Cardiology News is an independent news source that provides cardiologists with timely and relevant news and commentary about clinical developments and the impact of health care policy on cardiology and the cardiologist's practice. Cardiology News Digital Network is the online destination and multimedia properties of Cardiology News, the independent news publication for cardiologists. Cardiology news is the leading source of news and commentary about clinical developments in cardiology as well as health care policy and regulations that affect the cardiologist's practice. Cardiology News Digital Network is owned by Frontline Medical Communications.

Theme
medstat_card
Top Sections
Resources
Best Practices
card
Main menu
CARD Main Menu
Explore menu
CARD Explore Menu
Proclivity ID
18806001
Unpublish
Altmetric
Article Authors "autobrand" affiliation
Cardiology News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Medical Education Library
Education Center
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Non-Overridden Topics
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
On

Ultra-Processed Doesn’t Always Mean Bad — Here’s How to Tell

Article Type
Changed
Thu, 09/12/2024 - 14:56

 

You may have been warned that ultra-processed foods can wreak havoc on your health. But not all of them are created equal. 

A new study out of The Lancet Regional Health – Americas looked at different types of ultra-processed foods and found that some were even linked with lower risks of cardiovascular diseasecoronary heart disease, and stroke

“Avoiding all ultra-processed foods is not practical for most people,” said Dariush Mozaffarian, MD, a cardiologist, public health scientist, and director of the Food is Medicine Institute at Tufts University in Boston, Massachusetts. “So, it is helpful to start to understand, within the category of all processing, what food might be more or less harmful.”

Researchers analyzed food questionnaires from three large groups of US adults, with most people in their review being White and female. The study found that sugary and artificially sweetened drinks, along with processed meats, were linked to a greater risk of cardiovascular disease and coronary heart disease. But cereals, savory snacks, and yogurt and dairy-based desserts were linked to a lower risk of these diseases. Ultra-processed cereals and breads were also linked to a lower stroke risk. 
 

The Truth About Processed Meat

Studies show that cured, salted, or smoked meats are linked to certain cancers.

“We know that sugar-sweetened beverages are associated with metabolic derangement for things like higher glucose levels, insulin resistance, visceral obesityprediabetesdiabetes, and higher triglycerides,” said Ashish Sarraju, MD, a cardiologist with the Cleveland Clinic in Ohio. “Added sugars associated with all of those things are in turn risk factors for heart disease.” Sugar-sweetened beverages are often very high in sugar, artificial colors, and other additives, and almost “nothing beneficial” in terms of ingredients, Dr. Mozaffarian said. “They’re also consumed in very high doses, very quickly.”

Processed meats have 400% higher levels of salt, compared with unprocessed meats, said Dr. Mozaffarian. They also contain high levels of added nitrates, which are a carcinogen that could also affect the heart and blood vessels. Certain ultra-processed foods, such as bacon, are often fried at sky-high temperatures, which can trigger inflammatory compounds. 

“If you put together the inflammatory effects, the salt, and the nitrates, this is a package of food that can really build to cause harm,” said Dr. Mozaffarian. The World Health Organization has also classified processed meats (bacon, ham, salami) as a group one carcinogen, he noted.

“Processed meats are typically high in saturated fats, sodium, and preservatives, which can increase blood pressure, promote inflammation, and negatively affect cholesterol levels, leading to a higher risk of coronary heart disease, said Joseph A. Daibes, DO, an interventional cardiologist at Lenox Hill Hospital, New York City. “The study underscores the importance of limiting these types of foods to reduce cardiovascular risk.”

But considering that breakfast cereals – albeit highly processed – are a top source of whole grains for Americans, it makes sense that they are linked with lower risk of heart disease, said Dr. Mozaffarian. 

“They have fiber, bran, whole grains, and they also have sugar, and additives,” he said. “But on average, putting all those things together, this study suggested that the net effect is beneficial. That doesn’t mean they couldn’t be more beneficial if we made them less processed, but they don’t seem to have harm.”

The active probiotics and fermentation in yogurt can make it a healthy snack of choice, as there has been more and more research showing that fermented foods with probiotics are good for heart health and work against metabolic disease, or a cluster of conditions that can increase the risk of stroke, heart disease, and type 2 diabetes, Dr. Mozaffarian said.

Savory snacks, cereals, and yogurt and dairy-based desserts may also be less calorie dense than sugary beverages and processed meats, said Dr. Daibes. 

“Additionally, the type of fat used in savory snacks and the presence of probiotics in yogurt may have neutral or even positive effects on heart health, as opposed to the harmful fats and additives found in many ultra-processed foods,” he said.
 

How Ultra-Processed Foods Can Harm Your Health 

There are “clear and concerning links” between eating ultra-processed foods and getting heart disease, according to Dr. Daibes. “In real-life clinical practice, it’s a rather clear and straightforward relationship – the patients who tend to have poorer diets, with more ultra-processed and nutrient-barren foods, tend to have worse health outcomes, both cardiovascular and otherwise.”

Processing foods is centered on breaking down the natural structures of foods, as well as the loss of their natural nutrients, Dr. Mozaffarian explained. When you include the word “ultra,” this refers to putting in industrial additives.

“I think refined starches (such as wheat, corn, and rice) and sugars are some of the biggest harms because it leads to a big spike in blood glucose,” Dr. Mozaffarian said. “But also, those refined starches and sugars are digested so quickly in the stomach and small intestine that you starve your gut bacteria in your large intestines.” 

Many “good-for-you ingredients,” such as fermentable fibers and bio-active compounds, are found in unprocessed, whole foods like fruits, vegetables, nuts, beans, and seeds, noted Dr. Mozaffarian. High levels of salt in ultra-processed foods are another cause for concern, as are other additives such as artificial flavorings, sweeteners, and thickeners. 
 

Opting for Whole Foods

There may be people looking to eat cleaner, unprocessed foods, but high cost and a lack of access to them could create challenges. Dr. Sarraju advises his patients to simply do their best to eat foods in their whole-ingredient form and avoid prepackaged foods as much as possible.

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

 

You may have been warned that ultra-processed foods can wreak havoc on your health. But not all of them are created equal. 

A new study out of The Lancet Regional Health – Americas looked at different types of ultra-processed foods and found that some were even linked with lower risks of cardiovascular diseasecoronary heart disease, and stroke

“Avoiding all ultra-processed foods is not practical for most people,” said Dariush Mozaffarian, MD, a cardiologist, public health scientist, and director of the Food is Medicine Institute at Tufts University in Boston, Massachusetts. “So, it is helpful to start to understand, within the category of all processing, what food might be more or less harmful.”

Researchers analyzed food questionnaires from three large groups of US adults, with most people in their review being White and female. The study found that sugary and artificially sweetened drinks, along with processed meats, were linked to a greater risk of cardiovascular disease and coronary heart disease. But cereals, savory snacks, and yogurt and dairy-based desserts were linked to a lower risk of these diseases. Ultra-processed cereals and breads were also linked to a lower stroke risk. 
 

The Truth About Processed Meat

Studies show that cured, salted, or smoked meats are linked to certain cancers.

“We know that sugar-sweetened beverages are associated with metabolic derangement for things like higher glucose levels, insulin resistance, visceral obesityprediabetesdiabetes, and higher triglycerides,” said Ashish Sarraju, MD, a cardiologist with the Cleveland Clinic in Ohio. “Added sugars associated with all of those things are in turn risk factors for heart disease.” Sugar-sweetened beverages are often very high in sugar, artificial colors, and other additives, and almost “nothing beneficial” in terms of ingredients, Dr. Mozaffarian said. “They’re also consumed in very high doses, very quickly.”

Processed meats have 400% higher levels of salt, compared with unprocessed meats, said Dr. Mozaffarian. They also contain high levels of added nitrates, which are a carcinogen that could also affect the heart and blood vessels. Certain ultra-processed foods, such as bacon, are often fried at sky-high temperatures, which can trigger inflammatory compounds. 

“If you put together the inflammatory effects, the salt, and the nitrates, this is a package of food that can really build to cause harm,” said Dr. Mozaffarian. The World Health Organization has also classified processed meats (bacon, ham, salami) as a group one carcinogen, he noted.

“Processed meats are typically high in saturated fats, sodium, and preservatives, which can increase blood pressure, promote inflammation, and negatively affect cholesterol levels, leading to a higher risk of coronary heart disease, said Joseph A. Daibes, DO, an interventional cardiologist at Lenox Hill Hospital, New York City. “The study underscores the importance of limiting these types of foods to reduce cardiovascular risk.”

But considering that breakfast cereals – albeit highly processed – are a top source of whole grains for Americans, it makes sense that they are linked with lower risk of heart disease, said Dr. Mozaffarian. 

“They have fiber, bran, whole grains, and they also have sugar, and additives,” he said. “But on average, putting all those things together, this study suggested that the net effect is beneficial. That doesn’t mean they couldn’t be more beneficial if we made them less processed, but they don’t seem to have harm.”

The active probiotics and fermentation in yogurt can make it a healthy snack of choice, as there has been more and more research showing that fermented foods with probiotics are good for heart health and work against metabolic disease, or a cluster of conditions that can increase the risk of stroke, heart disease, and type 2 diabetes, Dr. Mozaffarian said.

Savory snacks, cereals, and yogurt and dairy-based desserts may also be less calorie dense than sugary beverages and processed meats, said Dr. Daibes. 

“Additionally, the type of fat used in savory snacks and the presence of probiotics in yogurt may have neutral or even positive effects on heart health, as opposed to the harmful fats and additives found in many ultra-processed foods,” he said.
 

How Ultra-Processed Foods Can Harm Your Health 

There are “clear and concerning links” between eating ultra-processed foods and getting heart disease, according to Dr. Daibes. “In real-life clinical practice, it’s a rather clear and straightforward relationship – the patients who tend to have poorer diets, with more ultra-processed and nutrient-barren foods, tend to have worse health outcomes, both cardiovascular and otherwise.”

Processing foods is centered on breaking down the natural structures of foods, as well as the loss of their natural nutrients, Dr. Mozaffarian explained. When you include the word “ultra,” this refers to putting in industrial additives.

“I think refined starches (such as wheat, corn, and rice) and sugars are some of the biggest harms because it leads to a big spike in blood glucose,” Dr. Mozaffarian said. “But also, those refined starches and sugars are digested so quickly in the stomach and small intestine that you starve your gut bacteria in your large intestines.” 

Many “good-for-you ingredients,” such as fermentable fibers and bio-active compounds, are found in unprocessed, whole foods like fruits, vegetables, nuts, beans, and seeds, noted Dr. Mozaffarian. High levels of salt in ultra-processed foods are another cause for concern, as are other additives such as artificial flavorings, sweeteners, and thickeners. 
 

Opting for Whole Foods

There may be people looking to eat cleaner, unprocessed foods, but high cost and a lack of access to them could create challenges. Dr. Sarraju advises his patients to simply do their best to eat foods in their whole-ingredient form and avoid prepackaged foods as much as possible.

A version of this article first appeared on WebMD.com.

 

You may have been warned that ultra-processed foods can wreak havoc on your health. But not all of them are created equal. 

A new study out of The Lancet Regional Health – Americas looked at different types of ultra-processed foods and found that some were even linked with lower risks of cardiovascular diseasecoronary heart disease, and stroke

“Avoiding all ultra-processed foods is not practical for most people,” said Dariush Mozaffarian, MD, a cardiologist, public health scientist, and director of the Food is Medicine Institute at Tufts University in Boston, Massachusetts. “So, it is helpful to start to understand, within the category of all processing, what food might be more or less harmful.”

Researchers analyzed food questionnaires from three large groups of US adults, with most people in their review being White and female. The study found that sugary and artificially sweetened drinks, along with processed meats, were linked to a greater risk of cardiovascular disease and coronary heart disease. But cereals, savory snacks, and yogurt and dairy-based desserts were linked to a lower risk of these diseases. Ultra-processed cereals and breads were also linked to a lower stroke risk. 
 

The Truth About Processed Meat

Studies show that cured, salted, or smoked meats are linked to certain cancers.

“We know that sugar-sweetened beverages are associated with metabolic derangement for things like higher glucose levels, insulin resistance, visceral obesityprediabetesdiabetes, and higher triglycerides,” said Ashish Sarraju, MD, a cardiologist with the Cleveland Clinic in Ohio. “Added sugars associated with all of those things are in turn risk factors for heart disease.” Sugar-sweetened beverages are often very high in sugar, artificial colors, and other additives, and almost “nothing beneficial” in terms of ingredients, Dr. Mozaffarian said. “They’re also consumed in very high doses, very quickly.”

Processed meats have 400% higher levels of salt, compared with unprocessed meats, said Dr. Mozaffarian. They also contain high levels of added nitrates, which are a carcinogen that could also affect the heart and blood vessels. Certain ultra-processed foods, such as bacon, are often fried at sky-high temperatures, which can trigger inflammatory compounds. 

“If you put together the inflammatory effects, the salt, and the nitrates, this is a package of food that can really build to cause harm,” said Dr. Mozaffarian. The World Health Organization has also classified processed meats (bacon, ham, salami) as a group one carcinogen, he noted.

“Processed meats are typically high in saturated fats, sodium, and preservatives, which can increase blood pressure, promote inflammation, and negatively affect cholesterol levels, leading to a higher risk of coronary heart disease, said Joseph A. Daibes, DO, an interventional cardiologist at Lenox Hill Hospital, New York City. “The study underscores the importance of limiting these types of foods to reduce cardiovascular risk.”

But considering that breakfast cereals – albeit highly processed – are a top source of whole grains for Americans, it makes sense that they are linked with lower risk of heart disease, said Dr. Mozaffarian. 

“They have fiber, bran, whole grains, and they also have sugar, and additives,” he said. “But on average, putting all those things together, this study suggested that the net effect is beneficial. That doesn’t mean they couldn’t be more beneficial if we made them less processed, but they don’t seem to have harm.”

The active probiotics and fermentation in yogurt can make it a healthy snack of choice, as there has been more and more research showing that fermented foods with probiotics are good for heart health and work against metabolic disease, or a cluster of conditions that can increase the risk of stroke, heart disease, and type 2 diabetes, Dr. Mozaffarian said.

Savory snacks, cereals, and yogurt and dairy-based desserts may also be less calorie dense than sugary beverages and processed meats, said Dr. Daibes. 

“Additionally, the type of fat used in savory snacks and the presence of probiotics in yogurt may have neutral or even positive effects on heart health, as opposed to the harmful fats and additives found in many ultra-processed foods,” he said.
 

How Ultra-Processed Foods Can Harm Your Health 

There are “clear and concerning links” between eating ultra-processed foods and getting heart disease, according to Dr. Daibes. “In real-life clinical practice, it’s a rather clear and straightforward relationship – the patients who tend to have poorer diets, with more ultra-processed and nutrient-barren foods, tend to have worse health outcomes, both cardiovascular and otherwise.”

Processing foods is centered on breaking down the natural structures of foods, as well as the loss of their natural nutrients, Dr. Mozaffarian explained. When you include the word “ultra,” this refers to putting in industrial additives.

“I think refined starches (such as wheat, corn, and rice) and sugars are some of the biggest harms because it leads to a big spike in blood glucose,” Dr. Mozaffarian said. “But also, those refined starches and sugars are digested so quickly in the stomach and small intestine that you starve your gut bacteria in your large intestines.” 

Many “good-for-you ingredients,” such as fermentable fibers and bio-active compounds, are found in unprocessed, whole foods like fruits, vegetables, nuts, beans, and seeds, noted Dr. Mozaffarian. High levels of salt in ultra-processed foods are another cause for concern, as are other additives such as artificial flavorings, sweeteners, and thickeners. 
 

Opting for Whole Foods

There may be people looking to eat cleaner, unprocessed foods, but high cost and a lack of access to them could create challenges. Dr. Sarraju advises his patients to simply do their best to eat foods in their whole-ingredient form and avoid prepackaged foods as much as possible.

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE LANCET REGIONAL HEALTH AMERICAS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

UVA Defends Medical School Dean, Hospital CEO After Docs Call for Their Removal

Article Type
Changed
Thu, 09/12/2024 - 14:18

 

The University of Virginia (UVA) is defending the CEO of its health system and its medical school dean in the wake of a very public call for their removal.

At least 128 members of the University of Virginia faculty who are employed by both the medical school and the UVA Physicians Group wrote to the UVA Board of Visitors and its peer-elected faculty leaders, expressing no confidence in K. Craig Kent, MD, CEO of UVA Health and executive vice president for health affairs, and Melina Kibbe, MD, dean of the medical school and chief health affairs officer.

Dr. Kibbe, a vascular surgeon and researcher, is also the editor in chief of JAMA Surgery.

“We call for the immediate removal of Craig Kent and Melina Kibbe,” wrote the physicians.

The letter alleged that patient safety was compromised because doctors, nurses, and other staff were pressured to abstain from reporting safety concerns and that physicians had been hired “despite concerns regarding integrity and quality.” Those who raised safety concerns faced “explicit and implicit threats and retaliation,” including delays and denials of promotion and tenure, said the letter.

The September 5 letter did not include signatures. The authors said that names were being protected, but that they would share the names with a limited audience.

UVA President Jim Ryan took issue with the notion that the signees were anonymous. He said in his own letter to medical school faculty that some of the accusations were about matters that had already been addressed or that were being worked on. As far as allegations that he was not previously aware of, “we will do our best to investigate,” he said.

The faculty who signed the letter “have besmirched the reputations of not just Melina and Craig,” wrote Mr. Ryan. “They have unfairly — and I trust unwittingly — cast a shadow over the great work of the entire health system and medical school.”

The authors claimed that reports about bullying and harassment of trainees had been “suppressed, minimized, and subsequently altered.”

And they said that spending on leadership was prioritized over addressing clinical and technical staff shortages. Whistleblowers who reported fraud were not protected, and clinicians were pressured to modify patient records to “obfuscate adverse outcomes and boost productivity metrics,” they wrote.

The 128 members of the UVA Physicians Group who signed the letter represent about 10% of the 1400 medical school faculty members.

It is not the first time that Dr. Kent has been given a vote of no confidence. In 2017, when he was the dean of the College of Medicine at the Ohio State University, Dr. Kent was accused in a “no confidence” letter from 25 physicians and faculty of helping to undermine the school’s mission and taking actions that led to resignations and early retirements of many staff, the Columbus Dispatch reported.

William G. Crutchfield Jr., a member of the UVA Health System Board, defended Dr. Kent and Dr. Kibbe in a lengthy statement shared with this news organization. He said that UVA Health’s four hospitals had received “A” ratings for safety, and that the system has a 5.1% turnover rate compared with a national average of 8.3%.

Dr. Kent and Dr. Kibbe have recruited faculty from top academic medical centers, Mr. Crutchfield wrote.

“If our work environment were so toxic, these people would not have joined our faculty,” he wrote.

Mr. Crutchfield credited Dr. Kent and Dr. Kibbe with crafting a new 10-year strategic plan and for hiring a chief strategy officer to lead the plan — a move that replaced “expensive outside consultants.”

Mr. Ryan said in his letter that his inbox “is overflowing with testimonials from some of the 1200-plus faculty who did not sign the letter, who attest that the health system today — under Melina and Craig’s leadership — is in the best shape it has ever been in, and that they have addressed changes that have needed to be made for more than two decades.”

A request to see some of these positive testimonials was not answered by press time.

Mr. Crutchfield, like Mr. Ryan, said that the letter writers were doing more harm than good.

“If a small cabal of people hiding behind anonymity can force outstanding leaders out of UVA, it will make it extremely difficult to recruit outstanding new physicians, nurses, technicians, and administrators,” he wrote.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

The University of Virginia (UVA) is defending the CEO of its health system and its medical school dean in the wake of a very public call for their removal.

At least 128 members of the University of Virginia faculty who are employed by both the medical school and the UVA Physicians Group wrote to the UVA Board of Visitors and its peer-elected faculty leaders, expressing no confidence in K. Craig Kent, MD, CEO of UVA Health and executive vice president for health affairs, and Melina Kibbe, MD, dean of the medical school and chief health affairs officer.

Dr. Kibbe, a vascular surgeon and researcher, is also the editor in chief of JAMA Surgery.

“We call for the immediate removal of Craig Kent and Melina Kibbe,” wrote the physicians.

The letter alleged that patient safety was compromised because doctors, nurses, and other staff were pressured to abstain from reporting safety concerns and that physicians had been hired “despite concerns regarding integrity and quality.” Those who raised safety concerns faced “explicit and implicit threats and retaliation,” including delays and denials of promotion and tenure, said the letter.

The September 5 letter did not include signatures. The authors said that names were being protected, but that they would share the names with a limited audience.

UVA President Jim Ryan took issue with the notion that the signees were anonymous. He said in his own letter to medical school faculty that some of the accusations were about matters that had already been addressed or that were being worked on. As far as allegations that he was not previously aware of, “we will do our best to investigate,” he said.

The faculty who signed the letter “have besmirched the reputations of not just Melina and Craig,” wrote Mr. Ryan. “They have unfairly — and I trust unwittingly — cast a shadow over the great work of the entire health system and medical school.”

The authors claimed that reports about bullying and harassment of trainees had been “suppressed, minimized, and subsequently altered.”

And they said that spending on leadership was prioritized over addressing clinical and technical staff shortages. Whistleblowers who reported fraud were not protected, and clinicians were pressured to modify patient records to “obfuscate adverse outcomes and boost productivity metrics,” they wrote.

The 128 members of the UVA Physicians Group who signed the letter represent about 10% of the 1400 medical school faculty members.

It is not the first time that Dr. Kent has been given a vote of no confidence. In 2017, when he was the dean of the College of Medicine at the Ohio State University, Dr. Kent was accused in a “no confidence” letter from 25 physicians and faculty of helping to undermine the school’s mission and taking actions that led to resignations and early retirements of many staff, the Columbus Dispatch reported.

William G. Crutchfield Jr., a member of the UVA Health System Board, defended Dr. Kent and Dr. Kibbe in a lengthy statement shared with this news organization. He said that UVA Health’s four hospitals had received “A” ratings for safety, and that the system has a 5.1% turnover rate compared with a national average of 8.3%.

Dr. Kent and Dr. Kibbe have recruited faculty from top academic medical centers, Mr. Crutchfield wrote.

“If our work environment were so toxic, these people would not have joined our faculty,” he wrote.

Mr. Crutchfield credited Dr. Kent and Dr. Kibbe with crafting a new 10-year strategic plan and for hiring a chief strategy officer to lead the plan — a move that replaced “expensive outside consultants.”

Mr. Ryan said in his letter that his inbox “is overflowing with testimonials from some of the 1200-plus faculty who did not sign the letter, who attest that the health system today — under Melina and Craig’s leadership — is in the best shape it has ever been in, and that they have addressed changes that have needed to be made for more than two decades.”

A request to see some of these positive testimonials was not answered by press time.

Mr. Crutchfield, like Mr. Ryan, said that the letter writers were doing more harm than good.

“If a small cabal of people hiding behind anonymity can force outstanding leaders out of UVA, it will make it extremely difficult to recruit outstanding new physicians, nurses, technicians, and administrators,” he wrote.

A version of this article first appeared on Medscape.com.

 

The University of Virginia (UVA) is defending the CEO of its health system and its medical school dean in the wake of a very public call for their removal.

At least 128 members of the University of Virginia faculty who are employed by both the medical school and the UVA Physicians Group wrote to the UVA Board of Visitors and its peer-elected faculty leaders, expressing no confidence in K. Craig Kent, MD, CEO of UVA Health and executive vice president for health affairs, and Melina Kibbe, MD, dean of the medical school and chief health affairs officer.

Dr. Kibbe, a vascular surgeon and researcher, is also the editor in chief of JAMA Surgery.

“We call for the immediate removal of Craig Kent and Melina Kibbe,” wrote the physicians.

The letter alleged that patient safety was compromised because doctors, nurses, and other staff were pressured to abstain from reporting safety concerns and that physicians had been hired “despite concerns regarding integrity and quality.” Those who raised safety concerns faced “explicit and implicit threats and retaliation,” including delays and denials of promotion and tenure, said the letter.

The September 5 letter did not include signatures. The authors said that names were being protected, but that they would share the names with a limited audience.

UVA President Jim Ryan took issue with the notion that the signees were anonymous. He said in his own letter to medical school faculty that some of the accusations were about matters that had already been addressed or that were being worked on. As far as allegations that he was not previously aware of, “we will do our best to investigate,” he said.

The faculty who signed the letter “have besmirched the reputations of not just Melina and Craig,” wrote Mr. Ryan. “They have unfairly — and I trust unwittingly — cast a shadow over the great work of the entire health system and medical school.”

The authors claimed that reports about bullying and harassment of trainees had been “suppressed, minimized, and subsequently altered.”

And they said that spending on leadership was prioritized over addressing clinical and technical staff shortages. Whistleblowers who reported fraud were not protected, and clinicians were pressured to modify patient records to “obfuscate adverse outcomes and boost productivity metrics,” they wrote.

The 128 members of the UVA Physicians Group who signed the letter represent about 10% of the 1400 medical school faculty members.

It is not the first time that Dr. Kent has been given a vote of no confidence. In 2017, when he was the dean of the College of Medicine at the Ohio State University, Dr. Kent was accused in a “no confidence” letter from 25 physicians and faculty of helping to undermine the school’s mission and taking actions that led to resignations and early retirements of many staff, the Columbus Dispatch reported.

William G. Crutchfield Jr., a member of the UVA Health System Board, defended Dr. Kent and Dr. Kibbe in a lengthy statement shared with this news organization. He said that UVA Health’s four hospitals had received “A” ratings for safety, and that the system has a 5.1% turnover rate compared with a national average of 8.3%.

Dr. Kent and Dr. Kibbe have recruited faculty from top academic medical centers, Mr. Crutchfield wrote.

“If our work environment were so toxic, these people would not have joined our faculty,” he wrote.

Mr. Crutchfield credited Dr. Kent and Dr. Kibbe with crafting a new 10-year strategic plan and for hiring a chief strategy officer to lead the plan — a move that replaced “expensive outside consultants.”

Mr. Ryan said in his letter that his inbox “is overflowing with testimonials from some of the 1200-plus faculty who did not sign the letter, who attest that the health system today — under Melina and Craig’s leadership — is in the best shape it has ever been in, and that they have addressed changes that have needed to be made for more than two decades.”

A request to see some of these positive testimonials was not answered by press time.

Mr. Crutchfield, like Mr. Ryan, said that the letter writers were doing more harm than good.

“If a small cabal of people hiding behind anonymity can force outstanding leaders out of UVA, it will make it extremely difficult to recruit outstanding new physicians, nurses, technicians, and administrators,” he wrote.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Beyond Weight Loss, Limited Bariatric Surgery Benefits in Older Adults

Article Type
Changed
Thu, 09/12/2024 - 12:53

 

TOPLINE:

For older adults with obesity, bariatric surgery does not appear to significantly reduce the risk for obesity-related cancer and cardiovascular disease (CVD), as it does in younger adults.

METHODOLOGY:

  • Bariatric surgery has been shown to decrease the risk for obesity-related cancer and CVD but is typically reserved for patients aged < 60 years. Whether the same holds for patients who undergo surgery at older ages is unclear.
  • Researchers analyzed nationwide data from three countries (Denmark, Finland, and Sweden) to compare patients with no history of cancer or CVD and age ≥ 60 years who underwent bariatric surgery against matched controls who received nonoperative treatment for obesity.
  • The main outcome was obesity-related cancer, defined as a composite outcome of breast, endometrial, esophageal, colorectal, and kidney cancer. The secondary outcome was CVD, defined as a composite of myocardial infarction, ischemic stroke, and cerebral hemorrhage.
  • Analyses were adjusted for diabetes, hypertension, peripheral vascular disease, chronic obstructive pulmonary disease, kidney disease, and frailty.

TAKEAWAY:

  • Of the 15,300 patients (66.4% women) included, 2550 underwent bariatric surgery (including gastric bypass in 1930) and 12,750 matched controls received nonoperative treatment for obesity.
  • During a median 5.8 years of follow-up, 658 (4.3%) people developed obesity-related cancer and 1436 (9.4%) developed CVD.
  • Bariatric surgery in adults aged ≥ 60 years was not associated with a reduced risk for obesity-related cancer (hazard ratio [HR], 0.81) or CVD (HR, 0.86) compared with matched nonoperative controls.
  • Bariatric surgery appeared to be associated with a decreased risk for obesity-related cancer in women (HR, 0.76).
  • There was a decreased risk for both obesity-related cancer (HR, 0.74) and CVD (HR, 0.82) in patients who underwent gastric bypass.

IN PRACTICE:

“The findings from this study suggest a limited role of bariatric surgery in older patients for the prevention of obesity-related cancer or cardiovascular disease,” the authors wrote, noting that this “may be explained by the poorer weight loss and resolution of comorbidities observed in patients who underwent surgery at an older age.”

SOURCE:

The study, with first author Peter Gerber, MD, PhD, Department of Surgery, Capio St Göran’s Hospital, Stockholm, Sweden, was published online in JAMA Network Open.

LIMITATIONS:

Data on smoking status and body mass index were not available. The observational design limited the ability to draw causal inferences. The null association between bariatric surgery and outcomes may be due to limited power.

DISCLOSURES:

The study was funded by the Swedish Society of Medicine. The authors reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

For older adults with obesity, bariatric surgery does not appear to significantly reduce the risk for obesity-related cancer and cardiovascular disease (CVD), as it does in younger adults.

METHODOLOGY:

  • Bariatric surgery has been shown to decrease the risk for obesity-related cancer and CVD but is typically reserved for patients aged < 60 years. Whether the same holds for patients who undergo surgery at older ages is unclear.
  • Researchers analyzed nationwide data from three countries (Denmark, Finland, and Sweden) to compare patients with no history of cancer or CVD and age ≥ 60 years who underwent bariatric surgery against matched controls who received nonoperative treatment for obesity.
  • The main outcome was obesity-related cancer, defined as a composite outcome of breast, endometrial, esophageal, colorectal, and kidney cancer. The secondary outcome was CVD, defined as a composite of myocardial infarction, ischemic stroke, and cerebral hemorrhage.
  • Analyses were adjusted for diabetes, hypertension, peripheral vascular disease, chronic obstructive pulmonary disease, kidney disease, and frailty.

TAKEAWAY:

  • Of the 15,300 patients (66.4% women) included, 2550 underwent bariatric surgery (including gastric bypass in 1930) and 12,750 matched controls received nonoperative treatment for obesity.
  • During a median 5.8 years of follow-up, 658 (4.3%) people developed obesity-related cancer and 1436 (9.4%) developed CVD.
  • Bariatric surgery in adults aged ≥ 60 years was not associated with a reduced risk for obesity-related cancer (hazard ratio [HR], 0.81) or CVD (HR, 0.86) compared with matched nonoperative controls.
  • Bariatric surgery appeared to be associated with a decreased risk for obesity-related cancer in women (HR, 0.76).
  • There was a decreased risk for both obesity-related cancer (HR, 0.74) and CVD (HR, 0.82) in patients who underwent gastric bypass.

IN PRACTICE:

“The findings from this study suggest a limited role of bariatric surgery in older patients for the prevention of obesity-related cancer or cardiovascular disease,” the authors wrote, noting that this “may be explained by the poorer weight loss and resolution of comorbidities observed in patients who underwent surgery at an older age.”

SOURCE:

The study, with first author Peter Gerber, MD, PhD, Department of Surgery, Capio St Göran’s Hospital, Stockholm, Sweden, was published online in JAMA Network Open.

LIMITATIONS:

Data on smoking status and body mass index were not available. The observational design limited the ability to draw causal inferences. The null association between bariatric surgery and outcomes may be due to limited power.

DISCLOSURES:

The study was funded by the Swedish Society of Medicine. The authors reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

For older adults with obesity, bariatric surgery does not appear to significantly reduce the risk for obesity-related cancer and cardiovascular disease (CVD), as it does in younger adults.

METHODOLOGY:

  • Bariatric surgery has been shown to decrease the risk for obesity-related cancer and CVD but is typically reserved for patients aged < 60 years. Whether the same holds for patients who undergo surgery at older ages is unclear.
  • Researchers analyzed nationwide data from three countries (Denmark, Finland, and Sweden) to compare patients with no history of cancer or CVD and age ≥ 60 years who underwent bariatric surgery against matched controls who received nonoperative treatment for obesity.
  • The main outcome was obesity-related cancer, defined as a composite outcome of breast, endometrial, esophageal, colorectal, and kidney cancer. The secondary outcome was CVD, defined as a composite of myocardial infarction, ischemic stroke, and cerebral hemorrhage.
  • Analyses were adjusted for diabetes, hypertension, peripheral vascular disease, chronic obstructive pulmonary disease, kidney disease, and frailty.

TAKEAWAY:

  • Of the 15,300 patients (66.4% women) included, 2550 underwent bariatric surgery (including gastric bypass in 1930) and 12,750 matched controls received nonoperative treatment for obesity.
  • During a median 5.8 years of follow-up, 658 (4.3%) people developed obesity-related cancer and 1436 (9.4%) developed CVD.
  • Bariatric surgery in adults aged ≥ 60 years was not associated with a reduced risk for obesity-related cancer (hazard ratio [HR], 0.81) or CVD (HR, 0.86) compared with matched nonoperative controls.
  • Bariatric surgery appeared to be associated with a decreased risk for obesity-related cancer in women (HR, 0.76).
  • There was a decreased risk for both obesity-related cancer (HR, 0.74) and CVD (HR, 0.82) in patients who underwent gastric bypass.

IN PRACTICE:

“The findings from this study suggest a limited role of bariatric surgery in older patients for the prevention of obesity-related cancer or cardiovascular disease,” the authors wrote, noting that this “may be explained by the poorer weight loss and resolution of comorbidities observed in patients who underwent surgery at an older age.”

SOURCE:

The study, with first author Peter Gerber, MD, PhD, Department of Surgery, Capio St Göran’s Hospital, Stockholm, Sweden, was published online in JAMA Network Open.

LIMITATIONS:

Data on smoking status and body mass index were not available. The observational design limited the ability to draw causal inferences. The null association between bariatric surgery and outcomes may be due to limited power.

DISCLOSURES:

The study was funded by the Swedish Society of Medicine. The authors reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Old, Frail Patients: Study More, Intervene Less?

Article Type
Changed
Thu, 09/12/2024 - 12:21

Lessons From SENIOR-RITA

 

The ability to save cardiac muscle during an acute coronary syndrome with percutaneous coronary intervention (PCI) made cardiology one of the most popular fields in medicine.

But acute coronary syndromes come in different categories. While rapid PCI clearly benefits patients with ST-segment elevation myocardial infarction (STEMI), the best use of angiography and PCI for patients with non–ST-segment elevation myocardial infarction (NSTEMI) is more complex.

The evidence for early invasive vs conservative strategies in patients with NSTEMI is mixed. There have been many trials and meta-analyses, and generally, outcomes are similar with either approach. Perhaps if one looks with enough optimism, there is a benefit for the more aggressive approach in higher-risk patients.

Despite the similar outcomes with the two strategies, most patients are treated with the early invasive approach. Early and invasive fit the spirit of modern cardiology.

Yet, older patients with acute coronary syndromes present a different challenge. NSTEMI trials, like most trials, enrolled mostly younger adults. 

Whether evidence obtained in young people applies to older patients is one of the most common and important questions in all of medical practice. Older patients may be at higher risk for a primary outcome, but they also have greater risks for harm from therapy as well as more competing causes of morbidity and mortality. 

Only a handful of smaller trials have enrolled older patients with NSTEMI. These trials have produced little evidence that an early invasive approach should be preferred.
 

The SENIOR-RITA Trial

At ESC, Vijay Kunadian, MD, from Newcastle, England, presented results of SENIOR-RITA, a large trial comparing an invasive vs conservative strategy in NSTEMI patients 75 years of age or older. 

In the conservative arm, coronary angiography was allowed if the patient deteriorated and the procedure was clinically indicated in the judgment of the treating physicians.

Slightly more than 1500 patients with NSTEMI were randomly assigned to either strategy in 48 centers in the United Kingdom. Their mean age was 82 years, nearly half were women, and about a third were frail. 

Over 4 years of follow-up, the primary outcome of cardiovascular (CV) death or MI occurred at a similar rate in both arms: 25.6% vs 26.3% for invasive vs conservative, respectively (HR, 0.94; 95% CI, 0.77-1.14; P =.53). 

Rates of CV death were also not significantly different (15.8% vs 14.2%; HR, 1.11; 95% CI, 0.86-1.44). 

The rate of nonfatal MI was slightly lower in the invasive arm (11.7% vs 15.0%; HR, 0.75; 95% CI, 0.57-0.99).

Some other notable findings: Fewer than half of patients in the invasive arm underwent revascularization. Coronary angiography was done in about a quarter of patients in the conservative arm, and revascularization in only 14%. 

 

Comments

Because medicine has improved and patients live longer, cardiologists increasingly see older adults with frailty. It’s important to study these patients. 

The authors tell us that 1 in 5 patients screened were enrolled, and those not enrolled were similar in age and were treated nearly equally with either strategy. Not all trials offer this information; it’s important because knowing that patients in a trial are representative helps us translate evidence to our actual patients. 

Another positive was the investigators’ smart choice of cardiovascular death and MI as their primary outcome. Strategy trials are usually open label. If they had included an outcome that requires a decision from a clinician, such as unplanned revascularization, then bias becomes a possibility when patients and clinicians are aware of the treatment assignment. (I wrote about poor endpoint choice in the ABYSS trial.) 

The most notable finding in SENIOR-RITA was that approximately 76% of patients in the conservative arm did not have a coronary angiogram and 86% were not revascularized. 

Yet, the rate of CV death and MI were similar during 4 years of follow-up. This observation is nearly identical to the findings in chronic stable disease, seen in the ISCHEMIA trial. (See Figure 6a in the paper’s supplement.) 

I take two messages from this consistent observation: One is that medical therapy is quite good at treating coronary artery disease not associated with acute vessel closure in STEMI. 

The other is that using coronary angiography and revascularization as a bailout, in only a fraction of cases, achieves the same result, so the conservative strategy should be preferred.

I am not sure that the SENIOR-RITA researchers see it this way. They write in their discussion that “clinicians are often reluctant to offer an invasive strategy to frail older adults.” They then remind readers that modern PCI techniques (radial approach) have low rates of adverse events. 

Perhaps I misread their message, but that paragraph seemed like it was reinforcing our tendency to offer invasive approaches to patients with NSTEMI. 

I feel differently. When a trial reports similar outcomes with two strategies, I think we should favor the one with less intervention. I feel even more strongly about this philosophy in older patients with frailty.

Are we not in the business of helping people with the least amount of intervention?

The greatest challenge for the cardiologist of today is not a lack of treatment options, but whether we should use all options in older, frailer adults. 

Good on the SENIOR-RITA investigators, for they have shown that we can avoid intervention in the vast majority of older adults presenting with NSTEMI. 

Dr. Mandrola practices cardiac electrophysiology in Louisville, Kentucky, and is a writer and podcaster for Medscape. He espouses a conservative approach to medical practice. He participates in clinical research and writes often about the state of medical evidence. He has disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Lessons From SENIOR-RITA

Lessons From SENIOR-RITA

 

The ability to save cardiac muscle during an acute coronary syndrome with percutaneous coronary intervention (PCI) made cardiology one of the most popular fields in medicine.

But acute coronary syndromes come in different categories. While rapid PCI clearly benefits patients with ST-segment elevation myocardial infarction (STEMI), the best use of angiography and PCI for patients with non–ST-segment elevation myocardial infarction (NSTEMI) is more complex.

The evidence for early invasive vs conservative strategies in patients with NSTEMI is mixed. There have been many trials and meta-analyses, and generally, outcomes are similar with either approach. Perhaps if one looks with enough optimism, there is a benefit for the more aggressive approach in higher-risk patients.

Despite the similar outcomes with the two strategies, most patients are treated with the early invasive approach. Early and invasive fit the spirit of modern cardiology.

Yet, older patients with acute coronary syndromes present a different challenge. NSTEMI trials, like most trials, enrolled mostly younger adults. 

Whether evidence obtained in young people applies to older patients is one of the most common and important questions in all of medical practice. Older patients may be at higher risk for a primary outcome, but they also have greater risks for harm from therapy as well as more competing causes of morbidity and mortality. 

Only a handful of smaller trials have enrolled older patients with NSTEMI. These trials have produced little evidence that an early invasive approach should be preferred.
 

The SENIOR-RITA Trial

At ESC, Vijay Kunadian, MD, from Newcastle, England, presented results of SENIOR-RITA, a large trial comparing an invasive vs conservative strategy in NSTEMI patients 75 years of age or older. 

In the conservative arm, coronary angiography was allowed if the patient deteriorated and the procedure was clinically indicated in the judgment of the treating physicians.

Slightly more than 1500 patients with NSTEMI were randomly assigned to either strategy in 48 centers in the United Kingdom. Their mean age was 82 years, nearly half were women, and about a third were frail. 

Over 4 years of follow-up, the primary outcome of cardiovascular (CV) death or MI occurred at a similar rate in both arms: 25.6% vs 26.3% for invasive vs conservative, respectively (HR, 0.94; 95% CI, 0.77-1.14; P =.53). 

Rates of CV death were also not significantly different (15.8% vs 14.2%; HR, 1.11; 95% CI, 0.86-1.44). 

The rate of nonfatal MI was slightly lower in the invasive arm (11.7% vs 15.0%; HR, 0.75; 95% CI, 0.57-0.99).

Some other notable findings: Fewer than half of patients in the invasive arm underwent revascularization. Coronary angiography was done in about a quarter of patients in the conservative arm, and revascularization in only 14%. 

 

Comments

Because medicine has improved and patients live longer, cardiologists increasingly see older adults with frailty. It’s important to study these patients. 

The authors tell us that 1 in 5 patients screened were enrolled, and those not enrolled were similar in age and were treated nearly equally with either strategy. Not all trials offer this information; it’s important because knowing that patients in a trial are representative helps us translate evidence to our actual patients. 

Another positive was the investigators’ smart choice of cardiovascular death and MI as their primary outcome. Strategy trials are usually open label. If they had included an outcome that requires a decision from a clinician, such as unplanned revascularization, then bias becomes a possibility when patients and clinicians are aware of the treatment assignment. (I wrote about poor endpoint choice in the ABYSS trial.) 

The most notable finding in SENIOR-RITA was that approximately 76% of patients in the conservative arm did not have a coronary angiogram and 86% were not revascularized. 

Yet, the rate of CV death and MI were similar during 4 years of follow-up. This observation is nearly identical to the findings in chronic stable disease, seen in the ISCHEMIA trial. (See Figure 6a in the paper’s supplement.) 

I take two messages from this consistent observation: One is that medical therapy is quite good at treating coronary artery disease not associated with acute vessel closure in STEMI. 

The other is that using coronary angiography and revascularization as a bailout, in only a fraction of cases, achieves the same result, so the conservative strategy should be preferred.

I am not sure that the SENIOR-RITA researchers see it this way. They write in their discussion that “clinicians are often reluctant to offer an invasive strategy to frail older adults.” They then remind readers that modern PCI techniques (radial approach) have low rates of adverse events. 

Perhaps I misread their message, but that paragraph seemed like it was reinforcing our tendency to offer invasive approaches to patients with NSTEMI. 

I feel differently. When a trial reports similar outcomes with two strategies, I think we should favor the one with less intervention. I feel even more strongly about this philosophy in older patients with frailty.

Are we not in the business of helping people with the least amount of intervention?

The greatest challenge for the cardiologist of today is not a lack of treatment options, but whether we should use all options in older, frailer adults. 

Good on the SENIOR-RITA investigators, for they have shown that we can avoid intervention in the vast majority of older adults presenting with NSTEMI. 

Dr. Mandrola practices cardiac electrophysiology in Louisville, Kentucky, and is a writer and podcaster for Medscape. He espouses a conservative approach to medical practice. He participates in clinical research and writes often about the state of medical evidence. He has disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

 

The ability to save cardiac muscle during an acute coronary syndrome with percutaneous coronary intervention (PCI) made cardiology one of the most popular fields in medicine.

But acute coronary syndromes come in different categories. While rapid PCI clearly benefits patients with ST-segment elevation myocardial infarction (STEMI), the best use of angiography and PCI for patients with non–ST-segment elevation myocardial infarction (NSTEMI) is more complex.

The evidence for early invasive vs conservative strategies in patients with NSTEMI is mixed. There have been many trials and meta-analyses, and generally, outcomes are similar with either approach. Perhaps if one looks with enough optimism, there is a benefit for the more aggressive approach in higher-risk patients.

Despite the similar outcomes with the two strategies, most patients are treated with the early invasive approach. Early and invasive fit the spirit of modern cardiology.

Yet, older patients with acute coronary syndromes present a different challenge. NSTEMI trials, like most trials, enrolled mostly younger adults. 

Whether evidence obtained in young people applies to older patients is one of the most common and important questions in all of medical practice. Older patients may be at higher risk for a primary outcome, but they also have greater risks for harm from therapy as well as more competing causes of morbidity and mortality. 

Only a handful of smaller trials have enrolled older patients with NSTEMI. These trials have produced little evidence that an early invasive approach should be preferred.
 

The SENIOR-RITA Trial

At ESC, Vijay Kunadian, MD, from Newcastle, England, presented results of SENIOR-RITA, a large trial comparing an invasive vs conservative strategy in NSTEMI patients 75 years of age or older. 

In the conservative arm, coronary angiography was allowed if the patient deteriorated and the procedure was clinically indicated in the judgment of the treating physicians.

Slightly more than 1500 patients with NSTEMI were randomly assigned to either strategy in 48 centers in the United Kingdom. Their mean age was 82 years, nearly half were women, and about a third were frail. 

Over 4 years of follow-up, the primary outcome of cardiovascular (CV) death or MI occurred at a similar rate in both arms: 25.6% vs 26.3% for invasive vs conservative, respectively (HR, 0.94; 95% CI, 0.77-1.14; P =.53). 

Rates of CV death were also not significantly different (15.8% vs 14.2%; HR, 1.11; 95% CI, 0.86-1.44). 

The rate of nonfatal MI was slightly lower in the invasive arm (11.7% vs 15.0%; HR, 0.75; 95% CI, 0.57-0.99).

Some other notable findings: Fewer than half of patients in the invasive arm underwent revascularization. Coronary angiography was done in about a quarter of patients in the conservative arm, and revascularization in only 14%. 

 

Comments

Because medicine has improved and patients live longer, cardiologists increasingly see older adults with frailty. It’s important to study these patients. 

The authors tell us that 1 in 5 patients screened were enrolled, and those not enrolled were similar in age and were treated nearly equally with either strategy. Not all trials offer this information; it’s important because knowing that patients in a trial are representative helps us translate evidence to our actual patients. 

Another positive was the investigators’ smart choice of cardiovascular death and MI as their primary outcome. Strategy trials are usually open label. If they had included an outcome that requires a decision from a clinician, such as unplanned revascularization, then bias becomes a possibility when patients and clinicians are aware of the treatment assignment. (I wrote about poor endpoint choice in the ABYSS trial.) 

The most notable finding in SENIOR-RITA was that approximately 76% of patients in the conservative arm did not have a coronary angiogram and 86% were not revascularized. 

Yet, the rate of CV death and MI were similar during 4 years of follow-up. This observation is nearly identical to the findings in chronic stable disease, seen in the ISCHEMIA trial. (See Figure 6a in the paper’s supplement.) 

I take two messages from this consistent observation: One is that medical therapy is quite good at treating coronary artery disease not associated with acute vessel closure in STEMI. 

The other is that using coronary angiography and revascularization as a bailout, in only a fraction of cases, achieves the same result, so the conservative strategy should be preferred.

I am not sure that the SENIOR-RITA researchers see it this way. They write in their discussion that “clinicians are often reluctant to offer an invasive strategy to frail older adults.” They then remind readers that modern PCI techniques (radial approach) have low rates of adverse events. 

Perhaps I misread their message, but that paragraph seemed like it was reinforcing our tendency to offer invasive approaches to patients with NSTEMI. 

I feel differently. When a trial reports similar outcomes with two strategies, I think we should favor the one with less intervention. I feel even more strongly about this philosophy in older patients with frailty.

Are we not in the business of helping people with the least amount of intervention?

The greatest challenge for the cardiologist of today is not a lack of treatment options, but whether we should use all options in older, frailer adults. 

Good on the SENIOR-RITA investigators, for they have shown that we can avoid intervention in the vast majority of older adults presenting with NSTEMI. 

Dr. Mandrola practices cardiac electrophysiology in Louisville, Kentucky, and is a writer and podcaster for Medscape. He espouses a conservative approach to medical practice. He participates in clinical research and writes often about the state of medical evidence. He has disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Silent Exodus: Are Nurse Practitioners and Physician Assistants Quiet Quitting?

Article Type
Changed
Wed, 09/11/2024 - 14:47

 

While she cared deeply about her work, Melissa Adams*, a family nurse practitioner (NP) in Madison, Alabama, was being frequently triple-booked, didn’t feel respected by her office manager, and started to worry about becoming burned out. When she sought help, “the administration was tone-deaf,” she said. “When I asked about what I could do to prevent burnout, they sent me an article about it. It was clear to me that asking for respite from triple-booking and asking to be respected by my office manager wasn’t being heard ... so I thought, ‘how do I fly under the radar and get by with what I can?’ ” That meant focusing on patient care and refusing to take on additional responsibilities, like training new hires or working with students.

“You’re overworked and underpaid, and you start giving less and less of yourself,” Ms. Adams said in an interview.

Quiet quitting, defined as performing only the assigned tasks of the job without making any extra effort or going the proverbial extra mile, has gained attention in the press in recent years. A Gallup poll found that about 50% of the workforce were “quiet quitters” or disengaged.

It may be even more prevalent in healthcare, where a recent survey found that 57% of frontline medical staff, including NPs and physician assistants (PAs), report being disengaged at work.
 

The Causes of Quiet Quitting

Potential causes of quiet quitting among PAs and NPs include:

  • Unrealistic care expectations. They ask you to give your all to patients, handle everything, and do it all in under 15 minutes since that’s how much time the appointment allows, Ms. Adams said.
  • Lack of trust or respect. Physicians don’t always respect the role that PAs and NPs play in a practice.
  • Dissatisfaction with leadership or administration. There’s often a feeling that the PA or NP isn’t “heard” or appreciated.
  • Dissatisfaction with pay or working conditions.
  • Moral injury. “There’s no way to escape being morally injured when you work with an at-risk population,” said Ms. Adams. “You may see someone who has 20-24 determinants of health, and you’re expected to schlep them through in 8 minutes — you know you’re not able to do what they need.”

What Quiet Quitting Looks Like

Terri Smith*, an NP at an academic medical center outpatient clinic in rural Vermont, said that, while she feels appreciated by her patients and her team, there’s poor communication from the administration, which has caused her to quietly quit.

“I stopped saying ‘yes’ to all the normal committee work and the extra stuff that used to add a lot to my professional enjoyment,” she said. “The last couple of years, my whole motto is to nod and smile when administration says to do something — to put your head down and take care of your patients.”

While the term “quiet quitting” may be new, the issue is not, said Bridget Roberts, PhD, a healthcare executive who ran a large physician’s group of 100 healthcare providers in Jacksonville, Florida, for a decade. “Quiet quitting is a fancy title for employees who are completely disengaged,” said Dr. Roberts. “When they’re on the way out, they ‘check the box’. That’s not a new thing.”

“Typically, the first thing you see is a lot of frustration in that they aren’t able to complete the tasks they have at hand,” said Rebecca Day, PMNHP, a doctoral-educated NP and director of nursing practice at a Federally Qualified Health Center in Corbin, Kentucky. “Staff may be overworked and not have enough time to do what’s required of them with patient care as well as the paperwork required behind the scenes. It [quiet quitting] is doing just enough to get by, but shortcutting as much as they can to try to save some time.”
 

Addressing Quiet Quitting

Those kinds of shortcuts may affect patients, admits Ms. Smith. “I do think it starts to seep into patient care,” she said. “And that really doesn’t feel good ... at our institution, I’m not just an NP — I’m the nurse, the doctor, the secretary — I’m everybody, and for the last year, almost every single day in clinic, I’m apologizing [to a patient] because we can’t do something.”

Watching for this frustration can help alert administrators to NPs and PAs who may be “checking out” at work. Open lines of communication can help you address the issue. “Ask questions like ‘What could we do differently to make your day easier?’” said Dr. Roberts. Understanding the day-to-day issues NPs and PAs face at work can help in developing a plan to address disengagement.

When Dr. Day sees quiet quitting at her practice, she talks with the advance practice provider about what’s causing the issue. “’Are you overworked? Are you understaffed? Are there problems at home? Do you feel you’re receiving inadequate pay?’ ” she said. “The first thing to do is address that and find mutual ground on the issues…deal with the person as a person and then go back and deal with the person as an employee. If your staff isn’t happy, your clinic isn’t going to be productive.”

Finally, while reasons for quiet quitting may vary, cultivating a collaborative atmosphere where NPs and PAs feel appreciated and valued can help reduce the risk for quiet quitting. “Get to know your advanced practice providers,” said Ms. Adams. “Understand their strengths and what they’re about. It’s not an ‘us vs them’ ... there is a lot more commonality when we approach it that way.” Respect for the integral role that NPs and PAs play in your practice can help reduce the risk for quiet quitting — and help provide better patient care.

*Names have been changed.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

While she cared deeply about her work, Melissa Adams*, a family nurse practitioner (NP) in Madison, Alabama, was being frequently triple-booked, didn’t feel respected by her office manager, and started to worry about becoming burned out. When she sought help, “the administration was tone-deaf,” she said. “When I asked about what I could do to prevent burnout, they sent me an article about it. It was clear to me that asking for respite from triple-booking and asking to be respected by my office manager wasn’t being heard ... so I thought, ‘how do I fly under the radar and get by with what I can?’ ” That meant focusing on patient care and refusing to take on additional responsibilities, like training new hires or working with students.

“You’re overworked and underpaid, and you start giving less and less of yourself,” Ms. Adams said in an interview.

Quiet quitting, defined as performing only the assigned tasks of the job without making any extra effort or going the proverbial extra mile, has gained attention in the press in recent years. A Gallup poll found that about 50% of the workforce were “quiet quitters” or disengaged.

It may be even more prevalent in healthcare, where a recent survey found that 57% of frontline medical staff, including NPs and physician assistants (PAs), report being disengaged at work.
 

The Causes of Quiet Quitting

Potential causes of quiet quitting among PAs and NPs include:

  • Unrealistic care expectations. They ask you to give your all to patients, handle everything, and do it all in under 15 minutes since that’s how much time the appointment allows, Ms. Adams said.
  • Lack of trust or respect. Physicians don’t always respect the role that PAs and NPs play in a practice.
  • Dissatisfaction with leadership or administration. There’s often a feeling that the PA or NP isn’t “heard” or appreciated.
  • Dissatisfaction with pay or working conditions.
  • Moral injury. “There’s no way to escape being morally injured when you work with an at-risk population,” said Ms. Adams. “You may see someone who has 20-24 determinants of health, and you’re expected to schlep them through in 8 minutes — you know you’re not able to do what they need.”

What Quiet Quitting Looks Like

Terri Smith*, an NP at an academic medical center outpatient clinic in rural Vermont, said that, while she feels appreciated by her patients and her team, there’s poor communication from the administration, which has caused her to quietly quit.

“I stopped saying ‘yes’ to all the normal committee work and the extra stuff that used to add a lot to my professional enjoyment,” she said. “The last couple of years, my whole motto is to nod and smile when administration says to do something — to put your head down and take care of your patients.”

While the term “quiet quitting” may be new, the issue is not, said Bridget Roberts, PhD, a healthcare executive who ran a large physician’s group of 100 healthcare providers in Jacksonville, Florida, for a decade. “Quiet quitting is a fancy title for employees who are completely disengaged,” said Dr. Roberts. “When they’re on the way out, they ‘check the box’. That’s not a new thing.”

“Typically, the first thing you see is a lot of frustration in that they aren’t able to complete the tasks they have at hand,” said Rebecca Day, PMNHP, a doctoral-educated NP and director of nursing practice at a Federally Qualified Health Center in Corbin, Kentucky. “Staff may be overworked and not have enough time to do what’s required of them with patient care as well as the paperwork required behind the scenes. It [quiet quitting] is doing just enough to get by, but shortcutting as much as they can to try to save some time.”
 

Addressing Quiet Quitting

Those kinds of shortcuts may affect patients, admits Ms. Smith. “I do think it starts to seep into patient care,” she said. “And that really doesn’t feel good ... at our institution, I’m not just an NP — I’m the nurse, the doctor, the secretary — I’m everybody, and for the last year, almost every single day in clinic, I’m apologizing [to a patient] because we can’t do something.”

Watching for this frustration can help alert administrators to NPs and PAs who may be “checking out” at work. Open lines of communication can help you address the issue. “Ask questions like ‘What could we do differently to make your day easier?’” said Dr. Roberts. Understanding the day-to-day issues NPs and PAs face at work can help in developing a plan to address disengagement.

When Dr. Day sees quiet quitting at her practice, she talks with the advance practice provider about what’s causing the issue. “’Are you overworked? Are you understaffed? Are there problems at home? Do you feel you’re receiving inadequate pay?’ ” she said. “The first thing to do is address that and find mutual ground on the issues…deal with the person as a person and then go back and deal with the person as an employee. If your staff isn’t happy, your clinic isn’t going to be productive.”

Finally, while reasons for quiet quitting may vary, cultivating a collaborative atmosphere where NPs and PAs feel appreciated and valued can help reduce the risk for quiet quitting. “Get to know your advanced practice providers,” said Ms. Adams. “Understand their strengths and what they’re about. It’s not an ‘us vs them’ ... there is a lot more commonality when we approach it that way.” Respect for the integral role that NPs and PAs play in your practice can help reduce the risk for quiet quitting — and help provide better patient care.

*Names have been changed.

A version of this article first appeared on Medscape.com.

 

While she cared deeply about her work, Melissa Adams*, a family nurse practitioner (NP) in Madison, Alabama, was being frequently triple-booked, didn’t feel respected by her office manager, and started to worry about becoming burned out. When she sought help, “the administration was tone-deaf,” she said. “When I asked about what I could do to prevent burnout, they sent me an article about it. It was clear to me that asking for respite from triple-booking and asking to be respected by my office manager wasn’t being heard ... so I thought, ‘how do I fly under the radar and get by with what I can?’ ” That meant focusing on patient care and refusing to take on additional responsibilities, like training new hires or working with students.

“You’re overworked and underpaid, and you start giving less and less of yourself,” Ms. Adams said in an interview.

Quiet quitting, defined as performing only the assigned tasks of the job without making any extra effort or going the proverbial extra mile, has gained attention in the press in recent years. A Gallup poll found that about 50% of the workforce were “quiet quitters” or disengaged.

It may be even more prevalent in healthcare, where a recent survey found that 57% of frontline medical staff, including NPs and physician assistants (PAs), report being disengaged at work.
 

The Causes of Quiet Quitting

Potential causes of quiet quitting among PAs and NPs include:

  • Unrealistic care expectations. They ask you to give your all to patients, handle everything, and do it all in under 15 minutes since that’s how much time the appointment allows, Ms. Adams said.
  • Lack of trust or respect. Physicians don’t always respect the role that PAs and NPs play in a practice.
  • Dissatisfaction with leadership or administration. There’s often a feeling that the PA or NP isn’t “heard” or appreciated.
  • Dissatisfaction with pay or working conditions.
  • Moral injury. “There’s no way to escape being morally injured when you work with an at-risk population,” said Ms. Adams. “You may see someone who has 20-24 determinants of health, and you’re expected to schlep them through in 8 minutes — you know you’re not able to do what they need.”

What Quiet Quitting Looks Like

Terri Smith*, an NP at an academic medical center outpatient clinic in rural Vermont, said that, while she feels appreciated by her patients and her team, there’s poor communication from the administration, which has caused her to quietly quit.

“I stopped saying ‘yes’ to all the normal committee work and the extra stuff that used to add a lot to my professional enjoyment,” she said. “The last couple of years, my whole motto is to nod and smile when administration says to do something — to put your head down and take care of your patients.”

While the term “quiet quitting” may be new, the issue is not, said Bridget Roberts, PhD, a healthcare executive who ran a large physician’s group of 100 healthcare providers in Jacksonville, Florida, for a decade. “Quiet quitting is a fancy title for employees who are completely disengaged,” said Dr. Roberts. “When they’re on the way out, they ‘check the box’. That’s not a new thing.”

“Typically, the first thing you see is a lot of frustration in that they aren’t able to complete the tasks they have at hand,” said Rebecca Day, PMNHP, a doctoral-educated NP and director of nursing practice at a Federally Qualified Health Center in Corbin, Kentucky. “Staff may be overworked and not have enough time to do what’s required of them with patient care as well as the paperwork required behind the scenes. It [quiet quitting] is doing just enough to get by, but shortcutting as much as they can to try to save some time.”
 

Addressing Quiet Quitting

Those kinds of shortcuts may affect patients, admits Ms. Smith. “I do think it starts to seep into patient care,” she said. “And that really doesn’t feel good ... at our institution, I’m not just an NP — I’m the nurse, the doctor, the secretary — I’m everybody, and for the last year, almost every single day in clinic, I’m apologizing [to a patient] because we can’t do something.”

Watching for this frustration can help alert administrators to NPs and PAs who may be “checking out” at work. Open lines of communication can help you address the issue. “Ask questions like ‘What could we do differently to make your day easier?’” said Dr. Roberts. Understanding the day-to-day issues NPs and PAs face at work can help in developing a plan to address disengagement.

When Dr. Day sees quiet quitting at her practice, she talks with the advance practice provider about what’s causing the issue. “’Are you overworked? Are you understaffed? Are there problems at home? Do you feel you’re receiving inadequate pay?’ ” she said. “The first thing to do is address that and find mutual ground on the issues…deal with the person as a person and then go back and deal with the person as an employee. If your staff isn’t happy, your clinic isn’t going to be productive.”

Finally, while reasons for quiet quitting may vary, cultivating a collaborative atmosphere where NPs and PAs feel appreciated and valued can help reduce the risk for quiet quitting. “Get to know your advanced practice providers,” said Ms. Adams. “Understand their strengths and what they’re about. It’s not an ‘us vs them’ ... there is a lot more commonality when we approach it that way.” Respect for the integral role that NPs and PAs play in your practice can help reduce the risk for quiet quitting — and help provide better patient care.

*Names have been changed.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Current Hydroxychloroquine Use in Lupus May Provide Protection Against Cardiovascular Events

Article Type
Changed
Wed, 09/11/2024 - 14:33

 

TOPLINE:

Current use of hydroxychloroquine is associated with a lower risk for myocardial infarction (MI), stroke, and other thromboembolic events in patients with systemic lupus erythematosus (SLE). This protective effect diminishes after discontinuation of hydroxychloroquine treatment.

METHODOLOGY:

  • Researchers used a nested case-control design to evaluate the association between exposure to hydroxychloroquine and the risk for cardiovascular events in patients with SLE.
  • They included 52,883 adults with SLE (mean age, 44.23 years; 86.6% women) identified from the National System of Health Databases, which includes 99% of the French population.
  • Among these, 1981 individuals with composite cardiovascular conditions were matched with 16,892 control individuals without cardiovascular conditions.
  • Patients were categorized on the basis of hydroxychloroquine exposure into current users (last exposure within 90 days before a cardiovascular event), remote users (91-365 days before), and nonusers (no exposure within 365 days).
  • The study outcomes included a composite of cardiovascular events, including MI, stroke (including transient ischemic attack), and other thromboembolic events such as phlebitis, thrombophlebitis, venous thrombosis, venous thromboembolism, and pulmonary embolism.

TAKEAWAY:

  • Current hydroxychloroquine users had lower odds of experiencing a composite cardiovascular outcome than nonusers (adjusted odds ratio [aOR], 0.63; 95% CI, 0.57-0.70).
  • The odds of MI (aOR, 0.72; 95% CI, 0.60-0.87), stroke (aOR, 0.71; 95% CI, 0.61-0.83), and other thromboembolic events (aOR, 0.58; 95% CI, 0.48-0.69) were also lower among current users than among nonusers.
  • No significant association was found for remote hydroxychloroquine exposure and the risk for composite cardiovascular events, MI, stroke, and other thromboembolic events.

IN PRACTICE:

“These findings support the protective association of hydroxychloroquine against CV [cardiovascular] events and underscore the importance of continuous hydroxychloroquine therapy for patients diagnosed with SLE,” the authors wrote.

SOURCE:

The study was led by Lamiae Grimaldi-Bensouda, PharmD, PhD, Department of Pharmacology, Hospital Group Paris-Saclay, Assistance Publique-Hôpitaux de Paris, France. It was published online on August 30, 2024, in JAMA Network Open.

LIMITATIONS:

The observational nature of the study may have introduced confounding. Current hydroxychloroquine users were younger than nonusers, with an average age difference of almost 5 years. Current hydroxychloroquine users had a twofold longer duration of onset of SLE and had a higher prevalence of chronic kidney disease compared with nonusers.

DISCLOSURES:

This study was funded by the Banque pour l’Investissement, Deeptech. Some authors declared having financial ties with various institutions and companies outside of the current study.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Current use of hydroxychloroquine is associated with a lower risk for myocardial infarction (MI), stroke, and other thromboembolic events in patients with systemic lupus erythematosus (SLE). This protective effect diminishes after discontinuation of hydroxychloroquine treatment.

METHODOLOGY:

  • Researchers used a nested case-control design to evaluate the association between exposure to hydroxychloroquine and the risk for cardiovascular events in patients with SLE.
  • They included 52,883 adults with SLE (mean age, 44.23 years; 86.6% women) identified from the National System of Health Databases, which includes 99% of the French population.
  • Among these, 1981 individuals with composite cardiovascular conditions were matched with 16,892 control individuals without cardiovascular conditions.
  • Patients were categorized on the basis of hydroxychloroquine exposure into current users (last exposure within 90 days before a cardiovascular event), remote users (91-365 days before), and nonusers (no exposure within 365 days).
  • The study outcomes included a composite of cardiovascular events, including MI, stroke (including transient ischemic attack), and other thromboembolic events such as phlebitis, thrombophlebitis, venous thrombosis, venous thromboembolism, and pulmonary embolism.

TAKEAWAY:

  • Current hydroxychloroquine users had lower odds of experiencing a composite cardiovascular outcome than nonusers (adjusted odds ratio [aOR], 0.63; 95% CI, 0.57-0.70).
  • The odds of MI (aOR, 0.72; 95% CI, 0.60-0.87), stroke (aOR, 0.71; 95% CI, 0.61-0.83), and other thromboembolic events (aOR, 0.58; 95% CI, 0.48-0.69) were also lower among current users than among nonusers.
  • No significant association was found for remote hydroxychloroquine exposure and the risk for composite cardiovascular events, MI, stroke, and other thromboembolic events.

IN PRACTICE:

“These findings support the protective association of hydroxychloroquine against CV [cardiovascular] events and underscore the importance of continuous hydroxychloroquine therapy for patients diagnosed with SLE,” the authors wrote.

SOURCE:

The study was led by Lamiae Grimaldi-Bensouda, PharmD, PhD, Department of Pharmacology, Hospital Group Paris-Saclay, Assistance Publique-Hôpitaux de Paris, France. It was published online on August 30, 2024, in JAMA Network Open.

LIMITATIONS:

The observational nature of the study may have introduced confounding. Current hydroxychloroquine users were younger than nonusers, with an average age difference of almost 5 years. Current hydroxychloroquine users had a twofold longer duration of onset of SLE and had a higher prevalence of chronic kidney disease compared with nonusers.

DISCLOSURES:

This study was funded by the Banque pour l’Investissement, Deeptech. Some authors declared having financial ties with various institutions and companies outside of the current study.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

Current use of hydroxychloroquine is associated with a lower risk for myocardial infarction (MI), stroke, and other thromboembolic events in patients with systemic lupus erythematosus (SLE). This protective effect diminishes after discontinuation of hydroxychloroquine treatment.

METHODOLOGY:

  • Researchers used a nested case-control design to evaluate the association between exposure to hydroxychloroquine and the risk for cardiovascular events in patients with SLE.
  • They included 52,883 adults with SLE (mean age, 44.23 years; 86.6% women) identified from the National System of Health Databases, which includes 99% of the French population.
  • Among these, 1981 individuals with composite cardiovascular conditions were matched with 16,892 control individuals without cardiovascular conditions.
  • Patients were categorized on the basis of hydroxychloroquine exposure into current users (last exposure within 90 days before a cardiovascular event), remote users (91-365 days before), and nonusers (no exposure within 365 days).
  • The study outcomes included a composite of cardiovascular events, including MI, stroke (including transient ischemic attack), and other thromboembolic events such as phlebitis, thrombophlebitis, venous thrombosis, venous thromboembolism, and pulmonary embolism.

TAKEAWAY:

  • Current hydroxychloroquine users had lower odds of experiencing a composite cardiovascular outcome than nonusers (adjusted odds ratio [aOR], 0.63; 95% CI, 0.57-0.70).
  • The odds of MI (aOR, 0.72; 95% CI, 0.60-0.87), stroke (aOR, 0.71; 95% CI, 0.61-0.83), and other thromboembolic events (aOR, 0.58; 95% CI, 0.48-0.69) were also lower among current users than among nonusers.
  • No significant association was found for remote hydroxychloroquine exposure and the risk for composite cardiovascular events, MI, stroke, and other thromboembolic events.

IN PRACTICE:

“These findings support the protective association of hydroxychloroquine against CV [cardiovascular] events and underscore the importance of continuous hydroxychloroquine therapy for patients diagnosed with SLE,” the authors wrote.

SOURCE:

The study was led by Lamiae Grimaldi-Bensouda, PharmD, PhD, Department of Pharmacology, Hospital Group Paris-Saclay, Assistance Publique-Hôpitaux de Paris, France. It was published online on August 30, 2024, in JAMA Network Open.

LIMITATIONS:

The observational nature of the study may have introduced confounding. Current hydroxychloroquine users were younger than nonusers, with an average age difference of almost 5 years. Current hydroxychloroquine users had a twofold longer duration of onset of SLE and had a higher prevalence of chronic kidney disease compared with nonusers.

DISCLOSURES:

This study was funded by the Banque pour l’Investissement, Deeptech. Some authors declared having financial ties with various institutions and companies outside of the current study.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Eating the Right Fats May Help Patients Live Longer

Article Type
Changed
Wed, 09/11/2024 - 13:58

 

A diet in which the primary source of fat is plant sources is associated with decreased mortality. Animal fat, on the other hand, is associated with an increased risk for death. These are the results of a study published in JAMA Internal Medicine that followed more than 600,000 participants over 2 decades.

Bin Zhao, PhD, of the National Clinical Research Center for Metabolic Diseases at the Key Laboratory of Diabetes Immunology in Changsha, China, and colleagues concluded from these data that consuming plant-based fats instead of animal fats could be beneficial for health and improve survival.

It may not be so simple, however. “We are one step ahead of the publication: We no longer just distinguish between animal and plant fats but mainly consider the composition,” said Stefan Lorkowski, PhD, chair of biochemistry and physiology of nutrition at the Institute of Nutritional Sciences at the University of Jena in Germany, in response to inquiries from this news organization.
 

What’s in a Fat?

Although Dr. Zhao and colleagues studied the effect of different plant and animal fat sources (eg, grains, nuts, legumes, plant oils, red and white meat, dairy, eggs, and fish), they did not consider the composition of the fatty acids that they contained. “It matters which dairy products, which plant oils, and which fish are consumed,” said Dr. Lorkowski.

The data analyzed in the Chinese study come from a prospective cohort study (NIH-AARP Diet and Health Study) conducted in the United States from 1995 to 2019. At the beginning, the 407,531 study participants (average age, 61 years) filled out dietary questionnaires once. They were then followed for up to 24 years for total and cardiovascular mortality.

During this period, 185,111 study participants died, including 58,526 from cardiovascular diseases. Participants who consumed the most plant-based fats, according to the dietary questionnaires filled out in 1995, had a lower risk for death than those who consumed the least plant-based fats. Their overall mortality risk was 9% lower, and their cardiovascular mortality risk was 14% lower. This finding was especially noticeable when it came to plant fats from grains or plant oils.
 

Animal Fat and Mortality

In contrast, a higher intake of animal fat was associated with both a higher overall mortality risk (16%) and a higher cardiovascular mortality risk (14%). This was especially true for fat from dairy products and eggs.

A trend towards a reduced overall and cardiovascular mortality risk was observed for fat from fish. “The fact that only a trend towards fish consumption was observed may be due to the study having many more meat eaters than fish eaters,” said Dr. Lorkowski.

Another imbalance limits the significance of the study, he added. The two groups, those who primarily consumed plant fats and those who primarily consumed animal fats, were already distinct at the beginning of the study. Those who consumed more plant fats were more likely to have diabetes, a higher body mass index (BMI), higher energy intake, and higher alcohol consumption but consumed more fiber, fruits, and vegetables and were more physically active. “They may have been trying to live healthier because they were sicker,” said Dr. Lorkowski.
 

Potential Confounding

Dr. Zhao and his team adjusted the results for various potential confounding factors, including age, gender, BMI, ethnicity, smoking, physical activity, education, marital status, diabetes, health status, vitamin intake, protein, carbohydrates, fiber, trans fats, cholesterol intake, and alcohol consumption. However, according to Dr. Lorkowski, “statistical adjustment is always incomplete, and confounding cannot be completely ruled out.”

Nevertheless, these results provide relevant insights for dietary recommendations that could help improve health and related outcomes, according to the authors. “Replacement of 5% energy from animal fat with 5% energy from plant fat, particularly fat from grains or vegetable oils, was associated with a lower risk for mortality: 4%-24% reduction in overall mortality and 5%-30% reduction in cardiovascular disease mortality.”
 

Fat Composition Matters

Animal fat, however, should not simply be replaced with plant fat, said Dr. Lorkowski. “Cold-water fish, which provides important long-chain omega-3 fatty acids, is also considered animal fat. And palm and coconut fat, while plant-based, contain unhealthy long-chain saturated fats. And the type of plant oils also makes a difference, whether one uses corn germ or sunflower oil rich in omega-6 fatty acids or flaxseed or rapeseed oil rich in omega-3 fatty acids.

“A diet rich in unsaturated fats, with sufficient and balanced intake of omega-3 and omega-6 fatty acids, that is also abundant in fiber-rich carbohydrate sources and plant-based protein, is always better than too much fat from animal sources.”

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

A diet in which the primary source of fat is plant sources is associated with decreased mortality. Animal fat, on the other hand, is associated with an increased risk for death. These are the results of a study published in JAMA Internal Medicine that followed more than 600,000 participants over 2 decades.

Bin Zhao, PhD, of the National Clinical Research Center for Metabolic Diseases at the Key Laboratory of Diabetes Immunology in Changsha, China, and colleagues concluded from these data that consuming plant-based fats instead of animal fats could be beneficial for health and improve survival.

It may not be so simple, however. “We are one step ahead of the publication: We no longer just distinguish between animal and plant fats but mainly consider the composition,” said Stefan Lorkowski, PhD, chair of biochemistry and physiology of nutrition at the Institute of Nutritional Sciences at the University of Jena in Germany, in response to inquiries from this news organization.
 

What’s in a Fat?

Although Dr. Zhao and colleagues studied the effect of different plant and animal fat sources (eg, grains, nuts, legumes, plant oils, red and white meat, dairy, eggs, and fish), they did not consider the composition of the fatty acids that they contained. “It matters which dairy products, which plant oils, and which fish are consumed,” said Dr. Lorkowski.

The data analyzed in the Chinese study come from a prospective cohort study (NIH-AARP Diet and Health Study) conducted in the United States from 1995 to 2019. At the beginning, the 407,531 study participants (average age, 61 years) filled out dietary questionnaires once. They were then followed for up to 24 years for total and cardiovascular mortality.

During this period, 185,111 study participants died, including 58,526 from cardiovascular diseases. Participants who consumed the most plant-based fats, according to the dietary questionnaires filled out in 1995, had a lower risk for death than those who consumed the least plant-based fats. Their overall mortality risk was 9% lower, and their cardiovascular mortality risk was 14% lower. This finding was especially noticeable when it came to plant fats from grains or plant oils.
 

Animal Fat and Mortality

In contrast, a higher intake of animal fat was associated with both a higher overall mortality risk (16%) and a higher cardiovascular mortality risk (14%). This was especially true for fat from dairy products and eggs.

A trend towards a reduced overall and cardiovascular mortality risk was observed for fat from fish. “The fact that only a trend towards fish consumption was observed may be due to the study having many more meat eaters than fish eaters,” said Dr. Lorkowski.

Another imbalance limits the significance of the study, he added. The two groups, those who primarily consumed plant fats and those who primarily consumed animal fats, were already distinct at the beginning of the study. Those who consumed more plant fats were more likely to have diabetes, a higher body mass index (BMI), higher energy intake, and higher alcohol consumption but consumed more fiber, fruits, and vegetables and were more physically active. “They may have been trying to live healthier because they were sicker,” said Dr. Lorkowski.
 

Potential Confounding

Dr. Zhao and his team adjusted the results for various potential confounding factors, including age, gender, BMI, ethnicity, smoking, physical activity, education, marital status, diabetes, health status, vitamin intake, protein, carbohydrates, fiber, trans fats, cholesterol intake, and alcohol consumption. However, according to Dr. Lorkowski, “statistical adjustment is always incomplete, and confounding cannot be completely ruled out.”

Nevertheless, these results provide relevant insights for dietary recommendations that could help improve health and related outcomes, according to the authors. “Replacement of 5% energy from animal fat with 5% energy from plant fat, particularly fat from grains or vegetable oils, was associated with a lower risk for mortality: 4%-24% reduction in overall mortality and 5%-30% reduction in cardiovascular disease mortality.”
 

Fat Composition Matters

Animal fat, however, should not simply be replaced with plant fat, said Dr. Lorkowski. “Cold-water fish, which provides important long-chain omega-3 fatty acids, is also considered animal fat. And palm and coconut fat, while plant-based, contain unhealthy long-chain saturated fats. And the type of plant oils also makes a difference, whether one uses corn germ or sunflower oil rich in omega-6 fatty acids or flaxseed or rapeseed oil rich in omega-3 fatty acids.

“A diet rich in unsaturated fats, with sufficient and balanced intake of omega-3 and omega-6 fatty acids, that is also abundant in fiber-rich carbohydrate sources and plant-based protein, is always better than too much fat from animal sources.”

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

A diet in which the primary source of fat is plant sources is associated with decreased mortality. Animal fat, on the other hand, is associated with an increased risk for death. These are the results of a study published in JAMA Internal Medicine that followed more than 600,000 participants over 2 decades.

Bin Zhao, PhD, of the National Clinical Research Center for Metabolic Diseases at the Key Laboratory of Diabetes Immunology in Changsha, China, and colleagues concluded from these data that consuming plant-based fats instead of animal fats could be beneficial for health and improve survival.

It may not be so simple, however. “We are one step ahead of the publication: We no longer just distinguish between animal and plant fats but mainly consider the composition,” said Stefan Lorkowski, PhD, chair of biochemistry and physiology of nutrition at the Institute of Nutritional Sciences at the University of Jena in Germany, in response to inquiries from this news organization.
 

What’s in a Fat?

Although Dr. Zhao and colleagues studied the effect of different plant and animal fat sources (eg, grains, nuts, legumes, plant oils, red and white meat, dairy, eggs, and fish), they did not consider the composition of the fatty acids that they contained. “It matters which dairy products, which plant oils, and which fish are consumed,” said Dr. Lorkowski.

The data analyzed in the Chinese study come from a prospective cohort study (NIH-AARP Diet and Health Study) conducted in the United States from 1995 to 2019. At the beginning, the 407,531 study participants (average age, 61 years) filled out dietary questionnaires once. They were then followed for up to 24 years for total and cardiovascular mortality.

During this period, 185,111 study participants died, including 58,526 from cardiovascular diseases. Participants who consumed the most plant-based fats, according to the dietary questionnaires filled out in 1995, had a lower risk for death than those who consumed the least plant-based fats. Their overall mortality risk was 9% lower, and their cardiovascular mortality risk was 14% lower. This finding was especially noticeable when it came to plant fats from grains or plant oils.
 

Animal Fat and Mortality

In contrast, a higher intake of animal fat was associated with both a higher overall mortality risk (16%) and a higher cardiovascular mortality risk (14%). This was especially true for fat from dairy products and eggs.

A trend towards a reduced overall and cardiovascular mortality risk was observed for fat from fish. “The fact that only a trend towards fish consumption was observed may be due to the study having many more meat eaters than fish eaters,” said Dr. Lorkowski.

Another imbalance limits the significance of the study, he added. The two groups, those who primarily consumed plant fats and those who primarily consumed animal fats, were already distinct at the beginning of the study. Those who consumed more plant fats were more likely to have diabetes, a higher body mass index (BMI), higher energy intake, and higher alcohol consumption but consumed more fiber, fruits, and vegetables and were more physically active. “They may have been trying to live healthier because they were sicker,” said Dr. Lorkowski.
 

Potential Confounding

Dr. Zhao and his team adjusted the results for various potential confounding factors, including age, gender, BMI, ethnicity, smoking, physical activity, education, marital status, diabetes, health status, vitamin intake, protein, carbohydrates, fiber, trans fats, cholesterol intake, and alcohol consumption. However, according to Dr. Lorkowski, “statistical adjustment is always incomplete, and confounding cannot be completely ruled out.”

Nevertheless, these results provide relevant insights for dietary recommendations that could help improve health and related outcomes, according to the authors. “Replacement of 5% energy from animal fat with 5% energy from plant fat, particularly fat from grains or vegetable oils, was associated with a lower risk for mortality: 4%-24% reduction in overall mortality and 5%-30% reduction in cardiovascular disease mortality.”
 

Fat Composition Matters

Animal fat, however, should not simply be replaced with plant fat, said Dr. Lorkowski. “Cold-water fish, which provides important long-chain omega-3 fatty acids, is also considered animal fat. And palm and coconut fat, while plant-based, contain unhealthy long-chain saturated fats. And the type of plant oils also makes a difference, whether one uses corn germ or sunflower oil rich in omega-6 fatty acids or flaxseed or rapeseed oil rich in omega-3 fatty acids.

“A diet rich in unsaturated fats, with sufficient and balanced intake of omega-3 and omega-6 fatty acids, that is also abundant in fiber-rich carbohydrate sources and plant-based protein, is always better than too much fat from animal sources.”

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA INTERNAL MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Do Cannabis Users Need More Anesthesia During Surgery?

Article Type
Changed
Wed, 09/11/2024 - 11:17

 

TOPLINE: 

Cannabis users aged 65 years or older undergoing general anesthesia for surgery required higher doses of inhalational anesthetics than nonusers. However, the clinical relevance of this difference remains unclear.

METHODOLOGY:

  • To assess if cannabis use leads to higher doses of inhalational anesthesia during surgery, the researchers conducted a retrospective cohort study comparing the average intraoperative minimum alveolar concentrations of volatile anesthetics (isoflurane and sevoflurane) between older adults who used cannabis products and those who did not.
  • The researchers reviewed electronic health records of 22,476 patients aged 65 years or older who underwent surgery at the University of Florida Health System between 2018 and 2020.
  • Overall, 268 patients who reported using cannabis within 60 days of surgery (median age, 69 years; 35% women) were matched to 1072 nonusers.
  • The median duration of anesthesia was 175 minutes.
  • The primary outcome was the intraoperative time-weighted average of isoflurane or sevoflurane minimum alveolar concentration equivalents.

TAKEAWAY:

  • Cannabis users had significantly higher average minimum alveolar concentrations of isoflurane or sevoflurane than nonusers (mean, 0.58 vs 0.54; mean difference, 0.04; P = .021).
  • The findings were confirmed in a sensitivity analysis that revealed higher mean average minimum alveolar concentrations of anesthesia in cannabis users than in nonusers (0.57 vs 0.53; P = .029).
  • Although the 0.04 difference in minimum alveolar concentration between cannabis users and nonusers was statistically significant, its clinical importance is unclear.

IN PRACTICE:

“While recent guidelines underscore the importance of universal screening for cannabinoids before surgery, caution is paramount to prevent clinical bias leading to the administration of unnecessary higher doses of inhalational anesthesia, especially as robust evidence supporting such practices remains lacking,” the authors of the study wrote.
 

SOURCE:

This study was led by Ruba Sajdeya, MD, PhD, of the Department of Epidemiology at the University of Florida, Gainesville, and was published online in August 2024 in Anesthesiology.

LIMITATIONS: 

This study lacked access to prescription or dispensed medications, including opioids, which may have introduced residual confounding. Potential underdocumentation of cannabis use in medical records could have led to exposure misclassification. The causality between cannabis usage and increased anesthetic dosing could not be established due to the observational nature of this study. 

DISCLOSURES:

This study was supported by the National Institute on Aging, the National Institutes of Health, and in part by the University of Florida Clinical and Translational Science Institute. Some authors declared receiving research support, consulting fees, and honoraria and having other ties with pharmaceutical companies and various other sources.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

Cannabis users aged 65 years or older undergoing general anesthesia for surgery required higher doses of inhalational anesthetics than nonusers. However, the clinical relevance of this difference remains unclear.

METHODOLOGY:

  • To assess if cannabis use leads to higher doses of inhalational anesthesia during surgery, the researchers conducted a retrospective cohort study comparing the average intraoperative minimum alveolar concentrations of volatile anesthetics (isoflurane and sevoflurane) between older adults who used cannabis products and those who did not.
  • The researchers reviewed electronic health records of 22,476 patients aged 65 years or older who underwent surgery at the University of Florida Health System between 2018 and 2020.
  • Overall, 268 patients who reported using cannabis within 60 days of surgery (median age, 69 years; 35% women) were matched to 1072 nonusers.
  • The median duration of anesthesia was 175 minutes.
  • The primary outcome was the intraoperative time-weighted average of isoflurane or sevoflurane minimum alveolar concentration equivalents.

TAKEAWAY:

  • Cannabis users had significantly higher average minimum alveolar concentrations of isoflurane or sevoflurane than nonusers (mean, 0.58 vs 0.54; mean difference, 0.04; P = .021).
  • The findings were confirmed in a sensitivity analysis that revealed higher mean average minimum alveolar concentrations of anesthesia in cannabis users than in nonusers (0.57 vs 0.53; P = .029).
  • Although the 0.04 difference in minimum alveolar concentration between cannabis users and nonusers was statistically significant, its clinical importance is unclear.

IN PRACTICE:

“While recent guidelines underscore the importance of universal screening for cannabinoids before surgery, caution is paramount to prevent clinical bias leading to the administration of unnecessary higher doses of inhalational anesthesia, especially as robust evidence supporting such practices remains lacking,” the authors of the study wrote.
 

SOURCE:

This study was led by Ruba Sajdeya, MD, PhD, of the Department of Epidemiology at the University of Florida, Gainesville, and was published online in August 2024 in Anesthesiology.

LIMITATIONS: 

This study lacked access to prescription or dispensed medications, including opioids, which may have introduced residual confounding. Potential underdocumentation of cannabis use in medical records could have led to exposure misclassification. The causality between cannabis usage and increased anesthetic dosing could not be established due to the observational nature of this study. 

DISCLOSURES:

This study was supported by the National Institute on Aging, the National Institutes of Health, and in part by the University of Florida Clinical and Translational Science Institute. Some authors declared receiving research support, consulting fees, and honoraria and having other ties with pharmaceutical companies and various other sources.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE: 

Cannabis users aged 65 years or older undergoing general anesthesia for surgery required higher doses of inhalational anesthetics than nonusers. However, the clinical relevance of this difference remains unclear.

METHODOLOGY:

  • To assess if cannabis use leads to higher doses of inhalational anesthesia during surgery, the researchers conducted a retrospective cohort study comparing the average intraoperative minimum alveolar concentrations of volatile anesthetics (isoflurane and sevoflurane) between older adults who used cannabis products and those who did not.
  • The researchers reviewed electronic health records of 22,476 patients aged 65 years or older who underwent surgery at the University of Florida Health System between 2018 and 2020.
  • Overall, 268 patients who reported using cannabis within 60 days of surgery (median age, 69 years; 35% women) were matched to 1072 nonusers.
  • The median duration of anesthesia was 175 minutes.
  • The primary outcome was the intraoperative time-weighted average of isoflurane or sevoflurane minimum alveolar concentration equivalents.

TAKEAWAY:

  • Cannabis users had significantly higher average minimum alveolar concentrations of isoflurane or sevoflurane than nonusers (mean, 0.58 vs 0.54; mean difference, 0.04; P = .021).
  • The findings were confirmed in a sensitivity analysis that revealed higher mean average minimum alveolar concentrations of anesthesia in cannabis users than in nonusers (0.57 vs 0.53; P = .029).
  • Although the 0.04 difference in minimum alveolar concentration between cannabis users and nonusers was statistically significant, its clinical importance is unclear.

IN PRACTICE:

“While recent guidelines underscore the importance of universal screening for cannabinoids before surgery, caution is paramount to prevent clinical bias leading to the administration of unnecessary higher doses of inhalational anesthesia, especially as robust evidence supporting such practices remains lacking,” the authors of the study wrote.
 

SOURCE:

This study was led by Ruba Sajdeya, MD, PhD, of the Department of Epidemiology at the University of Florida, Gainesville, and was published online in August 2024 in Anesthesiology.

LIMITATIONS: 

This study lacked access to prescription or dispensed medications, including opioids, which may have introduced residual confounding. Potential underdocumentation of cannabis use in medical records could have led to exposure misclassification. The causality between cannabis usage and increased anesthetic dosing could not be established due to the observational nature of this study. 

DISCLOSURES:

This study was supported by the National Institute on Aging, the National Institutes of Health, and in part by the University of Florida Clinical and Translational Science Institute. Some authors declared receiving research support, consulting fees, and honoraria and having other ties with pharmaceutical companies and various other sources.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New COVID-19 Vaccines That Target KP.2 Variant Available

Article Type
Changed
Tue, 09/10/2024 - 13:13

 

New COVID-19 vaccines formulated for better protection against the currently circulating variants have been approved by the US Food and Drug Administration.

The COVID vaccines available this fall have been updated to better match the currently circulating COVID strains, said William Schaffner, MD, professor of medicine in the Division of Infectious Diseases at Vanderbilt University, Nashville, Tennessee, in an interview.

“The Pfizer and Moderna vaccines — both mRNA vaccines — target the KP.2 variant, while the Novavax vaccine targets the JN.1 variant, which is a predecessor to KP.2,” said Dr. Schaffner, who also serves as a spokesperson for the National Foundation for Infectious Diseases. “The Novavax vaccine is a protein adjuvant vaccine made in a more traditional fashion and may appeal to those who remain hesitant about receiving an mRNA vaccine,” he explained. However, all three vaccines are designed to protect against severe COVID illness and reduce the likelihood of hospitalization, he said.
 

Who Needs It?

“The CDC’s Advisory Committee on Immunization Practices (ACIP) continues to recommend that everyone in the United States who is age 6 months and older receive the updated COVID vaccine this fall, along with influenza vaccine,” Dr. Schaffner said.

“This was not a surprise because COVID will produce a sizable winter outbreak,” he predicted. Although older people and those who have chronic medical conditions such as heart or lung disease, diabetes, or other immunocompromising conditions suffer the most serious impact of COVID, he said. “The virus can strike anyone, even the young and healthy.” The risk for long COVID persists as well, he pointed out.

The ACIP recommendation is endorsed by the American Academy of Pediatrics and other professional organizations, Dr. Shaffner said.

A frequently asked question is whether the COVID and flu vaccines can be given at the same time, and the answer is yes, according to a statement from the Centers for Disease Control and Prevention (CDC).

“The optimal time to be vaccinated is late September and anytime during October in order to get the benefit of protection through the winter,” Dr. Schaffner said.

As with earlier versions of the COVID-19 vaccine, side effects vary from person to person. Reported side effects of the updated vaccine are similar to those seen with earlier versions and may include injection site pain, redness and swelling, fatigue, headache, muscle pain, chills, nausea, and fever, but most of these are short-lived, according to the CDC.
 

Clinical Guidance

The CDC’s clinical guidance for COVID-19 vaccination outlines more specific guidance for vaccination based on age, vaccination history, and immunocompromised status and will be updated as needed.

A notable difference in the latest guidance is the recommendation of only one shot for adults aged 65 years and older who are NOT moderately or severely immunocompromised. For those who are moderately or severely immunocompromised, the CDC recommends two to three doses of the same brand of vaccine.

Dr. Schaffner strongly encouraged clinicians to recommend the COVID-19 vaccination for all eligible patients. “COVID is a nasty virus that can cause serious disease in anyone,” and protection from previous vaccination or prior infection has likely waned, he said.

Dr. Schaffner also encouraged healthcare professionals and their families to lead by example. “We should all be vaccinated and let our patients know that we are vaccinated and that we want all our patents to be protected,” he said.

The updated COVID-19 vaccination recommendations have become much simpler for clinicians and patients, with a single messenger RNA (mRNA) vaccine required for anyone older than 5 years, said David J. Cennimo, MD, associate professor of medicine and pediatrics in the Division of Infectious Disease at Rutgers New Jersey Medical School, Newark, New Jersey, in an interview.

“The recommendations are a bit more complex for children under 5 years old receiving their first vaccination; they require two to three doses depending on the brand,” he said. “It is important to review the latest recommendations to plan the doses with the correct interval timing. Considering the doses may be 3-4 weeks apart, start early,” he advised.
 

 

 

One-Time Dosing

Although the updated mRNA vaccine is currently recommended as a one-time dose, Dr. Cennimo said he can envision a scenario later in the season when a second dose is recommended for the elderly and those at high risk for severe illness. Dr. Cennimo said that he strongly agrees with the recommendations that everyone aged 6 months and older receive an updated COVID-19 vaccine. Older age remains the prime risk factor, but anyone can become infected, he said.

Predicting a prime time to get vaccinated is tricky because no one knows when the expected rise in winter cases will occur, said Dr. Cennimo.

“We know from years of flu vaccine data that some number of people who delay the vaccine will never return and will miss protection,” he said. Therefore, delaying vaccination is not recommended. Dr. Cennimo plans to follow his habit of getting vaccinated in early October. “I anticipate the maximal effectiveness of the vaccine will carry me through the winter,” he said.

Data support the safety and effectiveness for both flu and COVID vaccines if they are given together, and some research on earlier versions of COVID vaccines suggested that receiving flu and COVID vaccines together might increase the antibody response against COVID, but similar studies of the updated version have not been done, Dr. Cennimo said.

Clinicians may have to overcome the barrier of COVID fatigue to encourage vaccination, Dr. Cennimo said. Many people say they “want it to be over,” he said, but SARS-CoV-2, established as a viral respiratory infection, shows no signs of disappearing. In addition, new data continue to show higher mortality associated with COVID-19 than with influenza, he said.

“We need to explain to our patients that COVID-19 is still here and is still dangerous. The yearly influenza vaccination campaigns should have established and normalized the idea of an updated vaccine targeted for the season’s predicated strains is expected,” he emphasized. “We now have years of safety data behind these vaccines, and we need to make a strong recommendation for this protection,” he said.

COVID-19 vaccines are covered by private insurance, as well as by Medicare and Medicaid, according to the CDC. Vaccination for uninsured children is covered through the Vaccines for Children Program.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

New COVID-19 vaccines formulated for better protection against the currently circulating variants have been approved by the US Food and Drug Administration.

The COVID vaccines available this fall have been updated to better match the currently circulating COVID strains, said William Schaffner, MD, professor of medicine in the Division of Infectious Diseases at Vanderbilt University, Nashville, Tennessee, in an interview.

“The Pfizer and Moderna vaccines — both mRNA vaccines — target the KP.2 variant, while the Novavax vaccine targets the JN.1 variant, which is a predecessor to KP.2,” said Dr. Schaffner, who also serves as a spokesperson for the National Foundation for Infectious Diseases. “The Novavax vaccine is a protein adjuvant vaccine made in a more traditional fashion and may appeal to those who remain hesitant about receiving an mRNA vaccine,” he explained. However, all three vaccines are designed to protect against severe COVID illness and reduce the likelihood of hospitalization, he said.
 

Who Needs It?

“The CDC’s Advisory Committee on Immunization Practices (ACIP) continues to recommend that everyone in the United States who is age 6 months and older receive the updated COVID vaccine this fall, along with influenza vaccine,” Dr. Schaffner said.

“This was not a surprise because COVID will produce a sizable winter outbreak,” he predicted. Although older people and those who have chronic medical conditions such as heart or lung disease, diabetes, or other immunocompromising conditions suffer the most serious impact of COVID, he said. “The virus can strike anyone, even the young and healthy.” The risk for long COVID persists as well, he pointed out.

The ACIP recommendation is endorsed by the American Academy of Pediatrics and other professional organizations, Dr. Shaffner said.

A frequently asked question is whether the COVID and flu vaccines can be given at the same time, and the answer is yes, according to a statement from the Centers for Disease Control and Prevention (CDC).

“The optimal time to be vaccinated is late September and anytime during October in order to get the benefit of protection through the winter,” Dr. Schaffner said.

As with earlier versions of the COVID-19 vaccine, side effects vary from person to person. Reported side effects of the updated vaccine are similar to those seen with earlier versions and may include injection site pain, redness and swelling, fatigue, headache, muscle pain, chills, nausea, and fever, but most of these are short-lived, according to the CDC.
 

Clinical Guidance

The CDC’s clinical guidance for COVID-19 vaccination outlines more specific guidance for vaccination based on age, vaccination history, and immunocompromised status and will be updated as needed.

A notable difference in the latest guidance is the recommendation of only one shot for adults aged 65 years and older who are NOT moderately or severely immunocompromised. For those who are moderately or severely immunocompromised, the CDC recommends two to three doses of the same brand of vaccine.

Dr. Schaffner strongly encouraged clinicians to recommend the COVID-19 vaccination for all eligible patients. “COVID is a nasty virus that can cause serious disease in anyone,” and protection from previous vaccination or prior infection has likely waned, he said.

Dr. Schaffner also encouraged healthcare professionals and their families to lead by example. “We should all be vaccinated and let our patients know that we are vaccinated and that we want all our patents to be protected,” he said.

The updated COVID-19 vaccination recommendations have become much simpler for clinicians and patients, with a single messenger RNA (mRNA) vaccine required for anyone older than 5 years, said David J. Cennimo, MD, associate professor of medicine and pediatrics in the Division of Infectious Disease at Rutgers New Jersey Medical School, Newark, New Jersey, in an interview.

“The recommendations are a bit more complex for children under 5 years old receiving their first vaccination; they require two to three doses depending on the brand,” he said. “It is important to review the latest recommendations to plan the doses with the correct interval timing. Considering the doses may be 3-4 weeks apart, start early,” he advised.
 

 

 

One-Time Dosing

Although the updated mRNA vaccine is currently recommended as a one-time dose, Dr. Cennimo said he can envision a scenario later in the season when a second dose is recommended for the elderly and those at high risk for severe illness. Dr. Cennimo said that he strongly agrees with the recommendations that everyone aged 6 months and older receive an updated COVID-19 vaccine. Older age remains the prime risk factor, but anyone can become infected, he said.

Predicting a prime time to get vaccinated is tricky because no one knows when the expected rise in winter cases will occur, said Dr. Cennimo.

“We know from years of flu vaccine data that some number of people who delay the vaccine will never return and will miss protection,” he said. Therefore, delaying vaccination is not recommended. Dr. Cennimo plans to follow his habit of getting vaccinated in early October. “I anticipate the maximal effectiveness of the vaccine will carry me through the winter,” he said.

Data support the safety and effectiveness for both flu and COVID vaccines if they are given together, and some research on earlier versions of COVID vaccines suggested that receiving flu and COVID vaccines together might increase the antibody response against COVID, but similar studies of the updated version have not been done, Dr. Cennimo said.

Clinicians may have to overcome the barrier of COVID fatigue to encourage vaccination, Dr. Cennimo said. Many people say they “want it to be over,” he said, but SARS-CoV-2, established as a viral respiratory infection, shows no signs of disappearing. In addition, new data continue to show higher mortality associated with COVID-19 than with influenza, he said.

“We need to explain to our patients that COVID-19 is still here and is still dangerous. The yearly influenza vaccination campaigns should have established and normalized the idea of an updated vaccine targeted for the season’s predicated strains is expected,” he emphasized. “We now have years of safety data behind these vaccines, and we need to make a strong recommendation for this protection,” he said.

COVID-19 vaccines are covered by private insurance, as well as by Medicare and Medicaid, according to the CDC. Vaccination for uninsured children is covered through the Vaccines for Children Program.

A version of this article first appeared on Medscape.com.

 

New COVID-19 vaccines formulated for better protection against the currently circulating variants have been approved by the US Food and Drug Administration.

The COVID vaccines available this fall have been updated to better match the currently circulating COVID strains, said William Schaffner, MD, professor of medicine in the Division of Infectious Diseases at Vanderbilt University, Nashville, Tennessee, in an interview.

“The Pfizer and Moderna vaccines — both mRNA vaccines — target the KP.2 variant, while the Novavax vaccine targets the JN.1 variant, which is a predecessor to KP.2,” said Dr. Schaffner, who also serves as a spokesperson for the National Foundation for Infectious Diseases. “The Novavax vaccine is a protein adjuvant vaccine made in a more traditional fashion and may appeal to those who remain hesitant about receiving an mRNA vaccine,” he explained. However, all three vaccines are designed to protect against severe COVID illness and reduce the likelihood of hospitalization, he said.
 

Who Needs It?

“The CDC’s Advisory Committee on Immunization Practices (ACIP) continues to recommend that everyone in the United States who is age 6 months and older receive the updated COVID vaccine this fall, along with influenza vaccine,” Dr. Schaffner said.

“This was not a surprise because COVID will produce a sizable winter outbreak,” he predicted. Although older people and those who have chronic medical conditions such as heart or lung disease, diabetes, or other immunocompromising conditions suffer the most serious impact of COVID, he said. “The virus can strike anyone, even the young and healthy.” The risk for long COVID persists as well, he pointed out.

The ACIP recommendation is endorsed by the American Academy of Pediatrics and other professional organizations, Dr. Shaffner said.

A frequently asked question is whether the COVID and flu vaccines can be given at the same time, and the answer is yes, according to a statement from the Centers for Disease Control and Prevention (CDC).

“The optimal time to be vaccinated is late September and anytime during October in order to get the benefit of protection through the winter,” Dr. Schaffner said.

As with earlier versions of the COVID-19 vaccine, side effects vary from person to person. Reported side effects of the updated vaccine are similar to those seen with earlier versions and may include injection site pain, redness and swelling, fatigue, headache, muscle pain, chills, nausea, and fever, but most of these are short-lived, according to the CDC.
 

Clinical Guidance

The CDC’s clinical guidance for COVID-19 vaccination outlines more specific guidance for vaccination based on age, vaccination history, and immunocompromised status and will be updated as needed.

A notable difference in the latest guidance is the recommendation of only one shot for adults aged 65 years and older who are NOT moderately or severely immunocompromised. For those who are moderately or severely immunocompromised, the CDC recommends two to three doses of the same brand of vaccine.

Dr. Schaffner strongly encouraged clinicians to recommend the COVID-19 vaccination for all eligible patients. “COVID is a nasty virus that can cause serious disease in anyone,” and protection from previous vaccination or prior infection has likely waned, he said.

Dr. Schaffner also encouraged healthcare professionals and their families to lead by example. “We should all be vaccinated and let our patients know that we are vaccinated and that we want all our patents to be protected,” he said.

The updated COVID-19 vaccination recommendations have become much simpler for clinicians and patients, with a single messenger RNA (mRNA) vaccine required for anyone older than 5 years, said David J. Cennimo, MD, associate professor of medicine and pediatrics in the Division of Infectious Disease at Rutgers New Jersey Medical School, Newark, New Jersey, in an interview.

“The recommendations are a bit more complex for children under 5 years old receiving their first vaccination; they require two to three doses depending on the brand,” he said. “It is important to review the latest recommendations to plan the doses with the correct interval timing. Considering the doses may be 3-4 weeks apart, start early,” he advised.
 

 

 

One-Time Dosing

Although the updated mRNA vaccine is currently recommended as a one-time dose, Dr. Cennimo said he can envision a scenario later in the season when a second dose is recommended for the elderly and those at high risk for severe illness. Dr. Cennimo said that he strongly agrees with the recommendations that everyone aged 6 months and older receive an updated COVID-19 vaccine. Older age remains the prime risk factor, but anyone can become infected, he said.

Predicting a prime time to get vaccinated is tricky because no one knows when the expected rise in winter cases will occur, said Dr. Cennimo.

“We know from years of flu vaccine data that some number of people who delay the vaccine will never return and will miss protection,” he said. Therefore, delaying vaccination is not recommended. Dr. Cennimo plans to follow his habit of getting vaccinated in early October. “I anticipate the maximal effectiveness of the vaccine will carry me through the winter,” he said.

Data support the safety and effectiveness for both flu and COVID vaccines if they are given together, and some research on earlier versions of COVID vaccines suggested that receiving flu and COVID vaccines together might increase the antibody response against COVID, but similar studies of the updated version have not been done, Dr. Cennimo said.

Clinicians may have to overcome the barrier of COVID fatigue to encourage vaccination, Dr. Cennimo said. Many people say they “want it to be over,” he said, but SARS-CoV-2, established as a viral respiratory infection, shows no signs of disappearing. In addition, new data continue to show higher mortality associated with COVID-19 than with influenza, he said.

“We need to explain to our patients that COVID-19 is still here and is still dangerous. The yearly influenza vaccination campaigns should have established and normalized the idea of an updated vaccine targeted for the season’s predicated strains is expected,” he emphasized. “We now have years of safety data behind these vaccines, and we need to make a strong recommendation for this protection,” he said.

COVID-19 vaccines are covered by private insurance, as well as by Medicare and Medicaid, according to the CDC. Vaccination for uninsured children is covered through the Vaccines for Children Program.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Not Kidding: Yellow Dye 5 May Lead to Invisibility

Article Type
Changed
Tue, 09/10/2024 - 12:16

 

The same dye that gives Twinkies their yellowish hue could be the key to invisibility. 

Applying the dye to lab mice made their skin temporarily transparent, allowing Stanford University researchers to observe the rodents’ digestive system, muscle fibers, and blood vessels, according to a study published in Science.

“It’s a stunning result,” said senior author Guosong Hong, PhD, who is assistant professor of materials science and engineering at Stanford University in California. “If the same technique could be applied to humans, it could offer a variety of benefits in biology, diagnostics, and even cosmetics.” 

The work drew upon optical concepts first described in the early 20th century to form a surprising theory: Applying a light-absorbing substance could render skin transparent by reducing the chaotic scattering of light as it strikes proteins, fats, and water in tissue. 

A search for a suitable light absorber led to FD&C Yellow 5, also called tartrazine, a synthetic color additive certified by the Food and Drug Administration (FDA) for use in foods, cosmetics, and medications. 

Rubbed on live mice (after areas of fur were removed using a drugstore depilatory cream), tartrazine rendered skin on their bellies, hind legs, and heads transparent within 5 minutes. With the naked eye, the researchers watched a mouse’s intestines, bladder, and liver at work. Using a microscope, they observed muscle fibers and saw blood vessels in a living mouse’s brain — all without making incisions. Transparency faded quickly when the dye was washed off.

Someday, the concept could be used in doctors’ offices and hospitals, Dr. Hong said. 

“Instead of relying on invasive biopsies, doctors might be able to diagnose deep-seated tumors by simply examining a person’s tissue without the need for invasive surgical removal,” he said. “This technique could potentially make blood draws less painful by helping phlebotomists easily locate veins under the skin. It could also enhance procedures like laser tattoo removal by allowing more precise targeting of the pigment beneath the skin.”
 

From Cake Frosting to Groundbreaking Research

Yellow 5 food dye can be found in everything from cereal, soda, spices, and cake frosting to lipstick, mouthwash, shampoo, dietary supplements, and house paint. Although it’s in some topical medications, more research is needed before it could be used in human diagnostics, said Christopher J. Rowlands, PhD, a senior lecturer in the Department of Bioengineering at Imperial College London, England, where he studies biophotonic instrumentation — ways to image structures inside the body more quickly and clearly. 

But the finding could prove useful in research. In a commentary published in Science, Dr. Rowlands and his colleague Jon Gorecki, PhD, an experimental optical physicist also at Imperial College London, noted that the dye could be an alternative to other optical clearing agents currently used in lab studies, such as glycerol, fructose, or acetic acid. Advantages are the effect is reversible and works at lower concentrations with fewer side effects. This could broaden the types of studies possible in lab animals, so researchers don’t have to rely on naturally transparent creatures like nematodes and zebrafish. 

The dye could also be paired with imaging techniques such as MRI or electron microscopy. 

“Imaging techniques all have pros and cons,” Dr. Rowlands said. “MRI can see all the way through the body albeit with limited resolution and contrast. Electron microscopy has excellent resolution but limited compatibility with live tissue and penetration depth. Optical microscopy has subcellular resolution, the ability to label things, excellent biocompatibility but less than 1 millimeter of penetration depth. This clearing method will give a substantial boost to optical imaging for medicine and biology.”

The discovery could improve the depth imaging equipment can achieve by tenfold, according to the commentary. 

Brain research especially stands to benefit. “Neurobiology in particular will have great use for combinations of multiphoton, optogenetics, and tissue clearing to record and control neural activity over (potentially) the whole mouse brain,” he said.
 

Refraction, Absorption, and The Invisible Man

The dye discovery has distant echoes in H.G. Wells’ 1897 novel The Invisible Man, Dr. Rowlands noted. In the book, a serum makes the main character invisible by changing the light scattering — or refractive index (RI) — of his cells to match the air around him.

The Stanford engineers looked to the past for inspiration, but not to fiction. They turned to a concept first described in the 1920s called the Kramers-Kronig relations, a mathematical principle that can be applied to relationships between the way light is refracted and absorbed in different materials. They also read up on Lorentz oscillation, which describes how electrons and atoms inside molecules react to light. 

They reasoned that light-absorbing compounds could equalize the differences between the light-scattering properties of proteins, lipids, and water that make skin opaque. 

With that, the search was on. The study’s first author, postdoctoral researcher Zihao Ou, PhD, began testing strong dyes to find a candidate. Tartrazine was a front-runner. 

“We found that dye molecules are more efficient in raising the refractive index of water than conventional RI-matching agents, thus resulting in transparency at a much lower concentration,” Dr. Hong said. “The underlying physics, explained by the Lorentz oscillator model and Kramers-Kronig relations, reveals that conventional RI matching agents like fructose are not as efficient because they are not ‘colored’ enough.”
 

What’s Next

Though the dye is already in products that people consume and apply to their skin, medical use is years away. In some people, tartrazine can cause skin or respiratory reactions. 

The National Science Foundation (NSF), which helped fund the research, posted a home or classroom activity related to the work on its website. It involves painting a tartrazine solution on a thin slice of raw chicken breast, making it transparent. The experiment should only be done while wearing a mask, eye protection, lab coat, and lab-quality nitrile gloves for protection, according to the NSF.

Meanwhile, Dr. Hong said his lab is looking for new compounds that will improve visibility through transparent skin, removing a red tone seen in the current experiments. And they’re looking for ways to induce cells to make their own “see-through” compounds. 

“We are exploring methods for cells to express intensely absorbing molecules endogenously, enabling genetically encoded tissue transparency in live animals,” he said.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

The same dye that gives Twinkies their yellowish hue could be the key to invisibility. 

Applying the dye to lab mice made their skin temporarily transparent, allowing Stanford University researchers to observe the rodents’ digestive system, muscle fibers, and blood vessels, according to a study published in Science.

“It’s a stunning result,” said senior author Guosong Hong, PhD, who is assistant professor of materials science and engineering at Stanford University in California. “If the same technique could be applied to humans, it could offer a variety of benefits in biology, diagnostics, and even cosmetics.” 

The work drew upon optical concepts first described in the early 20th century to form a surprising theory: Applying a light-absorbing substance could render skin transparent by reducing the chaotic scattering of light as it strikes proteins, fats, and water in tissue. 

A search for a suitable light absorber led to FD&C Yellow 5, also called tartrazine, a synthetic color additive certified by the Food and Drug Administration (FDA) for use in foods, cosmetics, and medications. 

Rubbed on live mice (after areas of fur were removed using a drugstore depilatory cream), tartrazine rendered skin on their bellies, hind legs, and heads transparent within 5 minutes. With the naked eye, the researchers watched a mouse’s intestines, bladder, and liver at work. Using a microscope, they observed muscle fibers and saw blood vessels in a living mouse’s brain — all without making incisions. Transparency faded quickly when the dye was washed off.

Someday, the concept could be used in doctors’ offices and hospitals, Dr. Hong said. 

“Instead of relying on invasive biopsies, doctors might be able to diagnose deep-seated tumors by simply examining a person’s tissue without the need for invasive surgical removal,” he said. “This technique could potentially make blood draws less painful by helping phlebotomists easily locate veins under the skin. It could also enhance procedures like laser tattoo removal by allowing more precise targeting of the pigment beneath the skin.”
 

From Cake Frosting to Groundbreaking Research

Yellow 5 food dye can be found in everything from cereal, soda, spices, and cake frosting to lipstick, mouthwash, shampoo, dietary supplements, and house paint. Although it’s in some topical medications, more research is needed before it could be used in human diagnostics, said Christopher J. Rowlands, PhD, a senior lecturer in the Department of Bioengineering at Imperial College London, England, where he studies biophotonic instrumentation — ways to image structures inside the body more quickly and clearly. 

But the finding could prove useful in research. In a commentary published in Science, Dr. Rowlands and his colleague Jon Gorecki, PhD, an experimental optical physicist also at Imperial College London, noted that the dye could be an alternative to other optical clearing agents currently used in lab studies, such as glycerol, fructose, or acetic acid. Advantages are the effect is reversible and works at lower concentrations with fewer side effects. This could broaden the types of studies possible in lab animals, so researchers don’t have to rely on naturally transparent creatures like nematodes and zebrafish. 

The dye could also be paired with imaging techniques such as MRI or electron microscopy. 

“Imaging techniques all have pros and cons,” Dr. Rowlands said. “MRI can see all the way through the body albeit with limited resolution and contrast. Electron microscopy has excellent resolution but limited compatibility with live tissue and penetration depth. Optical microscopy has subcellular resolution, the ability to label things, excellent biocompatibility but less than 1 millimeter of penetration depth. This clearing method will give a substantial boost to optical imaging for medicine and biology.”

The discovery could improve the depth imaging equipment can achieve by tenfold, according to the commentary. 

Brain research especially stands to benefit. “Neurobiology in particular will have great use for combinations of multiphoton, optogenetics, and tissue clearing to record and control neural activity over (potentially) the whole mouse brain,” he said.
 

Refraction, Absorption, and The Invisible Man

The dye discovery has distant echoes in H.G. Wells’ 1897 novel The Invisible Man, Dr. Rowlands noted. In the book, a serum makes the main character invisible by changing the light scattering — or refractive index (RI) — of his cells to match the air around him.

The Stanford engineers looked to the past for inspiration, but not to fiction. They turned to a concept first described in the 1920s called the Kramers-Kronig relations, a mathematical principle that can be applied to relationships between the way light is refracted and absorbed in different materials. They also read up on Lorentz oscillation, which describes how electrons and atoms inside molecules react to light. 

They reasoned that light-absorbing compounds could equalize the differences between the light-scattering properties of proteins, lipids, and water that make skin opaque. 

With that, the search was on. The study’s first author, postdoctoral researcher Zihao Ou, PhD, began testing strong dyes to find a candidate. Tartrazine was a front-runner. 

“We found that dye molecules are more efficient in raising the refractive index of water than conventional RI-matching agents, thus resulting in transparency at a much lower concentration,” Dr. Hong said. “The underlying physics, explained by the Lorentz oscillator model and Kramers-Kronig relations, reveals that conventional RI matching agents like fructose are not as efficient because they are not ‘colored’ enough.”
 

What’s Next

Though the dye is already in products that people consume and apply to their skin, medical use is years away. In some people, tartrazine can cause skin or respiratory reactions. 

The National Science Foundation (NSF), which helped fund the research, posted a home or classroom activity related to the work on its website. It involves painting a tartrazine solution on a thin slice of raw chicken breast, making it transparent. The experiment should only be done while wearing a mask, eye protection, lab coat, and lab-quality nitrile gloves for protection, according to the NSF.

Meanwhile, Dr. Hong said his lab is looking for new compounds that will improve visibility through transparent skin, removing a red tone seen in the current experiments. And they’re looking for ways to induce cells to make their own “see-through” compounds. 

“We are exploring methods for cells to express intensely absorbing molecules endogenously, enabling genetically encoded tissue transparency in live animals,” he said.

A version of this article first appeared on Medscape.com.

 

The same dye that gives Twinkies their yellowish hue could be the key to invisibility. 

Applying the dye to lab mice made their skin temporarily transparent, allowing Stanford University researchers to observe the rodents’ digestive system, muscle fibers, and blood vessels, according to a study published in Science.

“It’s a stunning result,” said senior author Guosong Hong, PhD, who is assistant professor of materials science and engineering at Stanford University in California. “If the same technique could be applied to humans, it could offer a variety of benefits in biology, diagnostics, and even cosmetics.” 

The work drew upon optical concepts first described in the early 20th century to form a surprising theory: Applying a light-absorbing substance could render skin transparent by reducing the chaotic scattering of light as it strikes proteins, fats, and water in tissue. 

A search for a suitable light absorber led to FD&C Yellow 5, also called tartrazine, a synthetic color additive certified by the Food and Drug Administration (FDA) for use in foods, cosmetics, and medications. 

Rubbed on live mice (after areas of fur were removed using a drugstore depilatory cream), tartrazine rendered skin on their bellies, hind legs, and heads transparent within 5 minutes. With the naked eye, the researchers watched a mouse’s intestines, bladder, and liver at work. Using a microscope, they observed muscle fibers and saw blood vessels in a living mouse’s brain — all without making incisions. Transparency faded quickly when the dye was washed off.

Someday, the concept could be used in doctors’ offices and hospitals, Dr. Hong said. 

“Instead of relying on invasive biopsies, doctors might be able to diagnose deep-seated tumors by simply examining a person’s tissue without the need for invasive surgical removal,” he said. “This technique could potentially make blood draws less painful by helping phlebotomists easily locate veins under the skin. It could also enhance procedures like laser tattoo removal by allowing more precise targeting of the pigment beneath the skin.”
 

From Cake Frosting to Groundbreaking Research

Yellow 5 food dye can be found in everything from cereal, soda, spices, and cake frosting to lipstick, mouthwash, shampoo, dietary supplements, and house paint. Although it’s in some topical medications, more research is needed before it could be used in human diagnostics, said Christopher J. Rowlands, PhD, a senior lecturer in the Department of Bioengineering at Imperial College London, England, where he studies biophotonic instrumentation — ways to image structures inside the body more quickly and clearly. 

But the finding could prove useful in research. In a commentary published in Science, Dr. Rowlands and his colleague Jon Gorecki, PhD, an experimental optical physicist also at Imperial College London, noted that the dye could be an alternative to other optical clearing agents currently used in lab studies, such as glycerol, fructose, or acetic acid. Advantages are the effect is reversible and works at lower concentrations with fewer side effects. This could broaden the types of studies possible in lab animals, so researchers don’t have to rely on naturally transparent creatures like nematodes and zebrafish. 

The dye could also be paired with imaging techniques such as MRI or electron microscopy. 

“Imaging techniques all have pros and cons,” Dr. Rowlands said. “MRI can see all the way through the body albeit with limited resolution and contrast. Electron microscopy has excellent resolution but limited compatibility with live tissue and penetration depth. Optical microscopy has subcellular resolution, the ability to label things, excellent biocompatibility but less than 1 millimeter of penetration depth. This clearing method will give a substantial boost to optical imaging for medicine and biology.”

The discovery could improve the depth imaging equipment can achieve by tenfold, according to the commentary. 

Brain research especially stands to benefit. “Neurobiology in particular will have great use for combinations of multiphoton, optogenetics, and tissue clearing to record and control neural activity over (potentially) the whole mouse brain,” he said.
 

Refraction, Absorption, and The Invisible Man

The dye discovery has distant echoes in H.G. Wells’ 1897 novel The Invisible Man, Dr. Rowlands noted. In the book, a serum makes the main character invisible by changing the light scattering — or refractive index (RI) — of his cells to match the air around him.

The Stanford engineers looked to the past for inspiration, but not to fiction. They turned to a concept first described in the 1920s called the Kramers-Kronig relations, a mathematical principle that can be applied to relationships between the way light is refracted and absorbed in different materials. They also read up on Lorentz oscillation, which describes how electrons and atoms inside molecules react to light. 

They reasoned that light-absorbing compounds could equalize the differences between the light-scattering properties of proteins, lipids, and water that make skin opaque. 

With that, the search was on. The study’s first author, postdoctoral researcher Zihao Ou, PhD, began testing strong dyes to find a candidate. Tartrazine was a front-runner. 

“We found that dye molecules are more efficient in raising the refractive index of water than conventional RI-matching agents, thus resulting in transparency at a much lower concentration,” Dr. Hong said. “The underlying physics, explained by the Lorentz oscillator model and Kramers-Kronig relations, reveals that conventional RI matching agents like fructose are not as efficient because they are not ‘colored’ enough.”
 

What’s Next

Though the dye is already in products that people consume and apply to their skin, medical use is years away. In some people, tartrazine can cause skin or respiratory reactions. 

The National Science Foundation (NSF), which helped fund the research, posted a home or classroom activity related to the work on its website. It involves painting a tartrazine solution on a thin slice of raw chicken breast, making it transparent. The experiment should only be done while wearing a mask, eye protection, lab coat, and lab-quality nitrile gloves for protection, according to the NSF.

Meanwhile, Dr. Hong said his lab is looking for new compounds that will improve visibility through transparent skin, removing a red tone seen in the current experiments. And they’re looking for ways to induce cells to make their own “see-through” compounds. 

“We are exploring methods for cells to express intensely absorbing molecules endogenously, enabling genetically encoded tissue transparency in live animals,” he said.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SCIENCE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article