospital Association, the largest lobbying group for U.S. hospitals, said in an April statement prepared for U.S. House lawmakers. Most large data breaches that hit hospitals in 2023 originated with third-party “business associates” or other health entities, including CMS itself, the AHA statement said.

Hospitals consolidating into large multistate health systems face increased risk of data breaches and ransomware attacks, according to one study. Ascension in 2022 was the third-largest hospital chain in the U.S. by number of beds, according to the most recent data from the federal Agency for Healthcare Research and Quality.

And while cybersecurity regulations can quickly become outdated, they can at least make it clear that if health systems fail to implement basic protections there “should be consequences for that,” Jim Bagian, a former director of the National Center for Patient Safety at the Veterans Health Administration, told Michigan Public’s Stateside.

Patients can pay the price when lapses occur. Those in hospital care face a greater likelihood of death during a cyberattack, according to researchers at the University of Minnesota School of Public Health.

Workers concerned about patient safety at Ascension hospitals in Michigan have called for the company to make changes.

“We implore Ascension to recognize the internal problems that continue to plague its hospitals, both publicly and transparently,” said Dina Carlisle, a nurse and the president of the OPEIU Local 40 union, which represents nurses at Ascension Providence Rochester. At least 125 staff members at that Ascension hospital have signed a petition asking administrators to temporarily reduce elective surgeries and nonemergency patient admissions, like under the protocols many hospitals adopted early in the covid-19 pandemic.

Watson, the Kansas ICU nurse, said in late May that nurses had urged management to bring in more nurses to help manage the workflow. “Everything that we say has fallen on deaf ears,” she said.

“It is very hard to be a nurse at Ascension right now,” Watson said in late May. “It is very hard to be a patient at Ascension right now.”

If you’re a patient or worker at an Ascension hospital and would like to tell KFF Health News about your experiences, click here to share your story with us.
 

KFF Health News is a national newsroom that produces in-depth journalism about health issues and is one of the core operating programs at KFF—an independent source of health policy research, polling, and journalism. Learn more about KFF.

In the wake of a debilitating cyberattack against one of the nation’s largest health care systems, Marvin Ruckle, a nurse at an Ascension hospital in Wichita, Kansas, said he had a frightening experience: He nearly gave a baby “the wrong dose of narcotic” because of confusing paperwork.

Ruckle, who has worked in the neonatal intensive care unit at Ascension Via Christi St. Joseph for two decades, said it was “hard to decipher which was the correct dose” on the medication record. He’d “never seen that happen,” he said, “when we were on the computer system” before the cyberattack.

A May 8 ransomware attack against Ascension, a Catholic health system with 140 hospitals in at least 10 states, locked providers out of systems that track and coordinate nearly every aspect of patient care. They include its systems for electronic health records, some phones, and ones “utilized to order certain tests, procedures and medications,” the company said in a May 9 statement.

More than a dozen doctors and nurses who work for the sprawling health system told Michigan Public and KFF Health News that patient care at its hospitals across the nation was compromised in the fallout of the cyberattack over the past several weeks. Clinicians working for hospitals in three states described harrowing lapses, including delayed or lost lab results, medication errors, and an absence of routine safety checks via technology to prevent potentially fatal mistakes.

Despite a precipitous rise in cyberattacks against the health sector in recent years, a weeks-long disruption of this magnitude is beyond what most health systems are prepared for, said John S. Clark, an associate chief pharmacy officer at the University of Michigan health system.

“I don’t believe that anyone is fully prepared,” he said. Most emergency management plans “are designed around long-term downtimes that are into one, two, or three days.”

Ascension in a public statement May 9 said its care teams were “trained for these kinds of disruptions,” but did not respond to questions in early June about whether it had prepared for longer periods of downtime. Ascension said June 14 it had restored access to electronic health records across its network, but that patient “medical records and other information collected between May 8” and when the service was restored “may be temporarily inaccessible as we work to update the portal with information collected during the system downtime.”

Ruckle said he “had no training” for the cyberattack.
 

Back to Paper

Lisa Watson, an intensive care unit nurse at Ascension Via Christi St. Francis hospital in Wichita, described her own close call. She said she nearly administered the wrong medication to a critically ill patient because she couldn’t scan it as she normally would. “My patient probably would have passed away had I not caught it,” she said.

Watson is no stranger to using paper for patients’ medical charts, saying she did so “for probably half of my career,” before electronic health records became ubiquitous in hospitals. What happened after the cyberattack was “by no means the same.”

“When we paper-charted, we had systems in place to get those orders to other departments in a timely manner,” she said, “and those have all gone away.”

Melissa LaRue, an ICU nurse at Ascension Saint Agnes Hospital in Baltimore, described a close call with “administering the wrong dosage” of a patient’s blood pressure medication. “Luckily,” she said, it was “triple-checked and remedied before that could happen. But I think the potential for harm is there when you have so much information and paperwork that you have to go through.”

Clinicians say their hospitals have relied on slapdash workarounds, using handwritten notes, faxes, sticky notes, and basic computer spreadsheets — many devised on the fly by doctors and nurses — to care for patients.

More than a dozen other nurses and doctors, some of them without union protections, at Ascension hospitals in Michigan recounted situations in which they say patient care was compromised. Those clinicians spoke on the condition that they not be named for fear of retaliation by their employer.

An Ascension hospital emergency room doctor in Detroit said a man on the city’s east side was given a dangerous narcotic intended for another patient because of a paperwork mix-up. As a result, the patient’s breathing slowed to the point that he had to be put on a ventilator. “We intubated him and we sent him to the ICU because he got the wrong medication.”

A nurse in a Michigan Ascension hospital ER said a woman with low blood sugar and “altered mental status” went into cardiac arrest and died after staff said they waited four hours for lab results they needed to determine how to treat her, but never received. “If I started having crushing chest pain in the middle of work and thought I was having a big one, I would grab someone to drive me down the street to another hospital,” the same ER nurse said.

Similar concerns reportedly led a travel nurse at an Ascension hospital in Indiana to quit. “I just want to warn those patients that are coming to any of the Ascension facilities that there will be delays in care. There is potential for error and for harm,” Justin Neisser told CBS4 in Indianapolis in May.

Several nurses and doctors at Ascension hospitals said they feared the errors they’ve witnessed since the cyberattack began could threaten their professional licenses. “This is how a RaDonda Vaught happens,” one nurse said, referring to the Tennessee nurse who was convicted of criminally negligent homicide in 2022 for a fatal drug error.

Reporters were not able to review records to verify clinicians’ claims because of privacy laws surrounding patients’ medical information that apply to health care professionals.

Ascension declined to answer questions about claims that care has been affected by the ransomware attack. “As we have made clear throughout this cyber attack which has impacted our system and our dedicated clinical providers, caring for our patients is our highest priority,” Sean Fitzpatrick, Ascension’s vice president of external communications, said via email on June 3. “We are confident that our care providers in our hospitals and facilities continue to provide quality medical care.”

The federal government requires hospitals to protect patients’ sensitive health data, according to cybersecurity experts. However, there are no federal requirements for hospitals to prevent or prepare for cyberattacks that could compromise their electronic systems.
 

 

 

Hospitals: ‘The No.1 Target of Ransomware’

“We’ve started to think about these as public health issues and disasters on the scale of earthquakes or hurricanes,” said Jeff Tully, a co-director of the Center for Healthcare Cybersecurity at the University of California-San Diego. “These types of cybersecurity incidents should be thought of as a matter of when, and not if.”

Josh Corman, a cybersecurity expert and advocate, said ransom crews regard hospitals as the perfect prey: “They have terrible security and they’ll pay. So almost immediately, hospitals went to the No. 1 target of ransomware.”

In 2023, the health sector experienced the largest share of ransomware attacks of 16 infrastructure sectors considered vital to national security or safety, according to an FBI report on internet crimes. In March, the federal Department of Health and Human Services said reported large breaches involving ransomware had jumped by 264% over the past five years.

A cyberattack this year on Change Healthcare, a unit of UnitedHealth Group’s Optum division that processes billions of health care transactions every year, crippled the business of providers, pharmacies, and hospitals.

In May, UnitedHealth Group CEO Andrew Witty told lawmakers the company paid a $22 million ransom as a result of the Change Healthcare attack — which occurred after hackers accessed a company portal that didn’t have multifactor authentication, a basic cybersecurity tool.

The Biden administration in recent months has pushed to bolster health care cybersecurity standards, but it’s not clear which new measures will be required.

In January, HHS nudged companies to improve email security, add multifactor authentication, and institute cybersecurity training and testing, among other voluntary measures. The Centers for Medicare & Medicaid Services is expected to release new requirements for hospitals, but the scope and timing are unclear. The same is true of an update HHS is expected to make to patient privacy regulations.

HHS said the voluntary measures “will inform the creation of new enforceable cybersecurity standards,” department spokesperson Jeff Nesbit said in a statement.

“The recent cyberattack at Ascension only underscores the need for everyone in the health care ecosystem to do their part to secure their systems and protect patients,” Nesbit said.

Meanwhile, lobbyists for the hospital industry contend cybersecurity mandates or penalties are misplaced and would curtail hospitals’ resources to fend off attacks.

“Hospitals and health systems are not the primary source of cyber risk exposure facing the health care sector,” the American Hospital Association, the largest lobbying group for U.S. hospitals, said in an April statement prepared for U.S. House lawmakers. Most large data breaches that hit hospitals in 2023 originated with third-party “business associates” or other health entities, including CMS itself, the AHA statement said.

Hospitals consolidating into large multistate health systems face increased risk of data breaches and ransomware attacks, according to one study. Ascension in 2022 was the third-largest hospital chain in the U.S. by number of beds, according to the most recent data from the federal Agency for Healthcare Research and Quality.

And while cybersecurity regulations can quickly become outdated, they can at least make it clear that if health systems fail to implement basic protections there “should be consequences for that,” Jim Bagian, a former director of the National Center for Patient Safety at the Veterans Health Administration, told Michigan Public’s Stateside.

Patients can pay the price when lapses occur. Those in hospital care face a greater likelihood of death during a cyberattack, according to researchers at the University of Minnesota School of Public Health.

Workers concerned about patient safety at Ascension hospitals in Michigan have called for the company to make changes.

“We implore Ascension to recognize the internal problems that continue to plague its hospitals, both publicly and transparently,” said Dina Carlisle, a nurse and the president of the OPEIU Local 40 union, which represents nurses at Ascension Providence Rochester. At least 125 staff members at that Ascension hospital have signed a petition asking administrators to temporarily reduce elective surgeries and nonemergency patient admissions, like under the protocols many hospitals adopted early in the covid-19 pandemic.

Watson, the Kansas ICU nurse, said in late May that nurses had urged management to bring in more nurses to help manage the workflow. “Everything that we say has fallen on deaf ears,” she said.

“It is very hard to be a nurse at Ascension right now,” Watson said in late May. “It is very hard to be a patient at Ascension right now.”

If you’re a patient or worker at an Ascension hospital and would like to tell KFF Health News about your experiences, click here to share your story with us.
 

KFF Health News is a national newsroom that produces in-depth journalism about health issues and is one of the core operating programs at KFF—an independent source of health policy research, polling, and journalism. Learn more about KFF.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Metformin Gets a Reproductive Reprieve — For Diabetic Moms and Dads Alike

Article Type
Changed
Fri, 06/21/2024 - 11:47

For decades it’s been thought that preconception use of the oral antidiabetic metformin by mothers and fathers might result in adverse fetal outcomes, including congenital malformations and stillbirths.

Women with type 2 diabetes (T2D) are often advised to switch to insulin before or during early pregnancy out of concern for fetal safety. But two studies from the Harvard T.H. Chan School of Public Health in Boston, Massachusetts — one in mothers, the other in fathers — report that metformin, a common and cost-effective antidiabetic agent, is not associated with a significant increased risk of teratogenicity and negative perinatal outcomes. The studies appear in Annals of Internal Medicine.

The studies may make it easier for physicians to reassure diabetic parents-to-be about the safety of metformin use before conception and in early pregnancy,

In the context of sparse existing safety data, the maternal analysis looked at Medicaid data on 12,489 mothers (mean age, about 30) receiving metformin for pregestational T2D during the period 2000-2018. “Many women become pregnant while still taking noninsulin oral antidiabetics, mostly metformin, and one safety concern is whether metformin could cause birth defects,” lead author Yu-Han Chiu, MD, ScD, an epidemiologist, said in an interview, commenting on the impetus for the study.

Dr. Chiu is an epidemiologist at the Harvard School of Public Health
Dr. Yu-Han Chiu


“On the one hand, metformin can cross the placenta and might directly affect the fetus. On the other hand, poor blood sugar control is a risk factor for birth defects,” she continued. “Insulin in combination with metformin might control blood sugar better than using insulin alone, which may lower the risk of birth defects.”

Switched to insulin monotherapy or prescribed additional insulin within 90 days of their last menstrual period, mothers were assessed for nonchromosomal fetal malformations and nonlive births, spontaneous abortion, and termination. Continuing metformin or adding insulin to metformin in early pregnancy resulted in little to no increased risk for major malformations in infants.

The estimated risk for nonlive birth was 32.7% with insulin monotherapy and 34.3% with insulin plus metformin polytherapy, for a risk ratio (RR) of 1.02 (95% confidence interval (CI), 1.01-1.04).

In addition, the estimated risk for live birth with congenital malformations was 8.0% (5.70-10.2) under insulin monotherapy and 5.7% under insulin plus metformin (95% CI, 4.5-7.3), amounting to a risk ratio of 0.72 (0.51-1.09).

While the results may involve residual confounding by participants’ glycemic control and body mass index, Dr. Chiu said, “Our findings suggest that the current clinical recommendations to switch from metformin to insulin before pregnancy, due to concerns about birth defects, may require reconsideration.”

She noted that previous trials showed adding metformin to insulin in mid-late pregnancy also improved blood sugar control with no increase in risk of birth defects. “However, most of these studies started treatment too late — between 10 and 34 weeks of pregnancy — to determine if metformin could cause birth defects.”

Observational studies found that women with pregestational diabetes who used noninsulin antidiabetics (mainly metformin) in the first trimester had a lower risk of birth defects, compared with those who used insulin, Dr. Chiu added. “However, comparing metformin with insulin may have some biases because women who used metformin generally have less severe diabetes than those who used insulin.”

Aligning with these reassuring findings, a randomized, placebo-controlled trial reported that adding metformin to insulin did not lead to a higher incidence of neonatal morbidity and mortality and was associated with better maternal glycemic control and reduced maternal weight gain. Metformin-exposed offspring, however, had lower birth weights and a higher incidence of being small for gestational age.

Similarly, a recent Nordic register study of more than 3.7 million infants also found no evidence of an increased risk of major defects with the use of metformin vs insulin in the first trimester.

Despite such reassuring findings, however, Dr. Chiu stressed the need to study other pregnancy and infant outcomes as well as the safety of other oral antidiabetics during pregnancy.
 

 

 

Metformin in Fathers

Turning to fathers, a much larger cohort study by Harvard T.H. Chan investigators looked at the effect of paternal metformin use and also found it to be safe.

The Harvard investigators analyzed diabetic men in 383,851 live births from 1999 to 2020 in an Israeli health fund cohort, excluding those with diabetic spouses. Across different T2D medication groups, paternal age ranged from about 35 to about 43 years. The data revealed that paternal use of metformin monotherapy in the preconception sperm production period was, after adjustment of crude numbers, not associated with major congenital malformations (MCMs) in newborns.

“While metformin has an overall good safety profile, it can lower androgen levels, and there had been some concerns that its use in fathers could alter the sperm, causing adverse effects to the fetus,” lead author and neuroepidemiologist Ran S. Rotem, MD, ScD, of the Harvard School of Public Health, Boston, Massachusetts, said in interview. “Given the increasing prevalence of diabetes in young individuals, more fathers are conceiving a child while using the medication, which could lead to a substantial population effect even if the individual risk is low. But our study suggests that the medication is safe to use by fathers before conception.”

Dr. Rotem is a neuroepidemiologist at the Harvard School of Public Health, Boston, Massachusetts
Dr. Ran S. Rotem


The prevalence of MCMs in the cohort was 4.7% in children of fathers unexposed to diabetes medications (n = 381,041), compared with 6.2% in children of fathers exposed during preconception spermatogenesis to metformin (n = 1730).

By these crude numbers, children with preconception paternal metformin exposure had a nearly 30% increased odds of MCMs. But whereas the crude odds ratio (OR) for MCMs with paternal metformin exposure in all formulations was 1.28 (95% CI, 1.01-1.64), the adjusted OR was 1.00 (95% CI, 0.76 -1.31). Within specific regimens, the adjusted OR was 0.86 (95% CI, 0.60-1.23) for metformin in monotherapy and 1.36 (95% CI, 1.00-1.85) for metformin in polytherapy.

At the outset, Dr. Rotem’s group hypothesized that any crude associations between metformin in polytherapy and birth defects could potentially be explained by poorer underlying parental cardiometabolic risk profiles in those taking multiple diabetes medications. Compared with that of unexposed fathers, the prevalence of cardiometabolic morbidity was indeed substantially higher among both fathers who used metformin during spermatogenesis and their spouses.

In addition, these fathers were more likely to be older, to be smokers, and to have fertility problems. Similarly, mothers were more likely to have cardiovascular comorbidity and to have had fertility problems when the father used metformin.

Moreover, children born to men who used diabetes medications before conception were much more likely to have mothers who also had diabetes and other metabolic conditions, Dr. Rotem noted. “This makes sense since we know that many of these conditions are affected by diet and lifestyle factors that are probably shared across individuals living in the same household.”

Recent research has shown that paternal health and behavior before conception can affect offspring development and long-term health. Characteristics including obesity, diabetes, and metabolic syndrome are seen to affect offspring via complex indirect and direct mechanisms, both genetic and nongenetic.

Doing little to dispel safety concerns, a recent Danish national study reported a link between preconception paternal metformin and major birth defects, particularly genital birth defects in boys. That study, however, lacked data on medication adherence and glycemic control.

“These are well-conducted studies, but it would be useful to see them replicated in different populations, as the sample sizes eligible for analysis are relatively small and some of the confidence intervals are wide,” said Robert W. Platt, PhD, a professor in the departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health at McGill University in Montreal, Canada. “However, the results suggest that type 2 diabetics can focus on the most effective treatment pathway for their condition. Metformin does not appear to confer an increased risk of congenital malformations.”

Dr. Platt is a professor in the departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health at McGill University in Montreal, Canada.
Dr. Robert W. Platt


According to an accompanying editorial by Sarah Martins da Silva. MBChB, MD, a reproductive medicine specialist at the University of Dundee in Scotland, the Israeli findings highlight the importance of factoring the sometimes overlooked issue of paternal health into reproductive planning and prenatal care. She stressed that individual risks and benefits should always be carefully considered and results interpreted with caution since such studies lack information on glycemic control. “Nonetheless, these recent analyses suggest that metformin is a safe and effective treatment option for T2D for men and women trying to conceive as well as for managing hyperglycemia in pregnant women in the first trimester,” she wrote and agreed that it may be time to reconsider current prenatal care guidelines that advocate switching to insulin therapy.

Dr. Martins da Silva is a reproductive medicine specialist at the University of Dundee in Scotland
Dr. Sarah Martins da Silva


The studies by Dr. Chiu and Dr. Rotem were funded by the National Institutes of Health. Dr. Chiu and Dr. Rotem had no competing interests to declare. Dr. Hernandez Diaz, a coauthor on both studies, reported funding from Takeda and consulting for Moderna, Johnson & Johnson, and UCB. Several authors reported support from government and not-for-profit research funding agencies. Dr. Platt disclosed no competing interests. Editorial commentator Dr. Martins da Silva disclosed consulting, speaking, travel, and advisory fees from, variously, Dyneval, Ferring Pharmaceutical, Merck, IBSA, and Gedeon Richer.

Publications
Topics
Sections

For decades it’s been thought that preconception use of the oral antidiabetic metformin by mothers and fathers might result in adverse fetal outcomes, including congenital malformations and stillbirths.

Women with type 2 diabetes (T2D) are often advised to switch to insulin before or during early pregnancy out of concern for fetal safety. But two studies from the Harvard T.H. Chan School of Public Health in Boston, Massachusetts — one in mothers, the other in fathers — report that metformin, a common and cost-effective antidiabetic agent, is not associated with a significant increased risk of teratogenicity and negative perinatal outcomes. The studies appear in Annals of Internal Medicine.

The studies may make it easier for physicians to reassure diabetic parents-to-be about the safety of metformin use before conception and in early pregnancy,

In the context of sparse existing safety data, the maternal analysis looked at Medicaid data on 12,489 mothers (mean age, about 30) receiving metformin for pregestational T2D during the period 2000-2018. “Many women become pregnant while still taking noninsulin oral antidiabetics, mostly metformin, and one safety concern is whether metformin could cause birth defects,” lead author Yu-Han Chiu, MD, ScD, an epidemiologist, said in an interview, commenting on the impetus for the study.

Dr. Chiu is an epidemiologist at the Harvard School of Public Health
Dr. Yu-Han Chiu


“On the one hand, metformin can cross the placenta and might directly affect the fetus. On the other hand, poor blood sugar control is a risk factor for birth defects,” she continued. “Insulin in combination with metformin might control blood sugar better than using insulin alone, which may lower the risk of birth defects.”

Switched to insulin monotherapy or prescribed additional insulin within 90 days of their last menstrual period, mothers were assessed for nonchromosomal fetal malformations and nonlive births, spontaneous abortion, and termination. Continuing metformin or adding insulin to metformin in early pregnancy resulted in little to no increased risk for major malformations in infants.

The estimated risk for nonlive birth was 32.7% with insulin monotherapy and 34.3% with insulin plus metformin polytherapy, for a risk ratio (RR) of 1.02 (95% confidence interval (CI), 1.01-1.04).

In addition, the estimated risk for live birth with congenital malformations was 8.0% (5.70-10.2) under insulin monotherapy and 5.7% under insulin plus metformin (95% CI, 4.5-7.3), amounting to a risk ratio of 0.72 (0.51-1.09).

While the results may involve residual confounding by participants’ glycemic control and body mass index, Dr. Chiu said, “Our findings suggest that the current clinical recommendations to switch from metformin to insulin before pregnancy, due to concerns about birth defects, may require reconsideration.”

She noted that previous trials showed adding metformin to insulin in mid-late pregnancy also improved blood sugar control with no increase in risk of birth defects. “However, most of these studies started treatment too late — between 10 and 34 weeks of pregnancy — to determine if metformin could cause birth defects.”

Observational studies found that women with pregestational diabetes who used noninsulin antidiabetics (mainly metformin) in the first trimester had a lower risk of birth defects, compared with those who used insulin, Dr. Chiu added. “However, comparing metformin with insulin may have some biases because women who used metformin generally have less severe diabetes than those who used insulin.”

Aligning with these reassuring findings, a randomized, placebo-controlled trial reported that adding metformin to insulin did not lead to a higher incidence of neonatal morbidity and mortality and was associated with better maternal glycemic control and reduced maternal weight gain. Metformin-exposed offspring, however, had lower birth weights and a higher incidence of being small for gestational age.

Similarly, a recent Nordic register study of more than 3.7 million infants also found no evidence of an increased risk of major defects with the use of metformin vs insulin in the first trimester.

Despite such reassuring findings, however, Dr. Chiu stressed the need to study other pregnancy and infant outcomes as well as the safety of other oral antidiabetics during pregnancy.
 

 

 

Metformin in Fathers

Turning to fathers, a much larger cohort study by Harvard T.H. Chan investigators looked at the effect of paternal metformin use and also found it to be safe.

The Harvard investigators analyzed diabetic men in 383,851 live births from 1999 to 2020 in an Israeli health fund cohort, excluding those with diabetic spouses. Across different T2D medication groups, paternal age ranged from about 35 to about 43 years. The data revealed that paternal use of metformin monotherapy in the preconception sperm production period was, after adjustment of crude numbers, not associated with major congenital malformations (MCMs) in newborns.

“While metformin has an overall good safety profile, it can lower androgen levels, and there had been some concerns that its use in fathers could alter the sperm, causing adverse effects to the fetus,” lead author and neuroepidemiologist Ran S. Rotem, MD, ScD, of the Harvard School of Public Health, Boston, Massachusetts, said in interview. “Given the increasing prevalence of diabetes in young individuals, more fathers are conceiving a child while using the medication, which could lead to a substantial population effect even if the individual risk is low. But our study suggests that the medication is safe to use by fathers before conception.”

Dr. Rotem is a neuroepidemiologist at the Harvard School of Public Health, Boston, Massachusetts
Dr. Ran S. Rotem


The prevalence of MCMs in the cohort was 4.7% in children of fathers unexposed to diabetes medications (n = 381,041), compared with 6.2% in children of fathers exposed during preconception spermatogenesis to metformin (n = 1730).

By these crude numbers, children with preconception paternal metformin exposure had a nearly 30% increased odds of MCMs. But whereas the crude odds ratio (OR) for MCMs with paternal metformin exposure in all formulations was 1.28 (95% CI, 1.01-1.64), the adjusted OR was 1.00 (95% CI, 0.76 -1.31). Within specific regimens, the adjusted OR was 0.86 (95% CI, 0.60-1.23) for metformin in monotherapy and 1.36 (95% CI, 1.00-1.85) for metformin in polytherapy.

At the outset, Dr. Rotem’s group hypothesized that any crude associations between metformin in polytherapy and birth defects could potentially be explained by poorer underlying parental cardiometabolic risk profiles in those taking multiple diabetes medications. Compared with that of unexposed fathers, the prevalence of cardiometabolic morbidity was indeed substantially higher among both fathers who used metformin during spermatogenesis and their spouses.

In addition, these fathers were more likely to be older, to be smokers, and to have fertility problems. Similarly, mothers were more likely to have cardiovascular comorbidity and to have had fertility problems when the father used metformin.

Moreover, children born to men who used diabetes medications before conception were much more likely to have mothers who also had diabetes and other metabolic conditions, Dr. Rotem noted. “This makes sense since we know that many of these conditions are affected by diet and lifestyle factors that are probably shared across individuals living in the same household.”

Recent research has shown that paternal health and behavior before conception can affect offspring development and long-term health. Characteristics including obesity, diabetes, and metabolic syndrome are seen to affect offspring via complex indirect and direct mechanisms, both genetic and nongenetic.

Doing little to dispel safety concerns, a recent Danish national study reported a link between preconception paternal metformin and major birth defects, particularly genital birth defects in boys. That study, however, lacked data on medication adherence and glycemic control.

“These are well-conducted studies, but it would be useful to see them replicated in different populations, as the sample sizes eligible for analysis are relatively small and some of the confidence intervals are wide,” said Robert W. Platt, PhD, a professor in the departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health at McGill University in Montreal, Canada. “However, the results suggest that type 2 diabetics can focus on the most effective treatment pathway for their condition. Metformin does not appear to confer an increased risk of congenital malformations.”

Dr. Platt is a professor in the departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health at McGill University in Montreal, Canada.
Dr. Robert W. Platt


According to an accompanying editorial by Sarah Martins da Silva. MBChB, MD, a reproductive medicine specialist at the University of Dundee in Scotland, the Israeli findings highlight the importance of factoring the sometimes overlooked issue of paternal health into reproductive planning and prenatal care. She stressed that individual risks and benefits should always be carefully considered and results interpreted with caution since such studies lack information on glycemic control. “Nonetheless, these recent analyses suggest that metformin is a safe and effective treatment option for T2D for men and women trying to conceive as well as for managing hyperglycemia in pregnant women in the first trimester,” she wrote and agreed that it may be time to reconsider current prenatal care guidelines that advocate switching to insulin therapy.

Dr. Martins da Silva is a reproductive medicine specialist at the University of Dundee in Scotland
Dr. Sarah Martins da Silva


The studies by Dr. Chiu and Dr. Rotem were funded by the National Institutes of Health. Dr. Chiu and Dr. Rotem had no competing interests to declare. Dr. Hernandez Diaz, a coauthor on both studies, reported funding from Takeda and consulting for Moderna, Johnson & Johnson, and UCB. Several authors reported support from government and not-for-profit research funding agencies. Dr. Platt disclosed no competing interests. Editorial commentator Dr. Martins da Silva disclosed consulting, speaking, travel, and advisory fees from, variously, Dyneval, Ferring Pharmaceutical, Merck, IBSA, and Gedeon Richer.

For decades it’s been thought that preconception use of the oral antidiabetic metformin by mothers and fathers might result in adverse fetal outcomes, including congenital malformations and stillbirths.

Women with type 2 diabetes (T2D) are often advised to switch to insulin before or during early pregnancy out of concern for fetal safety. But two studies from the Harvard T.H. Chan School of Public Health in Boston, Massachusetts — one in mothers, the other in fathers — report that metformin, a common and cost-effective antidiabetic agent, is not associated with a significant increased risk of teratogenicity and negative perinatal outcomes. The studies appear in Annals of Internal Medicine.

The studies may make it easier for physicians to reassure diabetic parents-to-be about the safety of metformin use before conception and in early pregnancy,

In the context of sparse existing safety data, the maternal analysis looked at Medicaid data on 12,489 mothers (mean age, about 30) receiving metformin for pregestational T2D during the period 2000-2018. “Many women become pregnant while still taking noninsulin oral antidiabetics, mostly metformin, and one safety concern is whether metformin could cause birth defects,” lead author Yu-Han Chiu, MD, ScD, an epidemiologist, said in an interview, commenting on the impetus for the study.

Dr. Chiu is an epidemiologist at the Harvard School of Public Health
Dr. Yu-Han Chiu


“On the one hand, metformin can cross the placenta and might directly affect the fetus. On the other hand, poor blood sugar control is a risk factor for birth defects,” she continued. “Insulin in combination with metformin might control blood sugar better than using insulin alone, which may lower the risk of birth defects.”

Switched to insulin monotherapy or prescribed additional insulin within 90 days of their last menstrual period, mothers were assessed for nonchromosomal fetal malformations and nonlive births, spontaneous abortion, and termination. Continuing metformin or adding insulin to metformin in early pregnancy resulted in little to no increased risk for major malformations in infants.

The estimated risk for nonlive birth was 32.7% with insulin monotherapy and 34.3% with insulin plus metformin polytherapy, for a risk ratio (RR) of 1.02 (95% confidence interval (CI), 1.01-1.04).

In addition, the estimated risk for live birth with congenital malformations was 8.0% (5.70-10.2) under insulin monotherapy and 5.7% under insulin plus metformin (95% CI, 4.5-7.3), amounting to a risk ratio of 0.72 (0.51-1.09).

While the results may involve residual confounding by participants’ glycemic control and body mass index, Dr. Chiu said, “Our findings suggest that the current clinical recommendations to switch from metformin to insulin before pregnancy, due to concerns about birth defects, may require reconsideration.”

She noted that previous trials showed adding metformin to insulin in mid-late pregnancy also improved blood sugar control with no increase in risk of birth defects. “However, most of these studies started treatment too late — between 10 and 34 weeks of pregnancy — to determine if metformin could cause birth defects.”

Observational studies found that women with pregestational diabetes who used noninsulin antidiabetics (mainly metformin) in the first trimester had a lower risk of birth defects, compared with those who used insulin, Dr. Chiu added. “However, comparing metformin with insulin may have some biases because women who used metformin generally have less severe diabetes than those who used insulin.”

Aligning with these reassuring findings, a randomized, placebo-controlled trial reported that adding metformin to insulin did not lead to a higher incidence of neonatal morbidity and mortality and was associated with better maternal glycemic control and reduced maternal weight gain. Metformin-exposed offspring, however, had lower birth weights and a higher incidence of being small for gestational age.

Similarly, a recent Nordic register study of more than 3.7 million infants also found no evidence of an increased risk of major defects with the use of metformin vs insulin in the first trimester.

Despite such reassuring findings, however, Dr. Chiu stressed the need to study other pregnancy and infant outcomes as well as the safety of other oral antidiabetics during pregnancy.
 

 

 

Metformin in Fathers

Turning to fathers, a much larger cohort study by Harvard T.H. Chan investigators looked at the effect of paternal metformin use and also found it to be safe.

The Harvard investigators analyzed diabetic men in 383,851 live births from 1999 to 2020 in an Israeli health fund cohort, excluding those with diabetic spouses. Across different T2D medication groups, paternal age ranged from about 35 to about 43 years. The data revealed that paternal use of metformin monotherapy in the preconception sperm production period was, after adjustment of crude numbers, not associated with major congenital malformations (MCMs) in newborns.

“While metformin has an overall good safety profile, it can lower androgen levels, and there had been some concerns that its use in fathers could alter the sperm, causing adverse effects to the fetus,” lead author and neuroepidemiologist Ran S. Rotem, MD, ScD, of the Harvard School of Public Health, Boston, Massachusetts, said in interview. “Given the increasing prevalence of diabetes in young individuals, more fathers are conceiving a child while using the medication, which could lead to a substantial population effect even if the individual risk is low. But our study suggests that the medication is safe to use by fathers before conception.”

Dr. Rotem is a neuroepidemiologist at the Harvard School of Public Health, Boston, Massachusetts
Dr. Ran S. Rotem


The prevalence of MCMs in the cohort was 4.7% in children of fathers unexposed to diabetes medications (n = 381,041), compared with 6.2% in children of fathers exposed during preconception spermatogenesis to metformin (n = 1730).

By these crude numbers, children with preconception paternal metformin exposure had a nearly 30% increased odds of MCMs. But whereas the crude odds ratio (OR) for MCMs with paternal metformin exposure in all formulations was 1.28 (95% CI, 1.01-1.64), the adjusted OR was 1.00 (95% CI, 0.76 -1.31). Within specific regimens, the adjusted OR was 0.86 (95% CI, 0.60-1.23) for metformin in monotherapy and 1.36 (95% CI, 1.00-1.85) for metformin in polytherapy.

At the outset, Dr. Rotem’s group hypothesized that any crude associations between metformin in polytherapy and birth defects could potentially be explained by poorer underlying parental cardiometabolic risk profiles in those taking multiple diabetes medications. Compared with that of unexposed fathers, the prevalence of cardiometabolic morbidity was indeed substantially higher among both fathers who used metformin during spermatogenesis and their spouses.

In addition, these fathers were more likely to be older, to be smokers, and to have fertility problems. Similarly, mothers were more likely to have cardiovascular comorbidity and to have had fertility problems when the father used metformin.

Moreover, children born to men who used diabetes medications before conception were much more likely to have mothers who also had diabetes and other metabolic conditions, Dr. Rotem noted. “This makes sense since we know that many of these conditions are affected by diet and lifestyle factors that are probably shared across individuals living in the same household.”

Recent research has shown that paternal health and behavior before conception can affect offspring development and long-term health. Characteristics including obesity, diabetes, and metabolic syndrome are seen to affect offspring via complex indirect and direct mechanisms, both genetic and nongenetic.

Doing little to dispel safety concerns, a recent Danish national study reported a link between preconception paternal metformin and major birth defects, particularly genital birth defects in boys. That study, however, lacked data on medication adherence and glycemic control.

“These are well-conducted studies, but it would be useful to see them replicated in different populations, as the sample sizes eligible for analysis are relatively small and some of the confidence intervals are wide,” said Robert W. Platt, PhD, a professor in the departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health at McGill University in Montreal, Canada. “However, the results suggest that type 2 diabetics can focus on the most effective treatment pathway for their condition. Metformin does not appear to confer an increased risk of congenital malformations.”

Dr. Platt is a professor in the departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health at McGill University in Montreal, Canada.
Dr. Robert W. Platt


According to an accompanying editorial by Sarah Martins da Silva. MBChB, MD, a reproductive medicine specialist at the University of Dundee in Scotland, the Israeli findings highlight the importance of factoring the sometimes overlooked issue of paternal health into reproductive planning and prenatal care. She stressed that individual risks and benefits should always be carefully considered and results interpreted with caution since such studies lack information on glycemic control. “Nonetheless, these recent analyses suggest that metformin is a safe and effective treatment option for T2D for men and women trying to conceive as well as for managing hyperglycemia in pregnant women in the first trimester,” she wrote and agreed that it may be time to reconsider current prenatal care guidelines that advocate switching to insulin therapy.

Dr. Martins da Silva is a reproductive medicine specialist at the University of Dundee in Scotland
Dr. Sarah Martins da Silva


The studies by Dr. Chiu and Dr. Rotem were funded by the National Institutes of Health. Dr. Chiu and Dr. Rotem had no competing interests to declare. Dr. Hernandez Diaz, a coauthor on both studies, reported funding from Takeda and consulting for Moderna, Johnson & Johnson, and UCB. Several authors reported support from government and not-for-profit research funding agencies. Dr. Platt disclosed no competing interests. Editorial commentator Dr. Martins da Silva disclosed consulting, speaking, travel, and advisory fees from, variously, Dyneval, Ferring Pharmaceutical, Merck, IBSA, and Gedeon Richer.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Metabolic Health Tied to Lower Prediabetes Risk

Article Type
Changed
Fri, 06/21/2024 - 11:17

 

TOPLINE:

Whether they have normal weight, overweight, or obesity, individuals with metabolically healthy (MH) phenotypes show a lower frequency of impaired glucose metabolism than their unhealthy counterparts across all weight categories.

METHODOLOGY:

  • The concepts of MH overweight and MH obesity refer to a subset of people who exhibit an absence of cardiometabolic risk factors despite excess body fat, but the prevalence of prediabetes has not been investigated by metabolic phenotype and body mass index (BMI).
  • This study first validated the use of estimated glucose disposal rate (eGDR), an index of insulin sensitivity calculated from clinical variables, in 350 individuals without diabetes (mean age, 37 years; 219 women; mean BMI, 30.3) from the EUGENE2 project who had varying glucose tolerance values originally assessed by insulin-stimulated glucose disposal.
  • Researchers then stratified 2201 participants without diabetes (mean age, 46 years; White; 1290 women; mean BMI, 31.2) from the CATAMERI study according to BMI into three groups — individuals with normal weight (BMI, 18-24.9), overweight (BMI, 25-29.9), and obesity (BMI, ≥ 30).
  • The men and women in each BMI group were separated into quartiles of insulin sensitivity based on eGDR index:
  • In the normal weight group, men and women were defined as MH in the top three eGDR quartiles and metabolically unhealthy (MU) in the lowest quartile.
  • In the overweight and obesity groups, people were defined as MH in the top eGDR quartile and MU in the lower three quartiles.
  • Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), and combined IFG+IGT conditions (from an oral glucose tolerance test) were compared in individuals without diabetes based on MH or unhealthy phenotypes across normal weight, overweight, and obese categories.

TAKEAWAY:

  • eGDR demonstrated good accuracy in detecting individuals with higher insulin sensitivity in the EUGENE2 cohort.
  • The MH overweight and MH obesity groups showed comparable glycemic parameters as the MH normal weight group, whereas the MU overweight and MU obesity groups exhibited higher A1c levels and fasting and 2-hour post-load glucose than the MH normal weight group.
  • The frequencies of IFG, IGT, and IFG+IGT conditions were similar among the MH normal weight, MH overweight, and MH obesity groups but were higher in the MU overweight and MU obesity groups than in the MU normal weight group.
  • Furthermore, compared with those in the MH normal weight group, the odds of prediabetes were at least two times higher in the MU obesity (odds ratio [OR], 2.54; < .001) and MU overweight (OR, 2.06; P < .001) groups but not significantly different in the MU normal weight, MH obesity, and MH overweight groups.

IN PRACTICE:

The authors wrote, “Overall, the results of this cross-sectional study support the notion that metabolically healthy individuals with overweight or obesity have a more favorable metabolic risk profile in comparison to metabolically unhealthy subjects with overweight or obesity.”

 

 

SOURCE:

The study was conducted by Chiara M.A. Cefalo, MD, department of clinical and molecular medicine, Sapienza University of Rome, Rome, Italy, and was published online in Diabetes, Obesity and Metabolism.

LIMITATIONS:

There was no consensus on the parameters and cutoff values for defining metabolic health status, allowing for potential variations in results. The study design suggested an association with prevalent IFG and IGT conditions but not with incident IFG and IGT conditions. All participants in this study were White, limiting the generalizability of its findings.

DISCLOSURES:

The study was supported by Sapienza University of Rome and the Italian Ministry of University. The authors declared no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Whether they have normal weight, overweight, or obesity, individuals with metabolically healthy (MH) phenotypes show a lower frequency of impaired glucose metabolism than their unhealthy counterparts across all weight categories.

METHODOLOGY:

  • The concepts of MH overweight and MH obesity refer to a subset of people who exhibit an absence of cardiometabolic risk factors despite excess body fat, but the prevalence of prediabetes has not been investigated by metabolic phenotype and body mass index (BMI).
  • This study first validated the use of estimated glucose disposal rate (eGDR), an index of insulin sensitivity calculated from clinical variables, in 350 individuals without diabetes (mean age, 37 years; 219 women; mean BMI, 30.3) from the EUGENE2 project who had varying glucose tolerance values originally assessed by insulin-stimulated glucose disposal.
  • Researchers then stratified 2201 participants without diabetes (mean age, 46 years; White; 1290 women; mean BMI, 31.2) from the CATAMERI study according to BMI into three groups — individuals with normal weight (BMI, 18-24.9), overweight (BMI, 25-29.9), and obesity (BMI, ≥ 30).
  • The men and women in each BMI group were separated into quartiles of insulin sensitivity based on eGDR index:
  • In the normal weight group, men and women were defined as MH in the top three eGDR quartiles and metabolically unhealthy (MU) in the lowest quartile.
  • In the overweight and obesity groups, people were defined as MH in the top eGDR quartile and MU in the lower three quartiles.
  • Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), and combined IFG+IGT conditions (from an oral glucose tolerance test) were compared in individuals without diabetes based on MH or unhealthy phenotypes across normal weight, overweight, and obese categories.

TAKEAWAY:

  • eGDR demonstrated good accuracy in detecting individuals with higher insulin sensitivity in the EUGENE2 cohort.
  • The MH overweight and MH obesity groups showed comparable glycemic parameters as the MH normal weight group, whereas the MU overweight and MU obesity groups exhibited higher A1c levels and fasting and 2-hour post-load glucose than the MH normal weight group.
  • The frequencies of IFG, IGT, and IFG+IGT conditions were similar among the MH normal weight, MH overweight, and MH obesity groups but were higher in the MU overweight and MU obesity groups than in the MU normal weight group.
  • Furthermore, compared with those in the MH normal weight group, the odds of prediabetes were at least two times higher in the MU obesity (odds ratio [OR], 2.54; < .001) and MU overweight (OR, 2.06; P < .001) groups but not significantly different in the MU normal weight, MH obesity, and MH overweight groups.

IN PRACTICE:

The authors wrote, “Overall, the results of this cross-sectional study support the notion that metabolically healthy individuals with overweight or obesity have a more favorable metabolic risk profile in comparison to metabolically unhealthy subjects with overweight or obesity.”

 

 

SOURCE:

The study was conducted by Chiara M.A. Cefalo, MD, department of clinical and molecular medicine, Sapienza University of Rome, Rome, Italy, and was published online in Diabetes, Obesity and Metabolism.

LIMITATIONS:

There was no consensus on the parameters and cutoff values for defining metabolic health status, allowing for potential variations in results. The study design suggested an association with prevalent IFG and IGT conditions but not with incident IFG and IGT conditions. All participants in this study were White, limiting the generalizability of its findings.

DISCLOSURES:

The study was supported by Sapienza University of Rome and the Italian Ministry of University. The authors declared no conflicts of interest.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Whether they have normal weight, overweight, or obesity, individuals with metabolically healthy (MH) phenotypes show a lower frequency of impaired glucose metabolism than their unhealthy counterparts across all weight categories.

METHODOLOGY:

  • The concepts of MH overweight and MH obesity refer to a subset of people who exhibit an absence of cardiometabolic risk factors despite excess body fat, but the prevalence of prediabetes has not been investigated by metabolic phenotype and body mass index (BMI).
  • This study first validated the use of estimated glucose disposal rate (eGDR), an index of insulin sensitivity calculated from clinical variables, in 350 individuals without diabetes (mean age, 37 years; 219 women; mean BMI, 30.3) from the EUGENE2 project who had varying glucose tolerance values originally assessed by insulin-stimulated glucose disposal.
  • Researchers then stratified 2201 participants without diabetes (mean age, 46 years; White; 1290 women; mean BMI, 31.2) from the CATAMERI study according to BMI into three groups — individuals with normal weight (BMI, 18-24.9), overweight (BMI, 25-29.9), and obesity (BMI, ≥ 30).
  • The men and women in each BMI group were separated into quartiles of insulin sensitivity based on eGDR index:
  • In the normal weight group, men and women were defined as MH in the top three eGDR quartiles and metabolically unhealthy (MU) in the lowest quartile.
  • In the overweight and obesity groups, people were defined as MH in the top eGDR quartile and MU in the lower three quartiles.
  • Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), and combined IFG+IGT conditions (from an oral glucose tolerance test) were compared in individuals without diabetes based on MH or unhealthy phenotypes across normal weight, overweight, and obese categories.

TAKEAWAY:

  • eGDR demonstrated good accuracy in detecting individuals with higher insulin sensitivity in the EUGENE2 cohort.
  • The MH overweight and MH obesity groups showed comparable glycemic parameters as the MH normal weight group, whereas the MU overweight and MU obesity groups exhibited higher A1c levels and fasting and 2-hour post-load glucose than the MH normal weight group.
  • The frequencies of IFG, IGT, and IFG+IGT conditions were similar among the MH normal weight, MH overweight, and MH obesity groups but were higher in the MU overweight and MU obesity groups than in the MU normal weight group.
  • Furthermore, compared with those in the MH normal weight group, the odds of prediabetes were at least two times higher in the MU obesity (odds ratio [OR], 2.54; < .001) and MU overweight (OR, 2.06; P < .001) groups but not significantly different in the MU normal weight, MH obesity, and MH overweight groups.

IN PRACTICE:

The authors wrote, “Overall, the results of this cross-sectional study support the notion that metabolically healthy individuals with overweight or obesity have a more favorable metabolic risk profile in comparison to metabolically unhealthy subjects with overweight or obesity.”

 

 

SOURCE:

The study was conducted by Chiara M.A. Cefalo, MD, department of clinical and molecular medicine, Sapienza University of Rome, Rome, Italy, and was published online in Diabetes, Obesity and Metabolism.

LIMITATIONS:

There was no consensus on the parameters and cutoff values for defining metabolic health status, allowing for potential variations in results. The study design suggested an association with prevalent IFG and IGT conditions but not with incident IFG and IGT conditions. All participants in this study were White, limiting the generalizability of its findings.

DISCLOSURES:

The study was supported by Sapienza University of Rome and the Italian Ministry of University. The authors declared no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

More and More Are Living With Type 1 Diabetes Into Old Age

Article Type
Changed
Fri, 06/21/2024 - 11:11

 

TOPLINE:

Mortality and disability-adjusted life years (DALYs) among people with type 1 diabetes (T1D) aged ≥ 65 years dropped significantly from 1990 to 2019. Both were lower among women and those living in higher sociodemographic areas.

METHODOLOGY:

  • A population-based study of adults aged ≥ 65 years from 21 regions and 204 countries and territories, 1990-2019, was conducted.

TAKEAWAY:

  • Globally, the prevalence of T1D among people aged ≥ 65 years increased by 180% between 1990 and 2019, from 1.3 million to 3.7 million.
  • The proportion of older people with T1D has consistently trended upward, from 12% of all people with T1D in 1990 to 17% in 2019.
  • Age-standardized mortality from T1D among this age group significantly decreased by 25%, from 4.7/100,000 population in 1990 to 3.5/100,000 in 2019.
  • Age-standardized increases in T1D prevalence have occurred in both men and women worldwide, while the increase was more rapid among men (average annual percent change, 1.00% vs 0.74%).
  • Globally, T1D prevalence at least tripled in every age subgroup of those aged ≥ 65 years, and even fivefold to sixfold for those ≥ 90-95 years (0.02-0.11 million for ages 90-94 years; 0.005-0.03 million for ages ≥ 95 years).
  • No decreases occurred in T1D prevalence among those aged ≥ 65 years in any of the 21 global regions.
  • Three primary risk factors associated with DALYs for T1D among people aged ≥ 65 years were high fasting plasma glucose levels, low temperature, and high temperature, accounting for 103 DALYs per 100,000 people, 3/100,000 people, and 1/100,000 people, respectively, in 2019.

IN PRACTICE:

“The results suggest that T1DM is no longer a contributory factor in decreased life expectancy owing to improvements in medical care over the three decades,” the authors wrote. “Management of high fasting plasma glucose levels remains a major challenge for older people with T1D, and targeted clinical guidelines are needed.”

SOURCE:

The study was conducted by Kaijie Yang, the Department of Endocrinology and Metabolism, the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China, and colleagues. The study was published online in the BMJ.

LIMITATIONS:

Data were extrapolated from countries that have epidemiologic data. Health information systems and reporting mechanisms vary across countries and regions. Disease burden data include a time lag. Diagnosing T1D in older people can be challenging.

DISCLOSURES:

The study was supported by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. The authors reported no additional financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Mortality and disability-adjusted life years (DALYs) among people with type 1 diabetes (T1D) aged ≥ 65 years dropped significantly from 1990 to 2019. Both were lower among women and those living in higher sociodemographic areas.

METHODOLOGY:

  • A population-based study of adults aged ≥ 65 years from 21 regions and 204 countries and territories, 1990-2019, was conducted.

TAKEAWAY:

  • Globally, the prevalence of T1D among people aged ≥ 65 years increased by 180% between 1990 and 2019, from 1.3 million to 3.7 million.
  • The proportion of older people with T1D has consistently trended upward, from 12% of all people with T1D in 1990 to 17% in 2019.
  • Age-standardized mortality from T1D among this age group significantly decreased by 25%, from 4.7/100,000 population in 1990 to 3.5/100,000 in 2019.
  • Age-standardized increases in T1D prevalence have occurred in both men and women worldwide, while the increase was more rapid among men (average annual percent change, 1.00% vs 0.74%).
  • Globally, T1D prevalence at least tripled in every age subgroup of those aged ≥ 65 years, and even fivefold to sixfold for those ≥ 90-95 years (0.02-0.11 million for ages 90-94 years; 0.005-0.03 million for ages ≥ 95 years).
  • No decreases occurred in T1D prevalence among those aged ≥ 65 years in any of the 21 global regions.
  • Three primary risk factors associated with DALYs for T1D among people aged ≥ 65 years were high fasting plasma glucose levels, low temperature, and high temperature, accounting for 103 DALYs per 100,000 people, 3/100,000 people, and 1/100,000 people, respectively, in 2019.

IN PRACTICE:

“The results suggest that T1DM is no longer a contributory factor in decreased life expectancy owing to improvements in medical care over the three decades,” the authors wrote. “Management of high fasting plasma glucose levels remains a major challenge for older people with T1D, and targeted clinical guidelines are needed.”

SOURCE:

The study was conducted by Kaijie Yang, the Department of Endocrinology and Metabolism, the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China, and colleagues. The study was published online in the BMJ.

LIMITATIONS:

Data were extrapolated from countries that have epidemiologic data. Health information systems and reporting mechanisms vary across countries and regions. Disease burden data include a time lag. Diagnosing T1D in older people can be challenging.

DISCLOSURES:

The study was supported by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. The authors reported no additional financial relationships.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Mortality and disability-adjusted life years (DALYs) among people with type 1 diabetes (T1D) aged ≥ 65 years dropped significantly from 1990 to 2019. Both were lower among women and those living in higher sociodemographic areas.

METHODOLOGY:

  • A population-based study of adults aged ≥ 65 years from 21 regions and 204 countries and territories, 1990-2019, was conducted.

TAKEAWAY:

  • Globally, the prevalence of T1D among people aged ≥ 65 years increased by 180% between 1990 and 2019, from 1.3 million to 3.7 million.
  • The proportion of older people with T1D has consistently trended upward, from 12% of all people with T1D in 1990 to 17% in 2019.
  • Age-standardized mortality from T1D among this age group significantly decreased by 25%, from 4.7/100,000 population in 1990 to 3.5/100,000 in 2019.
  • Age-standardized increases in T1D prevalence have occurred in both men and women worldwide, while the increase was more rapid among men (average annual percent change, 1.00% vs 0.74%).
  • Globally, T1D prevalence at least tripled in every age subgroup of those aged ≥ 65 years, and even fivefold to sixfold for those ≥ 90-95 years (0.02-0.11 million for ages 90-94 years; 0.005-0.03 million for ages ≥ 95 years).
  • No decreases occurred in T1D prevalence among those aged ≥ 65 years in any of the 21 global regions.
  • Three primary risk factors associated with DALYs for T1D among people aged ≥ 65 years were high fasting plasma glucose levels, low temperature, and high temperature, accounting for 103 DALYs per 100,000 people, 3/100,000 people, and 1/100,000 people, respectively, in 2019.

IN PRACTICE:

“The results suggest that T1DM is no longer a contributory factor in decreased life expectancy owing to improvements in medical care over the three decades,” the authors wrote. “Management of high fasting plasma glucose levels remains a major challenge for older people with T1D, and targeted clinical guidelines are needed.”

SOURCE:

The study was conducted by Kaijie Yang, the Department of Endocrinology and Metabolism, the Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, First Hospital of China Medical University, Shenyang, China, and colleagues. The study was published online in the BMJ.

LIMITATIONS:

Data were extrapolated from countries that have epidemiologic data. Health information systems and reporting mechanisms vary across countries and regions. Disease burden data include a time lag. Diagnosing T1D in older people can be challenging.

DISCLOSURES:

The study was supported by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. The authors reported no additional financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Bariatric Surgery Beats GLP-1 RAs in Reducing Mortality Risk

Article Type
Changed
Fri, 06/21/2024 - 11:05

 

TOPLINE:

Bariatric metabolic surgery (BMS) offers a survival advantage over glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in adults with obesity and diabetes for 10 years or less, which may be explained by greater weight loss with surgery, new research shows.

METHODOLOGY:

  • There is limited evidence regarding the relative effectiveness of BMS and GLP-1 RAs in reducing mortality and major adverse cardiovascular events (MACE).
  • This observational, retrospective cohort study analyzed the electronic medical records of Clalit Health Services, Israel’s largest healthcare organization.
  • Researchers included patients aged 24 years or older who had diabetes and obesity but no prior cardiovascular disease and who either underwent BMS or received a GLP-1 RA.
  • The primary outcome was all-cause mortality, assessed by multivariate Cox proportional hazards regression models. The secondary outcome was nonfatal MACE, assessed by multivariate competing risk models.

TAKEAWAY:

  • Researchers included 3035 matched pairs of patients (total, 6070; mean age, 51 years; 65% women), who were followed for a median of 6.8 years.
  • Among patients with diabetes for 10 years or less, those who underwent BMS had a 62% lower risk for mortality than those treated with a GLP-1 RA (hazard ratio [HR], 0.38).
  • The survival advantage associated with BMS vs GLP-1 RA may be explained by the greater relative decrease in body mass index in the surgery group (–31.4% vs –12.8%, respectively).
  • Among patients with diabetes for more than 10 years, no survival advantage was observed for BMS over GLP-1 RA (HR, 0.65), which may be explained by the adverse effects of prolonged diabetes duration masking the benefit associated with weight loss.
  • The risk for nonfatal MACE did not differ significantly between the treatment groups in both diabetes duration categories.

IN PRACTICE:

“This study suggests that BMS was associated with greater reduced mortality compared with GLP-1 RAs among individuals with a diabetes duration of 10 years or less, mediated via greater weight loss,” the authors wrote.

SOURCE:

The study, with first author Dror Dicker, MD, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel, was published online in JAMA Network Open.

LIMITATIONS:

The observational design may have introduced residual confounding despite matching and multivariable adjustment. The analyses did not account for the types of BMS or GLP-1 RAs or the level of adherence to GLP-1 RA treatment. Information regarding cause of death was unavailable.

DISCLOSURES:

The study was funded by the Israel Science Foundation. Dicker reported financial relationships with Novo Nordisk, Eli Lilly, and Boehringer Ingelheim.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Bariatric metabolic surgery (BMS) offers a survival advantage over glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in adults with obesity and diabetes for 10 years or less, which may be explained by greater weight loss with surgery, new research shows.

METHODOLOGY:

  • There is limited evidence regarding the relative effectiveness of BMS and GLP-1 RAs in reducing mortality and major adverse cardiovascular events (MACE).
  • This observational, retrospective cohort study analyzed the electronic medical records of Clalit Health Services, Israel’s largest healthcare organization.
  • Researchers included patients aged 24 years or older who had diabetes and obesity but no prior cardiovascular disease and who either underwent BMS or received a GLP-1 RA.
  • The primary outcome was all-cause mortality, assessed by multivariate Cox proportional hazards regression models. The secondary outcome was nonfatal MACE, assessed by multivariate competing risk models.

TAKEAWAY:

  • Researchers included 3035 matched pairs of patients (total, 6070; mean age, 51 years; 65% women), who were followed for a median of 6.8 years.
  • Among patients with diabetes for 10 years or less, those who underwent BMS had a 62% lower risk for mortality than those treated with a GLP-1 RA (hazard ratio [HR], 0.38).
  • The survival advantage associated with BMS vs GLP-1 RA may be explained by the greater relative decrease in body mass index in the surgery group (–31.4% vs –12.8%, respectively).
  • Among patients with diabetes for more than 10 years, no survival advantage was observed for BMS over GLP-1 RA (HR, 0.65), which may be explained by the adverse effects of prolonged diabetes duration masking the benefit associated with weight loss.
  • The risk for nonfatal MACE did not differ significantly between the treatment groups in both diabetes duration categories.

IN PRACTICE:

“This study suggests that BMS was associated with greater reduced mortality compared with GLP-1 RAs among individuals with a diabetes duration of 10 years or less, mediated via greater weight loss,” the authors wrote.

SOURCE:

The study, with first author Dror Dicker, MD, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel, was published online in JAMA Network Open.

LIMITATIONS:

The observational design may have introduced residual confounding despite matching and multivariable adjustment. The analyses did not account for the types of BMS or GLP-1 RAs or the level of adherence to GLP-1 RA treatment. Information regarding cause of death was unavailable.

DISCLOSURES:

The study was funded by the Israel Science Foundation. Dicker reported financial relationships with Novo Nordisk, Eli Lilly, and Boehringer Ingelheim.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Bariatric metabolic surgery (BMS) offers a survival advantage over glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in adults with obesity and diabetes for 10 years or less, which may be explained by greater weight loss with surgery, new research shows.

METHODOLOGY:

  • There is limited evidence regarding the relative effectiveness of BMS and GLP-1 RAs in reducing mortality and major adverse cardiovascular events (MACE).
  • This observational, retrospective cohort study analyzed the electronic medical records of Clalit Health Services, Israel’s largest healthcare organization.
  • Researchers included patients aged 24 years or older who had diabetes and obesity but no prior cardiovascular disease and who either underwent BMS or received a GLP-1 RA.
  • The primary outcome was all-cause mortality, assessed by multivariate Cox proportional hazards regression models. The secondary outcome was nonfatal MACE, assessed by multivariate competing risk models.

TAKEAWAY:

  • Researchers included 3035 matched pairs of patients (total, 6070; mean age, 51 years; 65% women), who were followed for a median of 6.8 years.
  • Among patients with diabetes for 10 years or less, those who underwent BMS had a 62% lower risk for mortality than those treated with a GLP-1 RA (hazard ratio [HR], 0.38).
  • The survival advantage associated with BMS vs GLP-1 RA may be explained by the greater relative decrease in body mass index in the surgery group (–31.4% vs –12.8%, respectively).
  • Among patients with diabetes for more than 10 years, no survival advantage was observed for BMS over GLP-1 RA (HR, 0.65), which may be explained by the adverse effects of prolonged diabetes duration masking the benefit associated with weight loss.
  • The risk for nonfatal MACE did not differ significantly between the treatment groups in both diabetes duration categories.

IN PRACTICE:

“This study suggests that BMS was associated with greater reduced mortality compared with GLP-1 RAs among individuals with a diabetes duration of 10 years or less, mediated via greater weight loss,” the authors wrote.

SOURCE:

The study, with first author Dror Dicker, MD, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel, was published online in JAMA Network Open.

LIMITATIONS:

The observational design may have introduced residual confounding despite matching and multivariable adjustment. The analyses did not account for the types of BMS or GLP-1 RAs or the level of adherence to GLP-1 RA treatment. Information regarding cause of death was unavailable.

DISCLOSURES:

The study was funded by the Israel Science Foundation. Dicker reported financial relationships with Novo Nordisk, Eli Lilly, and Boehringer Ingelheim.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Should You Offer Medical Credit Cards?

Article Type
Changed
Thu, 06/20/2024 - 16:36

Editor’s note: This is Dr. Eastern’s last “Managing Your Practice” column for Dermatology News. After his first column was published in 1986, Dr. Eastern continued writing his column monthly until the mid-1990s, resuming in 2005. In total, he has written over 300 columns on topics relevant to medical practice, ranging from hiring employees, selling and merging practices, complying with OSHA, and avoiding embezzlement, to electronic health records, burnout, medical assistants, negative online reviews, artificial intelligence in the office, and more. In the future, he will continue to provide commentary on practice issues with an occasional guest editorial.

Medicare reimbursement cuts, increasing overhead and staff salaries, and inflation have made running a profitable private practice increasingly challenging, particularly for rural and smaller offices. Medical credit cards are an increasingly popular choice to fill this gap.

Unlike a conventional credit card, a medical credit card is used only to pay for medical services.

A stack of colorful credit cards on a table.
alexialex/Getty Images

Traditionally, these cards were used to help cover procedures insurance didn’t cover — such as cosmetic procedures — but over the years, they have been expanded to cover other healthcare charges, mostly for patients who are paying out of pocket due to inadequate insurance or other reasons.

Advantages for physicians include immediate payment from the credit card company and reduced billing and collection costs. Patients are also less likely to delay or defer treatment if they can charge the payment and pay it back in installments.

The first step in offering medical credit cards is signing up with one or more third-party card companies. CareCredit is the most common provider in the medical credit card market. Other vendors include Wells Fargo, AccessOne, Alphaeon Credit, and iCare Financial. (As always, I have no financial interest in any product or service mentioned in this column.) A member of your staff signs patients up, and the credit card company checks their credit. If approved, the card company pays you your fee and assumes responsibility for collecting from the patient.

The interest charge on medical credit cards is often deferred for a period of time, typically between 6 and 24 months. If patients pay off the debt within this time, they can avoid paying interest. But, like other credit cards, if they make late payments or have an unpaid balance once the promotional period ends, they may end up with interest and fees totaling 25%-30% or more. It is important to make it very clear to your patients that payments are interest-free only if they are all made on time and within the promotional period.

Dr. Joseph S. Eastern, a dermatologist in Belleville, N.J.
Dr. Joseph S. Eastern

According to a Consumer Financial Protection Bureau report released earlier this year, deferred interest medical credit cards or loans were used to pay nearly $23 billion in healthcare expenses from 2018 to 2020. Individuals unable to complete payment during the promotional period paid $1 billion in deferred interest payments during that period.

Despite the growing popularity of medical credit cards among physicians, it is worth noting that some consumer groups view them as predatory financial products, marketed toward people in tough financial situations. A coalition of 60 health advocacy groups has urged the Biden Administration to ban deferred interest medical credit cards. So there is that much more reason to choose candidates for medical credit cards carefully, and to make them fully aware of what obligations they are assuming.

Patients who do not think they can pay off the balance within the interest-free time frame should probably be advised to pursue an alternative payment method, such as using a conventional credit card, taking out a personal or home-equity loan, or borrowing from a retirement savings account. Some physicians are willing to negotiate a reduced fee for patients who agree to pay cash at the time of service.

Those who do choose to apply for a medical credit card should be informed of their options, which can vary considerably depending on the product and the third-party vendor. Some medical credit products can be used only for elective procedures, but some can be used more broadly for various medical expenses. Check to make sure that each patient’s financing option can be used for his or her desired medical service.



Some payment products can only be used at specific practices or groups, while others can be used at a variety of medical offices and hospitals. If a patient arrives with a medical credit card already in hand, confirm that it is one that your office accepts.

Interest rates generally vary with each card and vendor. Make patients aware of when interest rates start accruing and if the plan offers a fixed or variable APR, or if it charges compounding interest. Confirm if there is a deferred interest option, and if so, for how long.

Different medical credit products also have varying fees and payment schedules. See that each patient reads the terms of the agreement to understand when interest may start to accrue or change, as well as when certain fees may apply. Understanding when the payments are due will help them avoid additional fees, including late fees. Some medical payment plans may also have administrative or processing fees. If so, patients should be made aware of them.

Dr. Eastern practices dermatology and dermatologic surgery in Belleville, New Jersey. He is the author of numerous articles and textbook chapters, and is a longtime monthly columnist for Dermatology News. Write to him at dermnews@mdedge.com.

Publications
Topics
Sections

Editor’s note: This is Dr. Eastern’s last “Managing Your Practice” column for Dermatology News. After his first column was published in 1986, Dr. Eastern continued writing his column monthly until the mid-1990s, resuming in 2005. In total, he has written over 300 columns on topics relevant to medical practice, ranging from hiring employees, selling and merging practices, complying with OSHA, and avoiding embezzlement, to electronic health records, burnout, medical assistants, negative online reviews, artificial intelligence in the office, and more. In the future, he will continue to provide commentary on practice issues with an occasional guest editorial.

Medicare reimbursement cuts, increasing overhead and staff salaries, and inflation have made running a profitable private practice increasingly challenging, particularly for rural and smaller offices. Medical credit cards are an increasingly popular choice to fill this gap.

Unlike a conventional credit card, a medical credit card is used only to pay for medical services.

A stack of colorful credit cards on a table.
alexialex/Getty Images

Traditionally, these cards were used to help cover procedures insurance didn’t cover — such as cosmetic procedures — but over the years, they have been expanded to cover other healthcare charges, mostly for patients who are paying out of pocket due to inadequate insurance or other reasons.

Advantages for physicians include immediate payment from the credit card company and reduced billing and collection costs. Patients are also less likely to delay or defer treatment if they can charge the payment and pay it back in installments.

The first step in offering medical credit cards is signing up with one or more third-party card companies. CareCredit is the most common provider in the medical credit card market. Other vendors include Wells Fargo, AccessOne, Alphaeon Credit, and iCare Financial. (As always, I have no financial interest in any product or service mentioned in this column.) A member of your staff signs patients up, and the credit card company checks their credit. If approved, the card company pays you your fee and assumes responsibility for collecting from the patient.

The interest charge on medical credit cards is often deferred for a period of time, typically between 6 and 24 months. If patients pay off the debt within this time, they can avoid paying interest. But, like other credit cards, if they make late payments or have an unpaid balance once the promotional period ends, they may end up with interest and fees totaling 25%-30% or more. It is important to make it very clear to your patients that payments are interest-free only if they are all made on time and within the promotional period.

Dr. Joseph S. Eastern, a dermatologist in Belleville, N.J.
Dr. Joseph S. Eastern

According to a Consumer Financial Protection Bureau report released earlier this year, deferred interest medical credit cards or loans were used to pay nearly $23 billion in healthcare expenses from 2018 to 2020. Individuals unable to complete payment during the promotional period paid $1 billion in deferred interest payments during that period.

Despite the growing popularity of medical credit cards among physicians, it is worth noting that some consumer groups view them as predatory financial products, marketed toward people in tough financial situations. A coalition of 60 health advocacy groups has urged the Biden Administration to ban deferred interest medical credit cards. So there is that much more reason to choose candidates for medical credit cards carefully, and to make them fully aware of what obligations they are assuming.

Patients who do not think they can pay off the balance within the interest-free time frame should probably be advised to pursue an alternative payment method, such as using a conventional credit card, taking out a personal or home-equity loan, or borrowing from a retirement savings account. Some physicians are willing to negotiate a reduced fee for patients who agree to pay cash at the time of service.

Those who do choose to apply for a medical credit card should be informed of their options, which can vary considerably depending on the product and the third-party vendor. Some medical credit products can be used only for elective procedures, but some can be used more broadly for various medical expenses. Check to make sure that each patient’s financing option can be used for his or her desired medical service.



Some payment products can only be used at specific practices or groups, while others can be used at a variety of medical offices and hospitals. If a patient arrives with a medical credit card already in hand, confirm that it is one that your office accepts.

Interest rates generally vary with each card and vendor. Make patients aware of when interest rates start accruing and if the plan offers a fixed or variable APR, or if it charges compounding interest. Confirm if there is a deferred interest option, and if so, for how long.

Different medical credit products also have varying fees and payment schedules. See that each patient reads the terms of the agreement to understand when interest may start to accrue or change, as well as when certain fees may apply. Understanding when the payments are due will help them avoid additional fees, including late fees. Some medical payment plans may also have administrative or processing fees. If so, patients should be made aware of them.

Dr. Eastern practices dermatology and dermatologic surgery in Belleville, New Jersey. He is the author of numerous articles and textbook chapters, and is a longtime monthly columnist for Dermatology News. Write to him at dermnews@mdedge.com.

Editor’s note: This is Dr. Eastern’s last “Managing Your Practice” column for Dermatology News. After his first column was published in 1986, Dr. Eastern continued writing his column monthly until the mid-1990s, resuming in 2005. In total, he has written over 300 columns on topics relevant to medical practice, ranging from hiring employees, selling and merging practices, complying with OSHA, and avoiding embezzlement, to electronic health records, burnout, medical assistants, negative online reviews, artificial intelligence in the office, and more. In the future, he will continue to provide commentary on practice issues with an occasional guest editorial.

Medicare reimbursement cuts, increasing overhead and staff salaries, and inflation have made running a profitable private practice increasingly challenging, particularly for rural and smaller offices. Medical credit cards are an increasingly popular choice to fill this gap.

Unlike a conventional credit card, a medical credit card is used only to pay for medical services.

A stack of colorful credit cards on a table.
alexialex/Getty Images

Traditionally, these cards were used to help cover procedures insurance didn’t cover — such as cosmetic procedures — but over the years, they have been expanded to cover other healthcare charges, mostly for patients who are paying out of pocket due to inadequate insurance or other reasons.

Advantages for physicians include immediate payment from the credit card company and reduced billing and collection costs. Patients are also less likely to delay or defer treatment if they can charge the payment and pay it back in installments.

The first step in offering medical credit cards is signing up with one or more third-party card companies. CareCredit is the most common provider in the medical credit card market. Other vendors include Wells Fargo, AccessOne, Alphaeon Credit, and iCare Financial. (As always, I have no financial interest in any product or service mentioned in this column.) A member of your staff signs patients up, and the credit card company checks their credit. If approved, the card company pays you your fee and assumes responsibility for collecting from the patient.

The interest charge on medical credit cards is often deferred for a period of time, typically between 6 and 24 months. If patients pay off the debt within this time, they can avoid paying interest. But, like other credit cards, if they make late payments or have an unpaid balance once the promotional period ends, they may end up with interest and fees totaling 25%-30% or more. It is important to make it very clear to your patients that payments are interest-free only if they are all made on time and within the promotional period.

Dr. Joseph S. Eastern, a dermatologist in Belleville, N.J.
Dr. Joseph S. Eastern

According to a Consumer Financial Protection Bureau report released earlier this year, deferred interest medical credit cards or loans were used to pay nearly $23 billion in healthcare expenses from 2018 to 2020. Individuals unable to complete payment during the promotional period paid $1 billion in deferred interest payments during that period.

Despite the growing popularity of medical credit cards among physicians, it is worth noting that some consumer groups view them as predatory financial products, marketed toward people in tough financial situations. A coalition of 60 health advocacy groups has urged the Biden Administration to ban deferred interest medical credit cards. So there is that much more reason to choose candidates for medical credit cards carefully, and to make them fully aware of what obligations they are assuming.

Patients who do not think they can pay off the balance within the interest-free time frame should probably be advised to pursue an alternative payment method, such as using a conventional credit card, taking out a personal or home-equity loan, or borrowing from a retirement savings account. Some physicians are willing to negotiate a reduced fee for patients who agree to pay cash at the time of service.

Those who do choose to apply for a medical credit card should be informed of their options, which can vary considerably depending on the product and the third-party vendor. Some medical credit products can be used only for elective procedures, but some can be used more broadly for various medical expenses. Check to make sure that each patient’s financing option can be used for his or her desired medical service.



Some payment products can only be used at specific practices or groups, while others can be used at a variety of medical offices and hospitals. If a patient arrives with a medical credit card already in hand, confirm that it is one that your office accepts.

Interest rates generally vary with each card and vendor. Make patients aware of when interest rates start accruing and if the plan offers a fixed or variable APR, or if it charges compounding interest. Confirm if there is a deferred interest option, and if so, for how long.

Different medical credit products also have varying fees and payment schedules. See that each patient reads the terms of the agreement to understand when interest may start to accrue or change, as well as when certain fees may apply. Understanding when the payments are due will help them avoid additional fees, including late fees. Some medical payment plans may also have administrative or processing fees. If so, patients should be made aware of them.

Dr. Eastern practices dermatology and dermatologic surgery in Belleville, New Jersey. He is the author of numerous articles and textbook chapters, and is a longtime monthly columnist for Dermatology News. Write to him at dermnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Do Artificial Sweeteners Really Help People With Diabetes?

Article Type
Changed
Thu, 06/20/2024 - 13:40

It seems intuitive that, because people with type 2 diabetes (T2D) generally need to avoid sugar, clinicians should recommend eating foods and using recipes containing artificial sweeteners such as sucralose instead.

Splenda, which produces sucralose and other non-sugar sweeteners (NSS), is a sponsor of the American Diabetes Association (ADA) Diabetes Food Hub. Earlier in 2024, the ADA settled a lawsuit regarding its former director of nutrition’s refusal to approve recipes containing sucralose (Splenda), which she believed “flew in the face of the ADA’s mission.” 

Experts agree that, while artificial sweeteners may help in certain scenarios, they can also be harmful.

“There’s not a lot of evidence that sweeteners like sucralose provide significant benefits, especially over the long term,” said Susan Swithers, PhD, professor, department of psychological sciences and associate dean for faculty affairs at Purdue University, West Lafayette, Indiana.

Dr. Swithers authored an article several years ago cautioning that consuming nonnutritive sweeteners in beverages not only fails to prevent disease but also is associated with an increase in risks for the same health outcomes associated with sugar-sweetened beverages, including T2D, cardiovascular disease, hypertension, and stroke.

“At this point, we have pretty good evidence that these chemicals that were once touted as being completely inert are, in fact, not inert,” she said. “We know that they’re unlikely to be toxic in the short term, but they are not benign, and they have consequences. Right now, we have little understanding of the outcomes of consumption of these products chronically.”
 

What the Science Says

In 2023, the World Health Organization (WHO) released a guideline on NSS that recommended against their use for weight control or to reduce the risk for noncommunicable diseases.

The systematic review and meta-analysis upon which the guideline is based found that high intakes of NSS were associated with increases in body mass index and, as Dr. Swithers found, risks of developing T2D, cardiovascular events, and any type of stroke, as well as hypertension, bladder cancer, and all-cause mortality.

In a press release announcing the guideline, Francesco Branca, WHO director for Nutrition and Food Safety, said, “NSS are not essential dietary factors and have no nutritional value. People should reduce the sweetness of the diet altogether, starting early in life, to improve their health.” 

The “common” NSS named by WHO included sucralose, as well as acesulfame K, aspartame, advantame, cyclamates, neotame, saccharin, stevia, and stevia derivatives.

If NSS consumption can increase T2D risk, what about people who already have T2D? 

Some research suggests that NSS may affect people with and without T2D differently, said Dr. Swithers. For example, one small study showed that sucralose enhanced glucagon-like peptide 1 release and lowered blood glucose in healthy patients but not in patients with newly diagnosed T2D.

Similarly, Jotham Suez, PhD, an assistant professor in the department of molecular microbiology and immunology at Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland, said in an interview that his group “showed for the first time in 2014 that disruption of the microbiome by artificial sweeteners is causally linked to disrupted glycemic control.” 

Recently, the team studied the impact of sucralose, aspartame, saccharin, and stevia in healthy adults and “were surprised to discover that all four sweeteners altered gut bacteria and the molecules they secrete,” he said. However, subsequent glucose tolerance tests in healthy humans showed varying results, “suggesting that human microbiome responses to the nonnutritive sweeteners we assessed are highly personalized and may lead to glycemic alterations in some, but not all, consumers depending on their microbes and the sweeteners they consume.” 

Nevertheless, a recent review led by researchers in Mexico concluded that sucralose consumption “is associated with various adverse health effects. Despite being considered safe following previous studies, recent research suggests possible links to systemic inflammation, metabolic diseases, disruptions in gut microbiota, liver damage, and toxic effects at the cellular level.” 

In addition, they wrote, “it is crucial to highlight the persistence of sucralose in the body, its ability to cross the placenta, and its presence in breast milk, raising concerns about prenatal and neonatal exposure.” 

Sabyasachi Sen, MD, a professor of biochemistry and molecular medicine at George Washington School of Medicine & Health Sciences, Washington, DC, has led and coauthored preclinical and clinical studies demonstrating the potential ill effects of sucralose and other artificial sweeteners. One showed that sucralose and acesulfame potassium–containing diet soda altered microbial taxa in two pilot studies in healthy young adults; another showed a connection between artificial sweeteners and inflammation.

But Dr. Sen’s current work is directed at his team’s finding that sucralose promotes the accumulation of reactive oxygen species and adipogenesis in human stem cells, he said in an interview. “It is essentially an additive that is clearly harmful to cells. Our concern is that stem cells are going to remain in the system for a long period of time. If it is causing inflammation in these cells, then that may lead to adverse outcomes.”

Ruchi Mathur, MD, director of the Diabetes Outpatient Treatment & Education Center at Cedars-Sinai in Los Angeles, California, is the principal investigator of a recent study suggesting that non-aspartame NSS and aspartame alone may alter the structure and function of the stool and duodenal microbiomes. Levels of circulating inflammatory markers were also altered in participants who consumed artificial sweeteners, compared with control participants who did not.

In addition to these potential adverse effects, “we have to think about the fact that patients with diabetes often have other comorbidities like obesity and are at higher risk for cardiovascular disease and other conditions,” she said in an interview. “If you’re taking a patient who’s already at risk for those things and you don’t have a detailed discussion with them about pros and cons, you’re doing them a disservice.” 
 

 

 

Industry Interests

Addressing the largely negative but varying findings, Dr. Swithers said, “one of the difficulties with getting clear answers about the science is that the food and beverage industry has an interest in confusing the picture. If people are selling or using a product, the best thing is for them not have a clear reason to change their behavior. All that needs to happen is for them to be able say, ‘well, it’s not clear, and we don’t really know what’s going on, so I’m just going to keep doing what I’m doing.’ Then the producers and sellers of that product have won.” 

“As Upton Sinclair said,” she added, “‘It is difficult to get a man to understand something when his salary depends on his not understanding it.’ When organizations like ADA appear to be promoting a product like sucralose, and they’re not always being clear about disclosing the funding, I think that’s problematic.”

In fact, some recipes in the ADA’s hub that contain Splenda are marked sponsored, such as the four-ingredient peanut butter cookies; others, such as gluten-free brownies, are not — even though the latter contains “1/4 cup plus 1 tbsp” of Splenda Sugar Blend (Splenda produces several nonnutritive sweeteners, not all of which contain sucralose). Splenda is a sponsor of the ADA’s hub.
 

Consume in Moderation?

Regarding the use of Splenda products, Robert Gabbay, MD, PhD, the ADA’s chief scientific and medical officer, said in an interview that “some people with diabetes are accustomed to regularly consuming sugar-sweetened products, which can make management of their diabetes more challenging. As highlighted in the ADA’s Standards of Care, nonnutritive sweeteners (containing few or no calories) may be an acceptable substitute for sweeteners that contain sugar and calories when consumed in moderation. By providing a diabetes-friendly way to prepare foods people are used to eating, we can meet people where they are in offering support to effectively manage their diabetes.”

Of course, “moderation” means different things to different people. “With sucralose in particular, you can bake with it, you can cook with it, and beverages and packaged foods contain it, so it’s easy to end up overconsuming foods that may be fine if they’re occasional treats but aren’t healthy choices to have every single day,” Dr. Swithers said. “If you’re having a cookie containing sucralose once a week, it’s not a big deal, but if you’re having a cookie or a brownie every day, that’s something different.”

“I think ‘everything in moderation’ is a very reasonable approach here,” Dr. Mathur said. “Anything too much is probably not good, and that includes sweeteners like sucralose and others.”

Dr. Suez, whose team is currently exploring the mechanisms through which gut bacteria interact with nonnutritive sweeteners in the pathogenesis of cardiometabolic diseases, was more circumspect.

“We believe that additional, long-term, and non–industry-sponsored studies in humans are needed before we can make a recommendation in favor or against the use of nonnutritive sweeteners,” he said.

“However, our results demonstrating that nonnutritive sweeteners are not inert, when taken together with a growing body of evidence on potential harms of these sweeteners, merit caution until additional studies are completed,” he added. “Our findings do not imply in any way that sugar consumption, shown to be harmful to human health in many studies, is superior to nonnutritive sweeteners. Sugar consumption should be minimized, especially in individuals with obesity or diabetes. Of all the options, unsweetened beverages, specifically water, seem to be the safest and best options.”

Dr. Sen, who also “tries to convince patients to have sparkling or cold bottled water,” instead of artificially sweetened soda, agreed. “If a diabetes patient is trying to choose between sugar and sucralose, I’m not sure which one is worse.”

Dr. Swithers, Dr. Mathur, Dr. Sen, and Dr. Suez declared no competing interests.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

It seems intuitive that, because people with type 2 diabetes (T2D) generally need to avoid sugar, clinicians should recommend eating foods and using recipes containing artificial sweeteners such as sucralose instead.

Splenda, which produces sucralose and other non-sugar sweeteners (NSS), is a sponsor of the American Diabetes Association (ADA) Diabetes Food Hub. Earlier in 2024, the ADA settled a lawsuit regarding its former director of nutrition’s refusal to approve recipes containing sucralose (Splenda), which she believed “flew in the face of the ADA’s mission.” 

Experts agree that, while artificial sweeteners may help in certain scenarios, they can also be harmful.

“There’s not a lot of evidence that sweeteners like sucralose provide significant benefits, especially over the long term,” said Susan Swithers, PhD, professor, department of psychological sciences and associate dean for faculty affairs at Purdue University, West Lafayette, Indiana.

Dr. Swithers authored an article several years ago cautioning that consuming nonnutritive sweeteners in beverages not only fails to prevent disease but also is associated with an increase in risks for the same health outcomes associated with sugar-sweetened beverages, including T2D, cardiovascular disease, hypertension, and stroke.

“At this point, we have pretty good evidence that these chemicals that were once touted as being completely inert are, in fact, not inert,” she said. “We know that they’re unlikely to be toxic in the short term, but they are not benign, and they have consequences. Right now, we have little understanding of the outcomes of consumption of these products chronically.”
 

What the Science Says

In 2023, the World Health Organization (WHO) released a guideline on NSS that recommended against their use for weight control or to reduce the risk for noncommunicable diseases.

The systematic review and meta-analysis upon which the guideline is based found that high intakes of NSS were associated with increases in body mass index and, as Dr. Swithers found, risks of developing T2D, cardiovascular events, and any type of stroke, as well as hypertension, bladder cancer, and all-cause mortality.

In a press release announcing the guideline, Francesco Branca, WHO director for Nutrition and Food Safety, said, “NSS are not essential dietary factors and have no nutritional value. People should reduce the sweetness of the diet altogether, starting early in life, to improve their health.” 

The “common” NSS named by WHO included sucralose, as well as acesulfame K, aspartame, advantame, cyclamates, neotame, saccharin, stevia, and stevia derivatives.

If NSS consumption can increase T2D risk, what about people who already have T2D? 

Some research suggests that NSS may affect people with and without T2D differently, said Dr. Swithers. For example, one small study showed that sucralose enhanced glucagon-like peptide 1 release and lowered blood glucose in healthy patients but not in patients with newly diagnosed T2D.

Similarly, Jotham Suez, PhD, an assistant professor in the department of molecular microbiology and immunology at Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland, said in an interview that his group “showed for the first time in 2014 that disruption of the microbiome by artificial sweeteners is causally linked to disrupted glycemic control.” 

Recently, the team studied the impact of sucralose, aspartame, saccharin, and stevia in healthy adults and “were surprised to discover that all four sweeteners altered gut bacteria and the molecules they secrete,” he said. However, subsequent glucose tolerance tests in healthy humans showed varying results, “suggesting that human microbiome responses to the nonnutritive sweeteners we assessed are highly personalized and may lead to glycemic alterations in some, but not all, consumers depending on their microbes and the sweeteners they consume.” 

Nevertheless, a recent review led by researchers in Mexico concluded that sucralose consumption “is associated with various adverse health effects. Despite being considered safe following previous studies, recent research suggests possible links to systemic inflammation, metabolic diseases, disruptions in gut microbiota, liver damage, and toxic effects at the cellular level.” 

In addition, they wrote, “it is crucial to highlight the persistence of sucralose in the body, its ability to cross the placenta, and its presence in breast milk, raising concerns about prenatal and neonatal exposure.” 

Sabyasachi Sen, MD, a professor of biochemistry and molecular medicine at George Washington School of Medicine & Health Sciences, Washington, DC, has led and coauthored preclinical and clinical studies demonstrating the potential ill effects of sucralose and other artificial sweeteners. One showed that sucralose and acesulfame potassium–containing diet soda altered microbial taxa in two pilot studies in healthy young adults; another showed a connection between artificial sweeteners and inflammation.

But Dr. Sen’s current work is directed at his team’s finding that sucralose promotes the accumulation of reactive oxygen species and adipogenesis in human stem cells, he said in an interview. “It is essentially an additive that is clearly harmful to cells. Our concern is that stem cells are going to remain in the system for a long period of time. If it is causing inflammation in these cells, then that may lead to adverse outcomes.”

Ruchi Mathur, MD, director of the Diabetes Outpatient Treatment & Education Center at Cedars-Sinai in Los Angeles, California, is the principal investigator of a recent study suggesting that non-aspartame NSS and aspartame alone may alter the structure and function of the stool and duodenal microbiomes. Levels of circulating inflammatory markers were also altered in participants who consumed artificial sweeteners, compared with control participants who did not.

In addition to these potential adverse effects, “we have to think about the fact that patients with diabetes often have other comorbidities like obesity and are at higher risk for cardiovascular disease and other conditions,” she said in an interview. “If you’re taking a patient who’s already at risk for those things and you don’t have a detailed discussion with them about pros and cons, you’re doing them a disservice.” 
 

 

 

Industry Interests

Addressing the largely negative but varying findings, Dr. Swithers said, “one of the difficulties with getting clear answers about the science is that the food and beverage industry has an interest in confusing the picture. If people are selling or using a product, the best thing is for them not have a clear reason to change their behavior. All that needs to happen is for them to be able say, ‘well, it’s not clear, and we don’t really know what’s going on, so I’m just going to keep doing what I’m doing.’ Then the producers and sellers of that product have won.” 

“As Upton Sinclair said,” she added, “‘It is difficult to get a man to understand something when his salary depends on his not understanding it.’ When organizations like ADA appear to be promoting a product like sucralose, and they’re not always being clear about disclosing the funding, I think that’s problematic.”

In fact, some recipes in the ADA’s hub that contain Splenda are marked sponsored, such as the four-ingredient peanut butter cookies; others, such as gluten-free brownies, are not — even though the latter contains “1/4 cup plus 1 tbsp” of Splenda Sugar Blend (Splenda produces several nonnutritive sweeteners, not all of which contain sucralose). Splenda is a sponsor of the ADA’s hub.
 

Consume in Moderation?

Regarding the use of Splenda products, Robert Gabbay, MD, PhD, the ADA’s chief scientific and medical officer, said in an interview that “some people with diabetes are accustomed to regularly consuming sugar-sweetened products, which can make management of their diabetes more challenging. As highlighted in the ADA’s Standards of Care, nonnutritive sweeteners (containing few or no calories) may be an acceptable substitute for sweeteners that contain sugar and calories when consumed in moderation. By providing a diabetes-friendly way to prepare foods people are used to eating, we can meet people where they are in offering support to effectively manage their diabetes.”

Of course, “moderation” means different things to different people. “With sucralose in particular, you can bake with it, you can cook with it, and beverages and packaged foods contain it, so it’s easy to end up overconsuming foods that may be fine if they’re occasional treats but aren’t healthy choices to have every single day,” Dr. Swithers said. “If you’re having a cookie containing sucralose once a week, it’s not a big deal, but if you’re having a cookie or a brownie every day, that’s something different.”

“I think ‘everything in moderation’ is a very reasonable approach here,” Dr. Mathur said. “Anything too much is probably not good, and that includes sweeteners like sucralose and others.”

Dr. Suez, whose team is currently exploring the mechanisms through which gut bacteria interact with nonnutritive sweeteners in the pathogenesis of cardiometabolic diseases, was more circumspect.

“We believe that additional, long-term, and non–industry-sponsored studies in humans are needed before we can make a recommendation in favor or against the use of nonnutritive sweeteners,” he said.

“However, our results demonstrating that nonnutritive sweeteners are not inert, when taken together with a growing body of evidence on potential harms of these sweeteners, merit caution until additional studies are completed,” he added. “Our findings do not imply in any way that sugar consumption, shown to be harmful to human health in many studies, is superior to nonnutritive sweeteners. Sugar consumption should be minimized, especially in individuals with obesity or diabetes. Of all the options, unsweetened beverages, specifically water, seem to be the safest and best options.”

Dr. Sen, who also “tries to convince patients to have sparkling or cold bottled water,” instead of artificially sweetened soda, agreed. “If a diabetes patient is trying to choose between sugar and sucralose, I’m not sure which one is worse.”

Dr. Swithers, Dr. Mathur, Dr. Sen, and Dr. Suez declared no competing interests.

A version of this article first appeared on Medscape.com.

It seems intuitive that, because people with type 2 diabetes (T2D) generally need to avoid sugar, clinicians should recommend eating foods and using recipes containing artificial sweeteners such as sucralose instead.

Splenda, which produces sucralose and other non-sugar sweeteners (NSS), is a sponsor of the American Diabetes Association (ADA) Diabetes Food Hub. Earlier in 2024, the ADA settled a lawsuit regarding its former director of nutrition’s refusal to approve recipes containing sucralose (Splenda), which she believed “flew in the face of the ADA’s mission.” 

Experts agree that, while artificial sweeteners may help in certain scenarios, they can also be harmful.

“There’s not a lot of evidence that sweeteners like sucralose provide significant benefits, especially over the long term,” said Susan Swithers, PhD, professor, department of psychological sciences and associate dean for faculty affairs at Purdue University, West Lafayette, Indiana.

Dr. Swithers authored an article several years ago cautioning that consuming nonnutritive sweeteners in beverages not only fails to prevent disease but also is associated with an increase in risks for the same health outcomes associated with sugar-sweetened beverages, including T2D, cardiovascular disease, hypertension, and stroke.

“At this point, we have pretty good evidence that these chemicals that were once touted as being completely inert are, in fact, not inert,” she said. “We know that they’re unlikely to be toxic in the short term, but they are not benign, and they have consequences. Right now, we have little understanding of the outcomes of consumption of these products chronically.”
 

What the Science Says

In 2023, the World Health Organization (WHO) released a guideline on NSS that recommended against their use for weight control or to reduce the risk for noncommunicable diseases.

The systematic review and meta-analysis upon which the guideline is based found that high intakes of NSS were associated with increases in body mass index and, as Dr. Swithers found, risks of developing T2D, cardiovascular events, and any type of stroke, as well as hypertension, bladder cancer, and all-cause mortality.

In a press release announcing the guideline, Francesco Branca, WHO director for Nutrition and Food Safety, said, “NSS are not essential dietary factors and have no nutritional value. People should reduce the sweetness of the diet altogether, starting early in life, to improve their health.” 

The “common” NSS named by WHO included sucralose, as well as acesulfame K, aspartame, advantame, cyclamates, neotame, saccharin, stevia, and stevia derivatives.

If NSS consumption can increase T2D risk, what about people who already have T2D? 

Some research suggests that NSS may affect people with and without T2D differently, said Dr. Swithers. For example, one small study showed that sucralose enhanced glucagon-like peptide 1 release and lowered blood glucose in healthy patients but not in patients with newly diagnosed T2D.

Similarly, Jotham Suez, PhD, an assistant professor in the department of molecular microbiology and immunology at Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland, said in an interview that his group “showed for the first time in 2014 that disruption of the microbiome by artificial sweeteners is causally linked to disrupted glycemic control.” 

Recently, the team studied the impact of sucralose, aspartame, saccharin, and stevia in healthy adults and “were surprised to discover that all four sweeteners altered gut bacteria and the molecules they secrete,” he said. However, subsequent glucose tolerance tests in healthy humans showed varying results, “suggesting that human microbiome responses to the nonnutritive sweeteners we assessed are highly personalized and may lead to glycemic alterations in some, but not all, consumers depending on their microbes and the sweeteners they consume.” 

Nevertheless, a recent review led by researchers in Mexico concluded that sucralose consumption “is associated with various adverse health effects. Despite being considered safe following previous studies, recent research suggests possible links to systemic inflammation, metabolic diseases, disruptions in gut microbiota, liver damage, and toxic effects at the cellular level.” 

In addition, they wrote, “it is crucial to highlight the persistence of sucralose in the body, its ability to cross the placenta, and its presence in breast milk, raising concerns about prenatal and neonatal exposure.” 

Sabyasachi Sen, MD, a professor of biochemistry and molecular medicine at George Washington School of Medicine & Health Sciences, Washington, DC, has led and coauthored preclinical and clinical studies demonstrating the potential ill effects of sucralose and other artificial sweeteners. One showed that sucralose and acesulfame potassium–containing diet soda altered microbial taxa in two pilot studies in healthy young adults; another showed a connection between artificial sweeteners and inflammation.

But Dr. Sen’s current work is directed at his team’s finding that sucralose promotes the accumulation of reactive oxygen species and adipogenesis in human stem cells, he said in an interview. “It is essentially an additive that is clearly harmful to cells. Our concern is that stem cells are going to remain in the system for a long period of time. If it is causing inflammation in these cells, then that may lead to adverse outcomes.”

Ruchi Mathur, MD, director of the Diabetes Outpatient Treatment & Education Center at Cedars-Sinai in Los Angeles, California, is the principal investigator of a recent study suggesting that non-aspartame NSS and aspartame alone may alter the structure and function of the stool and duodenal microbiomes. Levels of circulating inflammatory markers were also altered in participants who consumed artificial sweeteners, compared with control participants who did not.

In addition to these potential adverse effects, “we have to think about the fact that patients with diabetes often have other comorbidities like obesity and are at higher risk for cardiovascular disease and other conditions,” she said in an interview. “If you’re taking a patient who’s already at risk for those things and you don’t have a detailed discussion with them about pros and cons, you’re doing them a disservice.” 
 

 

 

Industry Interests

Addressing the largely negative but varying findings, Dr. Swithers said, “one of the difficulties with getting clear answers about the science is that the food and beverage industry has an interest in confusing the picture. If people are selling or using a product, the best thing is for them not have a clear reason to change their behavior. All that needs to happen is for them to be able say, ‘well, it’s not clear, and we don’t really know what’s going on, so I’m just going to keep doing what I’m doing.’ Then the producers and sellers of that product have won.” 

“As Upton Sinclair said,” she added, “‘It is difficult to get a man to understand something when his salary depends on his not understanding it.’ When organizations like ADA appear to be promoting a product like sucralose, and they’re not always being clear about disclosing the funding, I think that’s problematic.”

In fact, some recipes in the ADA’s hub that contain Splenda are marked sponsored, such as the four-ingredient peanut butter cookies; others, such as gluten-free brownies, are not — even though the latter contains “1/4 cup plus 1 tbsp” of Splenda Sugar Blend (Splenda produces several nonnutritive sweeteners, not all of which contain sucralose). Splenda is a sponsor of the ADA’s hub.
 

Consume in Moderation?

Regarding the use of Splenda products, Robert Gabbay, MD, PhD, the ADA’s chief scientific and medical officer, said in an interview that “some people with diabetes are accustomed to regularly consuming sugar-sweetened products, which can make management of their diabetes more challenging. As highlighted in the ADA’s Standards of Care, nonnutritive sweeteners (containing few or no calories) may be an acceptable substitute for sweeteners that contain sugar and calories when consumed in moderation. By providing a diabetes-friendly way to prepare foods people are used to eating, we can meet people where they are in offering support to effectively manage their diabetes.”

Of course, “moderation” means different things to different people. “With sucralose in particular, you can bake with it, you can cook with it, and beverages and packaged foods contain it, so it’s easy to end up overconsuming foods that may be fine if they’re occasional treats but aren’t healthy choices to have every single day,” Dr. Swithers said. “If you’re having a cookie containing sucralose once a week, it’s not a big deal, but if you’re having a cookie or a brownie every day, that’s something different.”

“I think ‘everything in moderation’ is a very reasonable approach here,” Dr. Mathur said. “Anything too much is probably not good, and that includes sweeteners like sucralose and others.”

Dr. Suez, whose team is currently exploring the mechanisms through which gut bacteria interact with nonnutritive sweeteners in the pathogenesis of cardiometabolic diseases, was more circumspect.

“We believe that additional, long-term, and non–industry-sponsored studies in humans are needed before we can make a recommendation in favor or against the use of nonnutritive sweeteners,” he said.

“However, our results demonstrating that nonnutritive sweeteners are not inert, when taken together with a growing body of evidence on potential harms of these sweeteners, merit caution until additional studies are completed,” he added. “Our findings do not imply in any way that sugar consumption, shown to be harmful to human health in many studies, is superior to nonnutritive sweeteners. Sugar consumption should be minimized, especially in individuals with obesity or diabetes. Of all the options, unsweetened beverages, specifically water, seem to be the safest and best options.”

Dr. Sen, who also “tries to convince patients to have sparkling or cold bottled water,” instead of artificially sweetened soda, agreed. “If a diabetes patient is trying to choose between sugar and sucralose, I’m not sure which one is worse.”

Dr. Swithers, Dr. Mathur, Dr. Sen, and Dr. Suez declared no competing interests.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Updated Guideline Reflects New Drugs for Type 2 Diabetes

Article Type
Changed
Wed, 06/19/2024 - 12:57

Type 2 diabetes (T2D) is the most common form of diabetes, representing more than 90% of all cases worldwide. The prevalence of T2D is increasing globally, mainly because of behavioral and social factors related to obesity, diet, and physical activity. The International Diabetes Federation estimated in its 2021 report that 537 million adults aged between 20 and 79 years have been diagnosed with diabetes worldwide. The organization predicts an increase to 643 million by 2030 and 743 million by 2045.

The main therapeutic goals for patients with T2D include adequate glycemic control and primary and secondary prevention of atherosclerotic cardiovascular and renal diseases, which represent nearly half of all deaths among adults with T2D. Despite the multiple treatment options available, 16% of adults with T2D have inadequate glycemic control, including hemoglobin A1c levels greater than 9%, even though glycemic control was the focus of the 2017 guidelines of the American College of Physicians.

Therefore, the ACP deemed it necessary to update the previous guidelines, considering new evidence on the efficacy and harms of new pharmacologic treatments in adults with T2D with the goal of reducing the risk for all-cause mortality, cardiovascular morbidity, and progression of chronic kidney disease (CKD) in these patients.
 

New Drugs

The pharmacologic treatments that the ACP considered while updating its guidelines include glucagon-like peptide 1 (GLP-1) receptor agonists (that is, dulaglutide, exenatide, liraglutide, lixisenatide, and semaglutide), a GLP-1 receptor agonist and a glucose-dependent insulinotropic polypeptide receptor agonist (that is, tirzepatide), sodium-glucose cotransporter 2 (SGLT-2) inhibitors (that is, canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin), dipeptidyl peptidase 4 (DPP-4) inhibitors (that is, alogliptin, linagliptin, saxagliptin, and sitagliptin), and long-acting insulins (that is, insulin glargine and insulin degludec).

Recommendations

The ACP recommends adding an SGLT-2 inhibitor or a GLP-1 agonist to metformin and lifestyle modifications in adults with inadequately controlled T2D (strong recommendation, high certainty of evidence). Use an SGLT-2 inhibitor to reduce the risk for all-cause mortality, major adverse cardiovascular events (MACE), CKD progression, and hospitalization resulting from heart failure, according to the document. Use a GLP-1 agonist to reduce the risk for all-cause mortality, MACE, and strokes.

SGLT-2 inhibitors and GLP-1 agonists are the only newer pharmacological treatments for T2D that have reduced all-cause mortality than placebo or usual care. In indirect comparison, SGLT-2 inhibitors probably reduce the risk for hospitalization resulting from heart failure, while GLP-1 agonists probably reduce the risk for strokes.

Neither class of drugs causes severe hypoglycemia, but both are associated with various harms, as reported in specific warnings. Both classes of drugs lead to weight loss.

Compared with long-acting insulins, SGLT-2 inhibitors can reduce, and GLP-1 agonists probably reduce, all-cause mortality. Compared with DPP-4 inhibitors, GLP-1 agonists probably reduce all-cause mortality.

Compared with DPP-4 inhibitors, SGLT-2 inhibitors probably reduce MACE, as well as compared with sulfonylureas.

The ACP recommends against adding a DPP-4 inhibitor to metformin and lifestyle modifications in adults with inadequately controlled T2D to reduce morbidity and all-cause mortality (strong recommendation, high certainty of evidence).

Compared with usual therapy, DPP-4 inhibitors do not result in differences in all-cause mortality, MACE, myocardial infarction, stroke, hospitalization for chronic heart failure (CHF), CKD progression, or severe hypoglycemia. Compared with SGLT-2 inhibitors, DPP-4 inhibitors may increase hospitalization caused by CHF and probably increase the risk for MACE and CKD progression. Compared with GLP-1 agonists, they probably increase all-cause mortality and hospitalization caused by CHF and the risk for MACE. Metformin is the most common usual therapy in the studies considered.
 

 

 

Considerations for Practice

Metformin (unless contraindicated) and lifestyle modifications represent the first step in managing T2D in most patients, according to the ACP.

The choice of additional therapy requires a risk/benefit assessment and should be personalized on the basis of patient preferences, glycemic control goals, comorbidities, and the risk for hypoglycemia. SGLT-2 inhibitors can be added in patients with T2D and CHF or CKD, according to the ACP. GLP-1 agonists can be added in patients with T2D at increased risk for stroke or for whom total body weight loss is a significant therapeutic goal.

The A1c target should be considered between 7% and 8% in most adults with T2D, and de-escalation of pharmacologic treatments should be considered for A1c levels less than 6.5%. Self-monitoring of blood glucose may not be necessary in patients treated with metformin in combination with an SGLT-2 inhibitor or a GLP-1 agonist, according to the ACP.

The document also holds that, in cases of adequate glycemic control with the addition of an SGLT-2 inhibitor or a GLP-1 agonist, existing treatment with sulfonylureas or long-acting insulin should be reduced or stopped due to the increased risk for severe hypoglycemia.

This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Type 2 diabetes (T2D) is the most common form of diabetes, representing more than 90% of all cases worldwide. The prevalence of T2D is increasing globally, mainly because of behavioral and social factors related to obesity, diet, and physical activity. The International Diabetes Federation estimated in its 2021 report that 537 million adults aged between 20 and 79 years have been diagnosed with diabetes worldwide. The organization predicts an increase to 643 million by 2030 and 743 million by 2045.

The main therapeutic goals for patients with T2D include adequate glycemic control and primary and secondary prevention of atherosclerotic cardiovascular and renal diseases, which represent nearly half of all deaths among adults with T2D. Despite the multiple treatment options available, 16% of adults with T2D have inadequate glycemic control, including hemoglobin A1c levels greater than 9%, even though glycemic control was the focus of the 2017 guidelines of the American College of Physicians.

Therefore, the ACP deemed it necessary to update the previous guidelines, considering new evidence on the efficacy and harms of new pharmacologic treatments in adults with T2D with the goal of reducing the risk for all-cause mortality, cardiovascular morbidity, and progression of chronic kidney disease (CKD) in these patients.
 

New Drugs

The pharmacologic treatments that the ACP considered while updating its guidelines include glucagon-like peptide 1 (GLP-1) receptor agonists (that is, dulaglutide, exenatide, liraglutide, lixisenatide, and semaglutide), a GLP-1 receptor agonist and a glucose-dependent insulinotropic polypeptide receptor agonist (that is, tirzepatide), sodium-glucose cotransporter 2 (SGLT-2) inhibitors (that is, canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin), dipeptidyl peptidase 4 (DPP-4) inhibitors (that is, alogliptin, linagliptin, saxagliptin, and sitagliptin), and long-acting insulins (that is, insulin glargine and insulin degludec).

Recommendations

The ACP recommends adding an SGLT-2 inhibitor or a GLP-1 agonist to metformin and lifestyle modifications in adults with inadequately controlled T2D (strong recommendation, high certainty of evidence). Use an SGLT-2 inhibitor to reduce the risk for all-cause mortality, major adverse cardiovascular events (MACE), CKD progression, and hospitalization resulting from heart failure, according to the document. Use a GLP-1 agonist to reduce the risk for all-cause mortality, MACE, and strokes.

SGLT-2 inhibitors and GLP-1 agonists are the only newer pharmacological treatments for T2D that have reduced all-cause mortality than placebo or usual care. In indirect comparison, SGLT-2 inhibitors probably reduce the risk for hospitalization resulting from heart failure, while GLP-1 agonists probably reduce the risk for strokes.

Neither class of drugs causes severe hypoglycemia, but both are associated with various harms, as reported in specific warnings. Both classes of drugs lead to weight loss.

Compared with long-acting insulins, SGLT-2 inhibitors can reduce, and GLP-1 agonists probably reduce, all-cause mortality. Compared with DPP-4 inhibitors, GLP-1 agonists probably reduce all-cause mortality.

Compared with DPP-4 inhibitors, SGLT-2 inhibitors probably reduce MACE, as well as compared with sulfonylureas.

The ACP recommends against adding a DPP-4 inhibitor to metformin and lifestyle modifications in adults with inadequately controlled T2D to reduce morbidity and all-cause mortality (strong recommendation, high certainty of evidence).

Compared with usual therapy, DPP-4 inhibitors do not result in differences in all-cause mortality, MACE, myocardial infarction, stroke, hospitalization for chronic heart failure (CHF), CKD progression, or severe hypoglycemia. Compared with SGLT-2 inhibitors, DPP-4 inhibitors may increase hospitalization caused by CHF and probably increase the risk for MACE and CKD progression. Compared with GLP-1 agonists, they probably increase all-cause mortality and hospitalization caused by CHF and the risk for MACE. Metformin is the most common usual therapy in the studies considered.
 

 

 

Considerations for Practice

Metformin (unless contraindicated) and lifestyle modifications represent the first step in managing T2D in most patients, according to the ACP.

The choice of additional therapy requires a risk/benefit assessment and should be personalized on the basis of patient preferences, glycemic control goals, comorbidities, and the risk for hypoglycemia. SGLT-2 inhibitors can be added in patients with T2D and CHF or CKD, according to the ACP. GLP-1 agonists can be added in patients with T2D at increased risk for stroke or for whom total body weight loss is a significant therapeutic goal.

The A1c target should be considered between 7% and 8% in most adults with T2D, and de-escalation of pharmacologic treatments should be considered for A1c levels less than 6.5%. Self-monitoring of blood glucose may not be necessary in patients treated with metformin in combination with an SGLT-2 inhibitor or a GLP-1 agonist, according to the ACP.

The document also holds that, in cases of adequate glycemic control with the addition of an SGLT-2 inhibitor or a GLP-1 agonist, existing treatment with sulfonylureas or long-acting insulin should be reduced or stopped due to the increased risk for severe hypoglycemia.

This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Type 2 diabetes (T2D) is the most common form of diabetes, representing more than 90% of all cases worldwide. The prevalence of T2D is increasing globally, mainly because of behavioral and social factors related to obesity, diet, and physical activity. The International Diabetes Federation estimated in its 2021 report that 537 million adults aged between 20 and 79 years have been diagnosed with diabetes worldwide. The organization predicts an increase to 643 million by 2030 and 743 million by 2045.

The main therapeutic goals for patients with T2D include adequate glycemic control and primary and secondary prevention of atherosclerotic cardiovascular and renal diseases, which represent nearly half of all deaths among adults with T2D. Despite the multiple treatment options available, 16% of adults with T2D have inadequate glycemic control, including hemoglobin A1c levels greater than 9%, even though glycemic control was the focus of the 2017 guidelines of the American College of Physicians.

Therefore, the ACP deemed it necessary to update the previous guidelines, considering new evidence on the efficacy and harms of new pharmacologic treatments in adults with T2D with the goal of reducing the risk for all-cause mortality, cardiovascular morbidity, and progression of chronic kidney disease (CKD) in these patients.
 

New Drugs

The pharmacologic treatments that the ACP considered while updating its guidelines include glucagon-like peptide 1 (GLP-1) receptor agonists (that is, dulaglutide, exenatide, liraglutide, lixisenatide, and semaglutide), a GLP-1 receptor agonist and a glucose-dependent insulinotropic polypeptide receptor agonist (that is, tirzepatide), sodium-glucose cotransporter 2 (SGLT-2) inhibitors (that is, canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin), dipeptidyl peptidase 4 (DPP-4) inhibitors (that is, alogliptin, linagliptin, saxagliptin, and sitagliptin), and long-acting insulins (that is, insulin glargine and insulin degludec).

Recommendations

The ACP recommends adding an SGLT-2 inhibitor or a GLP-1 agonist to metformin and lifestyle modifications in adults with inadequately controlled T2D (strong recommendation, high certainty of evidence). Use an SGLT-2 inhibitor to reduce the risk for all-cause mortality, major adverse cardiovascular events (MACE), CKD progression, and hospitalization resulting from heart failure, according to the document. Use a GLP-1 agonist to reduce the risk for all-cause mortality, MACE, and strokes.

SGLT-2 inhibitors and GLP-1 agonists are the only newer pharmacological treatments for T2D that have reduced all-cause mortality than placebo or usual care. In indirect comparison, SGLT-2 inhibitors probably reduce the risk for hospitalization resulting from heart failure, while GLP-1 agonists probably reduce the risk for strokes.

Neither class of drugs causes severe hypoglycemia, but both are associated with various harms, as reported in specific warnings. Both classes of drugs lead to weight loss.

Compared with long-acting insulins, SGLT-2 inhibitors can reduce, and GLP-1 agonists probably reduce, all-cause mortality. Compared with DPP-4 inhibitors, GLP-1 agonists probably reduce all-cause mortality.

Compared with DPP-4 inhibitors, SGLT-2 inhibitors probably reduce MACE, as well as compared with sulfonylureas.

The ACP recommends against adding a DPP-4 inhibitor to metformin and lifestyle modifications in adults with inadequately controlled T2D to reduce morbidity and all-cause mortality (strong recommendation, high certainty of evidence).

Compared with usual therapy, DPP-4 inhibitors do not result in differences in all-cause mortality, MACE, myocardial infarction, stroke, hospitalization for chronic heart failure (CHF), CKD progression, or severe hypoglycemia. Compared with SGLT-2 inhibitors, DPP-4 inhibitors may increase hospitalization caused by CHF and probably increase the risk for MACE and CKD progression. Compared with GLP-1 agonists, they probably increase all-cause mortality and hospitalization caused by CHF and the risk for MACE. Metformin is the most common usual therapy in the studies considered.
 

 

 

Considerations for Practice

Metformin (unless contraindicated) and lifestyle modifications represent the first step in managing T2D in most patients, according to the ACP.

The choice of additional therapy requires a risk/benefit assessment and should be personalized on the basis of patient preferences, glycemic control goals, comorbidities, and the risk for hypoglycemia. SGLT-2 inhibitors can be added in patients with T2D and CHF or CKD, according to the ACP. GLP-1 agonists can be added in patients with T2D at increased risk for stroke or for whom total body weight loss is a significant therapeutic goal.

The A1c target should be considered between 7% and 8% in most adults with T2D, and de-escalation of pharmacologic treatments should be considered for A1c levels less than 6.5%. Self-monitoring of blood glucose may not be necessary in patients treated with metformin in combination with an SGLT-2 inhibitor or a GLP-1 agonist, according to the ACP.

The document also holds that, in cases of adequate glycemic control with the addition of an SGLT-2 inhibitor or a GLP-1 agonist, existing treatment with sulfonylureas or long-acting insulin should be reduced or stopped due to the increased risk for severe hypoglycemia.

This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Doctors Endorsing Products on X May Not Disclose Company Ties

Article Type
Changed
Wed, 06/19/2024 - 10:30

Nearly one in three physicians endorsing drugs and devices on the social media platform X did not disclose that they received payments from the manufacturers, according to a new study published in JAMA.

Lead author Aaron Mitchell, MD, MPH, a medical oncologist at Memorial Sloan Kettering Cancer Center in New York City, told this news organization that he and his colleagues undertook the study in part to see whether physicians were adhering to professional and industry guidelines regarding marketing communications.

The team reviewed posts by physicians on X during 2022, looking for key words that might indicate that the posts were intended as endorsements of a product. The researchers then delved into the Centers for Medicare and Medicaid Services Open Payments database to see how many of those identified as having endorsed a product were paid by the manufacturers.

What Dr. Mitchell found concerned him, he said.

Overall, the researchers identified 28 physician endorsers who received a total of $1.4 million from sponsors in 2022. Among these, 26 physicians (93%) received payments from the product’s manufacturer, totaling $713,976, and 24 physicians (86%) accepted payments related to the endorsed drug or device, totaling $492,098.

While most did disclose that the posts were sponsored — by adding the word “sponsored” or using #sponsored — nine physicians did not.

Although 28 physician endorsers represent a “small fraction” of the overall number of physicians who use X, each endorsement was ultimately posted dozens, if not hundreds of times, said Dr. Mitchell. In fact, he said he saw the same particular endorsement post every time he opened his X app for months.

Overall, Dr. Mitchell noted that it’s less about the fact that the endorsements are occurring on social media and more that there are these paid endorsements taking place at all.

Among the physician specialties promoting a product, urologists and oncologists dominated. Almost one third were urologists, and 57% were oncologists — six medical oncologists, six radiation oncologists, and four gynecologic oncologists. Of the remaining three physicians, two were internists and one was a pulmonary and critical care medicine specialist.

The authors tracked posts from physicians and industry accounts. Many of the posts on industry accounts were physician testimonials, usually videos. Almost half — 8 of 17 — of those testimonials did not disclose that the doctor was being paid by the manufacturer. In another case, a physician did not disclose that they were paid to endorse a white paper.

Fifteen promotional posts were for a Boston Scientific product, followed by six for GlaxoSmithKline, two for Eisai, two for Exelixis, and one each for AstraZeneca, Novartis, and Pfizer.

In general, Dr. Mitchell said, industry guidelines suggest that manufacturer-paid speakers or consultants should have well-regarded expertise in the area they are being asked to weigh in on, but most physician endorsers in the study were not key opinion leaders or experts.

The authors examined the paid endorsers’ H-index — a measure of academic productivity provided by Scopus. Overall, 19 of the 28 physicians had an H-index below 20, which is considered less accomplished, and 14 had no published research related to the endorsed product.

Ten received payments from manufacturers for research purposes, and only one received research payments related to the endorsed product ($224,577).

“Physicians’ participation in industry marketing raises questions regarding professionalism and their responsibilities as patient advocates,” the JAMA authors wrote.

The study was supported by grants from the National Cancer Institute. Dr. Mitchell reported no relevant financial relationships. Coauthors Samer Al Hadidi, MD, reported receiving personal fees from Pfizer, Sanofi, and Janssen during the conduct of the study, and Timothy S. Anderson, MD, reported receiving grants from the National Institute on Aging, the American Heart Association, and the American College of Cardiology, and receiving consulting fees from the American Medical Student Association. Dr. Anderson is also an associate editor of JAMA Internal Medicine.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Nearly one in three physicians endorsing drugs and devices on the social media platform X did not disclose that they received payments from the manufacturers, according to a new study published in JAMA.

Lead author Aaron Mitchell, MD, MPH, a medical oncologist at Memorial Sloan Kettering Cancer Center in New York City, told this news organization that he and his colleagues undertook the study in part to see whether physicians were adhering to professional and industry guidelines regarding marketing communications.

The team reviewed posts by physicians on X during 2022, looking for key words that might indicate that the posts were intended as endorsements of a product. The researchers then delved into the Centers for Medicare and Medicaid Services Open Payments database to see how many of those identified as having endorsed a product were paid by the manufacturers.

What Dr. Mitchell found concerned him, he said.

Overall, the researchers identified 28 physician endorsers who received a total of $1.4 million from sponsors in 2022. Among these, 26 physicians (93%) received payments from the product’s manufacturer, totaling $713,976, and 24 physicians (86%) accepted payments related to the endorsed drug or device, totaling $492,098.

While most did disclose that the posts were sponsored — by adding the word “sponsored” or using #sponsored — nine physicians did not.

Although 28 physician endorsers represent a “small fraction” of the overall number of physicians who use X, each endorsement was ultimately posted dozens, if not hundreds of times, said Dr. Mitchell. In fact, he said he saw the same particular endorsement post every time he opened his X app for months.

Overall, Dr. Mitchell noted that it’s less about the fact that the endorsements are occurring on social media and more that there are these paid endorsements taking place at all.

Among the physician specialties promoting a product, urologists and oncologists dominated. Almost one third were urologists, and 57% were oncologists — six medical oncologists, six radiation oncologists, and four gynecologic oncologists. Of the remaining three physicians, two were internists and one was a pulmonary and critical care medicine specialist.

The authors tracked posts from physicians and industry accounts. Many of the posts on industry accounts were physician testimonials, usually videos. Almost half — 8 of 17 — of those testimonials did not disclose that the doctor was being paid by the manufacturer. In another case, a physician did not disclose that they were paid to endorse a white paper.

Fifteen promotional posts were for a Boston Scientific product, followed by six for GlaxoSmithKline, two for Eisai, two for Exelixis, and one each for AstraZeneca, Novartis, and Pfizer.

In general, Dr. Mitchell said, industry guidelines suggest that manufacturer-paid speakers or consultants should have well-regarded expertise in the area they are being asked to weigh in on, but most physician endorsers in the study were not key opinion leaders or experts.

The authors examined the paid endorsers’ H-index — a measure of academic productivity provided by Scopus. Overall, 19 of the 28 physicians had an H-index below 20, which is considered less accomplished, and 14 had no published research related to the endorsed product.

Ten received payments from manufacturers for research purposes, and only one received research payments related to the endorsed product ($224,577).

“Physicians’ participation in industry marketing raises questions regarding professionalism and their responsibilities as patient advocates,” the JAMA authors wrote.

The study was supported by grants from the National Cancer Institute. Dr. Mitchell reported no relevant financial relationships. Coauthors Samer Al Hadidi, MD, reported receiving personal fees from Pfizer, Sanofi, and Janssen during the conduct of the study, and Timothy S. Anderson, MD, reported receiving grants from the National Institute on Aging, the American Heart Association, and the American College of Cardiology, and receiving consulting fees from the American Medical Student Association. Dr. Anderson is also an associate editor of JAMA Internal Medicine.

A version of this article appeared on Medscape.com.

Nearly one in three physicians endorsing drugs and devices on the social media platform X did not disclose that they received payments from the manufacturers, according to a new study published in JAMA.

Lead author Aaron Mitchell, MD, MPH, a medical oncologist at Memorial Sloan Kettering Cancer Center in New York City, told this news organization that he and his colleagues undertook the study in part to see whether physicians were adhering to professional and industry guidelines regarding marketing communications.

The team reviewed posts by physicians on X during 2022, looking for key words that might indicate that the posts were intended as endorsements of a product. The researchers then delved into the Centers for Medicare and Medicaid Services Open Payments database to see how many of those identified as having endorsed a product were paid by the manufacturers.

What Dr. Mitchell found concerned him, he said.

Overall, the researchers identified 28 physician endorsers who received a total of $1.4 million from sponsors in 2022. Among these, 26 physicians (93%) received payments from the product’s manufacturer, totaling $713,976, and 24 physicians (86%) accepted payments related to the endorsed drug or device, totaling $492,098.

While most did disclose that the posts were sponsored — by adding the word “sponsored” or using #sponsored — nine physicians did not.

Although 28 physician endorsers represent a “small fraction” of the overall number of physicians who use X, each endorsement was ultimately posted dozens, if not hundreds of times, said Dr. Mitchell. In fact, he said he saw the same particular endorsement post every time he opened his X app for months.

Overall, Dr. Mitchell noted that it’s less about the fact that the endorsements are occurring on social media and more that there are these paid endorsements taking place at all.

Among the physician specialties promoting a product, urologists and oncologists dominated. Almost one third were urologists, and 57% were oncologists — six medical oncologists, six radiation oncologists, and four gynecologic oncologists. Of the remaining three physicians, two were internists and one was a pulmonary and critical care medicine specialist.

The authors tracked posts from physicians and industry accounts. Many of the posts on industry accounts were physician testimonials, usually videos. Almost half — 8 of 17 — of those testimonials did not disclose that the doctor was being paid by the manufacturer. In another case, a physician did not disclose that they were paid to endorse a white paper.

Fifteen promotional posts were for a Boston Scientific product, followed by six for GlaxoSmithKline, two for Eisai, two for Exelixis, and one each for AstraZeneca, Novartis, and Pfizer.

In general, Dr. Mitchell said, industry guidelines suggest that manufacturer-paid speakers or consultants should have well-regarded expertise in the area they are being asked to weigh in on, but most physician endorsers in the study were not key opinion leaders or experts.

The authors examined the paid endorsers’ H-index — a measure of academic productivity provided by Scopus. Overall, 19 of the 28 physicians had an H-index below 20, which is considered less accomplished, and 14 had no published research related to the endorsed product.

Ten received payments from manufacturers for research purposes, and only one received research payments related to the endorsed product ($224,577).

“Physicians’ participation in industry marketing raises questions regarding professionalism and their responsibilities as patient advocates,” the JAMA authors wrote.

The study was supported by grants from the National Cancer Institute. Dr. Mitchell reported no relevant financial relationships. Coauthors Samer Al Hadidi, MD, reported receiving personal fees from Pfizer, Sanofi, and Janssen during the conduct of the study, and Timothy S. Anderson, MD, reported receiving grants from the National Institute on Aging, the American Heart Association, and the American College of Cardiology, and receiving consulting fees from the American Medical Student Association. Dr. Anderson is also an associate editor of JAMA Internal Medicine.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article