LayerRx Mapping ID
505
Slot System
Featured Buckets
Featured Buckets Admin

High-Frequency Electric Nerve Block Shows Promise in Postamputation Pain Management

Article Type
Changed
Wed, 06/12/2024 - 14:16

 

TOPLINE:

High-frequency electric nerve block significantly reduced postamputation pain in a new study, presenting a potential new therapeutic option for amputees.

METHODOLOGY:

  • The study enrolled 180 patients with unilateral lower limb amputations who were experiencing severe post-procedure pain.
  • Participants were randomized 1:1 to receive 3 months of treatment with either a high-frequency nerve block (Altius; Neuros Medical) or an active sham.
  • Effectiveness was measured by the percentage of participants achieving at least a 50% reduction in pain in more than half of the treatment sessions.
  • The researchers attempted to control for variables including pain type and baseline pain intensity.

TAKEAWAY:

  • A total of 24.7% of patients in the group that received the nerve block were responders at 30 minutes post-treatment, significantly higher than 7.1% in the control group (P = .002).
  • The rate of response rose to 46.8% in the treatment group at 120 minutes, compared with 22.2% in the sham group (P = .001).
  • Patients who received the nerve block reported a greater improvement in their score on the Brief Pain Inventory than those in the sham arm — 2.3 ± 0.29 vs 1.3 ± 0.26, respectively (P = .01).
  • Use of opioids trended toward a greater reduction in the treatment group, although that finding was not statistically significant.

IN PRACTICE:

The results suggested “high-frequency electric nerve block could be a viable option for managing chronic post-amputation pain, potentially improving patients’ quality of life and reducing reliance on opioids,” the authors wrote. “The study addresses a critical gap in treatment options for amputees suffering from persistent pain, offering evidence for a novel therapeutic approach.”

“We have never seen a study of this magnitude and rigor in this patient population,” said lead author Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, in a press release about the data. “The data demonstrated clear and lasting benefit of treatment for pain reduction and functional outcomes at 3 months, creating great optimism for the long-term study results. These findings represent a significant advancement for an at-risk and underserved patient population in desperate need of reliable and effective treatment.”

SOURCE:

The study was led by Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, and was published online in the Journal of Pain Research.

LIMITATIONS:

The sample size of 180 participants may limit the generalizability of the findings to all amputees. A 3-month duration for assessing treatment efficacy may not capture long-term outcomes and effects. The active-sham control design, while rigorous, may not fully account for the placebo effects inherent in pain perception studies.

DISCLOSURES:

The QUEST study was funded by Neuros Medical Inc. Dr. Kapural reported personal fees from various medical companies, unrelated to this work. No other conflicts of interest were reported in this work.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

High-frequency electric nerve block significantly reduced postamputation pain in a new study, presenting a potential new therapeutic option for amputees.

METHODOLOGY:

  • The study enrolled 180 patients with unilateral lower limb amputations who were experiencing severe post-procedure pain.
  • Participants were randomized 1:1 to receive 3 months of treatment with either a high-frequency nerve block (Altius; Neuros Medical) or an active sham.
  • Effectiveness was measured by the percentage of participants achieving at least a 50% reduction in pain in more than half of the treatment sessions.
  • The researchers attempted to control for variables including pain type and baseline pain intensity.

TAKEAWAY:

  • A total of 24.7% of patients in the group that received the nerve block were responders at 30 minutes post-treatment, significantly higher than 7.1% in the control group (P = .002).
  • The rate of response rose to 46.8% in the treatment group at 120 minutes, compared with 22.2% in the sham group (P = .001).
  • Patients who received the nerve block reported a greater improvement in their score on the Brief Pain Inventory than those in the sham arm — 2.3 ± 0.29 vs 1.3 ± 0.26, respectively (P = .01).
  • Use of opioids trended toward a greater reduction in the treatment group, although that finding was not statistically significant.

IN PRACTICE:

The results suggested “high-frequency electric nerve block could be a viable option for managing chronic post-amputation pain, potentially improving patients’ quality of life and reducing reliance on opioids,” the authors wrote. “The study addresses a critical gap in treatment options for amputees suffering from persistent pain, offering evidence for a novel therapeutic approach.”

“We have never seen a study of this magnitude and rigor in this patient population,” said lead author Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, in a press release about the data. “The data demonstrated clear and lasting benefit of treatment for pain reduction and functional outcomes at 3 months, creating great optimism for the long-term study results. These findings represent a significant advancement for an at-risk and underserved patient population in desperate need of reliable and effective treatment.”

SOURCE:

The study was led by Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, and was published online in the Journal of Pain Research.

LIMITATIONS:

The sample size of 180 participants may limit the generalizability of the findings to all amputees. A 3-month duration for assessing treatment efficacy may not capture long-term outcomes and effects. The active-sham control design, while rigorous, may not fully account for the placebo effects inherent in pain perception studies.

DISCLOSURES:

The QUEST study was funded by Neuros Medical Inc. Dr. Kapural reported personal fees from various medical companies, unrelated to this work. No other conflicts of interest were reported in this work.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

 

TOPLINE:

High-frequency electric nerve block significantly reduced postamputation pain in a new study, presenting a potential new therapeutic option for amputees.

METHODOLOGY:

  • The study enrolled 180 patients with unilateral lower limb amputations who were experiencing severe post-procedure pain.
  • Participants were randomized 1:1 to receive 3 months of treatment with either a high-frequency nerve block (Altius; Neuros Medical) or an active sham.
  • Effectiveness was measured by the percentage of participants achieving at least a 50% reduction in pain in more than half of the treatment sessions.
  • The researchers attempted to control for variables including pain type and baseline pain intensity.

TAKEAWAY:

  • A total of 24.7% of patients in the group that received the nerve block were responders at 30 minutes post-treatment, significantly higher than 7.1% in the control group (P = .002).
  • The rate of response rose to 46.8% in the treatment group at 120 minutes, compared with 22.2% in the sham group (P = .001).
  • Patients who received the nerve block reported a greater improvement in their score on the Brief Pain Inventory than those in the sham arm — 2.3 ± 0.29 vs 1.3 ± 0.26, respectively (P = .01).
  • Use of opioids trended toward a greater reduction in the treatment group, although that finding was not statistically significant.

IN PRACTICE:

The results suggested “high-frequency electric nerve block could be a viable option for managing chronic post-amputation pain, potentially improving patients’ quality of life and reducing reliance on opioids,” the authors wrote. “The study addresses a critical gap in treatment options for amputees suffering from persistent pain, offering evidence for a novel therapeutic approach.”

“We have never seen a study of this magnitude and rigor in this patient population,” said lead author Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, in a press release about the data. “The data demonstrated clear and lasting benefit of treatment for pain reduction and functional outcomes at 3 months, creating great optimism for the long-term study results. These findings represent a significant advancement for an at-risk and underserved patient population in desperate need of reliable and effective treatment.”

SOURCE:

The study was led by Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, and was published online in the Journal of Pain Research.

LIMITATIONS:

The sample size of 180 participants may limit the generalizability of the findings to all amputees. A 3-month duration for assessing treatment efficacy may not capture long-term outcomes and effects. The active-sham control design, while rigorous, may not fully account for the placebo effects inherent in pain perception studies.

DISCLOSURES:

The QUEST study was funded by Neuros Medical Inc. Dr. Kapural reported personal fees from various medical companies, unrelated to this work. No other conflicts of interest were reported in this work.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168396</fileName> <TBEID>0C05086C.SIG</TBEID> <TBUniqueIdentifier>MD_0C05086C</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Postamputation Nerve Blocks</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240612T132708</QCDate> <firstPublished>20240612T133127</firstPublished> <LastPublished>20240612T133127</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240612T133127</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Edited by Adam Marcus</byline> <bylineText>EDITED ADAM MARCUS</bylineText> <bylineFull>EDITED ADAM MARCUS</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>High-frequency electric nerve block significantly reduced postamputation pain</metaDescription> <articlePDF/> <teaserImage/> <teaser>“The data demonstrated clear and lasting benefit of treatment for pain reduction and functional outcomes at 3 months.”</teaser> <title>High-Frequency Electric Nerve Block Shows Promise in Postamputation Pain Management</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">22</term> </publications> <sections> <term>39313</term> <term canonical="true">86</term> </sections> <topics> <term>260</term> <term canonical="true">268</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>High-Frequency Electric Nerve Block Shows Promise in Postamputation Pain Management</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p><span class="tag metaDescription">High-frequency electric nerve block significantly reduced postamputation pain</span> in a new study, presenting a potential new therapeutic option for amputees.</p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>The study enrolled 180 patients with unilateral lower limb amputations who were experiencing severe post-procedure pain.</li> <li>Participants were randomized 1:1 to receive 3 months of treatment with either a high-frequency nerve block (Altius; Neuros Medical) or an active sham.</li> <li>Effectiveness was measured by the percentage of participants achieving at least a 50% reduction in pain in more than half of the treatment sessions.</li> <li>The researchers attempted to control for variables including pain type and baseline pain intensity.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>A total of 24.7% of patients in the group that received the nerve block were responders at 30 minutes post-treatment, significantly higher than 7.1% in the control group (<em>P</em> = .002).</li> <li>The rate of response rose to 46.8% in the treatment group at 120 minutes, compared with 22.2% in the sham group (<em>P</em> = .001).</li> <li>Patients who received the nerve block reported a greater improvement in their score on the Brief Pain Inventory than those in the sham arm — 2.3 ± 0.29 vs 1.3 ± 0.26, respectively (<em>P</em> = .01).</li> <li>Use of opioids trended toward a greater reduction in the treatment group, although that finding was not statistically significant.</li> </ul> <h2>IN PRACTICE:</h2> <p>The results suggested “high-frequency electric nerve block could be a viable option for managing chronic post-amputation pain, potentially improving patients’ quality of life and reducing reliance on opioids,” the authors wrote. “The study addresses a critical gap in treatment options for amputees suffering from persistent pain, offering evidence for a novel therapeutic approach.”</p> <p>“We have never seen a study of this magnitude and rigor in this patient population,” said lead author Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, in a <a href="https://www.prnewswire.com/news-releases/landmark-study-of-a-revolutionary-device-for-the-treatment-of-post-amputation-pain-accepted-for-publication-in-the-journal-of-pain-research-302152023.html">press release</a> about the data. “The data demonstrated clear and lasting benefit of treatment for pain reduction and functional outcomes at 3 months, creating great optimism for the long-term study results. These findings represent a significant advancement for an at-risk and underserved patient population in desperate need of reliable and effective treatment.”</p> <h2>SOURCE:</h2> <p>The study was led by Leonardo Kapural, MD, PhD, of the Carolinas Pain Institute in Winston-Salem, North Carolina, and was published online in the <em><a href="https://www.dovepress.com/getfile.php?fileID=99760">Journal of Pain Research</a></em>.</p> <h2>LIMITATIONS:</h2> <p>The sample size of 180 participants may limit the generalizability of the findings to all amputees. A 3-month duration for assessing treatment efficacy may not capture long-term outcomes and effects. The active-sham control design, while rigorous, may not fully account for the placebo effects inherent in pain perception studies.</p> <h2>DISCLOSURES:</h2> <p>The QUEST study was funded by Neuros Medical Inc. Dr. Kapural reported personal fees from various medical companies, unrelated to this work. No other conflicts of interest were reported in this work.</p> <p>This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/high-frequency-electric-nerve-block-shows-promise-2024a1000ayt">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Commonly Used Meds Tied to Lower Risk for Brain Aneurysm Rupture

Article Type
Changed
Fri, 06/07/2024 - 15:09

Five commonly prescribed drugs may be associated with a lower risk for aneurysmal subarachnoid hemorrhage (aSAH), a drug-wide association study suggested.

The blood pressure drug lisinopril; the cholesterol drug simvastatin; the diabetes drug metformin; and the drug tamsulosin, prescribed for an enlarged prostate, were all associated with decreased aSAH risk, investigators found.

Conversely, four other drugs were associated with an increased risk for this severely morbid, often deadly, condition.

“The motivation for this study was the fact that we can currently prevent bleeding from intracranial aneurysms only by invasive treatment of those aneurysms with inherent complication risks,” said study investigator Ynte Ruigrok, MD, PhD, associate professor of neurology and neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands. “Drugs to reduce or eliminate this risk are not yet available. This study is a first step in identifying such drugs.”

The findings were published online in Neurology.
 

Surprising Results

For the study, the researchers used the Secure Anonymized Information Linkage data bank in Wales to identify 4879 patients with aSAH between January 2000 and December 2019 and 43,911 patients without aSAH matched on age, sex, and year of database entry. Clustering resulted in 2023 unique drugs, of which 205 were commonly prescribed.

After adjusting for other factors such as high blood pressure, alcohol abuse, smoking, and a total number of health conditions, the results yielded two surprises, Dr. Ruigrok observed.

The first was a significant decrease in aSAH risk for current use of lisinopril, compared with nonuse (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.44-0.90), and a nonsignificant decrease with current use of amlodipine (OR, 0.82; 95% CI, 0.65-1.04).

“Hypertension is a major risk factor for occurrence and bleeding from aneurysms. If there is indeed a specific blood pressure–lowering drug that not only has a blood pressure–lowering effect but also has additional protection against aSAH, then perhaps that drug should become the drug of choice in aneurysm patients in the future,” he said.

Notably, recent use of both drugs, defined as between 1 year and 3 months before the index date, was associated with an increased risk for aSAH. This trend was not found for other antihypertensives and was significant for amlodipine but not lisinopril.

The reasons are unclear, but “we trust the findings on lisinopril more,” Dr. Ruigrok said. “The findings on amlodipine may be due to confounding by indication, specifically caused by hypertension. Therefore, it is important to validate our findings in an independent research cohort, and we are in the process of doing so.”

The study’s second surprise was the antidiabetic drug metformin and cholesterol-lowering drug simvastatin were also associated with reduced aSAH risk, Dr. Ruigrok noted.

“We already knew from previous studies that diabetes and high cholesterol are protective factors for aSAH,” he said. “Our results suggest that perhaps not the conditions themselves are protective for aSAH but rather the drugs used to treat these conditions with are.”

The risk for a ruptured brain aneurysm among current users was 42% lower with metformin (OR, 0.58; 95% CI, 0.43-0.78), 22% lower with simvastatin (OR, 0.78; 95% CI, 0.64-0.96), and 45% lower with tamsulosin (OR, 0.55; 95% CI, 0.32-0.93).

An increased risk for aSAH was found only in current users of warfarin (OR, 1.35; 95% CI, 1.02-1.79), venlafaxine (OR, 1.67; 95% CI, 1.01-2.75), prochlorperazine (OR, 2.15; 95% CI, 1.45-3.18), and co-codamol (OR, 1.31; 95% CI, 1.10-1.56).

Other drugs within the classes of vitamin K antagonists, serotonin reuptake inhibitors, conventional antipsychotics, and compound analgesics did not show an association with aSAH.

The study was limited by the use of drug prescriptions, and patients may not take their drugs or use them incorrectly, noted the researchers, led by Jos P. Kanning, MSc, also with University Medical Center Utrecht.

The study was supported by the European Research Council. The authors reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Five commonly prescribed drugs may be associated with a lower risk for aneurysmal subarachnoid hemorrhage (aSAH), a drug-wide association study suggested.

The blood pressure drug lisinopril; the cholesterol drug simvastatin; the diabetes drug metformin; and the drug tamsulosin, prescribed for an enlarged prostate, were all associated with decreased aSAH risk, investigators found.

Conversely, four other drugs were associated with an increased risk for this severely morbid, often deadly, condition.

“The motivation for this study was the fact that we can currently prevent bleeding from intracranial aneurysms only by invasive treatment of those aneurysms with inherent complication risks,” said study investigator Ynte Ruigrok, MD, PhD, associate professor of neurology and neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands. “Drugs to reduce or eliminate this risk are not yet available. This study is a first step in identifying such drugs.”

The findings were published online in Neurology.
 

Surprising Results

For the study, the researchers used the Secure Anonymized Information Linkage data bank in Wales to identify 4879 patients with aSAH between January 2000 and December 2019 and 43,911 patients without aSAH matched on age, sex, and year of database entry. Clustering resulted in 2023 unique drugs, of which 205 were commonly prescribed.

After adjusting for other factors such as high blood pressure, alcohol abuse, smoking, and a total number of health conditions, the results yielded two surprises, Dr. Ruigrok observed.

The first was a significant decrease in aSAH risk for current use of lisinopril, compared with nonuse (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.44-0.90), and a nonsignificant decrease with current use of amlodipine (OR, 0.82; 95% CI, 0.65-1.04).

“Hypertension is a major risk factor for occurrence and bleeding from aneurysms. If there is indeed a specific blood pressure–lowering drug that not only has a blood pressure–lowering effect but also has additional protection against aSAH, then perhaps that drug should become the drug of choice in aneurysm patients in the future,” he said.

Notably, recent use of both drugs, defined as between 1 year and 3 months before the index date, was associated with an increased risk for aSAH. This trend was not found for other antihypertensives and was significant for amlodipine but not lisinopril.

The reasons are unclear, but “we trust the findings on lisinopril more,” Dr. Ruigrok said. “The findings on amlodipine may be due to confounding by indication, specifically caused by hypertension. Therefore, it is important to validate our findings in an independent research cohort, and we are in the process of doing so.”

The study’s second surprise was the antidiabetic drug metformin and cholesterol-lowering drug simvastatin were also associated with reduced aSAH risk, Dr. Ruigrok noted.

“We already knew from previous studies that diabetes and high cholesterol are protective factors for aSAH,” he said. “Our results suggest that perhaps not the conditions themselves are protective for aSAH but rather the drugs used to treat these conditions with are.”

The risk for a ruptured brain aneurysm among current users was 42% lower with metformin (OR, 0.58; 95% CI, 0.43-0.78), 22% lower with simvastatin (OR, 0.78; 95% CI, 0.64-0.96), and 45% lower with tamsulosin (OR, 0.55; 95% CI, 0.32-0.93).

An increased risk for aSAH was found only in current users of warfarin (OR, 1.35; 95% CI, 1.02-1.79), venlafaxine (OR, 1.67; 95% CI, 1.01-2.75), prochlorperazine (OR, 2.15; 95% CI, 1.45-3.18), and co-codamol (OR, 1.31; 95% CI, 1.10-1.56).

Other drugs within the classes of vitamin K antagonists, serotonin reuptake inhibitors, conventional antipsychotics, and compound analgesics did not show an association with aSAH.

The study was limited by the use of drug prescriptions, and patients may not take their drugs or use them incorrectly, noted the researchers, led by Jos P. Kanning, MSc, also with University Medical Center Utrecht.

The study was supported by the European Research Council. The authors reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Five commonly prescribed drugs may be associated with a lower risk for aneurysmal subarachnoid hemorrhage (aSAH), a drug-wide association study suggested.

The blood pressure drug lisinopril; the cholesterol drug simvastatin; the diabetes drug metformin; and the drug tamsulosin, prescribed for an enlarged prostate, were all associated with decreased aSAH risk, investigators found.

Conversely, four other drugs were associated with an increased risk for this severely morbid, often deadly, condition.

“The motivation for this study was the fact that we can currently prevent bleeding from intracranial aneurysms only by invasive treatment of those aneurysms with inherent complication risks,” said study investigator Ynte Ruigrok, MD, PhD, associate professor of neurology and neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands. “Drugs to reduce or eliminate this risk are not yet available. This study is a first step in identifying such drugs.”

The findings were published online in Neurology.
 

Surprising Results

For the study, the researchers used the Secure Anonymized Information Linkage data bank in Wales to identify 4879 patients with aSAH between January 2000 and December 2019 and 43,911 patients without aSAH matched on age, sex, and year of database entry. Clustering resulted in 2023 unique drugs, of which 205 were commonly prescribed.

After adjusting for other factors such as high blood pressure, alcohol abuse, smoking, and a total number of health conditions, the results yielded two surprises, Dr. Ruigrok observed.

The first was a significant decrease in aSAH risk for current use of lisinopril, compared with nonuse (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.44-0.90), and a nonsignificant decrease with current use of amlodipine (OR, 0.82; 95% CI, 0.65-1.04).

“Hypertension is a major risk factor for occurrence and bleeding from aneurysms. If there is indeed a specific blood pressure–lowering drug that not only has a blood pressure–lowering effect but also has additional protection against aSAH, then perhaps that drug should become the drug of choice in aneurysm patients in the future,” he said.

Notably, recent use of both drugs, defined as between 1 year and 3 months before the index date, was associated with an increased risk for aSAH. This trend was not found for other antihypertensives and was significant for amlodipine but not lisinopril.

The reasons are unclear, but “we trust the findings on lisinopril more,” Dr. Ruigrok said. “The findings on amlodipine may be due to confounding by indication, specifically caused by hypertension. Therefore, it is important to validate our findings in an independent research cohort, and we are in the process of doing so.”

The study’s second surprise was the antidiabetic drug metformin and cholesterol-lowering drug simvastatin were also associated with reduced aSAH risk, Dr. Ruigrok noted.

“We already knew from previous studies that diabetes and high cholesterol are protective factors for aSAH,” he said. “Our results suggest that perhaps not the conditions themselves are protective for aSAH but rather the drugs used to treat these conditions with are.”

The risk for a ruptured brain aneurysm among current users was 42% lower with metformin (OR, 0.58; 95% CI, 0.43-0.78), 22% lower with simvastatin (OR, 0.78; 95% CI, 0.64-0.96), and 45% lower with tamsulosin (OR, 0.55; 95% CI, 0.32-0.93).

An increased risk for aSAH was found only in current users of warfarin (OR, 1.35; 95% CI, 1.02-1.79), venlafaxine (OR, 1.67; 95% CI, 1.01-2.75), prochlorperazine (OR, 2.15; 95% CI, 1.45-3.18), and co-codamol (OR, 1.31; 95% CI, 1.10-1.56).

Other drugs within the classes of vitamin K antagonists, serotonin reuptake inhibitors, conventional antipsychotics, and compound analgesics did not show an association with aSAH.

The study was limited by the use of drug prescriptions, and patients may not take their drugs or use them incorrectly, noted the researchers, led by Jos P. Kanning, MSc, also with University Medical Center Utrecht.

The study was supported by the European Research Council. The authors reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168341</fileName> <TBEID>0C050755.SIG</TBEID> <TBUniqueIdentifier>MD_0C050755</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Subarachnoid Hemorrhage</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240607T141119</QCDate> <firstPublished>20240607T150514</firstPublished> <LastPublished>20240607T150514</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240607T150514</CMSDate> <articleSource>FROM NEUROLOGY</articleSource> <facebookInfo/> <meetingNumber/> <byline>Patrice Wendling</byline> <bylineText>PATRICE WENDLING</bylineText> <bylineFull>PATRICE WENDLING</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Five commonly prescribed drugs may be associated with a lower risk for aneurysmal subarachnoid hemorrhage</metaDescription> <articlePDF/> <teaserImage/> <teaser>Five drugs reduced the risk. Four other drugs increased the risk.</teaser> <title>Commonly Used Meds Tied to Lower Risk for Brain Aneurysm Rupture</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>EM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term>14</term> <term canonical="true">22</term> </publications> <sections> <term>86</term> <term>39313</term> <term canonical="true">27970</term> </sections> <topics> <term>301</term> <term canonical="true">260</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Commonly Used Meds Tied to Lower Risk for Brain Aneurysm Rupture</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">Five commonly prescribed drugs may be associated with a lower risk for aneurysmal subarachnoid hemorrhage </span>(aSAH), a drug-wide association study suggested.</p> <p>The blood pressure drug lisinopril; the cholesterol drug simvastatin; the diabetes drug metformin; and the drug tamsulosin, prescribed for an enlarged prostate, were all associated with decreased aSAH risk, investigators found.<br/><br/>Conversely, four other drugs were associated with an increased risk for this severely morbid, often deadly, condition.<br/><br/>“The motivation for this study was the fact that we can currently prevent bleeding from intracranial aneurysms only by invasive treatment of those aneurysms with inherent complication risks,” said study investigator Ynte Ruigrok, MD, PhD, associate professor of neurology and neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands. “Drugs to reduce or eliminate this risk are not yet available. This study is a first step in identifying such drugs.”<br/><br/>The findings were <a href="https://www.neurology.org/doi/10.1212/WNL.0000000000209479">published online</a> in <em>Neurology</em>.<br/><br/></p> <h2>Surprising Results</h2> <p>For the study, the researchers used the Secure Anonymized Information Linkage data bank in Wales to identify 4879 patients with aSAH between January 2000 and December 2019 and 43,911 patients without aSAH matched on age, sex, and year of database entry. Clustering resulted in 2023 unique drugs, of which 205 were commonly prescribed.</p> <p>After adjusting for other factors such as high blood pressure, alcohol abuse, smoking, and a total number of health conditions, the results yielded two surprises, Dr. Ruigrok observed.<br/><br/>The first was a significant decrease in aSAH risk for current use of lisinopril, compared with nonuse (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.44-0.90), and a nonsignificant decrease with current use of amlodipine (OR, 0.82; 95% CI, 0.65-1.04).<br/><br/>“Hypertension is a major risk factor for occurrence and bleeding from aneurysms. If there is indeed a specific blood pressure–lowering drug that not only has a blood pressure–lowering effect but also has additional protection against aSAH, then perhaps that drug should become the drug of choice in aneurysm patients in the future,” he said.<br/><br/>Notably, recent use of both drugs, defined as between 1 year and 3 months before the index date, was associated with an increased risk for aSAH. This trend was not found for other antihypertensives and was significant for amlodipine but not lisinopril.<br/><br/>The reasons are unclear, but “we trust the findings on lisinopril more,” Dr. Ruigrok said. “The findings on amlodipine may be due to confounding by indication, specifically caused by hypertension. Therefore, it is important to validate our findings in an independent research cohort, and we are in the process of doing so.”<br/><br/>The study’s second surprise was the antidiabetic drug metformin and cholesterol-lowering drug simvastatin were also associated with reduced aSAH risk, Dr. Ruigrok noted.<br/><br/>“We already knew from previous studies that diabetes and high cholesterol are protective factors for aSAH,” he said. “Our results suggest that perhaps not the conditions themselves are protective for aSAH but rather the drugs used to treat these conditions with are.”<br/><br/>The risk for a ruptured brain aneurysm among current users was 42% lower with metformin (OR, 0.58; 95% CI, 0.43-0.78), 22% lower with simvastatin (OR, 0.78; 95% CI, 0.64-0.96), and 45% lower with tamsulosin (OR, 0.55; 95% CI, 0.32-0.93).<br/><br/>An increased risk for aSAH was found only in current users of warfarin (OR, 1.35; 95% CI, 1.02-1.79), venlafaxine (OR, 1.67; 95% CI, 1.01-2.75), prochlorperazine (OR, 2.15; 95% CI, 1.45-3.18), and co-codamol (OR, 1.31; 95% CI, 1.10-1.56).<br/><br/>Other drugs within the classes of vitamin K antagonists, serotonin reuptake inhibitors, conventional antipsychotics, and compound analgesics did not show an association with aSAH.<br/><br/>The study was limited by the use of drug prescriptions, and patients may not take their drugs or use them incorrectly, noted the researchers, led by Jos P. Kanning, MSc, also with University Medical Center Utrecht.<br/><br/>The study was supported by the European Research Council. The authors reported no relevant financial relationships.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/commonly-used-meds-tied-lower-risk-brain-aneurysm-rupture-2024a1000aqn">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Big Breakthrough’: New Low-Field MRI Is Safer and Easier

Article Type
Changed
Tue, 05/28/2024 - 15:02

For years, researchers and medical companies have explored low-field MRI systems (those with a magnetic field strength of less than 1 T) — searching for a feasible alternative to the loud, expensive machines requiring special rooms with shielding to block their powerful magnetic field.

Most low-field scanners in development are for brain scans only. In 2022, the US Food and Drug Administration (FDA) cleared the first portable MRI system — Hyperfine’s Swoop, designed for use at a patient’s bedside — for head and brain scans. But the technology has not been applied to whole-body MRI — until now.

In a new study published in Science, researchers from Hong Kong described a whole-body, ultra low–field MRI.

“This is a big breakthrough,” said Kevin Sheth, MD, director of the Yale Center for Brain & Mind Health, who was not involved in the study. “It is one of the first, if not the first, demonstrations of low-field MRI imaging for the entire body.”

The device uses a 0.05 T magnet — one sixtieth the magnetic field strength of the standard 3 T MRI model common in hospitals today, said lead author Ed Wu, PhD, professor of biomedical engineering at The University of Hong Kong.

Because the field strength is so low, no protective shielding is needed. Patients and bystanders can safely use smart phones . And the scanner is safe for patients with implanted devices, like a cochlear implant or pacemaker, or any metal on their body or clothes. No hearing protection is required, either, because the machine is so quiet.

If all goes well, the technology could be commercially available in as little as a few years, Dr. Wu said.

But first, funding and FDA approval would be needed. “A company is going to have to come along and say, ‘This looks fantastic. We’re going to commercialize this, and we’re going to go through this certification process,’ ” said Andrew Webb, PhD, professor of radiology and the founding director of the C.J. Gorter MRI Center at the Leiden University Medical Center, Leiden, the Netherlands. (Dr. Webb was not involved in the study.)
 

Improving Access to MRI

One hope for this technology is to bring MRI to more people worldwide. Africa has less than one MRI scanner per million residents, whereas the United States has about 40.

While a new 3 T machine can cost about $1 million, the low-field version is much cheaper — only about $22,000 in materials cost per scanner, according to Dr. Wu.

A low magnetic field means less electricity, too — the machine can be plugged into a standard wall outlet. And because a fully shielded room isn’t needed, that could save another $100,000 in materials, Dr. Webb said.

Its ease of use could improve accessibility in countries with limited training, Dr. Webb pointed out.

“To be a technician is 2-3 years training for a regular MRI machine, a lot of it to do safety, a lot of it to do very subtle planning,” said Webb. “These [low-field] systems are much simpler.”
 

Challenges and the Future

The prototype weighs about 1.5 tons or 3000 lb. (A 3 T MRI can weigh between 6 and 13 tons or 12,000 and 26,000 lb.) That might sound like a lot, but it’s comparable to a mobile CT scanner, which is designed to be moved from room to room. Plus, “its weight can be substantially reduced if further optimized,” Dr. Wu said.

One challenge with low-field MRIs is image quality, which tends to be not as clear and detailed as those from high-power machines. To address this, the research team used deep learning (artificial intelligence) to enhance the image quality. “Computing power and large-scale data underpin our success, which tackles the physics and math problems that are traditionally considered intractable in existing MRI methodology,” Dr. Wu said.

Dr. Webb said he was impressed by the image quality shown in the study. They “look much higher quality than you would expect from such a low-field system,” he said. Still, only healthy volunteers were scanned. The true test will be using it to view subtle pathologies, Dr. Webb said.

That’s what Dr. Wu and his team are working on now — taking scans to diagnose various medical conditions. His group’s brain-only version of the low-field MRI has been used for diagnosis, he noted.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

For years, researchers and medical companies have explored low-field MRI systems (those with a magnetic field strength of less than 1 T) — searching for a feasible alternative to the loud, expensive machines requiring special rooms with shielding to block their powerful magnetic field.

Most low-field scanners in development are for brain scans only. In 2022, the US Food and Drug Administration (FDA) cleared the first portable MRI system — Hyperfine’s Swoop, designed for use at a patient’s bedside — for head and brain scans. But the technology has not been applied to whole-body MRI — until now.

In a new study published in Science, researchers from Hong Kong described a whole-body, ultra low–field MRI.

“This is a big breakthrough,” said Kevin Sheth, MD, director of the Yale Center for Brain & Mind Health, who was not involved in the study. “It is one of the first, if not the first, demonstrations of low-field MRI imaging for the entire body.”

The device uses a 0.05 T magnet — one sixtieth the magnetic field strength of the standard 3 T MRI model common in hospitals today, said lead author Ed Wu, PhD, professor of biomedical engineering at The University of Hong Kong.

Because the field strength is so low, no protective shielding is needed. Patients and bystanders can safely use smart phones . And the scanner is safe for patients with implanted devices, like a cochlear implant or pacemaker, or any metal on their body or clothes. No hearing protection is required, either, because the machine is so quiet.

If all goes well, the technology could be commercially available in as little as a few years, Dr. Wu said.

But first, funding and FDA approval would be needed. “A company is going to have to come along and say, ‘This looks fantastic. We’re going to commercialize this, and we’re going to go through this certification process,’ ” said Andrew Webb, PhD, professor of radiology and the founding director of the C.J. Gorter MRI Center at the Leiden University Medical Center, Leiden, the Netherlands. (Dr. Webb was not involved in the study.)
 

Improving Access to MRI

One hope for this technology is to bring MRI to more people worldwide. Africa has less than one MRI scanner per million residents, whereas the United States has about 40.

While a new 3 T machine can cost about $1 million, the low-field version is much cheaper — only about $22,000 in materials cost per scanner, according to Dr. Wu.

A low magnetic field means less electricity, too — the machine can be plugged into a standard wall outlet. And because a fully shielded room isn’t needed, that could save another $100,000 in materials, Dr. Webb said.

Its ease of use could improve accessibility in countries with limited training, Dr. Webb pointed out.

“To be a technician is 2-3 years training for a regular MRI machine, a lot of it to do safety, a lot of it to do very subtle planning,” said Webb. “These [low-field] systems are much simpler.”
 

Challenges and the Future

The prototype weighs about 1.5 tons or 3000 lb. (A 3 T MRI can weigh between 6 and 13 tons or 12,000 and 26,000 lb.) That might sound like a lot, but it’s comparable to a mobile CT scanner, which is designed to be moved from room to room. Plus, “its weight can be substantially reduced if further optimized,” Dr. Wu said.

One challenge with low-field MRIs is image quality, which tends to be not as clear and detailed as those from high-power machines. To address this, the research team used deep learning (artificial intelligence) to enhance the image quality. “Computing power and large-scale data underpin our success, which tackles the physics and math problems that are traditionally considered intractable in existing MRI methodology,” Dr. Wu said.

Dr. Webb said he was impressed by the image quality shown in the study. They “look much higher quality than you would expect from such a low-field system,” he said. Still, only healthy volunteers were scanned. The true test will be using it to view subtle pathologies, Dr. Webb said.

That’s what Dr. Wu and his team are working on now — taking scans to diagnose various medical conditions. His group’s brain-only version of the low-field MRI has been used for diagnosis, he noted.
 

A version of this article appeared on Medscape.com.

For years, researchers and medical companies have explored low-field MRI systems (those with a magnetic field strength of less than 1 T) — searching for a feasible alternative to the loud, expensive machines requiring special rooms with shielding to block their powerful magnetic field.

Most low-field scanners in development are for brain scans only. In 2022, the US Food and Drug Administration (FDA) cleared the first portable MRI system — Hyperfine’s Swoop, designed for use at a patient’s bedside — for head and brain scans. But the technology has not been applied to whole-body MRI — until now.

In a new study published in Science, researchers from Hong Kong described a whole-body, ultra low–field MRI.

“This is a big breakthrough,” said Kevin Sheth, MD, director of the Yale Center for Brain & Mind Health, who was not involved in the study. “It is one of the first, if not the first, demonstrations of low-field MRI imaging for the entire body.”

The device uses a 0.05 T magnet — one sixtieth the magnetic field strength of the standard 3 T MRI model common in hospitals today, said lead author Ed Wu, PhD, professor of biomedical engineering at The University of Hong Kong.

Because the field strength is so low, no protective shielding is needed. Patients and bystanders can safely use smart phones . And the scanner is safe for patients with implanted devices, like a cochlear implant or pacemaker, or any metal on their body or clothes. No hearing protection is required, either, because the machine is so quiet.

If all goes well, the technology could be commercially available in as little as a few years, Dr. Wu said.

But first, funding and FDA approval would be needed. “A company is going to have to come along and say, ‘This looks fantastic. We’re going to commercialize this, and we’re going to go through this certification process,’ ” said Andrew Webb, PhD, professor of radiology and the founding director of the C.J. Gorter MRI Center at the Leiden University Medical Center, Leiden, the Netherlands. (Dr. Webb was not involved in the study.)
 

Improving Access to MRI

One hope for this technology is to bring MRI to more people worldwide. Africa has less than one MRI scanner per million residents, whereas the United States has about 40.

While a new 3 T machine can cost about $1 million, the low-field version is much cheaper — only about $22,000 in materials cost per scanner, according to Dr. Wu.

A low magnetic field means less electricity, too — the machine can be plugged into a standard wall outlet. And because a fully shielded room isn’t needed, that could save another $100,000 in materials, Dr. Webb said.

Its ease of use could improve accessibility in countries with limited training, Dr. Webb pointed out.

“To be a technician is 2-3 years training for a regular MRI machine, a lot of it to do safety, a lot of it to do very subtle planning,” said Webb. “These [low-field] systems are much simpler.”
 

Challenges and the Future

The prototype weighs about 1.5 tons or 3000 lb. (A 3 T MRI can weigh between 6 and 13 tons or 12,000 and 26,000 lb.) That might sound like a lot, but it’s comparable to a mobile CT scanner, which is designed to be moved from room to room. Plus, “its weight can be substantially reduced if further optimized,” Dr. Wu said.

One challenge with low-field MRIs is image quality, which tends to be not as clear and detailed as those from high-power machines. To address this, the research team used deep learning (artificial intelligence) to enhance the image quality. “Computing power and large-scale data underpin our success, which tackles the physics and math problems that are traditionally considered intractable in existing MRI methodology,” Dr. Wu said.

Dr. Webb said he was impressed by the image quality shown in the study. They “look much higher quality than you would expect from such a low-field system,” he said. Still, only healthy volunteers were scanned. The true test will be using it to view subtle pathologies, Dr. Webb said.

That’s what Dr. Wu and his team are working on now — taking scans to diagnose various medical conditions. His group’s brain-only version of the low-field MRI has been used for diagnosis, he noted.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168132</fileName> <TBEID>0C0502BC.SIG</TBEID> <TBUniqueIdentifier>MD_0C0502BC</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240520T162944</QCDate> <firstPublished>20240520T163333</firstPublished> <LastPublished>20240520T163333</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240520T163332</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Christina Szalinski</byline> <bylineText>CHRISTINA SZALINSKI</bylineText> <bylineFull>CHRISTINA SZALINSKI</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>“This is a big breakthrough,” said Kevin Sheth, MD, director of the Yale Center for Brain &amp; Mind Health, who was not involved in the study. “It is one of the fi</metaDescription> <articlePDF/> <teaserImage/> <teaser>New study describes ultra low–field MRI to allow for whole-body scanning.</teaser> <title>‘Big Breakthrough’: New Low-Field MRI Is Safer and Easier</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cnn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">21</term> <term>5</term> <term>6</term> <term>15</term> <term>8</term> <term>52226</term> <term>23</term> <term>31</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">280</term> <term>301</term> <term>260</term> <term>240</term> <term>230</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>‘Big Breakthrough’: New Low-Field MRI Is Safer and Easier</title> <deck/> </itemMeta> <itemContent> <p><br/><br/>For years, researchers and medical companies have explored low-field MRI systems (those with a magnetic field strength of <span class="Hyperlink">less than 1 T</span>) — searching for a feasible alternative to the loud, expensive machines requiring special rooms with shielding to block their powerful magnetic field.<br/><br/>Most low-field scanners in development are for brain scans only. In 2022, the US Food and Drug Administration (FDA) cleared the first portable MRI system — Hyperfine’s <span class="Hyperlink"><a href="https://hyperfine.io/swoop/overview">Swoop</a></span>, designed for use at a patient’s bedside — for head and brain scans. But the technology has not been applied to whole-body MRI — until now.<br/><br/>In a <span class="Hyperlink"><a href="https://www.science.org/doi/10.1126/science.adm7168">new study</a></span> published in <em>Science</em>, researchers from Hong Kong described a whole-body, ultra low–field MRI.<br/><br/><span class="tag metaDescription">“This is a big breakthrough,” said Kevin Sheth, MD, director of the Yale Center for Brain &amp; Mind Health, who was not involved in the study. “It is one of the first, if not the first, demonstrations of low-field MRI imaging for the entire body.”</span><br/><br/>The device uses a 0.05 T magnet — one sixtieth the magnetic field strength of the standard 3 T MRI model common in hospitals today, said lead author Ed Wu, PhD, professor of biomedical engineering at The University of Hong Kong.<br/><br/>Because the field strength is so low, no protective shielding is needed. Patients and bystanders can safely use smart phones . And the scanner is safe for patients with implanted devices, like a cochlear implant or pacemaker, or any metal on their body or clothes. No hearing protection is required, either, because the machine is so quiet.<br/><br/>If all goes well, the technology could be commercially available in as little as a few years, Dr. Wu said.<br/><br/>But first, funding and FDA approval would be needed. “A company is going to have to come along and say, ‘This looks fantastic. We’re going to commercialize this, and we’re going to go through this certification process,’ ” said Andrew Webb, PhD, professor of radiology and the founding director of the C.J. Gorter MRI Center at the Leiden University Medical Center, Leiden, the Netherlands. (Dr. Webb was not involved in the study.)<br/><br/></p> <h2>Improving Access to MRI</h2> <p>One hope for this technology is to bring MRI to more people worldwide. Africa has less than one MRI scanner per million residents, whereas the United States has about 40.<br/><br/>While a new 3 T machine can cost about $1 million, the low-field version is much cheaper — only about $22,000 in materials cost per scanner, according to Dr. Wu.<br/><br/>A low magnetic field means less electricity, too — the machine can be plugged into a standard wall outlet. And because a fully shielded room isn’t needed, that could save another $100,000 in materials, Dr. Webb said.<br/><br/>Its ease of use could improve accessibility in countries with limited training, Dr. Webb pointed out.<br/><br/>“To be a technician is 2-3 years training for a regular MRI machine, a lot of it to do safety, a lot of it to do very subtle planning,” said Webb. “These [low-field] systems are much simpler.”<br/><br/></p> <h2>Challenges and the Future</h2> <p>The prototype weighs about 1.5 tons or 3000 lb. (A 3 T MRI can weigh between <span class="Hyperlink"><a href="https://mriimagingspecialist.com/mri-imaging">6</a> </span>and <span class="Hyperlink"><a href="https://www.siemens-healthineers.com/en-us/magnetic-resonance-imaging/3t-mri-scanner/magnetom-prisma">13</a></span> tons or 12,000 and 26,000 lb.) That might sound like a lot, but it’s comparable to a <span class="Hyperlink"><a href="https://www.neurologica.com/blog/what-is-mobile-ct-scan">mobile CT scanner</a></span>, which is designed to be moved from room to room. Plus, “its weight can be substantially reduced if further optimized,” Dr. Wu said.<br/><br/>One <span class="Hyperlink"><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505165/">challenge</a></span> with low-field MRIs is image quality, which tends to be not as clear and detailed as those from high-power machines. To address this, the research team used deep learning (artificial intelligence) to enhance the image quality. “Computing power and large-scale data underpin our success, which tackles the physics and math problems that are traditionally considered intractable in existing MRI methodology,” Dr. Wu said.<br/><br/>Dr. Webb said he was impressed by the image quality shown in the study. They “look much higher quality than you would expect from such a low-field system,” he said. Still, only healthy volunteers were scanned. The true test will be using it to view subtle pathologies, Dr. Webb said.<br/><br/>That’s what Dr. Wu and his team are working on now — taking scans to diagnose various medical conditions. His group’s <span class="Hyperlink"><a href="https://www.nature.com/articles/s41467-021-27317-1">brain-only version</a></span> of the low-field MRI has been used for diagnosis, he noted.<br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/big-breakthrough-new-low-field-mri-safer-and-easier-2024a10009hb">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Meningitis a Risk Factor for Trigeminal Neuralgia? New Data

Article Type
Changed
Tue, 05/28/2024 - 15:06

Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.

In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.

This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.

“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.

The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.
 

Strong Clinical Risk Factors

Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.

To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.

Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.

Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.

Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.

In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; P < .001).

Other strong risk factors were neurovascular compression disorders (OR, 39.82; P < .001) and multiple sclerosis (OR, 12.41; P < .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.

“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.

She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.
 

Ask About Meningitis, Fever

Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.

“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”

Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.

“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”

Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”

The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.

In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.

This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.

“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.

The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.
 

Strong Clinical Risk Factors

Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.

To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.

Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.

Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.

Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.

In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; P < .001).

Other strong risk factors were neurovascular compression disorders (OR, 39.82; P < .001) and multiple sclerosis (OR, 12.41; P < .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.

“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.

She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.
 

Ask About Meningitis, Fever

Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.

“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”

Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.

“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”

Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”

The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.

A version of this article appeared on Medscape.com.

Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.

In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.

This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.

“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.

The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.
 

Strong Clinical Risk Factors

Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.

To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.

Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.

Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.

Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.

In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; P < .001).

Other strong risk factors were neurovascular compression disorders (OR, 39.82; P < .001) and multiple sclerosis (OR, 12.41; P < .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.

“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.

She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.
 

Ask About Meningitis, Fever

Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.

“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”

Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.

“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”

Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”

The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168068</fileName> <TBEID>0C050157.SIG</TBEID> <TBUniqueIdentifier>MD_0C050157</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Memengitis Trigeminal Neuralg</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240515T142414</QCDate> <firstPublished>20240515T153259</firstPublished> <LastPublished>20240515T153259</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240515T153259</CMSDate> <articleSource>FROM AANS 2024</articleSource> <facebookInfo/> <meetingNumber/> <byline>Patrice Wendling</byline> <bylineText>PATRICE WENDLING</bylineText> <bylineFull>PATRICE WENDLING</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.</metaDescription> <articlePDF/> <teaserImage/> <teaser>In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.</teaser> <title>Is Meningitis a Risk Factor for Trigeminal Neuralgia? New Data</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>rn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>26</term> </publications> <sections> <term>39313</term> <term canonical="true">53</term> </sections> <topics> <term>260</term> <term>259</term> <term canonical="true">268</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Is Meningitis a Risk Factor for Trigeminal Neuralgia? New Data</title> <deck/> </itemMeta> <itemContent> <p> <span class="tag metaDescription">Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.</span> </p> <p>In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.<br/><br/>This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.<br/><br/>“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.<br/><br/>The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.<br/><br/></p> <h2>Strong Clinical Risk Factors</h2> <p>Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.</p> <p>To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.<br/><br/>Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.<br/><br/>Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.<br/><br/>Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.<br/><br/>In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; <em>P</em> &lt; .001).<br/><br/>Other strong risk factors were neurovascular compression disorders (OR, 39.82; <em>P</em> &lt; .001) and multiple sclerosis (OR, 12.41; <em>P</em> &lt; .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.<br/><br/>“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.<br/><br/>She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.<br/><br/></p> <h2>Ask About Meningitis, Fever</h2> <p>Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.</p> <p>“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”<br/><br/>Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.<br/><br/>“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”<br/><br/>Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”<br/><br/>The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/meningitis-risk-factor-trigeminal-neuralgia-new-data-2024a100094u">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AANS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Medtronic’s Duet EDMS Catheter Tubing Under Class I Recall

Article Type
Changed
Tue, 03/19/2024 - 15:29

Medtronic Neurosurgery has recalled Duet External Drainage and Monitoring System (EDMS) catheter tubing because the catheter may disconnect from the patient line stopcock connectors.

If this happens, potential harm to patients may include infections, cerebrospinal fluid (CSF) leakage, overdrainage of CSF, and abnormality of the ventricles. Uncontrolled overdrainage of CSF could lead to neurological injury or death if the disconnection is undetected.

The Food and Drug Administration has identified this as a Class I recall — the most serious type — due to the risk for serious injury or death. To date, there have been 26 reported injuries and no deaths related to this issue. 

The recall includes 45,176 devices distributed in the United States between May 3, 2021, and January 9, 2024, with model numbers 46913, 46914, 46915, 46916, and 46917.

The Duet EDMS is used for temporary CSF drainage or sampling in patients who have surgery for open descending thoracic aortic aneurysm (TAA) or descending thoraco-abdominal aortic aneurysm (TAAA) or patients who have TAA/TAAA repair surgery and develop symptoms such as paraplegia.

Medtronic has sent an urgent medical device recall letter to all affected customers asking them to identify, quarantine, and return any unused recalled products. 

Customers are also advised to check all Duet EDMS components for damage and ensure that all connections are secure and leak-free. 

If a patient is currently connected to an impacted Duet EDMS and a leak or disconnection is detected, the device should be changed to a new alternative device utilizing a sterile technique. 

It is not recommended that a Duet system device that is connected to a patient and working as intended be removed or replaced.

Customers in the United States with questions about this recall should contact Medtronic at 1-800-874-5797.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Medtronic Neurosurgery has recalled Duet External Drainage and Monitoring System (EDMS) catheter tubing because the catheter may disconnect from the patient line stopcock connectors.

If this happens, potential harm to patients may include infections, cerebrospinal fluid (CSF) leakage, overdrainage of CSF, and abnormality of the ventricles. Uncontrolled overdrainage of CSF could lead to neurological injury or death if the disconnection is undetected.

The Food and Drug Administration has identified this as a Class I recall — the most serious type — due to the risk for serious injury or death. To date, there have been 26 reported injuries and no deaths related to this issue. 

The recall includes 45,176 devices distributed in the United States between May 3, 2021, and January 9, 2024, with model numbers 46913, 46914, 46915, 46916, and 46917.

The Duet EDMS is used for temporary CSF drainage or sampling in patients who have surgery for open descending thoracic aortic aneurysm (TAA) or descending thoraco-abdominal aortic aneurysm (TAAA) or patients who have TAA/TAAA repair surgery and develop symptoms such as paraplegia.

Medtronic has sent an urgent medical device recall letter to all affected customers asking them to identify, quarantine, and return any unused recalled products. 

Customers are also advised to check all Duet EDMS components for damage and ensure that all connections are secure and leak-free. 

If a patient is currently connected to an impacted Duet EDMS and a leak or disconnection is detected, the device should be changed to a new alternative device utilizing a sterile technique. 

It is not recommended that a Duet system device that is connected to a patient and working as intended be removed or replaced.

Customers in the United States with questions about this recall should contact Medtronic at 1-800-874-5797.

A version of this article appeared on Medscape.com.

Medtronic Neurosurgery has recalled Duet External Drainage and Monitoring System (EDMS) catheter tubing because the catheter may disconnect from the patient line stopcock connectors.

If this happens, potential harm to patients may include infections, cerebrospinal fluid (CSF) leakage, overdrainage of CSF, and abnormality of the ventricles. Uncontrolled overdrainage of CSF could lead to neurological injury or death if the disconnection is undetected.

The Food and Drug Administration has identified this as a Class I recall — the most serious type — due to the risk for serious injury or death. To date, there have been 26 reported injuries and no deaths related to this issue. 

The recall includes 45,176 devices distributed in the United States between May 3, 2021, and January 9, 2024, with model numbers 46913, 46914, 46915, 46916, and 46917.

The Duet EDMS is used for temporary CSF drainage or sampling in patients who have surgery for open descending thoracic aortic aneurysm (TAA) or descending thoraco-abdominal aortic aneurysm (TAAA) or patients who have TAA/TAAA repair surgery and develop symptoms such as paraplegia.

Medtronic has sent an urgent medical device recall letter to all affected customers asking them to identify, quarantine, and return any unused recalled products. 

Customers are also advised to check all Duet EDMS components for damage and ensure that all connections are secure and leak-free. 

If a patient is currently connected to an impacted Duet EDMS and a leak or disconnection is detected, the device should be changed to a new alternative device utilizing a sterile technique. 

It is not recommended that a Duet system device that is connected to a patient and working as intended be removed or replaced.

Customers in the United States with questions about this recall should contact Medtronic at 1-800-874-5797.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167304</fileName> <TBEID>0C04F06C.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F06C</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240314T123232</QCDate> <firstPublished>20240314T123527</firstPublished> <LastPublished>20240314T123528</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240314T123527</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Megan Brooks</byline> <bylineText>MEGAN BROOKS</bylineText> <bylineFull>MEGAN BROOKS</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Medtronic Neurosurgery has recalled Duet External Drainage and Monitoring System (EDMS) catheter tubing because the catheter may disconnect from the patient lin</metaDescription> <articlePDF/> <teaserImage/> <teaser>Medtronic has recalled its EDMS catheter tubing due to disconnection potential, possibly causing CSF leak and infections.</teaser> <title>Medtronic’s Duet EDMS Catheter Tubing Under Class I Recall</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>15</term> <term>21</term> <term>52226</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">260</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Medtronic’s Duet EDMS Catheter Tubing Under Class I Recall</title> <deck/> </itemMeta> <itemContent> <p> <span class="tag metaDescription">Medtronic Neurosurgery has recalled Duet External Drainage and Monitoring System (EDMS) catheter tubing because the catheter may disconnect from the patient line stopcock connectors.</span> </p> <p>If this happens, potential harm to patients may include infections, cerebrospinal fluid (CSF) leakage, overdrainage of CSF, and abnormality of the ventricles. Uncontrolled overdrainage of CSF could lead to neurological injury or death if the disconnection is undetected.<br/><br/>The Food and Drug Administration has identified this as a <span class="Hyperlink"><a href="https://www.fda.gov/medical-devices/medical-device-recalls/medtronic-neurosurgery-recalls-duet-external-drainage-and-monitoring-system-catheter-tubing-due">Class I recall</a></span> — the most serious type — due to the risk for serious injury or death. To date, there have been 26 reported injuries and no deaths related to this issue. <br/><br/>The recall includes 45,176 devices distributed in the United States between May 3, 2021, and January 9, 2024, with model numbers 46913, 46914, 46915, 46916, and 46917.<br/><br/>The Duet EDMS is used for temporary CSF drainage or sampling in patients who have surgery for open descending <span class="Hyperlink">thoracic aortic aneurysm</span> (TAA) or descending thoraco-<span class="Hyperlink">abdominal aortic aneurysm</span> (TAAA) or patients who have TAA/TAAA repair surgery and develop symptoms such as paraplegia.<br/><br/>Medtronic has sent an urgent medical device recall letter to all affected customers asking them to identify, quarantine, and return any unused recalled products. <br/><br/>Customers are also advised to check all Duet EDMS components for damage and ensure that all connections are secure and leak-free. <br/><br/>If a patient is currently connected to an impacted Duet EDMS and a leak or disconnection is detected, the device should be changed to a new alternative device utilizing a sterile technique. <br/><br/>It is not recommended that a Duet system device that is connected to a patient and working as intended be removed or replaced.<br/><br/>Customers in the United States with questions about this recall should contact Medtronic at 1-800-874-5797.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/class-i-recall-medtronic-duet-edms-catheter-tubing-2024a10004s2">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Autoimmune Disease Risk May Rise Following Cushing Disease Remission After Surgery

Article Type
Changed
Thu, 02/22/2024 - 16:31

Patients with Cushing disease have an increased risk for new-onset autoimmune disease in the 3 years after surgical remission, according to a new retrospective study published on February 20 in Annals of Internal Medicine.

Outcomes for patients with Cushing disease were compared against those with nonfunctioning pituitary adenomas (NFPAs). New-onset autoimmune disease occurred in 10.4% with Cushing disease and 1.6% among patients with NFPA (hazard ratio, 7.80; 95% CI, 2.88-21.10).

“Understanding and recognizing new and recurrent autoimmune disease in this setting is important to avoid misclassifying such patients with glucocorticoid withdrawal syndrome, which could result in failure to treat underlying autoimmune disease, as well as erroneous diagnosis of steroid withdrawal cases,” wrote Dennis Delasi Nyanyo of Massachusetts General Hospital and Harvard Medical School, Boston, and colleagues.

Given the general population’s annual incidence of major autoimmune diseases, estimated at about 100 cases per 100,000 people, and the 3-year incidence of 10.4% found in this study’s cohort, “our findings suggest that Cushing disease remission may trigger development of autoimmune disease,” the authors wrote.
 

Monitor Patients With Family History of Autoimmune Disease?

The study results were not necessarily surprising to Anthony P. Heaney, MD, PhD, an endocrinologist and professor of medicine at the University of California, Los Angeles, because past research has raised similar questions. The authors’ suggestion that the rapid postsurgical drop in cortisol that occurs as a result of treating Cushing disease becomes some sort of autoimmune trigger is interesting but remains speculative, Dr. Heaney pointed out.

If future evidence supports that possibility, “it would suggest, in terms of managing those patients in the postoperative setting, that there may be some merit to giving them higher concentrations of glucocorticoids for a short period of time,” Dr. Heaney said, thereby bringing their levels down more gradually rather than taking them off a cliff, in a sense. Or, if more evidence bears out the authors’ hypothesis, another approach might be treating patients with medicine to bring down the cortisol before surgery, though there are challenges to that approach, Dr. Heaney said.

At the same time, those who developed new autoimmune disease remain a small subset of patients with Cushing disease, so such approaches may become only potentially appropriate to consider in patients with risk factors, such as a family history of autoimmune disease.

The researchers conducted a retrospective chart review of adult patients who underwent transsphenoidal surgery for either Cushing disease or NFPA at Massachusetts General Hospital between 2005 and 2019.

The study involved 194 patients with Cushing disease who had postsurgical remission and at least one follow-up visit with a pituitary expert and 92 patients with NFPA who were matched to patients with Cushing disease based on age and sex. The authors regarded autoimmune disease diagnosed within 36 months of the surgery to be temporally associated with Cushing disease remission. Among the autoimmune diseases considered were “rheumatoid arthritis, Sjögren syndrome, systemic lupus erythematosus, autoimmune thyroiditis, celiac disease, psoriasis, vitiligo, autoimmune neuropathy, multiple sclerosis, myasthenia gravis, and ulcerative colitis.”

Patients differed in average body mass index and tumor size, but family history of autoimmune disease was similar in both groups. Average BMI was 34.5 in the Cushing group and 29.5 in the NFPA group. Average tumor size was 5.7 mm in the Cushing group and 21.3 mm in the NFPA group.

Before surgery, 2.9% of patients with Cushing disease and 15.4% of patients with NFPA had central hypothyroidism, and 8% in the Cushing group and 56.8% in the NFPA group had hyperprolactinemia. Central adrenal insufficiency occurred in 11% with NFPA and in all with Cushing disease, by definition.

After surgery, 93.8% in the Cushing group and 16.5% in the NFPA group had adrenal insufficiency. In addition, patients with Cushing disease had lower postsurgical nadir serum cortisol levels (63.8 nmol/L) than those with NFPA (282.3 nmol/L).

Of the 17 patients with Cushing disease — all women — who developed autoimmune disease within 3 years, 6 had a personal history of autoimmune disease and 7 had a family history of it. In addition, 41.2% of them had adrenal insufficiency when they developed the new autoimmune disease. Among the diseases were six autoimmune thyroiditis cases, three Sjögren syndrome cases, and two autoimmune seronegative spondyloarthropathy.

Dr. Heaney said he found it interesting that more than half of the new autoimmune diseases in patients with Cushing disease were related to the thyroid. “In this kind of setting, where you have a patient who has been producing too much steroid over a period of time and then you take that away, it’s almost like you release a brake on the TSH [thyroid-stimulating hormone],” Dr. Heaney said. “So, there’s probably some rebound in TSH that occurs, and that could be driving the thyroiditis, to some extent, that we see in these patients.”

Only one patient with NFPA developed new-onset autoimmune disease, a woman who developed Graves disease 22 months after surgery. When the researchers excluded patients in both groups with central hypothyroidism, new-onset autoimmune disease was still significantly higher (11.4%) in the Cushing group than in the NFPA group (1.9%; HR, 7.02; 95% CI, 2.54-19.39).
 

 

 

Could Postoperative Adrenal Insufficiency Contribute to Risk?

Within the Cushing cohort, those who developed autoimmune disease had a lower BMI (31.8 vs 34.8) and larger tumor size (7.2 vs 5.6 mm) than those who didn’t develop new autoimmune disease. Patients who developed autoimmune disease also had a lower baseline urine free cortisol ratio (2.7 vs 6.3) before surgery and more family history of autoimmune disease (41.2% vs 20.9%) than those who didn’t develop one.

“The higher prevalence of adrenal insufficiency and the lower nadir serum cortisol levels in the Cushing disease group suggest that the postoperative adrenal insufficiency in the Cushing disease group might have contributed to autoimmune disease pathogenesis,” the authors wrote. “This finding is clinically significant because cortisol plays a pivotal role in modulating the immune system.”

Most postoperative management among patients with Cushing disease was similar, with all but one patient receiving 0.5 or 1 mg daily dexamethasone within the first week after surgery. (The one outlier received 5 mg daily prednisone.) However, fewer patients who developed autoimmune disease (17.6%) received supraphysiologic doses of glucocorticoid — equivalent to at least 25 mg hydrocortisone — compared with patients who didn’t develop autoimmune disease (41.8%).

“Although the daily average hydrocortisone equivalent replacement doses within the first month and during long-term follow-up were within the physiologic range in both subgroups, patients with Cushing disease who had autoimmune disease received slightly lower doses of glucocorticoid replacement within the first month after surgery,” the authors reported. “The immediate postoperative period might be a critical window where supraphysiologic glucocorticoids seem to be protective with regard to development of autoimmune disease,” they wrote, though they acknowledged the study’s retrospective design as a limitation in drawing that conclusion.

At the least, they suggested that new symptoms in patients with Cushing disease, particularly those with a family history of autoimmune disease, should prompt investigation of potential autoimmune disease.

Recordati Rare Diseases funded the study. The research was also conducted with support from Harvard Catalyst (the Harvard Clinical and Translational Science Center) as well as financial contributions from Harvard University and its affiliated academic healthcare centers. One author reported holding stocks in Pfizer and Amgen, and another reported receiving consulting fees from Corcept. Dr. Heaney reported receiving institutional grants for trials from Corcept, Ascendis, Crinetics, and Sparrow Pharm; serving on the advisory board for Xeris, Recordati, Corcept, Novo Nordisk, Lundbeck, and Crinetics; and serving as a speaker for Chiesi, Novo Nordisk, and Corcept.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Patients with Cushing disease have an increased risk for new-onset autoimmune disease in the 3 years after surgical remission, according to a new retrospective study published on February 20 in Annals of Internal Medicine.

Outcomes for patients with Cushing disease were compared against those with nonfunctioning pituitary adenomas (NFPAs). New-onset autoimmune disease occurred in 10.4% with Cushing disease and 1.6% among patients with NFPA (hazard ratio, 7.80; 95% CI, 2.88-21.10).

“Understanding and recognizing new and recurrent autoimmune disease in this setting is important to avoid misclassifying such patients with glucocorticoid withdrawal syndrome, which could result in failure to treat underlying autoimmune disease, as well as erroneous diagnosis of steroid withdrawal cases,” wrote Dennis Delasi Nyanyo of Massachusetts General Hospital and Harvard Medical School, Boston, and colleagues.

Given the general population’s annual incidence of major autoimmune diseases, estimated at about 100 cases per 100,000 people, and the 3-year incidence of 10.4% found in this study’s cohort, “our findings suggest that Cushing disease remission may trigger development of autoimmune disease,” the authors wrote.
 

Monitor Patients With Family History of Autoimmune Disease?

The study results were not necessarily surprising to Anthony P. Heaney, MD, PhD, an endocrinologist and professor of medicine at the University of California, Los Angeles, because past research has raised similar questions. The authors’ suggestion that the rapid postsurgical drop in cortisol that occurs as a result of treating Cushing disease becomes some sort of autoimmune trigger is interesting but remains speculative, Dr. Heaney pointed out.

If future evidence supports that possibility, “it would suggest, in terms of managing those patients in the postoperative setting, that there may be some merit to giving them higher concentrations of glucocorticoids for a short period of time,” Dr. Heaney said, thereby bringing their levels down more gradually rather than taking them off a cliff, in a sense. Or, if more evidence bears out the authors’ hypothesis, another approach might be treating patients with medicine to bring down the cortisol before surgery, though there are challenges to that approach, Dr. Heaney said.

At the same time, those who developed new autoimmune disease remain a small subset of patients with Cushing disease, so such approaches may become only potentially appropriate to consider in patients with risk factors, such as a family history of autoimmune disease.

The researchers conducted a retrospective chart review of adult patients who underwent transsphenoidal surgery for either Cushing disease or NFPA at Massachusetts General Hospital between 2005 and 2019.

The study involved 194 patients with Cushing disease who had postsurgical remission and at least one follow-up visit with a pituitary expert and 92 patients with NFPA who were matched to patients with Cushing disease based on age and sex. The authors regarded autoimmune disease diagnosed within 36 months of the surgery to be temporally associated with Cushing disease remission. Among the autoimmune diseases considered were “rheumatoid arthritis, Sjögren syndrome, systemic lupus erythematosus, autoimmune thyroiditis, celiac disease, psoriasis, vitiligo, autoimmune neuropathy, multiple sclerosis, myasthenia gravis, and ulcerative colitis.”

Patients differed in average body mass index and tumor size, but family history of autoimmune disease was similar in both groups. Average BMI was 34.5 in the Cushing group and 29.5 in the NFPA group. Average tumor size was 5.7 mm in the Cushing group and 21.3 mm in the NFPA group.

Before surgery, 2.9% of patients with Cushing disease and 15.4% of patients with NFPA had central hypothyroidism, and 8% in the Cushing group and 56.8% in the NFPA group had hyperprolactinemia. Central adrenal insufficiency occurred in 11% with NFPA and in all with Cushing disease, by definition.

After surgery, 93.8% in the Cushing group and 16.5% in the NFPA group had adrenal insufficiency. In addition, patients with Cushing disease had lower postsurgical nadir serum cortisol levels (63.8 nmol/L) than those with NFPA (282.3 nmol/L).

Of the 17 patients with Cushing disease — all women — who developed autoimmune disease within 3 years, 6 had a personal history of autoimmune disease and 7 had a family history of it. In addition, 41.2% of them had adrenal insufficiency when they developed the new autoimmune disease. Among the diseases were six autoimmune thyroiditis cases, three Sjögren syndrome cases, and two autoimmune seronegative spondyloarthropathy.

Dr. Heaney said he found it interesting that more than half of the new autoimmune diseases in patients with Cushing disease were related to the thyroid. “In this kind of setting, where you have a patient who has been producing too much steroid over a period of time and then you take that away, it’s almost like you release a brake on the TSH [thyroid-stimulating hormone],” Dr. Heaney said. “So, there’s probably some rebound in TSH that occurs, and that could be driving the thyroiditis, to some extent, that we see in these patients.”

Only one patient with NFPA developed new-onset autoimmune disease, a woman who developed Graves disease 22 months after surgery. When the researchers excluded patients in both groups with central hypothyroidism, new-onset autoimmune disease was still significantly higher (11.4%) in the Cushing group than in the NFPA group (1.9%; HR, 7.02; 95% CI, 2.54-19.39).
 

 

 

Could Postoperative Adrenal Insufficiency Contribute to Risk?

Within the Cushing cohort, those who developed autoimmune disease had a lower BMI (31.8 vs 34.8) and larger tumor size (7.2 vs 5.6 mm) than those who didn’t develop new autoimmune disease. Patients who developed autoimmune disease also had a lower baseline urine free cortisol ratio (2.7 vs 6.3) before surgery and more family history of autoimmune disease (41.2% vs 20.9%) than those who didn’t develop one.

“The higher prevalence of adrenal insufficiency and the lower nadir serum cortisol levels in the Cushing disease group suggest that the postoperative adrenal insufficiency in the Cushing disease group might have contributed to autoimmune disease pathogenesis,” the authors wrote. “This finding is clinically significant because cortisol plays a pivotal role in modulating the immune system.”

Most postoperative management among patients with Cushing disease was similar, with all but one patient receiving 0.5 or 1 mg daily dexamethasone within the first week after surgery. (The one outlier received 5 mg daily prednisone.) However, fewer patients who developed autoimmune disease (17.6%) received supraphysiologic doses of glucocorticoid — equivalent to at least 25 mg hydrocortisone — compared with patients who didn’t develop autoimmune disease (41.8%).

“Although the daily average hydrocortisone equivalent replacement doses within the first month and during long-term follow-up were within the physiologic range in both subgroups, patients with Cushing disease who had autoimmune disease received slightly lower doses of glucocorticoid replacement within the first month after surgery,” the authors reported. “The immediate postoperative period might be a critical window where supraphysiologic glucocorticoids seem to be protective with regard to development of autoimmune disease,” they wrote, though they acknowledged the study’s retrospective design as a limitation in drawing that conclusion.

At the least, they suggested that new symptoms in patients with Cushing disease, particularly those with a family history of autoimmune disease, should prompt investigation of potential autoimmune disease.

Recordati Rare Diseases funded the study. The research was also conducted with support from Harvard Catalyst (the Harvard Clinical and Translational Science Center) as well as financial contributions from Harvard University and its affiliated academic healthcare centers. One author reported holding stocks in Pfizer and Amgen, and another reported receiving consulting fees from Corcept. Dr. Heaney reported receiving institutional grants for trials from Corcept, Ascendis, Crinetics, and Sparrow Pharm; serving on the advisory board for Xeris, Recordati, Corcept, Novo Nordisk, Lundbeck, and Crinetics; and serving as a speaker for Chiesi, Novo Nordisk, and Corcept.
 

A version of this article appeared on Medscape.com.

Patients with Cushing disease have an increased risk for new-onset autoimmune disease in the 3 years after surgical remission, according to a new retrospective study published on February 20 in Annals of Internal Medicine.

Outcomes for patients with Cushing disease were compared against those with nonfunctioning pituitary adenomas (NFPAs). New-onset autoimmune disease occurred in 10.4% with Cushing disease and 1.6% among patients with NFPA (hazard ratio, 7.80; 95% CI, 2.88-21.10).

“Understanding and recognizing new and recurrent autoimmune disease in this setting is important to avoid misclassifying such patients with glucocorticoid withdrawal syndrome, which could result in failure to treat underlying autoimmune disease, as well as erroneous diagnosis of steroid withdrawal cases,” wrote Dennis Delasi Nyanyo of Massachusetts General Hospital and Harvard Medical School, Boston, and colleagues.

Given the general population’s annual incidence of major autoimmune diseases, estimated at about 100 cases per 100,000 people, and the 3-year incidence of 10.4% found in this study’s cohort, “our findings suggest that Cushing disease remission may trigger development of autoimmune disease,” the authors wrote.
 

Monitor Patients With Family History of Autoimmune Disease?

The study results were not necessarily surprising to Anthony P. Heaney, MD, PhD, an endocrinologist and professor of medicine at the University of California, Los Angeles, because past research has raised similar questions. The authors’ suggestion that the rapid postsurgical drop in cortisol that occurs as a result of treating Cushing disease becomes some sort of autoimmune trigger is interesting but remains speculative, Dr. Heaney pointed out.

If future evidence supports that possibility, “it would suggest, in terms of managing those patients in the postoperative setting, that there may be some merit to giving them higher concentrations of glucocorticoids for a short period of time,” Dr. Heaney said, thereby bringing their levels down more gradually rather than taking them off a cliff, in a sense. Or, if more evidence bears out the authors’ hypothesis, another approach might be treating patients with medicine to bring down the cortisol before surgery, though there are challenges to that approach, Dr. Heaney said.

At the same time, those who developed new autoimmune disease remain a small subset of patients with Cushing disease, so such approaches may become only potentially appropriate to consider in patients with risk factors, such as a family history of autoimmune disease.

The researchers conducted a retrospective chart review of adult patients who underwent transsphenoidal surgery for either Cushing disease or NFPA at Massachusetts General Hospital between 2005 and 2019.

The study involved 194 patients with Cushing disease who had postsurgical remission and at least one follow-up visit with a pituitary expert and 92 patients with NFPA who were matched to patients with Cushing disease based on age and sex. The authors regarded autoimmune disease diagnosed within 36 months of the surgery to be temporally associated with Cushing disease remission. Among the autoimmune diseases considered were “rheumatoid arthritis, Sjögren syndrome, systemic lupus erythematosus, autoimmune thyroiditis, celiac disease, psoriasis, vitiligo, autoimmune neuropathy, multiple sclerosis, myasthenia gravis, and ulcerative colitis.”

Patients differed in average body mass index and tumor size, but family history of autoimmune disease was similar in both groups. Average BMI was 34.5 in the Cushing group and 29.5 in the NFPA group. Average tumor size was 5.7 mm in the Cushing group and 21.3 mm in the NFPA group.

Before surgery, 2.9% of patients with Cushing disease and 15.4% of patients with NFPA had central hypothyroidism, and 8% in the Cushing group and 56.8% in the NFPA group had hyperprolactinemia. Central adrenal insufficiency occurred in 11% with NFPA and in all with Cushing disease, by definition.

After surgery, 93.8% in the Cushing group and 16.5% in the NFPA group had adrenal insufficiency. In addition, patients with Cushing disease had lower postsurgical nadir serum cortisol levels (63.8 nmol/L) than those with NFPA (282.3 nmol/L).

Of the 17 patients with Cushing disease — all women — who developed autoimmune disease within 3 years, 6 had a personal history of autoimmune disease and 7 had a family history of it. In addition, 41.2% of them had adrenal insufficiency when they developed the new autoimmune disease. Among the diseases were six autoimmune thyroiditis cases, three Sjögren syndrome cases, and two autoimmune seronegative spondyloarthropathy.

Dr. Heaney said he found it interesting that more than half of the new autoimmune diseases in patients with Cushing disease were related to the thyroid. “In this kind of setting, where you have a patient who has been producing too much steroid over a period of time and then you take that away, it’s almost like you release a brake on the TSH [thyroid-stimulating hormone],” Dr. Heaney said. “So, there’s probably some rebound in TSH that occurs, and that could be driving the thyroiditis, to some extent, that we see in these patients.”

Only one patient with NFPA developed new-onset autoimmune disease, a woman who developed Graves disease 22 months after surgery. When the researchers excluded patients in both groups with central hypothyroidism, new-onset autoimmune disease was still significantly higher (11.4%) in the Cushing group than in the NFPA group (1.9%; HR, 7.02; 95% CI, 2.54-19.39).
 

 

 

Could Postoperative Adrenal Insufficiency Contribute to Risk?

Within the Cushing cohort, those who developed autoimmune disease had a lower BMI (31.8 vs 34.8) and larger tumor size (7.2 vs 5.6 mm) than those who didn’t develop new autoimmune disease. Patients who developed autoimmune disease also had a lower baseline urine free cortisol ratio (2.7 vs 6.3) before surgery and more family history of autoimmune disease (41.2% vs 20.9%) than those who didn’t develop one.

“The higher prevalence of adrenal insufficiency and the lower nadir serum cortisol levels in the Cushing disease group suggest that the postoperative adrenal insufficiency in the Cushing disease group might have contributed to autoimmune disease pathogenesis,” the authors wrote. “This finding is clinically significant because cortisol plays a pivotal role in modulating the immune system.”

Most postoperative management among patients with Cushing disease was similar, with all but one patient receiving 0.5 or 1 mg daily dexamethasone within the first week after surgery. (The one outlier received 5 mg daily prednisone.) However, fewer patients who developed autoimmune disease (17.6%) received supraphysiologic doses of glucocorticoid — equivalent to at least 25 mg hydrocortisone — compared with patients who didn’t develop autoimmune disease (41.8%).

“Although the daily average hydrocortisone equivalent replacement doses within the first month and during long-term follow-up were within the physiologic range in both subgroups, patients with Cushing disease who had autoimmune disease received slightly lower doses of glucocorticoid replacement within the first month after surgery,” the authors reported. “The immediate postoperative period might be a critical window where supraphysiologic glucocorticoids seem to be protective with regard to development of autoimmune disease,” they wrote, though they acknowledged the study’s retrospective design as a limitation in drawing that conclusion.

At the least, they suggested that new symptoms in patients with Cushing disease, particularly those with a family history of autoimmune disease, should prompt investigation of potential autoimmune disease.

Recordati Rare Diseases funded the study. The research was also conducted with support from Harvard Catalyst (the Harvard Clinical and Translational Science Center) as well as financial contributions from Harvard University and its affiliated academic healthcare centers. One author reported holding stocks in Pfizer and Amgen, and another reported receiving consulting fees from Corcept. Dr. Heaney reported receiving institutional grants for trials from Corcept, Ascendis, Crinetics, and Sparrow Pharm; serving on the advisory board for Xeris, Recordati, Corcept, Novo Nordisk, Lundbeck, and Crinetics; and serving as a speaker for Chiesi, Novo Nordisk, and Corcept.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167039</fileName> <TBEID>0C04EB20.SIG</TBEID> <TBUniqueIdentifier>MD_0C04EB20</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240222T162112</QCDate> <firstPublished>20240222T162709</firstPublished> <LastPublished>20240222T162709</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240222T162709</CMSDate> <articleSource>FROM ANNALS OF INTERNAL MEDICINE</articleSource> <facebookInfo/> <meetingNumber/> <byline>Tara Haelle</byline> <bylineText>TARA HAELLE</bylineText> <bylineFull>TARA HAELLE</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Patients with Cushing disease have an increased risk for new-onset autoimmune disease in the 3 years after surgical remission, according to a new retrospective </metaDescription> <articlePDF/> <teaserImage/> <teaser>The findings suggested the need for closer postsurgical monitoring of patients with a family history of autoimmune disease.</teaser> <title>Autoimmune Disease Risk May Rise Following Cushing Disease Remission After Surgery</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>rn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">34</term> <term>13</term> <term>22</term> <term>52226</term> <term>26</term> <term>21</term> </publications> <sections> <term canonical="true">27970</term> <term>39313</term> </sections> <topics> <term canonical="true">277</term> <term>59135</term> <term>29134</term> <term>251</term> <term>76214</term> <term>260</term> <term>258</term> <term>289</term> <term>241</term> <term>206</term> <term>290</term> <term>203</term> <term>213</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Autoimmune Disease Risk May Rise Following Cushing Disease Remission After Surgery</title> <deck/> </itemMeta> <itemContent> <p>Patients with Cushing disease have an increased risk for new-onset autoimmune disease in the 3 years after surgical remission, according to a new retrospective <a href="https://www.acpjournals.org/doi/10.7326/M23-2024">study published on February 20</a> in <em>Annals of Internal Medicine</em>.</p> <p>Outcomes for patients with Cushing disease were compared against those with nonfunctioning pituitary adenomas (NFPAs). New-onset autoimmune disease occurred in 10.4% with Cushing disease and 1.6% among patients with NFPA (hazard ratio, 7.80; 95% CI, 2.88-21.10).<br/><br/>“Understanding and recognizing new and recurrent autoimmune disease in this setting is important to avoid misclassifying such patients with glucocorticoid withdrawal syndrome, which could result in failure to treat underlying autoimmune disease, as well as erroneous diagnosis of steroid withdrawal cases,” wrote Dennis Delasi Nyanyo of Massachusetts General Hospital and Harvard Medical School, Boston, and colleagues.<br/><br/>Given the general population’s annual incidence of major autoimmune diseases, estimated at about 100 cases per 100,000 people, and the 3-year incidence of 10.4% found in this study’s cohort, “our findings suggest that Cushing disease remission may trigger development of autoimmune disease,” the authors wrote.<br/><br/></p> <h2>Monitor Patients With Family History of Autoimmune Disease?</h2> <p>The study results were not necessarily surprising to <a href="https://www.uclahealth.org/providers/anthony-heaney">Anthony P. Heaney</a>, MD, PhD, an endocrinologist and professor of medicine at the University of California, Los Angeles, because past research has raised similar questions. The authors’ suggestion that the rapid postsurgical drop in cortisol that occurs as a result of treating Cushing disease becomes some sort of autoimmune trigger is interesting but remains speculative, Dr. Heaney pointed out.</p> <p>If future evidence supports that possibility, “it would suggest, in terms of managing those patients in the postoperative setting, that there may be some merit to giving them higher concentrations of glucocorticoids for a short period of time,” Dr. Heaney said, thereby bringing their levels down more gradually rather than taking them off a cliff, in a sense. Or, if more evidence bears out the authors’ hypothesis, another approach might be treating patients with medicine to bring down the cortisol before surgery, though there are challenges to that approach, Dr. Heaney said.<br/><br/>At the same time, those who developed new autoimmune disease remain a small subset of patients with Cushing disease, so such approaches may become only potentially appropriate to consider in patients with risk factors, such as a family history of autoimmune disease.<br/><br/>The researchers conducted a retrospective chart review of adult patients who underwent transsphenoidal surgery for either Cushing disease or NFPA at Massachusetts General Hospital between 2005 and 2019.<br/><br/>The study involved 194 patients with Cushing disease who had postsurgical remission and at least one follow-up visit with a pituitary expert and 92 patients with NFPA who were matched to patients with Cushing disease based on age and sex. The authors regarded autoimmune disease diagnosed within 36 months of the surgery to be temporally associated with Cushing disease remission. Among the autoimmune diseases considered were “rheumatoid arthritis, Sjögren syndrome, systemic lupus erythematosus, autoimmune thyroiditis, celiac disease, psoriasis, vitiligo, autoimmune neuropathy, multiple sclerosis, myasthenia gravis, and ulcerative colitis.”<br/><br/>Patients differed in average body mass index and tumor size, but family history of autoimmune disease was similar in both groups. Average BMI was 34.5 in the Cushing group and 29.5 in the NFPA group. Average tumor size was 5.7 mm in the Cushing group and 21.3 mm in the NFPA group.<br/><br/>Before surgery, 2.9% of patients with Cushing disease and 15.4% of patients with NFPA had central hypothyroidism, and 8% in the Cushing group and 56.8% in the NFPA group had hyperprolactinemia. Central adrenal insufficiency occurred in 11% with NFPA and in all with Cushing disease, by definition.<br/><br/>After surgery, 93.8% in the Cushing group and 16.5% in the NFPA group had adrenal insufficiency. In addition, patients with Cushing disease had lower postsurgical nadir serum cortisol levels (63.8 nmol/L) than those with NFPA (282.3 nmol/L).<br/><br/>Of the 17 patients with Cushing disease — all women — who developed autoimmune disease within 3 years, 6 had a personal history of autoimmune disease and 7 had a family history of it. In addition, 41.2% of them had adrenal insufficiency when they developed the new autoimmune disease. Among the diseases were six autoimmune thyroiditis cases, three Sjögren syndrome cases, and two autoimmune seronegative spondyloarthropathy.<br/><br/>Dr. Heaney said he found it interesting that more than half of the new autoimmune diseases in patients with Cushing disease were related to the thyroid. “In this kind of setting, where you have a patient who has been producing too much steroid over a period of time and then you take that away, it’s almost like you release a brake on the TSH [thyroid-stimulating hormone],” Dr. Heaney said. “So, there’s probably some rebound in TSH that occurs, and that could be driving the thyroiditis, to some extent, that we see in these patients.”<br/><br/>Only one patient with NFPA developed new-onset autoimmune disease, a woman who developed Graves disease 22 months after surgery. When the researchers excluded patients in both groups with central hypothyroidism, new-onset autoimmune disease was still significantly higher (11.4%) in the Cushing group than in the NFPA group (1.9%; HR, 7.02; 95% CI, 2.54-19.39).<br/><br/></p> <h2>Could Postoperative Adrenal Insufficiency Contribute to Risk?</h2> <p>Within the Cushing cohort, those who developed autoimmune disease had a lower BMI (31.8 vs 34.8) and larger tumor size (7.2 vs 5.6 mm) than those who didn’t develop new autoimmune disease. Patients who developed autoimmune disease also had a lower baseline urine free cortisol ratio (2.7 vs 6.3) before surgery and more family history of autoimmune disease (41.2% vs 20.9%) than those who didn’t develop one.</p> <p>“The higher prevalence of adrenal insufficiency and the lower nadir serum cortisol levels in the Cushing disease group suggest that the postoperative adrenal insufficiency in the Cushing disease group might have contributed to autoimmune disease pathogenesis,” the authors wrote. “This finding is clinically significant because cortisol plays a pivotal role in modulating the immune system.”<br/><br/>Most postoperative management among patients with Cushing disease was similar, with all but one patient receiving 0.5 or 1 mg daily dexamethasone within the first week after surgery. (The one outlier received 5 mg daily prednisone.) However, fewer patients who developed autoimmune disease (17.6%) received supraphysiologic doses of glucocorticoid — equivalent to at least 25 mg hydrocortisone — compared with patients who didn’t develop autoimmune disease (41.8%).<br/><br/>“Although the daily average hydrocortisone equivalent replacement doses within the first month and during long-term follow-up were within the physiologic range in both subgroups, patients with Cushing disease who had autoimmune disease received slightly lower doses of glucocorticoid replacement within the first month after surgery,” the authors reported. “The immediate postoperative period might be a critical window where supraphysiologic glucocorticoids seem to be protective with regard to development of autoimmune disease,” they wrote, though they acknowledged the study’s retrospective design as a limitation in drawing that conclusion.<br/><br/>At the least, they suggested that new symptoms in patients with Cushing disease, particularly those with a family history of autoimmune disease, should prompt investigation of potential autoimmune disease.<br/><br/>Recordati Rare Diseases funded the study. The research was also conducted with support from Harvard Catalyst (the Harvard Clinical and Translational Science Center) as well as financial contributions from Harvard University and its affiliated academic healthcare centers. One author reported holding stocks in Pfizer and Amgen, and another reported receiving consulting fees from Corcept. Dr. Heaney reported receiving institutional grants for trials from Corcept, Ascendis, Crinetics, and Sparrow Pharm; serving on the advisory board for Xeris, Recordati, Corcept, Novo Nordisk, Lundbeck, and Crinetics; and serving as a speaker for Chiesi, Novo Nordisk, and Corcept.<br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/cushing-disease-remission-after-surgery-linked-increased-2024a10003g8?src=">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM ANNALS OF INTERNAL MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Tech Could Record Deep-Brain Activity From Surface

Article Type
Changed
Tue, 01/30/2024 - 12:07

Modern technology for recording deep-brain activity involves sharp metal electrodes that penetrate the tissue, causing damage that can compromise the signal and limiting how often they can be used. 

A rapidly growing area in materials science and engineering aims to fix the problem by designing electrodes that are softer, smaller, and flexible — safer for use inside the delicate tissues of the brain. On January 17, researchers from the University of California, San Diego, reported the development of a thin, flexible electrode that can be inserted deep within the brain and communicate with sensors on the surface. 

But what if you could record detailed deep-brain activity without piercing the brain? 

A team of researchers (as it happens, also from UC San Diego) have developed a thin, flexible implant that “resides on the brain’s surface” and “can infer neural activity from deeper layers,” said Duygu Kuzum, PhD, a professor of electrical and computer engineering, who led the research. 

By combining electrical and optical imaging methods, and artificial intelligence, the researchers used the device — a polymer strip packed with graphene electrodes — to predict deep calcium activity from surface signals, according to a proof-of-concept study published this month in Nature Nanotechnology

“Almost everything we know about how neurons behave in living brains comes from data collected with either electrophysiology or two-photon imaging,” said neuroscientist Joshua H. Siegle, PhD, of the Allen Institute for Neural Dynamics in Seattle , who not involved in the study. “ Until now, these two methods have rarely been used simultaneously.”

The technology, which has been tested in mice, could help advance our knowledge of how the brain works and may lead to new minimally invasive treatments for neurologic disorders. 
 

Multimodal Neurotech: The Power of 2-in-1

Electrical and optical methods for recording brain activity have been crucial in advancing neurophysiologic science, but each technique has its limits. Electrical recordings provide high “temporal resolution”; they reveal when activation is happening, but not really where. Optical imaging, on the other hand, offers high “spatial resolution,” showing which area of the brain is lighting up, but its measurements may not correspond with the activity’s timing. 

Research over the past decade has explored how to combine and harness the strengths of both methods. One potential solution is to use electrodes made of transparent materials such as graphene, allowing a clear field of view for a microscope during imaging. Recently, University of Pennsylvania scientists used graphene electrodes to illuminate the neural dynamics of seizures

But there are challenges. If graphene electrodes are very small — in this case, 20 µm in diameter — they become more resistant to the flow of electricity. Dr. Kuzum and colleagues addressed this by adding tiny platinum particles to improve electrical conductivity. Long graphene wires connect electrodes to the circuit board, but defects in graphene can interrupt the signal, so they made each wire with two layers; any defects in one wire could be hidden by the other.

By combining the two methods (microelectrode arrays and two-photon imaging), the researchers could see both when brain activity was happening and where, including in deeper layers. They discovered a correlation between electrical responses on the surface and cellular calcium activity deeper down. The team used these data to create a neural network (a type of artificial intelligence that learns to recognize patterns) that predicts deep calcium activity from surface-level readings.

The tech could help scientists study brain activity “in a way not possible with current single-function tools,” said Luyao Lu, PhD, professor of biomedical engineering at George Washington University in Washington, DC, who was not involved in the study. It could shed light on interactions between vascular and electrical activity, or explain how place cells (neurons in the hippocampus) are so efficient at creating spatial memory. 

It could also pave the way for minimally invasive neural prosthetics or targeted treatments for neurologic disorders, the researchers say. Implanting the device would be a “straightforward process” similar to placing electrocorticography grids in patients with epilepsy, said Dr. Kuzum. 

But first, the team plans to do more studies in animal models before testing the tech in clinical settings, Dr. Kuzum added.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Modern technology for recording deep-brain activity involves sharp metal electrodes that penetrate the tissue, causing damage that can compromise the signal and limiting how often they can be used. 

A rapidly growing area in materials science and engineering aims to fix the problem by designing electrodes that are softer, smaller, and flexible — safer for use inside the delicate tissues of the brain. On January 17, researchers from the University of California, San Diego, reported the development of a thin, flexible electrode that can be inserted deep within the brain and communicate with sensors on the surface. 

But what if you could record detailed deep-brain activity without piercing the brain? 

A team of researchers (as it happens, also from UC San Diego) have developed a thin, flexible implant that “resides on the brain’s surface” and “can infer neural activity from deeper layers,” said Duygu Kuzum, PhD, a professor of electrical and computer engineering, who led the research. 

By combining electrical and optical imaging methods, and artificial intelligence, the researchers used the device — a polymer strip packed with graphene electrodes — to predict deep calcium activity from surface signals, according to a proof-of-concept study published this month in Nature Nanotechnology

“Almost everything we know about how neurons behave in living brains comes from data collected with either electrophysiology or two-photon imaging,” said neuroscientist Joshua H. Siegle, PhD, of the Allen Institute for Neural Dynamics in Seattle , who not involved in the study. “ Until now, these two methods have rarely been used simultaneously.”

The technology, which has been tested in mice, could help advance our knowledge of how the brain works and may lead to new minimally invasive treatments for neurologic disorders. 
 

Multimodal Neurotech: The Power of 2-in-1

Electrical and optical methods for recording brain activity have been crucial in advancing neurophysiologic science, but each technique has its limits. Electrical recordings provide high “temporal resolution”; they reveal when activation is happening, but not really where. Optical imaging, on the other hand, offers high “spatial resolution,” showing which area of the brain is lighting up, but its measurements may not correspond with the activity’s timing. 

Research over the past decade has explored how to combine and harness the strengths of both methods. One potential solution is to use electrodes made of transparent materials such as graphene, allowing a clear field of view for a microscope during imaging. Recently, University of Pennsylvania scientists used graphene electrodes to illuminate the neural dynamics of seizures

But there are challenges. If graphene electrodes are very small — in this case, 20 µm in diameter — they become more resistant to the flow of electricity. Dr. Kuzum and colleagues addressed this by adding tiny platinum particles to improve electrical conductivity. Long graphene wires connect electrodes to the circuit board, but defects in graphene can interrupt the signal, so they made each wire with two layers; any defects in one wire could be hidden by the other.

By combining the two methods (microelectrode arrays and two-photon imaging), the researchers could see both when brain activity was happening and where, including in deeper layers. They discovered a correlation between electrical responses on the surface and cellular calcium activity deeper down. The team used these data to create a neural network (a type of artificial intelligence that learns to recognize patterns) that predicts deep calcium activity from surface-level readings.

The tech could help scientists study brain activity “in a way not possible with current single-function tools,” said Luyao Lu, PhD, professor of biomedical engineering at George Washington University in Washington, DC, who was not involved in the study. It could shed light on interactions between vascular and electrical activity, or explain how place cells (neurons in the hippocampus) are so efficient at creating spatial memory. 

It could also pave the way for minimally invasive neural prosthetics or targeted treatments for neurologic disorders, the researchers say. Implanting the device would be a “straightforward process” similar to placing electrocorticography grids in patients with epilepsy, said Dr. Kuzum. 

But first, the team plans to do more studies in animal models before testing the tech in clinical settings, Dr. Kuzum added.

A version of this article appeared on Medscape.com.

Modern technology for recording deep-brain activity involves sharp metal electrodes that penetrate the tissue, causing damage that can compromise the signal and limiting how often they can be used. 

A rapidly growing area in materials science and engineering aims to fix the problem by designing electrodes that are softer, smaller, and flexible — safer for use inside the delicate tissues of the brain. On January 17, researchers from the University of California, San Diego, reported the development of a thin, flexible electrode that can be inserted deep within the brain and communicate with sensors on the surface. 

But what if you could record detailed deep-brain activity without piercing the brain? 

A team of researchers (as it happens, also from UC San Diego) have developed a thin, flexible implant that “resides on the brain’s surface” and “can infer neural activity from deeper layers,” said Duygu Kuzum, PhD, a professor of electrical and computer engineering, who led the research. 

By combining electrical and optical imaging methods, and artificial intelligence, the researchers used the device — a polymer strip packed with graphene electrodes — to predict deep calcium activity from surface signals, according to a proof-of-concept study published this month in Nature Nanotechnology

“Almost everything we know about how neurons behave in living brains comes from data collected with either electrophysiology or two-photon imaging,” said neuroscientist Joshua H. Siegle, PhD, of the Allen Institute for Neural Dynamics in Seattle , who not involved in the study. “ Until now, these two methods have rarely been used simultaneously.”

The technology, which has been tested in mice, could help advance our knowledge of how the brain works and may lead to new minimally invasive treatments for neurologic disorders. 
 

Multimodal Neurotech: The Power of 2-in-1

Electrical and optical methods for recording brain activity have been crucial in advancing neurophysiologic science, but each technique has its limits. Electrical recordings provide high “temporal resolution”; they reveal when activation is happening, but not really where. Optical imaging, on the other hand, offers high “spatial resolution,” showing which area of the brain is lighting up, but its measurements may not correspond with the activity’s timing. 

Research over the past decade has explored how to combine and harness the strengths of both methods. One potential solution is to use electrodes made of transparent materials such as graphene, allowing a clear field of view for a microscope during imaging. Recently, University of Pennsylvania scientists used graphene electrodes to illuminate the neural dynamics of seizures

But there are challenges. If graphene electrodes are very small — in this case, 20 µm in diameter — they become more resistant to the flow of electricity. Dr. Kuzum and colleagues addressed this by adding tiny platinum particles to improve electrical conductivity. Long graphene wires connect electrodes to the circuit board, but defects in graphene can interrupt the signal, so they made each wire with two layers; any defects in one wire could be hidden by the other.

By combining the two methods (microelectrode arrays and two-photon imaging), the researchers could see both when brain activity was happening and where, including in deeper layers. They discovered a correlation between electrical responses on the surface and cellular calcium activity deeper down. The team used these data to create a neural network (a type of artificial intelligence that learns to recognize patterns) that predicts deep calcium activity from surface-level readings.

The tech could help scientists study brain activity “in a way not possible with current single-function tools,” said Luyao Lu, PhD, professor of biomedical engineering at George Washington University in Washington, DC, who was not involved in the study. It could shed light on interactions between vascular and electrical activity, or explain how place cells (neurons in the hippocampus) are so efficient at creating spatial memory. 

It could also pave the way for minimally invasive neural prosthetics or targeted treatments for neurologic disorders, the researchers say. Implanting the device would be a “straightforward process” similar to placing electrocorticography grids in patients with epilepsy, said Dr. Kuzum. 

But first, the team plans to do more studies in animal models before testing the tech in clinical settings, Dr. Kuzum added.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166725</fileName> <TBEID>0C04E451.SIG</TBEID> <TBUniqueIdentifier>MD_0C04E451</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>deep brain activity</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240130T114559</QCDate> <firstPublished>20240130T120500</firstPublished> <LastPublished>20240130T120500</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240130T120500</CMSDate> <articleSource>FROM NATURE NANOTECHNOLOGY</articleSource> <facebookInfo/> <meetingNumber/> <byline>Clarissa Brincat</byline> <bylineText>CLARISSA BRINCAT</bylineText> <bylineFull>CLARISSA BRINCAT</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Modern technology for recording deep-brain activity involves sharp metal electrodes that penetrate the tissue, causing damage that can compromise the signal and</metaDescription> <articlePDF/> <teaserImage/> <teaser>Combining electrical and optical methods with AI, researchers developed a new brain implant that can read deep-brain activity without penetrating tissue.</teaser> <title>New Tech Could Record Deep-Brain Activity From Surface</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>52226</term> </publications> <sections> <term>39313</term> <term canonical="true">86</term> </sections> <topics> <term canonical="true">260</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>New Tech Could Record Deep-Brain Activity From Surface</title> <deck/> </itemMeta> <itemContent> <p>Modern technology for recording deep-brain activity involves sharp metal electrodes that penetrate the tissue, causing <span class="Hyperlink"><a href="https://pubs.acs.org/doi/10.1021/acschemneuro.7b00403">damage</a></span> that can <span class="Hyperlink"><a href="https://pubs.acs.org/doi/10.1021/cn500256e">compromise</a></span> the signal and limiting how often they can be used. </p> <p>A rapidly growing area in materials science and engineering aims to fix the problem by designing electrodes that are softer, smaller, and flexible — safer for use inside the delicate tissues of the brain. On January 17, researchers from the University of California, San Diego, <span class="Hyperlink"><a href="https://today.ucsd.edu/story/transforming-clinical-recording-of-deep-brain-activity-with-a-new-take-on-sensor-manufacturing">reported</a></span> the development of a thin, flexible electrode that can be inserted deep within the brain and communicate with sensors on the surface. <br/><br/>But what if you could record detailed deep-brain activity without piercing the brain? <br/><br/>A team of researchers (as it happens, also from UC San Diego) have developed a thin, flexible implant that “resides on the brain’s surface” and “can infer neural activity from deeper layers,” said <span class="Hyperlink"><a href="https://jacobsschool.ucsd.edu/people/profile/duygu-kuzum">Duygu Kuzum, PhD</a></span>, a professor of electrical and computer engineering, who led the research. <br/><br/>By combining electrical and optical imaging methods, and artificial intelligence, the researchers used the device — a polymer strip packed with graphene electrodes — to predict deep calcium activity from surface signals, according to a proof-of-concept study published this month in <span class="Emphasis"><a href="https://www.nature.com/articles/s41565-023-01576-z">Nature Nanotechnology</a></span>. <br/><br/>“Almost everything we know about how neurons behave in living brains comes from data collected with either electrophysiology or two-photon imaging,” said neuroscientist <span class="Hyperlink"><a href="https://alleninstitute.org/person/josh-siegle/">Joshua H. Siegle, PhD</a></span>, of the Allen Institute for Neural Dynamics in Seattle , who not involved in the study. “ Until now, these two methods have rarely been used simultaneously.”<br/><br/>The technology, which has been tested in mice, could help advance our knowledge of how the brain works and may lead to new minimally invasive treatments for neurologic disorders. <br/><br/><br/><br/></p> <h2>Multimodal Neurotech: The Power of 2-in-1</h2> <p>Electrical and optical methods for recording brain activity have been crucial in advancing neurophysiologic science, but each technique has its limits. Electrical recordings provide high “temporal resolution”; they reveal when activation is happening, but not really where. Optical imaging, on the other hand, offers high “spatial resolution,” showing which area of the brain is lighting up, but its measurements may not correspond with the activity’s timing. </p> <p><a href="https://pubmed.ncbi.nlm.nih.gov/34177136/">Research</a> over the past decade has explored how to combine and harness the strengths of both methods. One potential solution is to use electrodes made of transparent materials such as graphene, allowing a clear field of view for a microscope during imaging. Recently, University of Pennsylvania scientists used graphene electrodes to illuminate the <a href="https://www.nature.com/articles/s42003-021-01670-9">neural dynamics of seizures</a>. <br/><br/>But there are challenges. If graphene electrodes are very small — in this case, 20 µm in diameter — they become more resistant to the flow of electricity. Dr. Kuzum and colleagues addressed this by adding tiny platinum particles to improve electrical conductivity. Long graphene wires connect electrodes to the circuit board, but defects in graphene can interrupt the signal, so they made each wire with two layers; any defects in one wire could be hidden by the other.<br/><br/>By combining the two methods (microelectrode arrays and two-photon imaging), the researchers could see both when brain activity was happening and where, including in deeper layers. They discovered a correlation between electrical responses on the surface and cellular calcium activity deeper down. The team used these data to create a neural network (a type of artificial intelligence that learns to recognize patterns) that predicts deep calcium activity from surface-level readings.<br/><br/>The tech could help scientists study brain activity “in a way not possible with current single-function tools,” said <a href="https://engineering.gwu.edu/luyao-lu">Luyao Lu, PhD</a>, professor of biomedical engineering at George Washington University in Washington, DC, who was not involved in the study. It could shed light on interactions between vascular and electrical activity, or explain how place cells (neurons in the hippocampus) are so efficient at creating spatial memory. <br/><br/>It could also pave the way for minimally invasive neural prosthetics or targeted treatments for neurologic disorders, the researchers say. Implanting the device would be a “straightforward process” similar to placing electrocorticography grids in patients with <a href="https://emedicine.medscape.com/article/1184846-overview">epilepsy</a>, said Dr. Kuzum. <br/><br/>But first, the team plans to do more studies in animal models before testing the tech in clinical settings, Dr. Kuzum added.<span class="end"/></p> <p> <em> <em>A version of this article appeared on </em> <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/new-tech-could-record-deep-brain-activity-surface-2024a10001t6?">Medscape.com</a>.</span> </em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM NATURE NANOTECHNOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Experimental Therapy Restores Cognitive Function in Chronic TBI

Article Type
Changed
Wed, 12/06/2023 - 18:31

An experimental therapy that uses deep brain stimulation (DBS) to deliver precise electrical pulses to an area deep inside the brain restored executive function in patients with moderate to severe traumatic brain injury (msTBI) and chronic sequelae.

Participants in this first-in-humans trial experienced brain injuries between 3-18 years before the study that left them with persistent neuropsychological impairment and a range of functional disabilities.

This is the first time a DBS device has been implanted in the central thalamus in humans, an area of the brain measuring only a few millimeters wide that helps regulate consciousness.

Placing the electrodes required a novel surgical technique developed by the investigators that included virtual models of each participant’s brain, microelectrode recording, and neuroimaging to identify neuronal circuits affected by the TBI.

After 3 months of 12-hour daily DBS treatments, participants’ performance on cognitive tests improved by an average of 32% from baseline. Participants were able to read books, watch TV shows, play video games, complete schoolwork, and felt significantly less fatigued during the day.

Although the small trial only included five patients, the work is already being hailed by other experts as significant.“We were looking for partial restoration of executive attention and expected [the treatment] would have an effect, but I wouldn’t have anticipated the effect size we saw,” co-lead investigator Nicholas Schiff, MD, professor of neuroscience at Weill Cornell Medical College, New York City, said in an interview.

The findings were published online Dec. 4 in Nature Medicine.

“No Trivial Feat”

An estimated 5.3 million children and adults are living with a permanent TBI-related disability in the US today. There currently is no effective therapy for impaired attention, executive function, working memory or information-processing speed caused by the initial injury.

Previous research suggests that a loss of activity in key brain circuits in the thalamus may be associated with a loss of cognitive function.

The investigators recruited six adults (four men and two women) between the ages of 22 and 60 years with a history of msTBI and chronic neuropsychological impairment and functional disability. One participant was later withdrawn from the trial for protocol noncompliance.

Participants completed a range of questionnaires and tests to establish baseline cognitive, psychological, and quality-of-life status.

To restore lost executive functioning in the brain, investigators had to target not only the central lateral nucleus, but also the neuronal network connected to the region that reaches other parts of the brain.

“To do both of those things we had to develop a whole toolset in order to model both the target and trajectory, which had to be right to make it work properly,” co-lead investigator Jaimie Henderson, MD, professor of neurosurgery at Stanford University College of Medicine, Stanford, California, said in an interview. “That gave us a pretty narrow window in which to work and getting an electrode accurately to this target is not a trivial feat.”

“A Moving Target”

Each participant’s brain physiology was slightly different, meaning the path that worked for one individual might not work for another. The surgery was further complicated by shifting in the brain that occurred as individual electrodes were placed.

 

 

“It was a literal moving target,” Dr. Henderson said.

In the beginning, investigators used microelectrode recording to “listen” to individual neurons to see which ones weren’t firing correctly.

When that method failed to offer the precise information needed for electrode placement, the investigators switched to neuroimaging, which allowed them to complete the surgery more quickly and accurately.

Participants remained in the hospital 1-2 days after surgery. They returned for postoperative imaging 30 days after surgery and were randomly assigned to different schedules for a 14-day titration period to optimize DBS stimulation.

The primary outcome was a 10% improvement on part B of the trail-making test, a neuropsychological test that measures executive functioning.

After 90 days of 12-hour daily DBS treatments, participants’ scores increased 15%–52% (average 32%) from baseline. Participants also reported an average of 33% decline in fatigue, one of the most common side effects of msTBI, and an average 80% improvement in attention.

The main safety risk during the 3- to-4-hour procedure is bleeding, which didn’t affect any of the participants in this study. One participant developed a surgical site infection, but all other side effects were mild.

After the 90-day treatment period, the study plan called for patients to be randomly assigned to a blinded withdrawal of treatment, with the DBS turned off for 21 days. Two of the patients declined to be randomized. DBS was turned off in one participant while the other two continued as normal.

After 3 weeks, the patient whose DBS was turned off showed a 34% decline on cognitive tests. The device was reactivated after the study and that participant has since reported improvements.

The DBS devices continue to function in all participants. Although their performance is not being measured as part of the study, anecdotal reports indicate sustained improvement in executive functioning.

“The brain injury causes this global down-regulation of brain function and what we think that this is doing is turning that back up again,” Dr. Henderson said. “At a very simplistic level, what we’re trying to do is turn the lights back up after the dimmer switch is switched down from the injury.”

New Hope

TBI patients are usually treated aggressively during the first year, when significant improvements are most likely, but there are few therapeutic options beyond that time, said neurologist Javier Cardenas, MD, who commented on the findings for this article.

“Many providers throw their hands up after a year in terms of intervention and then we’re always looking at potential declines over time,” said Dr. Cardenas, director of the Concussion and Brain Injury Center at the Rockefeller Neuroscience Institution, West Virginia University, Morgantown. “Most people plateau and don’t decline but we’re always worried about a secondary decline in traumatic brain injury.”Surgery is usually only employed immediately following the brain injury. The notion of surgery as a therapeutic option years after the initial assault on the brain is novel, said Jimmy Yang, MD, assistant professor of neurologic surgery at Ohio State University College of Medicine, Columbus, who commented on the findings for this article.

“While deep brain stimulation surgery in clinical practice is specifically tailored to each patient we treat, this study goes a step further by integrating research tools that have not yet made it to the clinical realm,” Dr. Yang said. “As a result, while these methods are not commonly used in clinical care, the overall strategy highlights how research advances are linked to clinical advances.”

Investigators are working to secure funding for a larger phase 2 trial.

“With millions of people affected by traumatic brain injury but without effective therapies, this study brings hope that options are on the horizon to help these patients,” Dr. Yang said.

The study was supported by funding from the National Institute of Health BRAIN Initiative and a grant from the Translational Science Center at Weill Cornell Medical College. Surgical implants were provided by Medtronic. Dr. Henderson and Dr. Schiff are listed as inventors on several patent applications for the experimental DBS therapy described in the study. Dr. Cardenas and Dr. Yang report no relevant financial relationships.


A version of this article first appeared on Medscape.com .

Publications
Topics
Sections

An experimental therapy that uses deep brain stimulation (DBS) to deliver precise electrical pulses to an area deep inside the brain restored executive function in patients with moderate to severe traumatic brain injury (msTBI) and chronic sequelae.

Participants in this first-in-humans trial experienced brain injuries between 3-18 years before the study that left them with persistent neuropsychological impairment and a range of functional disabilities.

This is the first time a DBS device has been implanted in the central thalamus in humans, an area of the brain measuring only a few millimeters wide that helps regulate consciousness.

Placing the electrodes required a novel surgical technique developed by the investigators that included virtual models of each participant’s brain, microelectrode recording, and neuroimaging to identify neuronal circuits affected by the TBI.

After 3 months of 12-hour daily DBS treatments, participants’ performance on cognitive tests improved by an average of 32% from baseline. Participants were able to read books, watch TV shows, play video games, complete schoolwork, and felt significantly less fatigued during the day.

Although the small trial only included five patients, the work is already being hailed by other experts as significant.“We were looking for partial restoration of executive attention and expected [the treatment] would have an effect, but I wouldn’t have anticipated the effect size we saw,” co-lead investigator Nicholas Schiff, MD, professor of neuroscience at Weill Cornell Medical College, New York City, said in an interview.

The findings were published online Dec. 4 in Nature Medicine.

“No Trivial Feat”

An estimated 5.3 million children and adults are living with a permanent TBI-related disability in the US today. There currently is no effective therapy for impaired attention, executive function, working memory or information-processing speed caused by the initial injury.

Previous research suggests that a loss of activity in key brain circuits in the thalamus may be associated with a loss of cognitive function.

The investigators recruited six adults (four men and two women) between the ages of 22 and 60 years with a history of msTBI and chronic neuropsychological impairment and functional disability. One participant was later withdrawn from the trial for protocol noncompliance.

Participants completed a range of questionnaires and tests to establish baseline cognitive, psychological, and quality-of-life status.

To restore lost executive functioning in the brain, investigators had to target not only the central lateral nucleus, but also the neuronal network connected to the region that reaches other parts of the brain.

“To do both of those things we had to develop a whole toolset in order to model both the target and trajectory, which had to be right to make it work properly,” co-lead investigator Jaimie Henderson, MD, professor of neurosurgery at Stanford University College of Medicine, Stanford, California, said in an interview. “That gave us a pretty narrow window in which to work and getting an electrode accurately to this target is not a trivial feat.”

“A Moving Target”

Each participant’s brain physiology was slightly different, meaning the path that worked for one individual might not work for another. The surgery was further complicated by shifting in the brain that occurred as individual electrodes were placed.

 

 

“It was a literal moving target,” Dr. Henderson said.

In the beginning, investigators used microelectrode recording to “listen” to individual neurons to see which ones weren’t firing correctly.

When that method failed to offer the precise information needed for electrode placement, the investigators switched to neuroimaging, which allowed them to complete the surgery more quickly and accurately.

Participants remained in the hospital 1-2 days after surgery. They returned for postoperative imaging 30 days after surgery and were randomly assigned to different schedules for a 14-day titration period to optimize DBS stimulation.

The primary outcome was a 10% improvement on part B of the trail-making test, a neuropsychological test that measures executive functioning.

After 90 days of 12-hour daily DBS treatments, participants’ scores increased 15%–52% (average 32%) from baseline. Participants also reported an average of 33% decline in fatigue, one of the most common side effects of msTBI, and an average 80% improvement in attention.

The main safety risk during the 3- to-4-hour procedure is bleeding, which didn’t affect any of the participants in this study. One participant developed a surgical site infection, but all other side effects were mild.

After the 90-day treatment period, the study plan called for patients to be randomly assigned to a blinded withdrawal of treatment, with the DBS turned off for 21 days. Two of the patients declined to be randomized. DBS was turned off in one participant while the other two continued as normal.

After 3 weeks, the patient whose DBS was turned off showed a 34% decline on cognitive tests. The device was reactivated after the study and that participant has since reported improvements.

The DBS devices continue to function in all participants. Although their performance is not being measured as part of the study, anecdotal reports indicate sustained improvement in executive functioning.

“The brain injury causes this global down-regulation of brain function and what we think that this is doing is turning that back up again,” Dr. Henderson said. “At a very simplistic level, what we’re trying to do is turn the lights back up after the dimmer switch is switched down from the injury.”

New Hope

TBI patients are usually treated aggressively during the first year, when significant improvements are most likely, but there are few therapeutic options beyond that time, said neurologist Javier Cardenas, MD, who commented on the findings for this article.

“Many providers throw their hands up after a year in terms of intervention and then we’re always looking at potential declines over time,” said Dr. Cardenas, director of the Concussion and Brain Injury Center at the Rockefeller Neuroscience Institution, West Virginia University, Morgantown. “Most people plateau and don’t decline but we’re always worried about a secondary decline in traumatic brain injury.”Surgery is usually only employed immediately following the brain injury. The notion of surgery as a therapeutic option years after the initial assault on the brain is novel, said Jimmy Yang, MD, assistant professor of neurologic surgery at Ohio State University College of Medicine, Columbus, who commented on the findings for this article.

“While deep brain stimulation surgery in clinical practice is specifically tailored to each patient we treat, this study goes a step further by integrating research tools that have not yet made it to the clinical realm,” Dr. Yang said. “As a result, while these methods are not commonly used in clinical care, the overall strategy highlights how research advances are linked to clinical advances.”

Investigators are working to secure funding for a larger phase 2 trial.

“With millions of people affected by traumatic brain injury but without effective therapies, this study brings hope that options are on the horizon to help these patients,” Dr. Yang said.

The study was supported by funding from the National Institute of Health BRAIN Initiative and a grant from the Translational Science Center at Weill Cornell Medical College. Surgical implants were provided by Medtronic. Dr. Henderson and Dr. Schiff are listed as inventors on several patent applications for the experimental DBS therapy described in the study. Dr. Cardenas and Dr. Yang report no relevant financial relationships.


A version of this article first appeared on Medscape.com .

An experimental therapy that uses deep brain stimulation (DBS) to deliver precise electrical pulses to an area deep inside the brain restored executive function in patients with moderate to severe traumatic brain injury (msTBI) and chronic sequelae.

Participants in this first-in-humans trial experienced brain injuries between 3-18 years before the study that left them with persistent neuropsychological impairment and a range of functional disabilities.

This is the first time a DBS device has been implanted in the central thalamus in humans, an area of the brain measuring only a few millimeters wide that helps regulate consciousness.

Placing the electrodes required a novel surgical technique developed by the investigators that included virtual models of each participant’s brain, microelectrode recording, and neuroimaging to identify neuronal circuits affected by the TBI.

After 3 months of 12-hour daily DBS treatments, participants’ performance on cognitive tests improved by an average of 32% from baseline. Participants were able to read books, watch TV shows, play video games, complete schoolwork, and felt significantly less fatigued during the day.

Although the small trial only included five patients, the work is already being hailed by other experts as significant.“We were looking for partial restoration of executive attention and expected [the treatment] would have an effect, but I wouldn’t have anticipated the effect size we saw,” co-lead investigator Nicholas Schiff, MD, professor of neuroscience at Weill Cornell Medical College, New York City, said in an interview.

The findings were published online Dec. 4 in Nature Medicine.

“No Trivial Feat”

An estimated 5.3 million children and adults are living with a permanent TBI-related disability in the US today. There currently is no effective therapy for impaired attention, executive function, working memory or information-processing speed caused by the initial injury.

Previous research suggests that a loss of activity in key brain circuits in the thalamus may be associated with a loss of cognitive function.

The investigators recruited six adults (four men and two women) between the ages of 22 and 60 years with a history of msTBI and chronic neuropsychological impairment and functional disability. One participant was later withdrawn from the trial for protocol noncompliance.

Participants completed a range of questionnaires and tests to establish baseline cognitive, psychological, and quality-of-life status.

To restore lost executive functioning in the brain, investigators had to target not only the central lateral nucleus, but also the neuronal network connected to the region that reaches other parts of the brain.

“To do both of those things we had to develop a whole toolset in order to model both the target and trajectory, which had to be right to make it work properly,” co-lead investigator Jaimie Henderson, MD, professor of neurosurgery at Stanford University College of Medicine, Stanford, California, said in an interview. “That gave us a pretty narrow window in which to work and getting an electrode accurately to this target is not a trivial feat.”

“A Moving Target”

Each participant’s brain physiology was slightly different, meaning the path that worked for one individual might not work for another. The surgery was further complicated by shifting in the brain that occurred as individual electrodes were placed.

 

 

“It was a literal moving target,” Dr. Henderson said.

In the beginning, investigators used microelectrode recording to “listen” to individual neurons to see which ones weren’t firing correctly.

When that method failed to offer the precise information needed for electrode placement, the investigators switched to neuroimaging, which allowed them to complete the surgery more quickly and accurately.

Participants remained in the hospital 1-2 days after surgery. They returned for postoperative imaging 30 days after surgery and were randomly assigned to different schedules for a 14-day titration period to optimize DBS stimulation.

The primary outcome was a 10% improvement on part B of the trail-making test, a neuropsychological test that measures executive functioning.

After 90 days of 12-hour daily DBS treatments, participants’ scores increased 15%–52% (average 32%) from baseline. Participants also reported an average of 33% decline in fatigue, one of the most common side effects of msTBI, and an average 80% improvement in attention.

The main safety risk during the 3- to-4-hour procedure is bleeding, which didn’t affect any of the participants in this study. One participant developed a surgical site infection, but all other side effects were mild.

After the 90-day treatment period, the study plan called for patients to be randomly assigned to a blinded withdrawal of treatment, with the DBS turned off for 21 days. Two of the patients declined to be randomized. DBS was turned off in one participant while the other two continued as normal.

After 3 weeks, the patient whose DBS was turned off showed a 34% decline on cognitive tests. The device was reactivated after the study and that participant has since reported improvements.

The DBS devices continue to function in all participants. Although their performance is not being measured as part of the study, anecdotal reports indicate sustained improvement in executive functioning.

“The brain injury causes this global down-regulation of brain function and what we think that this is doing is turning that back up again,” Dr. Henderson said. “At a very simplistic level, what we’re trying to do is turn the lights back up after the dimmer switch is switched down from the injury.”

New Hope

TBI patients are usually treated aggressively during the first year, when significant improvements are most likely, but there are few therapeutic options beyond that time, said neurologist Javier Cardenas, MD, who commented on the findings for this article.

“Many providers throw their hands up after a year in terms of intervention and then we’re always looking at potential declines over time,” said Dr. Cardenas, director of the Concussion and Brain Injury Center at the Rockefeller Neuroscience Institution, West Virginia University, Morgantown. “Most people plateau and don’t decline but we’re always worried about a secondary decline in traumatic brain injury.”Surgery is usually only employed immediately following the brain injury. The notion of surgery as a therapeutic option years after the initial assault on the brain is novel, said Jimmy Yang, MD, assistant professor of neurologic surgery at Ohio State University College of Medicine, Columbus, who commented on the findings for this article.

“While deep brain stimulation surgery in clinical practice is specifically tailored to each patient we treat, this study goes a step further by integrating research tools that have not yet made it to the clinical realm,” Dr. Yang said. “As a result, while these methods are not commonly used in clinical care, the overall strategy highlights how research advances are linked to clinical advances.”

Investigators are working to secure funding for a larger phase 2 trial.

“With millions of people affected by traumatic brain injury but without effective therapies, this study brings hope that options are on the horizon to help these patients,” Dr. Yang said.

The study was supported by funding from the National Institute of Health BRAIN Initiative and a grant from the Translational Science Center at Weill Cornell Medical College. Surgical implants were provided by Medtronic. Dr. Henderson and Dr. Schiff are listed as inventors on several patent applications for the experimental DBS therapy described in the study. Dr. Cardenas and Dr. Yang report no relevant financial relationships.


A version of this article first appeared on Medscape.com .

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166190</fileName> <TBEID>0C04D90D.SIG</TBEID> <TBUniqueIdentifier>MD_0C04D90D</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20231205T145324</QCDate> <firstPublished>20231205T145345</firstPublished> <LastPublished>20231205T145345</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20231205T145345</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline/> <bylineText>KELLI WHITLOCK BURTON</bylineText> <bylineFull>KELLI WHITLOCK BURTON</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>An experimental therapy that uses deep brain stimulation (DBS) to deliver precise electrical pulses to an area deep inside the brain restored executive function</metaDescription> <articlePDF/> <teaserImage/> <teaser>This is the first time a DBS device has been implanted in the central thalamus in humans.</teaser> <title>Experimental Therapy Restores Cognitive Function in Chronic TBI</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>52226</term> </publications> <sections> <term>39313</term> <term canonical="true">86</term> </sections> <topics> <term canonical="true">309</term> <term>308</term> <term>260</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Experimental Therapy Restores Cognitive Function in Chronic TBI</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">An experimental therapy that uses deep brain stimulation (DBS) to deliver precise electrical pulses to an area deep inside the brain restored executive function in patients with moderate to severe traumatic brain injury </span>(msTBI) and chronic sequelae.</p> <p>Participants in this first-in-humans trial experienced brain injuries between 3-18 years before the study that left them with persistent neuropsychological impairment and a range of functional disabilities.<br/><br/>This is the first time a DBS device has been implanted in the central thalamus in humans, an area of the brain measuring only a few millimeters wide that helps regulate consciousness.<br/><br/>Placing the electrodes required a novel surgical technique developed by the investigators that included virtual models of each participant’s brain, microelectrode recording, and neuroimaging to identify neuronal circuits affected by the TBI.<br/><br/>After 3 months of 12-hour daily DBS treatments, participants’ performance on cognitive tests improved by an average of 32% from baseline. Participants were able to read books, watch TV shows, play video games, complete schoolwork, and felt significantly less fatigued during the day.<br/><br/>Although the small trial only included five patients, the work is already being hailed by other experts as significant.“We were looking for partial restoration of executive attention and expected [the treatment] would have an effect, but I wouldn’t have anticipated the effect size we saw,” co-lead investigator Nicholas Schiff, MD, professor of neuroscience at Weill Cornell Medical College, New York City, said in an interview.<br/><br/>The findings were <a href="https://www.nature.com/articles/s41591-023-02638-4">published online</a> Dec. 4 in <i>Nature Medicine (doi:10.1038/s41591-023-02638-4</i>).</p> <h2>“No Trivial Feat”</h2> <p>An estimated 5.3 million children and adults are living with a permanent TBI-related disability in the US today. There currently is no effective therapy for impaired attention, executive function, working memory or information-processing speed caused by the initial injury.</p> <p>Previous research suggests that a loss of activity in key brain circuits in the thalamus may be associated with a loss of cognitive function.<br/><br/>The investigators recruited six adults (four men and two women) between the ages of 22 and 60 years with a history of msTBI and chronic neuropsychological impairment and functional disability. One participant was later withdrawn from the trial for protocol noncompliance.<br/><br/>Participants completed a range of questionnaires and tests to establish baseline cognitive, psychological, and quality-of-life status.<br/><br/>To restore lost executive functioning in the brain, investigators had to target not only the central lateral nucleus, but also the neuronal network connected to the region that reaches other parts of the brain.<br/><br/>“To do both of those things we had to develop a whole toolset in order to model both the target and trajectory, which had to be right to make it work properly,” co-lead investigator Jaimie Henderson, MD, professor of neurosurgery at Stanford University College of Medicine, Stanford, California, said in an interview. “That gave us a pretty narrow window in which to work and getting an electrode accurately to this target is not a trivial feat.”</p> <h2>“A Moving Target”</h2> <p>Each participant’s brain physiology was slightly different, meaning the path that worked for one individual might not work for another. The surgery was further complicated by shifting in the brain that occurred as individual electrodes were placed.</p> <p>“It was a literal moving target,” Dr. Henderson said.<br/><br/>In the beginning, investigators used microelectrode recording to “listen” to individual neurons to see which ones weren’t firing correctly.<br/><br/>When that method failed to offer the precise information needed for electrode placement, the investigators switched to neuroimaging, which allowed them to complete the surgery more quickly and accurately.<br/><br/>Participants remained in the hospital 1-2 days after surgery. They returned for postoperative imaging 30 days after surgery and were randomly assigned to different schedules for a 14-day titration period to optimize DBS stimulation.<br/><br/>The primary outcome was a 10% improvement on part B of the trail-making test, a neuropsychological test that measures executive functioning.<br/><br/>After 90 days of 12-hour daily DBS treatments, participants’ scores increased 15%–52% (average 32%) from baseline. Participants also reported an average of 33% decline in fatigue, one of the most common side effects of msTBI, and an average 80% improvement in attention.<br/><br/>The main safety risk during the 3- to-4-hour procedure is bleeding, which didn’t affect any of the participants in this study. One participant developed a surgical site infection, but all other side effects were mild.<br/><br/>After the 90-day treatment period, the study plan called for patients to be randomly assigned to a blinded withdrawal of treatment, with the DBS turned off for 21 days. Two of the patients declined to be randomized. DBS was turned off in one participant while the other two continued as normal.<br/><br/>After 3 weeks, the patient whose DBS was turned off showed a 34% decline on cognitive tests. The device was reactivated after the study and that participant has since reported improvements.<br/><br/>The DBS devices continue to function in all participants. Although their performance is not being measured as part of the study, anecdotal reports indicate sustained improvement in executive functioning.<br/><br/>“The brain injury causes this global down-regulation of brain function and what we think that this is doing is turning that back up again,” Dr. Henderson said. “At a very simplistic level, what we’re trying to do is turn the lights back up after the dimmer switch is switched down from the injury.”</p> <h2>New Hope</h2> <p>TBI patients are usually treated aggressively during the first year, when significant improvements are most likely, but there are few therapeutic options beyond that time, said neurologist Javier Cardenas, MD, who commented on the findings for this article.</p> <p>“Many providers throw their hands up after a year in terms of intervention and then we’re always looking at potential declines over time,” said Dr. Cardenas, director of the Concussion and Brain Injury Center at the Rockefeller Neuroscience Institution, West Virginia University, Morgantown. “Most people plateau and don’t decline but we’re always worried about a secondary decline in traumatic brain injury.”Surgery is usually only employed immediately following the brain injury. The notion of surgery as a therapeutic option years after the initial assault on the brain is novel, said Jimmy Yang, MD, assistant professor of neurologic surgery at Ohio State University College of Medicine, Columbus, who commented on the findings for this article.<br/><br/>“While deep brain stimulation surgery in clinical practice is specifically tailored to each patient we treat, this study goes a step further by integrating research tools that have not yet made it to the clinical realm,” Dr. Yang said. “As a result, while these methods are not commonly used in clinical care, the overall strategy highlights how research advances are linked to clinical advances.”<br/><br/>Investigators are working to secure funding for a larger phase 2 trial.<br/><br/>“With millions of people affected by traumatic brain injury but without effective therapies, this study brings hope that options are on the horizon to help these patients,” Dr. Yang said.<br/><br/>The study was supported by funding from the National Institute of Health BRAIN Initiative and a grant from the Translational Science Center at Weill Cornell Medical College. Surgical implants were provided by Medtronic. Dr. Henderson and Dr. Schiff are listed as inventors on several patent applications for the experimental DBS therapy described in the study. Dr. Cardenas and Dr. Yang report no relevant financial relationships.</p> <p> <i><br/><br/>A version of this article first appeared on </i> <span class="Hyperlink"> <i> <a href="https://www.medscape.com/viewarticle/999033">Medscape.com</a> </i> </span> <i>.</i> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

No benefit of EC/IC bypass versus meds in large-artery stroke

Article Type
Changed
Wed, 09/27/2023 - 09:45

For most symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or middle cerebral artery (MCA), adding extracranial-intracranial (EC-IC) bypass surgery to medical therapy did not reduce stroke or death in comparison with medical therapy alone in the latest randomized trial comparing the two interventions.

However, subgroup analyses suggest a potential benefit of surgery for certain patients, such as those with MCA vs. ICA occlusion, mean transit time greater than 6 seconds, or regional blood flow of 0.8 or less.

“We were disappointed by the results,” Liqun Jiao, MD, of the National Center for Neurological Disorders in Beijing, told this news organization. “We were expecting to demonstrate a benefit from EC-IC bypass surgery over medical treatment alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, per our original hypothesis.”

Although the study showed improved efficacy and safety for the surgical procedure, he said, “The progress of medical treatment is even better.”

The study was published online in JAMA.
 

Subgroup analyses promising

Previous randomized clinical trials, including the EC/IC Bypass Study and the Carotid Occlusion Surgery Study (COSS), showed no benefit in stroke prevention for patients with atherosclerotic occlusion of the ICA or MCA.

However, in light of improvements over the years in surgical techniques and patient selection, the authors conducted the Carotid and Middle Cerebral Artery Occlusion Surgery Study (CMOSS), a multicenter, randomized, open-label trial comparing EC-IC bypass surgery plus medical therapy, consisting of antiplatelet therapy and control of stroke risk factors, with medical therapy alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, with refined patient and operator selection.

A total of 324 patients (median age, 52.7 years; 79% men) in 13 centers in China were included; 309 patients (95%) completed the study.

The primary outcome was a composite of stroke or death within 30 days or ipsilateral ischemic stroke beyond 30 days through 2 years after randomization.

Secondary outcomes included, among others, any stroke or death within 2 years and fatal stroke within 2 years.

No significant difference was found for the primary outcome between the surgical group (8.6%) and the medical group (12.3%).

The 30-day risk of stroke or death was 6.2% in the surgery group, versus 1.8% (3/163) for the medical group. The risk of ipsilateral ischemic stroke beyond 30 days through 2 years was 2%, versus 10.3% – nonsignificant differences.

Furthermore, none of the prespecified secondary endpoints showed a significant difference, including any stroke or death within 2 years (9.9% vs. 15.3%; hazard ratio, 0.69) and fatal stroke within 2 years (2% vs. none).

Despite the findings, “We are encouraged by the subgroup analysis and the trend of long-term outcomes,” Dr. Jiao said. “We will continue to finish 5-10 years of follow-up to see whether the benefit of bypass surgery can be identified.”

The team has also launched the CMOSS-2 trial with a refined study design based on the results of subgroup analysis of the CMOSS study.

CMOSS-2 is recruiting patients with symptomatic chronic occlusion of the MCA and severe hemodynamic insufficiency in 13 sites in China. The primary outcome is ischemic stroke in the territory of the target artery within 24 months after randomization.
 

 

 

Can’t exclude benefit

Thomas Jeerakathil, MD, a professor at the University of Alberta and Northern Stroke Lead, Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, commented on the study for this news organization. Like the authors, he said, “I don’t consider this study to definitively exclude the benefit of EC/IC bypass. More studies are required.”

Dr. Jeerakathil would like to see a study of a higher-risk group based on both clinical and hemodynamic blood flow criteria. In the current study, he said, “The trial group overall may not have been at high enough stroke risk to justify the up-front risks of the EC-IC bypass procedure.”

In addition, “The analysis method of Cox proportional hazards regression for the primary outcome did not fit the data when the perioperative period was combined with the period beyond 30 days,” he noted. “The researchers were open about this and did pivot and included a post hoc relative risk-based analysis, but the validity of their primary analysis is questionable.”

Furthermore, the study was “somewhat underpowered with a relatively small sample size and had the potential to miss clinically significant differences between groups,” he said. “It would be good to see a longer follow-up period of at least 5 years added to this trial and used in future trials, rather than 2 years.”

“Lastly,” he said, “it’s difficult to ignore the reduction in recurrent stroke events over the 30-day to 2-year time period associated with EC-IC bypass (from 10.3% down to 2%). This reduction alone shows the procedure has some potential to prevent stroke and would argue for more trials.”

EC-IC could be considered for patients who have failed other medical therapies and have more substantial evidence of compromised blood flow to the brain than those in the CMOSS trial, he noted, as many of these patients have few other options. “In our center and many other centers, the approach to EC-IC bypass is probably much more selective than used in the trial.”

Dr. Jeerakathil concluded, “Clinicians should be cautious about offering the procedure to patients with just mildly delayed blood flow in the hemisphere affected by the occluded artery and those who have not yet failed maximal medical therapy.”

But Seemant Chaturvedi, MD, and J. Marc Simard, MD, PhD, both of the University of Maryland, Baltimore, are not as optimistic about the potential for EC-IC.

Writing in a related editorial, they conclude that the results with EC-IC bypass surgery in randomized trials “remain unimpressive. Until a better understanding of the unique hemodynamic features of the brain is achieved, it will be difficult for neurosurgeons to continue offering this procedure to patients with ICA or MCA occlusion. Intensive, multifaceted medical therapy remains the first-line treatment for [these] patients.”

The study was supported by a research grant from the National Health Commission of the People’s Republic of China. Dr. Jiao, Dr. Jeerakathil, Dr. Chaturvedi, and Dr. Simard reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

For most symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or middle cerebral artery (MCA), adding extracranial-intracranial (EC-IC) bypass surgery to medical therapy did not reduce stroke or death in comparison with medical therapy alone in the latest randomized trial comparing the two interventions.

However, subgroup analyses suggest a potential benefit of surgery for certain patients, such as those with MCA vs. ICA occlusion, mean transit time greater than 6 seconds, or regional blood flow of 0.8 or less.

“We were disappointed by the results,” Liqun Jiao, MD, of the National Center for Neurological Disorders in Beijing, told this news organization. “We were expecting to demonstrate a benefit from EC-IC bypass surgery over medical treatment alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, per our original hypothesis.”

Although the study showed improved efficacy and safety for the surgical procedure, he said, “The progress of medical treatment is even better.”

The study was published online in JAMA.
 

Subgroup analyses promising

Previous randomized clinical trials, including the EC/IC Bypass Study and the Carotid Occlusion Surgery Study (COSS), showed no benefit in stroke prevention for patients with atherosclerotic occlusion of the ICA or MCA.

However, in light of improvements over the years in surgical techniques and patient selection, the authors conducted the Carotid and Middle Cerebral Artery Occlusion Surgery Study (CMOSS), a multicenter, randomized, open-label trial comparing EC-IC bypass surgery plus medical therapy, consisting of antiplatelet therapy and control of stroke risk factors, with medical therapy alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, with refined patient and operator selection.

A total of 324 patients (median age, 52.7 years; 79% men) in 13 centers in China were included; 309 patients (95%) completed the study.

The primary outcome was a composite of stroke or death within 30 days or ipsilateral ischemic stroke beyond 30 days through 2 years after randomization.

Secondary outcomes included, among others, any stroke or death within 2 years and fatal stroke within 2 years.

No significant difference was found for the primary outcome between the surgical group (8.6%) and the medical group (12.3%).

The 30-day risk of stroke or death was 6.2% in the surgery group, versus 1.8% (3/163) for the medical group. The risk of ipsilateral ischemic stroke beyond 30 days through 2 years was 2%, versus 10.3% – nonsignificant differences.

Furthermore, none of the prespecified secondary endpoints showed a significant difference, including any stroke or death within 2 years (9.9% vs. 15.3%; hazard ratio, 0.69) and fatal stroke within 2 years (2% vs. none).

Despite the findings, “We are encouraged by the subgroup analysis and the trend of long-term outcomes,” Dr. Jiao said. “We will continue to finish 5-10 years of follow-up to see whether the benefit of bypass surgery can be identified.”

The team has also launched the CMOSS-2 trial with a refined study design based on the results of subgroup analysis of the CMOSS study.

CMOSS-2 is recruiting patients with symptomatic chronic occlusion of the MCA and severe hemodynamic insufficiency in 13 sites in China. The primary outcome is ischemic stroke in the territory of the target artery within 24 months after randomization.
 

 

 

Can’t exclude benefit

Thomas Jeerakathil, MD, a professor at the University of Alberta and Northern Stroke Lead, Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, commented on the study for this news organization. Like the authors, he said, “I don’t consider this study to definitively exclude the benefit of EC/IC bypass. More studies are required.”

Dr. Jeerakathil would like to see a study of a higher-risk group based on both clinical and hemodynamic blood flow criteria. In the current study, he said, “The trial group overall may not have been at high enough stroke risk to justify the up-front risks of the EC-IC bypass procedure.”

In addition, “The analysis method of Cox proportional hazards regression for the primary outcome did not fit the data when the perioperative period was combined with the period beyond 30 days,” he noted. “The researchers were open about this and did pivot and included a post hoc relative risk-based analysis, but the validity of their primary analysis is questionable.”

Furthermore, the study was “somewhat underpowered with a relatively small sample size and had the potential to miss clinically significant differences between groups,” he said. “It would be good to see a longer follow-up period of at least 5 years added to this trial and used in future trials, rather than 2 years.”

“Lastly,” he said, “it’s difficult to ignore the reduction in recurrent stroke events over the 30-day to 2-year time period associated with EC-IC bypass (from 10.3% down to 2%). This reduction alone shows the procedure has some potential to prevent stroke and would argue for more trials.”

EC-IC could be considered for patients who have failed other medical therapies and have more substantial evidence of compromised blood flow to the brain than those in the CMOSS trial, he noted, as many of these patients have few other options. “In our center and many other centers, the approach to EC-IC bypass is probably much more selective than used in the trial.”

Dr. Jeerakathil concluded, “Clinicians should be cautious about offering the procedure to patients with just mildly delayed blood flow in the hemisphere affected by the occluded artery and those who have not yet failed maximal medical therapy.”

But Seemant Chaturvedi, MD, and J. Marc Simard, MD, PhD, both of the University of Maryland, Baltimore, are not as optimistic about the potential for EC-IC.

Writing in a related editorial, they conclude that the results with EC-IC bypass surgery in randomized trials “remain unimpressive. Until a better understanding of the unique hemodynamic features of the brain is achieved, it will be difficult for neurosurgeons to continue offering this procedure to patients with ICA or MCA occlusion. Intensive, multifaceted medical therapy remains the first-line treatment for [these] patients.”

The study was supported by a research grant from the National Health Commission of the People’s Republic of China. Dr. Jiao, Dr. Jeerakathil, Dr. Chaturvedi, and Dr. Simard reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

For most symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or middle cerebral artery (MCA), adding extracranial-intracranial (EC-IC) bypass surgery to medical therapy did not reduce stroke or death in comparison with medical therapy alone in the latest randomized trial comparing the two interventions.

However, subgroup analyses suggest a potential benefit of surgery for certain patients, such as those with MCA vs. ICA occlusion, mean transit time greater than 6 seconds, or regional blood flow of 0.8 or less.

“We were disappointed by the results,” Liqun Jiao, MD, of the National Center for Neurological Disorders in Beijing, told this news organization. “We were expecting to demonstrate a benefit from EC-IC bypass surgery over medical treatment alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, per our original hypothesis.”

Although the study showed improved efficacy and safety for the surgical procedure, he said, “The progress of medical treatment is even better.”

The study was published online in JAMA.
 

Subgroup analyses promising

Previous randomized clinical trials, including the EC/IC Bypass Study and the Carotid Occlusion Surgery Study (COSS), showed no benefit in stroke prevention for patients with atherosclerotic occlusion of the ICA or MCA.

However, in light of improvements over the years in surgical techniques and patient selection, the authors conducted the Carotid and Middle Cerebral Artery Occlusion Surgery Study (CMOSS), a multicenter, randomized, open-label trial comparing EC-IC bypass surgery plus medical therapy, consisting of antiplatelet therapy and control of stroke risk factors, with medical therapy alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, with refined patient and operator selection.

A total of 324 patients (median age, 52.7 years; 79% men) in 13 centers in China were included; 309 patients (95%) completed the study.

The primary outcome was a composite of stroke or death within 30 days or ipsilateral ischemic stroke beyond 30 days through 2 years after randomization.

Secondary outcomes included, among others, any stroke or death within 2 years and fatal stroke within 2 years.

No significant difference was found for the primary outcome between the surgical group (8.6%) and the medical group (12.3%).

The 30-day risk of stroke or death was 6.2% in the surgery group, versus 1.8% (3/163) for the medical group. The risk of ipsilateral ischemic stroke beyond 30 days through 2 years was 2%, versus 10.3% – nonsignificant differences.

Furthermore, none of the prespecified secondary endpoints showed a significant difference, including any stroke or death within 2 years (9.9% vs. 15.3%; hazard ratio, 0.69) and fatal stroke within 2 years (2% vs. none).

Despite the findings, “We are encouraged by the subgroup analysis and the trend of long-term outcomes,” Dr. Jiao said. “We will continue to finish 5-10 years of follow-up to see whether the benefit of bypass surgery can be identified.”

The team has also launched the CMOSS-2 trial with a refined study design based on the results of subgroup analysis of the CMOSS study.

CMOSS-2 is recruiting patients with symptomatic chronic occlusion of the MCA and severe hemodynamic insufficiency in 13 sites in China. The primary outcome is ischemic stroke in the territory of the target artery within 24 months after randomization.
 

 

 

Can’t exclude benefit

Thomas Jeerakathil, MD, a professor at the University of Alberta and Northern Stroke Lead, Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, commented on the study for this news organization. Like the authors, he said, “I don’t consider this study to definitively exclude the benefit of EC/IC bypass. More studies are required.”

Dr. Jeerakathil would like to see a study of a higher-risk group based on both clinical and hemodynamic blood flow criteria. In the current study, he said, “The trial group overall may not have been at high enough stroke risk to justify the up-front risks of the EC-IC bypass procedure.”

In addition, “The analysis method of Cox proportional hazards regression for the primary outcome did not fit the data when the perioperative period was combined with the period beyond 30 days,” he noted. “The researchers were open about this and did pivot and included a post hoc relative risk-based analysis, but the validity of their primary analysis is questionable.”

Furthermore, the study was “somewhat underpowered with a relatively small sample size and had the potential to miss clinically significant differences between groups,” he said. “It would be good to see a longer follow-up period of at least 5 years added to this trial and used in future trials, rather than 2 years.”

“Lastly,” he said, “it’s difficult to ignore the reduction in recurrent stroke events over the 30-day to 2-year time period associated with EC-IC bypass (from 10.3% down to 2%). This reduction alone shows the procedure has some potential to prevent stroke and would argue for more trials.”

EC-IC could be considered for patients who have failed other medical therapies and have more substantial evidence of compromised blood flow to the brain than those in the CMOSS trial, he noted, as many of these patients have few other options. “In our center and many other centers, the approach to EC-IC bypass is probably much more selective than used in the trial.”

Dr. Jeerakathil concluded, “Clinicians should be cautious about offering the procedure to patients with just mildly delayed blood flow in the hemisphere affected by the occluded artery and those who have not yet failed maximal medical therapy.”

But Seemant Chaturvedi, MD, and J. Marc Simard, MD, PhD, both of the University of Maryland, Baltimore, are not as optimistic about the potential for EC-IC.

Writing in a related editorial, they conclude that the results with EC-IC bypass surgery in randomized trials “remain unimpressive. Until a better understanding of the unique hemodynamic features of the brain is achieved, it will be difficult for neurosurgeons to continue offering this procedure to patients with ICA or MCA occlusion. Intensive, multifaceted medical therapy remains the first-line treatment for [these] patients.”

The study was supported by a research grant from the National Health Commission of the People’s Republic of China. Dr. Jiao, Dr. Jeerakathil, Dr. Chaturvedi, and Dr. Simard reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>165250</fileName> <TBEID>0C04C616.SIG</TBEID> <TBUniqueIdentifier>MD_0C04C616</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20230926T175602</QCDate> <firstPublished>20230927T093854</firstPublished> <LastPublished>20230927T093854</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20230927T093854</CMSDate> <articleSource>FROM JAMA</articleSource> <facebookInfo/> <meetingNumber/> <byline/> <bylineText>MARILYNN LARKIN</bylineText> <bylineFull>MARILYNN LARKIN</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>For most symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or middle cerebral artery (MCA), adding extracranial-intracran</metaDescription> <articlePDF/> <teaserImage/> <teaser>Subgroup analyses suggest a potential benefit of surgery for certain patients, such as those with MCA vs. ICA occlusion, mean transit time greater than 6 seconds, or regional blood flow of 0.8 or less.</teaser> <title>No benefit of EC/IC bypass versus meds in large-artery stroke</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>52226</term> </publications> <sections> <term>39313</term> <term canonical="true">86</term> </sections> <topics> <term canonical="true">260</term> <term>258</term> <term>301</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>No benefit of EC/IC bypass versus meds in large-artery stroke</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">For most symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or middle cerebral artery (MCA), adding extracranial-intracranial (EC-IC) bypass surgery to medical therapy did not reduce stroke or death in comparison with medical therapy alone</span> in the latest randomized trial comparing the two interventions.</p> <p>However, subgroup analyses suggest a potential benefit of surgery for certain patients, such as those with MCA vs. ICA occlusion, mean transit time greater than 6 seconds, or regional blood flow of 0.8 or less.<br/><br/>“We were disappointed by the results,” Liqun Jiao, MD, of the National Center for Neurological Disorders in Beijing, told this news organization. “We were expecting to demonstrate a benefit from EC-IC bypass surgery over medical treatment alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, per our original hypothesis.”<br/><br/>Although the study showed improved efficacy and safety for the surgical procedure, he said, “The progress of medical treatment is even better.”<br/><br/>The study was <a href="https://jamanetwork.com/journals/jama/fullarticle/2808521?utm_campaign=articlePDF&amp;utm_medium=articlePDFlink&amp;utm_source=articlePDF&amp;utm_content=jama.2023.13390">published online</a> in JAMA.<br/><br/></p> <h2>Subgroup analyses promising</h2> <p>Previous randomized clinical trials, including the <a href="https://www.nejm.org/doi/full/10.1056/NEJM198511073131904">EC/IC Bypass Study</a> and the <a href="https://jamanetwork.com/journals/jama/fullarticle/1104607">Carotid Occlusion Surgery Study (COSS)</a>, showed no benefit in stroke prevention for patients with atherosclerotic occlusion of the ICA or MCA.</p> <p>However, in light of improvements over the years in surgical techniques and patient selection, the authors conducted the Carotid and Middle Cerebral Artery Occlusion Surgery Study (CMOSS), a multicenter, randomized, open-label trial comparing EC-IC bypass surgery plus medical therapy, consisting of antiplatelet therapy and control of stroke risk factors, with medical therapy alone in symptomatic patients with ICA or MCA occlusion and hemodynamic insufficiency, with refined patient and operator selection.<br/><br/>A total of 324 patients (median age, 52.7 years; 79% men) in 13 centers in China were included; 309 patients (95%) completed the study.<br/><br/>The primary outcome was a composite of stroke or death within 30 days or ipsilateral ischemic stroke beyond 30 days through 2 years after randomization.<br/><br/>Secondary outcomes included, among others, any stroke or death within 2 years and fatal stroke within 2 years.<br/><br/>No significant difference was found for the primary outcome between the surgical group (8.6%) and the medical group (12.3%).<br/><br/>The 30-day risk of stroke or death was 6.2% in the surgery group, versus 1.8% (3/163) for the medical group. The risk of ipsilateral ischemic stroke beyond 30 days through 2 years was 2%, versus 10.3% – nonsignificant differences.<br/><br/>Furthermore, none of the prespecified secondary endpoints showed a significant difference, including any stroke or death within 2 years (9.9% vs. 15.3%; hazard ratio, 0.69) and fatal stroke within 2 years (2% vs. none).<br/><br/>Despite the findings, “We are encouraged by the subgroup analysis and the trend of long-term outcomes,” Dr. Jiao said. “We will continue to finish 5-10 years of follow-up to see whether the benefit of bypass surgery can be identified.”<br/><br/>The team has also launched the <a href="https://classic.clinicaltrials.gov/ct2/show/NCT05899582">CMOSS-2 trial</a> with a refined study design based on the results of subgroup analysis of the CMOSS study.<br/><br/>CMOSS-2 is recruiting patients with symptomatic chronic occlusion of the MCA and severe hemodynamic insufficiency in 13 sites in China. The primary outcome is ischemic stroke in the territory of the target artery within 24 months after randomization.<br/><br/></p> <h2>Can’t exclude benefit</h2> <p>Thomas Jeerakathil, MD, a professor at the University of Alberta and Northern Stroke Lead, Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, commented on the study for this news organization. Like the authors, he said, “I don’t consider this study to definitively exclude the benefit of EC/IC bypass. More studies are required.”</p> <p>Dr. Jeerakathil would like to see a study of a higher-risk group based on both clinical and hemodynamic blood flow criteria. In the current study, he said, “The trial group overall may not have been at high enough stroke risk to justify the up-front risks of the EC-IC bypass procedure.”<br/><br/>In addition, “The analysis method of Cox proportional hazards regression for the primary outcome did not fit the data when the perioperative period was combined with the period beyond 30 days,” he noted. “The researchers were open about this and did pivot and included a post hoc relative risk-based analysis, but the validity of their primary analysis is questionable.”<br/><br/>Furthermore, the study was “somewhat underpowered with a relatively small sample size and had the potential to miss clinically significant differences between groups,” he said. “It would be good to see a longer follow-up period of at least 5 years added to this trial and used in future trials, rather than 2 years.”<br/><br/>“Lastly,” he said, “it’s difficult to ignore the reduction in recurrent stroke events over the 30-day to 2-year time period associated with EC-IC bypass (from 10.3% down to 2%). This reduction alone shows the procedure has some potential to prevent stroke and would argue for more trials.”<br/><br/>EC-IC could be considered for patients who have failed other medical therapies and have more substantial evidence of compromised blood flow to the brain than those in the CMOSS trial, he noted, as many of these patients have few other options. “In our center and many other centers, the approach to EC-IC bypass is probably much more selective than used in the trial.”<br/><br/>Dr. Jeerakathil concluded, “Clinicians should be cautious about offering the procedure to patients with just mildly delayed blood flow in the hemisphere affected by the occluded artery and those who have not yet failed maximal medical therapy.”<br/><br/>But Seemant Chaturvedi, MD, and J. Marc Simard, MD, PhD, both of the University of Maryland, Baltimore, are not as optimistic about the potential for EC-IC.<br/><br/>Writing in a <a href="https://jamanetwork.com/journals/jama/fullarticle/2808548">related editorial</a>, they conclude that the results with EC-IC bypass surgery in randomized trials “remain unimpressive. Until a better understanding of the unique hemodynamic features of the brain is achieved, it will be difficult for neurosurgeons to continue offering this procedure to patients with ICA or MCA occlusion. Intensive, multifaceted medical therapy remains the first-line treatment for [these] patients.”<br/><br/>The study was supported by a research grant from the National Health Commission of the People’s Republic of China. Dr. Jiao, Dr. Jeerakathil, Dr. Chaturvedi, and Dr. Simard reported no conflicts of interest.<span class="end"/></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/996832">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM JAMA

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

One in five brain injury trials shows errors, signs of spin

Article Type
Changed
Tue, 05/16/2023 - 00:03

A new report shows that spin, including signs of exaggeration and mathematical errors, was seen in 21% of 150 randomized traumatic brain injury clinical trials published in leading medical journals.

“This is concerning result,” said general physician Lucas Piason F. Martins, MD, of the Bahiana School of Medicine and Public Health, Salvador, Brazil. “Many of these trials have been included in clinical guidelines and cited extensively in systematic reviews and meta-analyses, especially those related to hypothermia therapy.”

Dr. Martins presented the findings at the annual meeting of the American Association of Neurological Surgeons.
 

Defining spin

In recent years, medical researchers have sought to define and identify spin in medical literature. According to a 2017 report in PLOS Biology, “spin refers to reporting practices that distort the interpretation of results and mislead readers so that results are viewed in a more favorable light.”

Any spin can be dangerous, Dr. Martins said, because it “can potentially mislead readers and affect the interpretation of study results, which in turn can impact clinical decision-making.”

For the new report, a systematic review, Dr. Martins and colleagues examined 150 studies published in 18 top-ranked journals including the Journal of Neurotrauma (26%), the Journal of Neurosurgery (15%), Critical Care Medicine (9%), and the New England Journal of Medicine (8%).

Studies were published between 1960 and 2020. The review protocol was previously published in BMJ Open.

According to the report, most of the 32 studies with spin (75%) had a “focus on statistically significant results not based on primary outcome.”

For example, Dr. Martins said in an interview that the abstract for a study about drug treatment of brain contusions highlighted a secondary result instead of the main finding that the medication had no effect. Another study of treatment for severe closed head injuries focused on a subgroup outcome.

As Dr. Martins noted, it’s potentially problematic for studies to have several outcomes, measure outcomes in different ways, and have multiple time points without a predefined primary outcome. “A positive finding based on such strategies could potentially be explained by chance alone,” he said.

The researchers also reported that 65% of the studies with spin highlighted “the beneficial effect of the treatment despite statistically nonsignificant results” and that 9% had incorrect statistical analysis.

The findings are especially noteworthy because “the trials we analyzed were deemed to have the highest quality of methodology,” Dr. Martins said.

The researchers didn’t identify specific studies that they deemed to have spin, and they won’t do so, Dr. Martins said. The authors do plan to reveal which journals were most spin-heavy but only when these findings are published.

Were the study authors trying to mislead readers? Not necessarily. Researchers “may search for positive results to confirm their beliefs, although with good intentions,” Dr. Martins said, adding that the researchers found that “positive research tends to be more cited.”

They also reported that studies with smaller sample sizes were more likely to have spin (P = .04).

At 21%, the percentage of studies with spin was lower than that found in some previous reports that analyzed medical literature in other specialties.

2019 study of 93 randomized clinical studies in cardiology, for example, found spin in 57% of abstracts and 67% of full texts. The lower number in the new study may be due to its especially conservative definition of spin, Dr. Martins said.
 

 

 

Appropriate methodology

Cardiologist Richard Krasuski, MD, of Duke University Medical Center, Durham, N.C., who coauthored the 2019 study into spin in cardiology studies, told this news organization that the new analysis follows appropriate methodology and appears to be valid.

It makes sense, he said, that smaller studies had more spin: “It is much harder to show statistical significance in small studies and softer endpoints can be harder to predict. Small neutral trials are also much harder to publish in high-level journals. This all increases the tendency to spin the results so the reviewer and eventually the reader is more captivated.”

Why is there so much spin in medical research? “As an investigator, you always hope to positively impact patient health and outcomes, so there is a tendency to look at secondary analyses to have something good to emphasize,” he said. “This is an inherent trait in most of us, to find something good we can focus on. I do believe that much of this is subconscious and perhaps with noble intent.”

Dr. Krasuski said that he advises trainees to look at the methodology of studies, not just the abstract or discussion sections. “You don’t have to be a trained statistician to identify how well the findings match the author’s interpretation.

“Always try to identify what the primary outcome of the study was at the time of the design and whether the investigators achieved their objective. As a reviewer, my own personal experience in research into spin makes me more cognizant of its existence, and I generally require authors to reword and tone down their message if it is not supported by the data.”

What’s next? The investigators want to look for spin in the wider neurosurgery literature, Dr. Martins said, with an eye toward developing “practical strategies to assess spin and give pragmatic recommendations for good practice in clinical research.”

No study funding is reported. Dr. Martins has no disclosures, and several study authors reported funding from the UK National Institute for Health Research. Dr. Krasuski has no disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

A new report shows that spin, including signs of exaggeration and mathematical errors, was seen in 21% of 150 randomized traumatic brain injury clinical trials published in leading medical journals.

“This is concerning result,” said general physician Lucas Piason F. Martins, MD, of the Bahiana School of Medicine and Public Health, Salvador, Brazil. “Many of these trials have been included in clinical guidelines and cited extensively in systematic reviews and meta-analyses, especially those related to hypothermia therapy.”

Dr. Martins presented the findings at the annual meeting of the American Association of Neurological Surgeons.
 

Defining spin

In recent years, medical researchers have sought to define and identify spin in medical literature. According to a 2017 report in PLOS Biology, “spin refers to reporting practices that distort the interpretation of results and mislead readers so that results are viewed in a more favorable light.”

Any spin can be dangerous, Dr. Martins said, because it “can potentially mislead readers and affect the interpretation of study results, which in turn can impact clinical decision-making.”

For the new report, a systematic review, Dr. Martins and colleagues examined 150 studies published in 18 top-ranked journals including the Journal of Neurotrauma (26%), the Journal of Neurosurgery (15%), Critical Care Medicine (9%), and the New England Journal of Medicine (8%).

Studies were published between 1960 and 2020. The review protocol was previously published in BMJ Open.

According to the report, most of the 32 studies with spin (75%) had a “focus on statistically significant results not based on primary outcome.”

For example, Dr. Martins said in an interview that the abstract for a study about drug treatment of brain contusions highlighted a secondary result instead of the main finding that the medication had no effect. Another study of treatment for severe closed head injuries focused on a subgroup outcome.

As Dr. Martins noted, it’s potentially problematic for studies to have several outcomes, measure outcomes in different ways, and have multiple time points without a predefined primary outcome. “A positive finding based on such strategies could potentially be explained by chance alone,” he said.

The researchers also reported that 65% of the studies with spin highlighted “the beneficial effect of the treatment despite statistically nonsignificant results” and that 9% had incorrect statistical analysis.

The findings are especially noteworthy because “the trials we analyzed were deemed to have the highest quality of methodology,” Dr. Martins said.

The researchers didn’t identify specific studies that they deemed to have spin, and they won’t do so, Dr. Martins said. The authors do plan to reveal which journals were most spin-heavy but only when these findings are published.

Were the study authors trying to mislead readers? Not necessarily. Researchers “may search for positive results to confirm their beliefs, although with good intentions,” Dr. Martins said, adding that the researchers found that “positive research tends to be more cited.”

They also reported that studies with smaller sample sizes were more likely to have spin (P = .04).

At 21%, the percentage of studies with spin was lower than that found in some previous reports that analyzed medical literature in other specialties.

2019 study of 93 randomized clinical studies in cardiology, for example, found spin in 57% of abstracts and 67% of full texts. The lower number in the new study may be due to its especially conservative definition of spin, Dr. Martins said.
 

 

 

Appropriate methodology

Cardiologist Richard Krasuski, MD, of Duke University Medical Center, Durham, N.C., who coauthored the 2019 study into spin in cardiology studies, told this news organization that the new analysis follows appropriate methodology and appears to be valid.

It makes sense, he said, that smaller studies had more spin: “It is much harder to show statistical significance in small studies and softer endpoints can be harder to predict. Small neutral trials are also much harder to publish in high-level journals. This all increases the tendency to spin the results so the reviewer and eventually the reader is more captivated.”

Why is there so much spin in medical research? “As an investigator, you always hope to positively impact patient health and outcomes, so there is a tendency to look at secondary analyses to have something good to emphasize,” he said. “This is an inherent trait in most of us, to find something good we can focus on. I do believe that much of this is subconscious and perhaps with noble intent.”

Dr. Krasuski said that he advises trainees to look at the methodology of studies, not just the abstract or discussion sections. “You don’t have to be a trained statistician to identify how well the findings match the author’s interpretation.

“Always try to identify what the primary outcome of the study was at the time of the design and whether the investigators achieved their objective. As a reviewer, my own personal experience in research into spin makes me more cognizant of its existence, and I generally require authors to reword and tone down their message if it is not supported by the data.”

What’s next? The investigators want to look for spin in the wider neurosurgery literature, Dr. Martins said, with an eye toward developing “practical strategies to assess spin and give pragmatic recommendations for good practice in clinical research.”

No study funding is reported. Dr. Martins has no disclosures, and several study authors reported funding from the UK National Institute for Health Research. Dr. Krasuski has no disclosures.

A version of this article first appeared on Medscape.com.

A new report shows that spin, including signs of exaggeration and mathematical errors, was seen in 21% of 150 randomized traumatic brain injury clinical trials published in leading medical journals.

“This is concerning result,” said general physician Lucas Piason F. Martins, MD, of the Bahiana School of Medicine and Public Health, Salvador, Brazil. “Many of these trials have been included in clinical guidelines and cited extensively in systematic reviews and meta-analyses, especially those related to hypothermia therapy.”

Dr. Martins presented the findings at the annual meeting of the American Association of Neurological Surgeons.
 

Defining spin

In recent years, medical researchers have sought to define and identify spin in medical literature. According to a 2017 report in PLOS Biology, “spin refers to reporting practices that distort the interpretation of results and mislead readers so that results are viewed in a more favorable light.”

Any spin can be dangerous, Dr. Martins said, because it “can potentially mislead readers and affect the interpretation of study results, which in turn can impact clinical decision-making.”

For the new report, a systematic review, Dr. Martins and colleagues examined 150 studies published in 18 top-ranked journals including the Journal of Neurotrauma (26%), the Journal of Neurosurgery (15%), Critical Care Medicine (9%), and the New England Journal of Medicine (8%).

Studies were published between 1960 and 2020. The review protocol was previously published in BMJ Open.

According to the report, most of the 32 studies with spin (75%) had a “focus on statistically significant results not based on primary outcome.”

For example, Dr. Martins said in an interview that the abstract for a study about drug treatment of brain contusions highlighted a secondary result instead of the main finding that the medication had no effect. Another study of treatment for severe closed head injuries focused on a subgroup outcome.

As Dr. Martins noted, it’s potentially problematic for studies to have several outcomes, measure outcomes in different ways, and have multiple time points without a predefined primary outcome. “A positive finding based on such strategies could potentially be explained by chance alone,” he said.

The researchers also reported that 65% of the studies with spin highlighted “the beneficial effect of the treatment despite statistically nonsignificant results” and that 9% had incorrect statistical analysis.

The findings are especially noteworthy because “the trials we analyzed were deemed to have the highest quality of methodology,” Dr. Martins said.

The researchers didn’t identify specific studies that they deemed to have spin, and they won’t do so, Dr. Martins said. The authors do plan to reveal which journals were most spin-heavy but only when these findings are published.

Were the study authors trying to mislead readers? Not necessarily. Researchers “may search for positive results to confirm their beliefs, although with good intentions,” Dr. Martins said, adding that the researchers found that “positive research tends to be more cited.”

They also reported that studies with smaller sample sizes were more likely to have spin (P = .04).

At 21%, the percentage of studies with spin was lower than that found in some previous reports that analyzed medical literature in other specialties.

2019 study of 93 randomized clinical studies in cardiology, for example, found spin in 57% of abstracts and 67% of full texts. The lower number in the new study may be due to its especially conservative definition of spin, Dr. Martins said.
 

 

 

Appropriate methodology

Cardiologist Richard Krasuski, MD, of Duke University Medical Center, Durham, N.C., who coauthored the 2019 study into spin in cardiology studies, told this news organization that the new analysis follows appropriate methodology and appears to be valid.

It makes sense, he said, that smaller studies had more spin: “It is much harder to show statistical significance in small studies and softer endpoints can be harder to predict. Small neutral trials are also much harder to publish in high-level journals. This all increases the tendency to spin the results so the reviewer and eventually the reader is more captivated.”

Why is there so much spin in medical research? “As an investigator, you always hope to positively impact patient health and outcomes, so there is a tendency to look at secondary analyses to have something good to emphasize,” he said. “This is an inherent trait in most of us, to find something good we can focus on. I do believe that much of this is subconscious and perhaps with noble intent.”

Dr. Krasuski said that he advises trainees to look at the methodology of studies, not just the abstract or discussion sections. “You don’t have to be a trained statistician to identify how well the findings match the author’s interpretation.

“Always try to identify what the primary outcome of the study was at the time of the design and whether the investigators achieved their objective. As a reviewer, my own personal experience in research into spin makes me more cognizant of its existence, and I generally require authors to reword and tone down their message if it is not supported by the data.”

What’s next? The investigators want to look for spin in the wider neurosurgery literature, Dr. Martins said, with an eye toward developing “practical strategies to assess spin and give pragmatic recommendations for good practice in clinical research.”

No study funding is reported. Dr. Martins has no disclosures, and several study authors reported funding from the UK National Institute for Health Research. Dr. Krasuski has no disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>163441</fileName> <TBEID>0C04A166.SIG</TBEID> <TBUniqueIdentifier>MD_0C04A166</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20230512T113138</QCDate> <firstPublished>20230512T120212</firstPublished> <LastPublished>20230512T120212</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20230512T120212</CMSDate> <articleSource>FROM AANS 2023</articleSource> <facebookInfo/> <meetingNumber/> <byline/> <bylineText>RANDY DOTINGA</bylineText> <bylineFull>RANDY DOTINGA</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>A new report shows that spin, including signs of exaggeration and mathematical errors, was seen in 21% of 150 randomized traumatic brain injury clinical trials </metaDescription> <articlePDF/> <teaserImage/> <teaser>“Many of these trials have been included in clinical guidelines and cited extensively in systematic reviews and meta-analyses, especially those related to hypothermia therapy.”</teaser> <title>One in five brain injury trials show errors, signs of spin</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>52226</term> </publications> <sections> <term>39313</term> <term canonical="true">86</term> <term>27970</term> </sections> <topics> <term canonical="true">260</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>One in five brain injury trials show errors, signs of spin</title> <deck/> </itemMeta> <itemContent> <p><span class="dateline">LOS ANGELES </span>– <span class="tag metaDescription">A new report shows that spin, including signs of exaggeration and mathematical errors, was seen in 21% of 150 randomized traumatic brain injury clinical trials published in leading medical journals.</span> </p> <p>“This is concerning result,” said general physician Lucas Piason F. Martins, MD, of the Bahiana School of Medicine and Public Health, Salvador, Brazil. “Many of these trials have been included in clinical guidelines and cited extensively in systematic reviews and meta-analyses, especially those related to hypothermia therapy.”<br/><br/>Dr. Martins presented the findings at the annual meeting of the American Association of Neurological Surgeons.<br/><br/><br/><br/></p> <h2>Defining spin</h2> <p>In recent years, medical researchers have sought to define and identify spin in medical literature. According to <a href="https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2002173">a 2017 report</a> in PLOS Biology, “spin refers to reporting practices that distort the interpretation of results and mislead readers so that results are viewed in a more favorable light.”</p> <p>Any spin can be dangerous, Dr. Martins said, because it “can potentially mislead readers and affect the interpretation of study results, which in turn can impact clinical decision-making.”<br/><br/>For the new report, a systematic review, Dr. Martins and colleagues examined 150 studies published in 18 top-ranked journals including the Journal of Neurotrauma (26%), the Journal of Neurosurgery (15%), Critical Care Medicine (9%), and the New England Journal of Medicine (8%).<br/><br/>Studies were published between 1960 and 2020. The review protocol was <a href="https://bmjopen.bmj.com/content/12/1/e046602.long">previously published</a> in BMJ Open.<br/><br/>According to the report, most of the 32 studies with spin (75%) had a “focus on statistically significant results not based on primary outcome.”<br/><br/>For example, Dr. Martins said in an interview that the abstract for a study about drug treatment of brain contusions highlighted a secondary result instead of the main finding that the medication had no effect. Another study of treatment for severe closed head injuries focused on a subgroup outcome.<br/><br/>As Dr. Martins noted, it’s potentially problematic for studies to have several outcomes, measure outcomes in different ways, and have multiple time points without a predefined primary outcome. “A positive finding based on such strategies could potentially be explained by chance alone,” he said.<br/><br/>The researchers also reported that 65% of the studies with spin highlighted “the beneficial effect of the treatment despite statistically nonsignificant results” and that 9% had incorrect statistical analysis.<br/><br/>The findings are especially noteworthy because “the trials we analyzed were deemed to have the highest quality of methodology,” Dr. Martins said.<br/><br/>The researchers didn’t identify specific studies that they deemed to have spin, and they won’t do so, Dr. Martins said. The authors do plan to reveal which journals were most spin-heavy but only when these findings are published.<br/><br/>Were the study authors trying to mislead readers? Not necessarily. Researchers “may search for positive results to confirm their beliefs, although with good intentions,” Dr. Martins said, adding that the researchers found that “positive research tends to be more cited.”<br/><br/>They also reported that studies with smaller sample sizes were more likely to have spin (<em>P</em> = .04).<br/><br/>At 21%, the percentage of studies with spin was lower than that found in <a href="https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2002173&amp;type=printable">some previous reports</a> that analyzed medical literature in other specialties.<br/><br/>A <a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2732330">2019 study</a> of 93 randomized clinical studies in cardiology, for example, found spin in 57% of abstracts and 67% of full texts. The lower number in the new study may be due to its especially conservative definition of spin, Dr. Martins said.<br/><br/></p> <h2>Appropriate methodology</h2> <p>Cardiologist Richard Krasuski, MD, of Duke University Medical Center, Durham, N.C., who coauthored the 2019 study into spin in cardiology studies, told this news organization that the new analysis follows appropriate methodology and appears to be valid.</p> <p>It makes sense, he said, that smaller studies had more spin: “It is much harder to show statistical significance in small studies and softer endpoints can be harder to predict. Small neutral trials are also much harder to publish in high-level journals. This all increases the tendency to spin the results so the reviewer and eventually the reader is more captivated.”<br/><br/>Why is there so much spin in medical research? “As an investigator, you always hope to positively impact patient health and outcomes, so there is a tendency to look at secondary analyses to have something good to emphasize,” he said. “This is an inherent trait in most of us, to find something good we can focus on. I do believe that much of this is subconscious and perhaps with noble intent.”<br/><br/>Dr. Krasuski said that he advises trainees to look at the methodology of studies, not just the abstract or discussion sections. “You don’t have to be a trained statistician to identify how well the findings match the author’s interpretation.<br/><br/>“Always try to identify what the primary outcome of the study was at the time of the design and whether the investigators achieved their objective. As a reviewer, my own personal experience in research into spin makes me more cognizant of its existence, and I generally require authors to reword and tone down their message if it is not supported by the data.”<br/><br/>What’s next? The investigators want to look for spin in the wider neurosurgery literature, Dr. Martins said, with an eye toward developing “practical strategies to assess spin and give pragmatic recommendations for good practice in clinical research.”<br/><br/>No study funding is reported. Dr. Martins has no disclosures, and several study authors reported funding from the UK National Institute for Health Research. Dr. Krasuski has no disclosures.<span class="end"/></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/991843">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AANS 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article