Top Sections
The Optimized Doctor
ACO Insider
Managing Your Practice
im
Main menu
IMN Main Menu
Explore menu
IMN Explore Menu
Proclivity ID
18818001
Unpublish
Specialty Focus
Mental Health
Vaccines
Addiction Medicine
Geriatrics
Negative Keywords
gaming
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
effective for the treatment of a baby
effective for the treatment of a boy
effective for the treatment of a child
effective for the treatment of a female
effective for the treatment of a girl
effective for the treatment of a kid
effective for the treatment of a minor
effective for the treatment of a newborn
effective for the treatment of a teen
effective for the treatment of a teenager
effective for the treatment of a toddler
effective for the treatment of a woman
effective for the treatment of adolescents
effective for the treatment of an adolescent
effective for the treatment of an infant
effective for the treatment of babies
effective for the treatment of baby
effective for the treatment of body building
effective for the treatment of boys
effective for the treatment of breast feeding
effective for the treatment of children
effective for the treatment of females
effective for the treatment of fetus
effective for the treatment of girls
effective for the treatment of infants
effective for the treatment of kids
effective for the treatment of minors
effective for the treatment of newborn
effective for the treatment of pediatric
effective for the treatment of pregnancy
effective for the treatment of pregnant
effective for the treatment of teenagers
effective for the treatment of teens
effective for the treatment of toddlers
effective for the treatment of women
effective for the treatment of youths
for the relief of a baby
for the relief of a boy
for the relief of a child
for the relief of a female
for the relief of a girl
for the relief of a kid
for the relief of a minor
for the relief of a newborn
for the relief of a teen
for the relief of a teenager
for the relief of a toddler
for the relief of a woman
for the relief of adolescents
for the relief of an adolescent
for the relief of an infant
for the relief of babies
for the relief of baby
for the relief of body building
for the relief of boys
for the relief of breast feeding
for the relief of children
for the relief of females
for the relief of fetus
for the relief of girls
for the relief of infants
for the relief of kids
for the relief of minors
for the relief of newborn
for the relief of pediatric
for the relief of pregnancy
for the relief of pregnant
for the relief of teenagers
for the relief of teens
for the relief of toddlers
for the relief of women
for the relief of youths
medicating a baby
medicating a boy
medicating a child
medicating a female
medicating a girl
medicating a kid
medicating a minor
medicating a newborn
medicating a teen
medicating a teenager
medicating a toddler
medicating a woman
medicating adolescents
medicating an adolescent
medicating an infant
medicating babies
medicating baby
medicating body building
medicating boys
medicating breast feeding
medicating children
medicating females
medicating fetus
medicating girls
medicating infants
medicating kids
medicating minors
medicating newborn
medicating pediatric
medicating pregnancy
medicating pregnant
medicating teenagers
medicating teens
medicating toddlers
medicating women
medicating youths
at risk for a baby
at risk for a boy
at risk for a child
at risk for a female
at risk for a girl
at risk for a kid
at risk for a minor
at risk for a newborn
at risk for a teen
at risk for a teenager
at risk for a toddler
at risk for a woman
at risk for adolescents
at risk for an adolescent
at risk for an infant
at risk for babies
at risk for baby
at risk for body building
at risk for boys
at risk for breast feeding
at risk for children
at risk for females
at risk for fetus
at risk for girls
at risk for infants
at risk for kids
at risk for minors
at risk for newborn
at risk for pediatric
at risk for pregnancy
at risk for pregnant
at risk for teenagers
at risk for teens
at risk for toddlers
at risk for women
at risk for youths
treating a baby
treating a boy
treating a child
treating a female
treating a girl
treating a kid
treating a minor
treating a newborn
treating a teen
treating a teenager
treating a toddler
treating a woman
treating adolescents
treating an adolescent
treating an infant
treating babies
treating baby
treating body building
treating boys
treating breast feeding
treating children
treating females
treating fetus
treating girls
treating infants
treating kids
treating minors
treating newborn
treating pediatric
treating pregnancy
treating pregnant
treating teenagers
treating teens
treating toddlers
treating women
treating youths
treatment for a baby
treatment for a boy
treatment for a child
treatment for a female
treatment for a girl
treatment for a kid
treatment for a minor
treatment for a newborn
treatment for a teen
treatment for a teenager
treatment for a toddler
treatment for a woman
treatment for adolescents
treatment for an adolescent
treatment for an infant
treatment for babies
treatment for baby
treatment for body building
treatment for boys
treatment for breast feeding
treatment for children
treatment for females
treatment for fetus
treatment for girls
treatment for infants
treatment for kids
treatment for minors
treatment for newborn
treatment for pediatric
treatment for pregnancy
treatment for pregnant
treatment for teenagers
treatment for teens
treatment for toddlers
treatment for women
treatment for youths
treatments for a baby
treatments for a boy
treatments for a child
treatments for a female
treatments for a girl
treatments for a kid
treatments for a minor
treatments for a newborn
treatments for a teen
treatments for a teenager
treatments for a toddler
treatments for a woman
treatments for adolescents
treatments for an adolescent
treatments for an infant
treatments for babies
treatments for baby
treatments for body building
treatments for boys
treatments for breast feeding
treatments for children
treatments for females
treatments for fetus
treatments for girls
treatments for infants
treatments for kids
treatments for minors
treatments for newborn
treatments for pediatric
treatments for pregnancy
treatments for pregnant
treatments for teenagers
treatments for teens
treatments for toddlers
treatments for women
treatments for youths
diagnosing a baby
diagnosing a boy
diagnosing a child
diagnosing a female
diagnosing a girl
diagnosing a kid
diagnosing a minor
diagnosing a newborn
diagnosing a teen
diagnosing a teenager
diagnosing a toddler
diagnosing a woman
diagnosing adolescents
diagnosing an adolescent
diagnosing an infant
diagnosing babies
diagnosing baby
diagnosing body building
diagnosing boys
diagnosing breast feeding
diagnosing children
diagnosing females
diagnosing fetus
diagnosing girls
diagnosing infants
diagnosing kids
diagnosing minors
diagnosing newborn
diagnosing pediatric
diagnosing pregnancy
diagnosing pregnant
diagnosing teenagers
diagnosing teens
diagnosing toddlers
diagnosing women
diagnosing youths
indicated for a baby
indicated for a boy
indicated for a child
indicated for a female
indicated for a girl
indicated for a kid
indicated for a minor
indicated for a newborn
indicated for a teen
indicated for a teenager
indicated for a toddler
indicated for a woman
indicated for adolescents
indicated for an adolescent
indicated for an infant
indicated for babies
indicated for baby
indicated for body building
indicated for boys
indicated for breast feeding
indicated for children
indicated for females
indicated for fetus
indicated for girls
indicated for infants
indicated for kids
indicated for minors
indicated for newborn
indicated for pediatric
indicated for pregnancy
indicated for pregnant
indicated for teenagers
indicated for teens
indicated for toddlers
indicated for women
indicated for youths
useful for a baby
useful for a boy
useful for a child
useful for a female
useful for a girl
useful for a kid
useful for a minor
useful for a newborn
useful for a teen
useful for a teenager
useful for a toddler
useful for a woman
useful for adolescents
useful for an adolescent
useful for an infant
useful for babies
useful for baby
useful for body building
useful for boys
useful for breast feeding
useful for children
useful for females
useful for fetus
useful for girls
useful for infants
useful for kids
useful for minors
useful for newborn
useful for pediatric
useful for pregnancy
useful for pregnant
useful for teenagers
useful for teens
useful for toddlers
useful for women
useful for youths
effective for a baby
effective for a boy
effective for a child
effective for a female
effective for a girl
effective for a kid
effective for a minor
effective for a newborn
effective for a teen
effective for a teenager
effective for a toddler
effective for a woman
effective for adolescents
effective for an adolescent
effective for an infant
effective for babies
effective for baby
effective for body building
effective for boys
effective for breast feeding
effective for children
effective for females
effective for fetus
effective for girls
effective for infants
effective for kids
effective for minors
effective for newborn
effective for pediatric
effective for pregnancy
effective for pregnant
effective for teenagers
effective for teens
effective for toddlers
effective for women
effective for youths
cures for a baby
cures for a boy
cures for a child
cures for a female
cures for a girl
cures for a kid
cures for a minor
cures for a newborn
cures for a teen
cures for a teenager
cures for a toddler
cures for a woman
cures for adolescents
cures for an adolescent
cures for an infant
cures for babies
cures for baby
cures for body building
cures for boys
cures for breast feeding
cures for children
cures for females
cures for fetus
cures for girls
cures for infants
cures for kids
cures for minors
cures for newborn
cures for pediatric
cures for pregnancy
cures for pregnant
cures for teenagers
cures for teens
cures for toddlers
cures for women
cures for youths
use in a baby
use in a boy
use in a child
use in a female
use in a girl
use in a kid
use in a minor
use in a newborn
use in a teen
use in a teenager
use in a toddler
use in a woman
use in adolescents
use in an adolescent
use in an infant
use in babies
use in baby
use in body building
use in boys
use in breast feeding
use in children
use in females
use in fetus
use in girls
use in infants
use in kids
use in minors
use in newborn
use in pediatric
use in pregnancy
use in pregnant
use in teenagers
use in teens
use in toddlers
use in women
use in youths
use in patients with a baby
use in patients with a boy
use in patients with a child
use in patients with a female
use in patients with a girl
use in patients with a kid
use in patients with a minor
use in patients with a newborn
use in patients with a teen
use in patients with a teenager
use in patients with a toddler
use in patients with a woman
use in patients with adolescents
use in patients with an adolescent
use in patients with an infant
use in patients with babies
use in patients with baby
use in patients with body building
use in patients with boys
use in patients with breast feeding
use in patients with children
use in patients with females
use in patients with fetus
use in patients with girls
use in patients with infants
use in patients with kids
use in patients with minors
use in patients with newborn
use in patients with pediatric
use in patients with pregnancy
use in patients with pregnant
use in patients with teenagers
use in patients with teens
use in patients with toddlers
use in patients with women
use in patients with youths
a baby diagnosis
a boy diagnosis
a child diagnosis
a female diagnosis
a girl diagnosis
a kid diagnosis
a minor diagnosis
a newborn diagnosis
a teen diagnosis
a teenager diagnosis
a toddler diagnosis
a woman diagnosis
adolescents diagnosis
an adolescent diagnosis
an infant diagnosis
babies diagnosis
baby diagnosis
body building diagnosis
boys diagnosis
breast feeding diagnosis
children diagnosis
females diagnosis
fetus diagnosis
girls diagnosis
infants diagnosis
kids diagnosis
minors diagnosis
newborn diagnosis
pediatric diagnosis
pregnancy diagnosis
pregnant diagnosis
teenagers diagnosis
teens diagnosis
toddlers diagnosis
women diagnosis
youths diagnosis
a baby medication
a boy medication
a child medication
a female medication
a girl medication
a kid medication
a minor medication
a newborn medication
a teen medication
a teenager medication
a toddler medication
a woman medication
adolescents medication
an adolescent medication
an infant medication
babies medication
baby medication
body building medication
boys medication
breast feeding medication
children medication
females medication
fetus medication
girls medication
infants medication
kids medication
minors medication
newborn medication
pediatric medication
pregnancy medication
pregnant medication
teenagers medication
teens medication
toddlers medication
women medication
youths medication
a baby therapy
a boy therapy
a child therapy
a female therapy
a girl therapy
a kid therapy
a minor therapy
a newborn therapy
a teen therapy
a teenager therapy
a toddler therapy
a woman therapy
adolescents therapy
an adolescent therapy
an infant therapy
babies therapy
baby therapy
body building therapy
boys therapy
breast feeding therapy
children therapy
females therapy
fetus therapy
girls therapy
infants therapy
kids therapy
minors therapy
newborn therapy
pediatric therapy
pregnancy therapy
pregnant therapy
teenagers therapy
teens therapy
toddlers therapy
women therapy
youths therapy
a baby treatment
a boy treatment
a child treatment
a female treatment
a girl treatment
a kid treatment
a minor treatment
a newborn treatment
a teen treatment
a teenager treatment
a toddler treatment
a woman treatment
adolescents treatment
an adolescent treatment
an infant treatment
babies treatment
baby treatment
body building treatment
boys treatment
breast feeding treatment
children treatment
females treatment
fetus treatment
girls treatment
infants treatment
kids treatment
minors treatment
newborn treatment
pediatric treatment
pregnancy treatment
pregnant treatment
teenagers treatment
teens treatment
toddlers treatment
women treatment
youths treatment
a baby cure
a boy cure
a child cure
a female cure
a girl cure
a kid cure
a minor cure
a newborn cure
a teen cure
a teenager cure
a toddler cure
a woman cure
adolescents cure
an adolescent cure
an infant cure
babies cure
baby cure
body building cure
boys cure
breast feeding cure
children cure
females cure
fetus cure
girls cure
infants cure
kids cure
minors cure
newborn cure
pediatric cure
pregnancy cure
pregnant cure
teenagers cure
teens cure
toddlers cure
women cure
youths cure
a baby symptoms
a boy symptoms
a child symptoms
a female symptoms
a girl symptoms
a kid symptoms
a minor symptoms
a newborn symptoms
a teen symptoms
a teenager symptoms
a toddler symptoms
a woman symptoms
adolescents symptoms
an adolescent symptoms
an infant symptoms
babies symptoms
baby symptoms
body building symptoms
boys symptoms
breast feeding symptoms
children symptoms
females symptoms
fetus symptoms
girls symptoms
infants symptoms
kids symptoms
minors symptoms
newborn symptoms
pediatric symptoms
pregnancy symptoms
pregnant symptoms
teenagers symptoms
teens symptoms
toddlers symptoms
women symptoms
youths symptoms
a baby medicine
a boy medicine
a child medicine
a female medicine
a girl medicine
a kid medicine
a minor medicine
a newborn medicine
a teen medicine
a teenager medicine
a toddler medicine
a woman medicine
adolescents medicine
an adolescent medicine
an infant medicine
babies medicine
baby medicine
body building medicine
boys medicine
breast feeding medicine
children medicine
females medicine
fetus medicine
girls medicine
infants medicine
kids medicine
minors medicine
newborn medicine
pediatric medicine
pregnancy medicine
pregnant medicine
teenagers medicine
teens medicine
toddlers medicine
women medicine
youths medicine
a baby usage
a boy usage
a child usage
a female usage
a girl usage
a kid usage
a minor usage
a newborn usage
a teen usage
a teenager usage
a toddler usage
a woman usage
adolescents usage
an adolescent usage
an infant usage
babies usage
baby usage
body building usage
boys usage
breast feeding usage
children usage
females usage
fetus usage
girls usage
infants usage
kids usage
minors usage
newborn usage
pediatric usage
pregnancy usage
pregnant usage
teenagers usage
teens usage
toddlers usage
women usage
youths usage
a baby remedy
a boy remedy
a child remedy
a female remedy
a girl remedy
a kid remedy
a minor remedy
a newborn remedy
a teen remedy
a teenager remedy
a toddler remedy
a woman remedy
adolescents remedy
an adolescent remedy
an infant remedy
babies remedy
baby remedy
body building remedy
boys remedy
breast feeding remedy
children remedy
females remedy
fetus remedy
girls remedy
infants remedy
kids remedy
minors remedy
newborn remedy
pediatric remedy
pregnancy remedy
pregnant remedy
teenagers remedy
teens remedy
toddlers remedy
women remedy
youths remedy
a baby prescription
a boy prescription
a child prescription
a female prescription
a girl prescription
a kid prescription
a minor prescription
a newborn prescription
a teen prescription
a teenager prescription
a toddler prescription
a woman prescription
adolescents prescription
an adolescent prescription
an infant prescription
babies prescription
baby prescription
body building prescription
boys prescription
breast feeding prescription
children prescription
females prescription
fetus prescription
girls prescription
infants prescription
kids prescription
minors prescription
newborn prescription
pediatric prescription
pregnancy prescription
pregnant prescription
teenagers prescription
teens prescription
toddlers prescription
women prescription
youths prescription
a baby pill
a boy pill
a child pill
a female pill
a girl pill
a kid pill
a minor pill
a newborn pill
a teen pill
a teenager pill
a toddler pill
a woman pill
adolescents pill
an adolescent pill
an infant pill
babies pill
baby pill
body building pill
boys pill
breast feeding pill
children pill
females pill
fetus pill
girls pill
infants pill
kids pill
minors pill
newborn pill
pediatric pill
pregnancy pill
pregnant pill
teenagers pill
teens pill
toddlers pill
women pill
youths pill
a baby drug
a boy drug
a child drug
a female drug
a girl drug
a kid drug
a minor drug
a newborn drug
a teen drug
a teenager drug
a toddler drug
a woman drug
adolescents drug
an adolescent drug
an infant drug
babies drug
baby drug
body building drug
boys drug
breast feeding drug
children drug
females drug
fetus drug
girls drug
infants drug
kids drug
minors drug
newborn drug
pediatric drug
pregnancy drug
pregnant drug
teenagers drug
teens drug
toddlers drug
women drug
youths drug
a baby tablet
a boy tablet
a child tablet
a female tablet
a girl tablet
a kid tablet
a minor tablet
a newborn tablet
a teen tablet
a teenager tablet
a toddler tablet
a woman tablet
adolescents tablet
an adolescent tablet
an infant tablet
babies tablet
baby tablet
body building tablet
boys tablet
breast feeding tablet
children tablet
females tablet
fetus tablet
girls tablet
infants tablet
kids tablet
minors tablet
newborn tablet
pediatric tablet
pregnancy tablet
pregnant tablet
teenagers tablet
teens tablet
toddlers tablet
women tablet
youths tablet
a baby management
a boy management
a child management
a female management
a girl management
a kid management
a minor management
a newborn management
a teen management
a teenager management
a toddler management
a woman management
adolescents management
an adolescent management
an infant management
babies management
baby management
body building management
boys management
breast feeding management
children management
females management
fetus management
girls management
infants management
kids management
minors management
newborn management
pediatric management
pregnancy management
pregnant management
teenagers management
teens management
toddlers management
women management
youths management
a baby indication
a boy indication
a child indication
a female indication
a girl indication
a kid indication
a minor indication
a newborn indication
a teen indication
a teenager indication
a toddler indication
a woman indication
adolescents indication
an adolescent indication
an infant indication
babies indication
baby indication
body building indication
boys indication
breast feeding indication
children indication
females indication
fetus indication
girls indication
infants indication
kids indication
minors indication
newborn indication
pediatric indication
pregnancy indication
pregnant indication
teenagers indication
teens indication
toddlers indication
women indication
youths indication
breast cancer a baby
breast cancer a boy
breast cancer a child
breast cancer a female
breast cancer a girl
breast cancer a kid
breast cancer a minor
breast cancer a newborn
breast cancer a teen
breast cancer a teenager
breast cancer a toddler
breast cancer a woman
breast cancer adolescents
breast cancer an adolescent
breast cancer an infant
breast cancer babies
breast cancer baby
breast cancer body building
breast cancer boys
breast cancer breast feeding
breast cancer children
breast cancer females
breast cancer fetus
breast cancer girls
breast cancer infants
breast cancer kids
breast cancer minors
breast cancer newborn
breast cancer pediatric
breast cancer pregnancy
breast cancer pregnant
breast cancer teenagers
breast cancer teens
breast cancer toddlers
breast cancer women
breast cancer youths
prostate cancer a baby
prostate cancer a boy
prostate cancer a child
prostate cancer a female
prostate cancer a girl
prostate cancer a kid
prostate cancer a minor
prostate cancer a newborn
prostate cancer a teen
prostate cancer a teenager
prostate cancer a toddler
prostate cancer a woman
prostate cancer adolescents
prostate cancer an adolescent
prostate cancer an infant
prostate cancer babies
prostate cancer baby
prostate cancer body building
prostate cancer boys
prostate cancer breast feeding
prostate cancer children
prostate cancer females
prostate cancer fetus
prostate cancer girls
prostate cancer infants
prostate cancer kids
prostate cancer minors
prostate cancer newborn
prostate cancer pediatric
prostate cancer pregnancy
prostate cancer pregnant
prostate cancer teenagers
prostate cancer teens
prostate cancer toddlers
prostate cancer women
prostate cancer youths
steroid a baby
steroid a boy
steroid a child
steroid a female
steroid a girl
steroid a kid
steroid a minor
steroid a newborn
steroid a teen
steroid a teenager
steroid a toddler
steroid a woman
steroid adolescents
steroid an adolescent
steroid an infant
steroid babies
steroid baby
steroid body building
steroid boys
steroid breast feeding
steroid children
steroid females
steroid fetus
steroid girls
steroid infants
steroid kids
steroid minors
steroid newborn
steroid pediatric
steroid pregnancy
steroid pregnant
steroid teenagers
steroid teens
steroid toddlers
steroid women
steroid youths
steroids a baby
steroids a boy
steroids a child
steroids a female
steroids a girl
steroids a kid
steroids a minor
steroids a newborn
steroids a teen
steroids a teenager
steroids a toddler
steroids a woman
steroids adolescents
steroids an adolescent
steroids an infant
steroids babies
steroids baby
steroids body building
steroids boys
steroids breast feeding
steroids children
steroids females
steroids fetus
steroids girls
steroids infants
steroids kids
steroids minors
steroids newborn
steroids pediatric
steroids pregnancy
steroids pregnant
steroids teenagers
steroids teens
steroids toddlers
steroids women
steroids youths
abbvie
AbbVie
acid
addicted
addiction
adolescent
adult sites
Advocacy
advocacy
agitated states
AJO, postsurgical analgesic, knee, replacement, surgery
alcohol
amphetamine
androgen
antibody
apple cider vinegar
assistance
Assistance
association
at home
attorney
audit
ayurvedic
baby
ban
baricitinib
bed bugs
best
bible
bisexual
black
bleach
blog
bulimia nervosa
buy
cannabis
certificate
certification
certified
cervical cancer, concurrent chemoradiotherapy, intravoxel incoherent motion magnetic resonance imaging, MRI, IVIM, diffusion-weighted MRI, DWI
charlie sheen
cheap
cheapest
child
childhood
childlike
children
chronic fatigue syndrome
Cladribine Tablets
cocaine
cock
combination therapies, synergistic antitumor efficacy, pertuzumab, trastuzumab, ipilimumab, nivolumab, palbociclib, letrozole, lapatinib, docetaxel, trametinib, dabrafenib, carflzomib, lenalidomide
contagious
Cortical Lesions
cream
creams
crime
criminal
cure
dangerous
dangers
dasabuvir
Dasabuvir
dead
deadly
death
dementia
dependence
dependent
depression
dermatillomania
die
diet
Disability
Discount
discount
dog
drink
drug abuse
drug-induced
dying
eastern medicine
eat
ect
eczema
electroconvulsive therapy
electromagnetic therapy
electrotherapy
epa
epilepsy
erectile dysfunction
explosive disorder
fake
Fake-ovir
fatal
fatalities
fatality
fibromyalgia
financial
Financial
fish oil
food
foods
foundation
free
Gabriel Pardo
gaston
general hospital
genetic
geriatric
Giancarlo Comi
gilead
Gilead
glaucoma
Glenn S. Williams
Glenn Williams
Gloria Dalla Costa
gonorrhea
Greedy
greedy
guns
hallucinations
harvoni
Harvoni
herbal
herbs
heroin
herpes
Hidradenitis Suppurativa
holistic
home
home remedies
home remedy
homeopathic
homeopathy
hydrocortisone
ice
image
images
job
kid
kids
kill
killer
laser
lawsuit
lawyer
ledipasvir
Ledipasvir
lesbian
lesions
lights
liver
lupus
marijuana
melancholic
memory loss
menopausal
mental retardation
military
milk
moisturizers
monoamine oxidase inhibitor drugs
MRI
MS
murder
national
natural
natural cure
natural cures
natural medications
natural medicine
natural medicines
natural remedies
natural remedy
natural treatment
natural treatments
naturally
Needy
needy
Neurology Reviews
neuropathic
nightclub massacre
nightclub shooting
nude
nudity
nutraceuticals
OASIS
oasis
off label
ombitasvir
Ombitasvir
ombitasvir/paritaprevir/ritonavir with dasabuvir
orlando shooting
overactive thyroid gland
overdose
overdosed
Paolo Preziosa
paritaprevir
Paritaprevir
pediatric
pedophile
photo
photos
picture
post partum
postnatal
pregnancy
pregnant
prenatal
prepartum
prison
program
Program
Protest
protest
psychedelics
pulse nightclub
puppy
purchase
purchasing
rape
recall
recreational drug
Rehabilitation
Retinal Measurements
retrograde ejaculation
risperdal
ritonavir
Ritonavir
ritonavir with dasabuvir
robin williams
sales
sasquatch
schizophrenia
seizure
seizures
sex
sexual
sexy
shock treatment
silver
sleep disorders
smoking
sociopath
sofosbuvir
Sofosbuvir
sovaldi
ssri
store
sue
suicidal
suicide
supplements
support
Support
Support Path
teen
teenage
teenagers
Telerehabilitation
testosterone
Th17
Th17:FoxP3+Treg cell ratio
Th22
toxic
toxin
tragedy
treatment resistant
V Pak
vagina
velpatasvir
Viekira Pa
Viekira Pak
viekira pak
violence
virgin
vitamin
VPak
weight loss
withdrawal
wrinkles
xxx
young adult
young adults
zoloft
financial
sofosbuvir
ritonavir with dasabuvir
discount
support path
program
ritonavir
greedy
ledipasvir
assistance
viekira pak
vpak
advocacy
needy
protest
abbvie
paritaprevir
ombitasvir
direct-acting antivirals
dasabuvir
gilead
fake-ovir
support
v pak
oasis
harvoni
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-imn')]
div[contains(@class, 'pane-pub-home-imn')]
div[contains(@class, 'pane-pub-topic-imn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Internal Medicine News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 09:05
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 09:05

High Breast Cancer Risk With Menopausal Hormone Therapy & Strong Family History

Article Type
Changed
Fri, 09/06/2024 - 12:04

 

TOPLINE:

The use of menopausal hormone therapy (MHT) increases breast cancer risk in women with a strong family history of breast cancer. These women have a striking cumulative risk of developing breast cancer (age, 50-80 years) of 22.4%, according to a new modelling study of UK women.

METHODOLOGY:

This was a modeling study integrating two data-sets of UK women: the BOADICEA dataset of age-specific breast cancer risk with family history and the Collaborative Group on Hormonal Factors in Breast Cancer, which covers relative risk for breast cancer with different types and durations of MHT.

Four different breast cancer family history profiles were:

  • “Average” family history of breast cancer has unknown affected family members;
  • “Modest” family history comprises a single first-degree relative with breast cancer at the age of 60 years.
  • “Intermediate” family history comprises a single first-degree relative who developed breast cancer at the age of 40 years.
  • “Strong” family history comprises two first-degree relatives who developed breast cancer at the age of 50 years.

TAKEAWAY:

  • The lowest risk category: “Average” family history with no MHT use has a cumulative breast cancer risk (age, 50-80 years) of 9.8% and a risk of dying from breast cancer of 1.7%. These risks rise with 5 years’ exposure to MHT (age, 50-55 years) to 11.0% and 1.8%, respectively.
  • The highest risk category: “Strong” family history with no MHT use has a cumulative breast cancer risk (age, 50-80 years) of 19.6% and a risk of dying from breast cancer of 3.2%. These risks rise with 5 years’ exposure to MHT (age, 50-55 years) to 22.4% and 3.5%, respectively.

IN PRACTICE:

The authors concluded that, “These integrated data will enable more accurate estimates of absolute and attributable risk associated with MHT exposure for women with a family history of breast cancer, informing shared decision-making.”

SOURCE:

The lead author is Catherine Huntley of the Institute of Cancer Research, London, England. The study appeared in the British Journal of General Practice.

LIMITATIONS:

Limitations included modeling study that did not directly measure individuals with combined risks.

DISCLOSURES:

The study was funded by several sources including Cancer Research UK. The authors reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The use of menopausal hormone therapy (MHT) increases breast cancer risk in women with a strong family history of breast cancer. These women have a striking cumulative risk of developing breast cancer (age, 50-80 years) of 22.4%, according to a new modelling study of UK women.

METHODOLOGY:

This was a modeling study integrating two data-sets of UK women: the BOADICEA dataset of age-specific breast cancer risk with family history and the Collaborative Group on Hormonal Factors in Breast Cancer, which covers relative risk for breast cancer with different types and durations of MHT.

Four different breast cancer family history profiles were:

  • “Average” family history of breast cancer has unknown affected family members;
  • “Modest” family history comprises a single first-degree relative with breast cancer at the age of 60 years.
  • “Intermediate” family history comprises a single first-degree relative who developed breast cancer at the age of 40 years.
  • “Strong” family history comprises two first-degree relatives who developed breast cancer at the age of 50 years.

TAKEAWAY:

  • The lowest risk category: “Average” family history with no MHT use has a cumulative breast cancer risk (age, 50-80 years) of 9.8% and a risk of dying from breast cancer of 1.7%. These risks rise with 5 years’ exposure to MHT (age, 50-55 years) to 11.0% and 1.8%, respectively.
  • The highest risk category: “Strong” family history with no MHT use has a cumulative breast cancer risk (age, 50-80 years) of 19.6% and a risk of dying from breast cancer of 3.2%. These risks rise with 5 years’ exposure to MHT (age, 50-55 years) to 22.4% and 3.5%, respectively.

IN PRACTICE:

The authors concluded that, “These integrated data will enable more accurate estimates of absolute and attributable risk associated with MHT exposure for women with a family history of breast cancer, informing shared decision-making.”

SOURCE:

The lead author is Catherine Huntley of the Institute of Cancer Research, London, England. The study appeared in the British Journal of General Practice.

LIMITATIONS:

Limitations included modeling study that did not directly measure individuals with combined risks.

DISCLOSURES:

The study was funded by several sources including Cancer Research UK. The authors reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

The use of menopausal hormone therapy (MHT) increases breast cancer risk in women with a strong family history of breast cancer. These women have a striking cumulative risk of developing breast cancer (age, 50-80 years) of 22.4%, according to a new modelling study of UK women.

METHODOLOGY:

This was a modeling study integrating two data-sets of UK women: the BOADICEA dataset of age-specific breast cancer risk with family history and the Collaborative Group on Hormonal Factors in Breast Cancer, which covers relative risk for breast cancer with different types and durations of MHT.

Four different breast cancer family history profiles were:

  • “Average” family history of breast cancer has unknown affected family members;
  • “Modest” family history comprises a single first-degree relative with breast cancer at the age of 60 years.
  • “Intermediate” family history comprises a single first-degree relative who developed breast cancer at the age of 40 years.
  • “Strong” family history comprises two first-degree relatives who developed breast cancer at the age of 50 years.

TAKEAWAY:

  • The lowest risk category: “Average” family history with no MHT use has a cumulative breast cancer risk (age, 50-80 years) of 9.8% and a risk of dying from breast cancer of 1.7%. These risks rise with 5 years’ exposure to MHT (age, 50-55 years) to 11.0% and 1.8%, respectively.
  • The highest risk category: “Strong” family history with no MHT use has a cumulative breast cancer risk (age, 50-80 years) of 19.6% and a risk of dying from breast cancer of 3.2%. These risks rise with 5 years’ exposure to MHT (age, 50-55 years) to 22.4% and 3.5%, respectively.

IN PRACTICE:

The authors concluded that, “These integrated data will enable more accurate estimates of absolute and attributable risk associated with MHT exposure for women with a family history of breast cancer, informing shared decision-making.”

SOURCE:

The lead author is Catherine Huntley of the Institute of Cancer Research, London, England. The study appeared in the British Journal of General Practice.

LIMITATIONS:

Limitations included modeling study that did not directly measure individuals with combined risks.

DISCLOSURES:

The study was funded by several sources including Cancer Research UK. The authors reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Breast Cancer Hormone Therapy May Protect Against Dementia

Article Type
Changed
Fri, 09/06/2024 - 11:14

 

TOPLINE:

Hormone-modulating therapy for breast cancer may protect older women from Alzheimer’s disease and related dementias, although the protective effect varies by age and race, with the greatest benefit seen in younger Black women.

METHODOLOGY:

  • Hormone-modulating therapy is widely used to treat hormone receptor–positive breast cancer, but the cognitive effects of the treatment, including a potential link to dementia, remain unclear.
  • To investigate, researchers used the SEER-Medicare linked database to identify women aged 65 years or older with breast cancer who did and did not receive hormone-modulating therapy within 3 years following their diagnosis.
  • The researchers excluded women with preexisting Alzheimer’s disease/dementia diagnoses or those who had received hormone-modulating therapy before their breast cancer diagnosis.
  • Analyses were adjusted for demographic, sociocultural, and clinical variables, and subgroup analyses evaluated the impact of age, race, and type of hormone-modulating therapy on Alzheimer’s disease/dementia risk.

TAKEAWAY:

  • Among the 18,808 women included in the analysis, 66% received hormone-modulating therapy and 34% did not. During the mean follow-up of 12 years, 24% of hormone-modulating therapy users and 28% of nonusers developed Alzheimer’s disease/dementia.
  • Overall, hormone-modulating therapy use (vs nonuse) was associated with a significant 7% lower risk for Alzheimer’s disease/dementia (hazard ratio [HR], 0.93; P = .005), with notable age and racial differences.
  • Hormone-modulating therapy use was associated with a 24% lower risk for Alzheimer’s disease/dementia in Black women aged 65-74 years (HR, 0.76), but that protective effect decreased to 19% in Black women aged 75 years or older (HR, 0.81). White women aged 65-74 years who received hormone-modulating therapy (vs those who did not) had an 11% lower risk for Alzheimer’s disease/dementia (HR, 0.89), but the association disappeared among those aged 75 years or older (HR, 0.96; 95% CI, 0.90-1.02). Other races demonstrated no significant association between hormone-modulating therapy use and Alzheimer’s disease/dementia.
  • Overall, the use of an aromatase inhibitor or a selective estrogen receptor modulator was associated with a significantly lower risk for Alzheimer’s disease/dementia (HR, 0.93 and HR, 0.89, respectively).

IN PRACTICE:

Overall, the retrospective study found that “hormone therapy was associated with protection against [Alzheimer’s/dementia] in women aged 65 years or older with newly diagnosed breast cancer,” with the decrease in risk relatively greater for Black women and women younger than 75 years, the authors concluded.

“The results highlight the critical need for personalized breast cancer treatment plans that are tailored to the individual characteristics of each patient, particularly given the significantly higher likelihood (two to three times more) of Black women developing [Alzheimer’s/dementia], compared with their White counterparts,” the researchers added.
 

SOURCE:

The study, with first author Chao Cai, PhD, Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, was published online on July 16 in JAMA Network Open.

LIMITATIONS:

The study included only women aged 65 years or older, limiting generalizability to younger women. The dataset lacked genetic information and laboratory data related to dementia. The duration of hormone-modulating therapy use beyond 3 years and specific formulations were not assessed. Potential confounders such as variations in chemotherapy, radiation, and surgery were not fully addressed.

DISCLOSURES:

Support for the study was provided by the National Institutes of Health; Carolina Center on Alzheimer’s Disease and Minority Research pilot project; and the Dean’s Faculty Advancement Fund, University of Pittsburgh, Pennsylvania. The authors reported no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Hormone-modulating therapy for breast cancer may protect older women from Alzheimer’s disease and related dementias, although the protective effect varies by age and race, with the greatest benefit seen in younger Black women.

METHODOLOGY:

  • Hormone-modulating therapy is widely used to treat hormone receptor–positive breast cancer, but the cognitive effects of the treatment, including a potential link to dementia, remain unclear.
  • To investigate, researchers used the SEER-Medicare linked database to identify women aged 65 years or older with breast cancer who did and did not receive hormone-modulating therapy within 3 years following their diagnosis.
  • The researchers excluded women with preexisting Alzheimer’s disease/dementia diagnoses or those who had received hormone-modulating therapy before their breast cancer diagnosis.
  • Analyses were adjusted for demographic, sociocultural, and clinical variables, and subgroup analyses evaluated the impact of age, race, and type of hormone-modulating therapy on Alzheimer’s disease/dementia risk.

TAKEAWAY:

  • Among the 18,808 women included in the analysis, 66% received hormone-modulating therapy and 34% did not. During the mean follow-up of 12 years, 24% of hormone-modulating therapy users and 28% of nonusers developed Alzheimer’s disease/dementia.
  • Overall, hormone-modulating therapy use (vs nonuse) was associated with a significant 7% lower risk for Alzheimer’s disease/dementia (hazard ratio [HR], 0.93; P = .005), with notable age and racial differences.
  • Hormone-modulating therapy use was associated with a 24% lower risk for Alzheimer’s disease/dementia in Black women aged 65-74 years (HR, 0.76), but that protective effect decreased to 19% in Black women aged 75 years or older (HR, 0.81). White women aged 65-74 years who received hormone-modulating therapy (vs those who did not) had an 11% lower risk for Alzheimer’s disease/dementia (HR, 0.89), but the association disappeared among those aged 75 years or older (HR, 0.96; 95% CI, 0.90-1.02). Other races demonstrated no significant association between hormone-modulating therapy use and Alzheimer’s disease/dementia.
  • Overall, the use of an aromatase inhibitor or a selective estrogen receptor modulator was associated with a significantly lower risk for Alzheimer’s disease/dementia (HR, 0.93 and HR, 0.89, respectively).

IN PRACTICE:

Overall, the retrospective study found that “hormone therapy was associated with protection against [Alzheimer’s/dementia] in women aged 65 years or older with newly diagnosed breast cancer,” with the decrease in risk relatively greater for Black women and women younger than 75 years, the authors concluded.

“The results highlight the critical need for personalized breast cancer treatment plans that are tailored to the individual characteristics of each patient, particularly given the significantly higher likelihood (two to three times more) of Black women developing [Alzheimer’s/dementia], compared with their White counterparts,” the researchers added.
 

SOURCE:

The study, with first author Chao Cai, PhD, Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, was published online on July 16 in JAMA Network Open.

LIMITATIONS:

The study included only women aged 65 years or older, limiting generalizability to younger women. The dataset lacked genetic information and laboratory data related to dementia. The duration of hormone-modulating therapy use beyond 3 years and specific formulations were not assessed. Potential confounders such as variations in chemotherapy, radiation, and surgery were not fully addressed.

DISCLOSURES:

Support for the study was provided by the National Institutes of Health; Carolina Center on Alzheimer’s Disease and Minority Research pilot project; and the Dean’s Faculty Advancement Fund, University of Pittsburgh, Pennsylvania. The authors reported no relevant disclosures.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Hormone-modulating therapy for breast cancer may protect older women from Alzheimer’s disease and related dementias, although the protective effect varies by age and race, with the greatest benefit seen in younger Black women.

METHODOLOGY:

  • Hormone-modulating therapy is widely used to treat hormone receptor–positive breast cancer, but the cognitive effects of the treatment, including a potential link to dementia, remain unclear.
  • To investigate, researchers used the SEER-Medicare linked database to identify women aged 65 years or older with breast cancer who did and did not receive hormone-modulating therapy within 3 years following their diagnosis.
  • The researchers excluded women with preexisting Alzheimer’s disease/dementia diagnoses or those who had received hormone-modulating therapy before their breast cancer diagnosis.
  • Analyses were adjusted for demographic, sociocultural, and clinical variables, and subgroup analyses evaluated the impact of age, race, and type of hormone-modulating therapy on Alzheimer’s disease/dementia risk.

TAKEAWAY:

  • Among the 18,808 women included in the analysis, 66% received hormone-modulating therapy and 34% did not. During the mean follow-up of 12 years, 24% of hormone-modulating therapy users and 28% of nonusers developed Alzheimer’s disease/dementia.
  • Overall, hormone-modulating therapy use (vs nonuse) was associated with a significant 7% lower risk for Alzheimer’s disease/dementia (hazard ratio [HR], 0.93; P = .005), with notable age and racial differences.
  • Hormone-modulating therapy use was associated with a 24% lower risk for Alzheimer’s disease/dementia in Black women aged 65-74 years (HR, 0.76), but that protective effect decreased to 19% in Black women aged 75 years or older (HR, 0.81). White women aged 65-74 years who received hormone-modulating therapy (vs those who did not) had an 11% lower risk for Alzheimer’s disease/dementia (HR, 0.89), but the association disappeared among those aged 75 years or older (HR, 0.96; 95% CI, 0.90-1.02). Other races demonstrated no significant association between hormone-modulating therapy use and Alzheimer’s disease/dementia.
  • Overall, the use of an aromatase inhibitor or a selective estrogen receptor modulator was associated with a significantly lower risk for Alzheimer’s disease/dementia (HR, 0.93 and HR, 0.89, respectively).

IN PRACTICE:

Overall, the retrospective study found that “hormone therapy was associated with protection against [Alzheimer’s/dementia] in women aged 65 years or older with newly diagnosed breast cancer,” with the decrease in risk relatively greater for Black women and women younger than 75 years, the authors concluded.

“The results highlight the critical need for personalized breast cancer treatment plans that are tailored to the individual characteristics of each patient, particularly given the significantly higher likelihood (two to three times more) of Black women developing [Alzheimer’s/dementia], compared with their White counterparts,” the researchers added.
 

SOURCE:

The study, with first author Chao Cai, PhD, Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, was published online on July 16 in JAMA Network Open.

LIMITATIONS:

The study included only women aged 65 years or older, limiting generalizability to younger women. The dataset lacked genetic information and laboratory data related to dementia. The duration of hormone-modulating therapy use beyond 3 years and specific formulations were not assessed. Potential confounders such as variations in chemotherapy, radiation, and surgery were not fully addressed.

DISCLOSURES:

Support for the study was provided by the National Institutes of Health; Carolina Center on Alzheimer’s Disease and Minority Research pilot project; and the Dean’s Faculty Advancement Fund, University of Pittsburgh, Pennsylvania. The authors reported no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

False-Positive Mammography Results Linked to Reduced Rates of Future Screenings

Article Type
Changed
Mon, 09/09/2024 - 14:43

 

TOPLINE:

Women who received false-positive mammography results were less likely to return for future screenings.

METHODOLOGY:

  • Researchers analyzed more than three million screening mammograms from more than one million women aged between 40 and 73 years at nearly 200 facilities in the Breast Cancer Surveillance Consortium between 2005 and 2017.
  • Mammography results were classified as true negative or false positive; women who received false-positive results were either asked to come back for additional imaging, a short interval follow-up or biopsy recommendations.
  • The primary outcome was the probability of returning for routine screening within 9-30 months after a false-positive or true-negative result, adjusted for race, ethnicity, age, and time since the last mammogram.
  • Women with two screening mammograms within 5 years were also analyzed to evaluate the probability of returning for a third screening based on combinations of true-negative and false-positive results.

TAKEAWAY:

  • Nearly 10.0% (95% CI, 9.1%-10.5%) of women who received screening mammograms got a false-positive result, 5.8% (95% CI, 5.5%-6.2%) of whom needed immediate additional imaging, 2.7% (95% CI, 2.3%-3.2%) needed short-interval follow-up, and 1.3% (95% CI, 1.1%-1.4%) were recommended for a biopsy.
  • Women were more likely to return for screening after a true-negative result (76.9%) than after a false positive to obtain more data through additional imaging (72.4%), short-interval follow-ups (54.7%), or biopsy (61.0%).
  • Asian and Hispanic/Latinx women who received a false-positive result were much less likely to return for a screening than women of the same groups who received a true-negative result, with recommendations for short interval follow-up (decrease of 20-25 percentage points) or biopsy (decrease of 13-14 percentage points).
  • For women who had two screening mammograms within 5 years, receiving a false-positive result on the second was linked to a lower likelihood of returning for a third screening, regardless of results for the first.

IN PRACTICE:

“Physicians should educate their patients about the importance of continued screening after false-positive results, especially given the associated increased future risk for breast cancer,” study authors wrote.

SOURCE:

The study was led by Diana L. Miglioretti, PhD, of the Department of Public Health Sciences at the University of California, Davis, and published online on September 3 in Annals of Internal Medicine.

LIMITATIONS:

Women could receive care at facilities outside of the trial, which may have affected the accuracy of return rates. The study did not track a complete history of false-positive results. The study did not have information about how often physicians recommend screenings and did not account for other health conditions.

DISCLOSURES:

One coauthor reported receiving grants from the National Institutes of Health and the American Cancer Society, as well as consulting fees from the University of Florida, Gainesville.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Women who received false-positive mammography results were less likely to return for future screenings.

METHODOLOGY:

  • Researchers analyzed more than three million screening mammograms from more than one million women aged between 40 and 73 years at nearly 200 facilities in the Breast Cancer Surveillance Consortium between 2005 and 2017.
  • Mammography results were classified as true negative or false positive; women who received false-positive results were either asked to come back for additional imaging, a short interval follow-up or biopsy recommendations.
  • The primary outcome was the probability of returning for routine screening within 9-30 months after a false-positive or true-negative result, adjusted for race, ethnicity, age, and time since the last mammogram.
  • Women with two screening mammograms within 5 years were also analyzed to evaluate the probability of returning for a third screening based on combinations of true-negative and false-positive results.

TAKEAWAY:

  • Nearly 10.0% (95% CI, 9.1%-10.5%) of women who received screening mammograms got a false-positive result, 5.8% (95% CI, 5.5%-6.2%) of whom needed immediate additional imaging, 2.7% (95% CI, 2.3%-3.2%) needed short-interval follow-up, and 1.3% (95% CI, 1.1%-1.4%) were recommended for a biopsy.
  • Women were more likely to return for screening after a true-negative result (76.9%) than after a false positive to obtain more data through additional imaging (72.4%), short-interval follow-ups (54.7%), or biopsy (61.0%).
  • Asian and Hispanic/Latinx women who received a false-positive result were much less likely to return for a screening than women of the same groups who received a true-negative result, with recommendations for short interval follow-up (decrease of 20-25 percentage points) or biopsy (decrease of 13-14 percentage points).
  • For women who had two screening mammograms within 5 years, receiving a false-positive result on the second was linked to a lower likelihood of returning for a third screening, regardless of results for the first.

IN PRACTICE:

“Physicians should educate their patients about the importance of continued screening after false-positive results, especially given the associated increased future risk for breast cancer,” study authors wrote.

SOURCE:

The study was led by Diana L. Miglioretti, PhD, of the Department of Public Health Sciences at the University of California, Davis, and published online on September 3 in Annals of Internal Medicine.

LIMITATIONS:

Women could receive care at facilities outside of the trial, which may have affected the accuracy of return rates. The study did not track a complete history of false-positive results. The study did not have information about how often physicians recommend screenings and did not account for other health conditions.

DISCLOSURES:

One coauthor reported receiving grants from the National Institutes of Health and the American Cancer Society, as well as consulting fees from the University of Florida, Gainesville.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Women who received false-positive mammography results were less likely to return for future screenings.

METHODOLOGY:

  • Researchers analyzed more than three million screening mammograms from more than one million women aged between 40 and 73 years at nearly 200 facilities in the Breast Cancer Surveillance Consortium between 2005 and 2017.
  • Mammography results were classified as true negative or false positive; women who received false-positive results were either asked to come back for additional imaging, a short interval follow-up or biopsy recommendations.
  • The primary outcome was the probability of returning for routine screening within 9-30 months after a false-positive or true-negative result, adjusted for race, ethnicity, age, and time since the last mammogram.
  • Women with two screening mammograms within 5 years were also analyzed to evaluate the probability of returning for a third screening based on combinations of true-negative and false-positive results.

TAKEAWAY:

  • Nearly 10.0% (95% CI, 9.1%-10.5%) of women who received screening mammograms got a false-positive result, 5.8% (95% CI, 5.5%-6.2%) of whom needed immediate additional imaging, 2.7% (95% CI, 2.3%-3.2%) needed short-interval follow-up, and 1.3% (95% CI, 1.1%-1.4%) were recommended for a biopsy.
  • Women were more likely to return for screening after a true-negative result (76.9%) than after a false positive to obtain more data through additional imaging (72.4%), short-interval follow-ups (54.7%), or biopsy (61.0%).
  • Asian and Hispanic/Latinx women who received a false-positive result were much less likely to return for a screening than women of the same groups who received a true-negative result, with recommendations for short interval follow-up (decrease of 20-25 percentage points) or biopsy (decrease of 13-14 percentage points).
  • For women who had two screening mammograms within 5 years, receiving a false-positive result on the second was linked to a lower likelihood of returning for a third screening, regardless of results for the first.

IN PRACTICE:

“Physicians should educate their patients about the importance of continued screening after false-positive results, especially given the associated increased future risk for breast cancer,” study authors wrote.

SOURCE:

The study was led by Diana L. Miglioretti, PhD, of the Department of Public Health Sciences at the University of California, Davis, and published online on September 3 in Annals of Internal Medicine.

LIMITATIONS:

Women could receive care at facilities outside of the trial, which may have affected the accuracy of return rates. The study did not track a complete history of false-positive results. The study did not have information about how often physicians recommend screenings and did not account for other health conditions.

DISCLOSURES:

One coauthor reported receiving grants from the National Institutes of Health and the American Cancer Society, as well as consulting fees from the University of Florida, Gainesville.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Do Clonal Hematopoiesis and Mosaic Chromosomal Alterations Increase Solid Tumor Risk?

Article Type
Changed
Wed, 09/25/2024 - 06:41

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CANCER

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Study Indicates Skin Cancer Risk Elevated Among Veterans

Article Type
Changed
Wed, 09/18/2024 - 09:14

 

TOPLINE:

Compared with nonveterans, US veterans show a higher prevalence of and risk for skin cancer, sunburn, and certain dermatologic conditions, according to a study.

METHODOLOGY:

  • Researchers analyzed the prevalence and likelihood of skin cancer and other dermatologic conditions between veterans and nonveterans using national representative NHANES data collected over two decades (1999-2018).
  • They included 61,307 participants, with 54,554 nonveterans (42.76% men; 65.78% non-Hispanic White individuals) and 6753 veterans (92.74% men; 80.42% non-Hispanic White individuals).
  • A total of 54,991 participants (48,278 nonveterans and 6713 veterans) answered questions about their cancer history.

TAKEAWAY:

  • Veterans had a higher prevalence of any skin cancer than nonveterans (9% vs 2.9%; P < .001). Specifically, the prevalence of melanoma (2.2% vs 0.6%), nonmelanoma skin cancer (5.1% vs 1.6%), and skin cancer of unknown subtype (2.2% vs 0.8%) was significantly higher in veterans (P < .001, for all).
  • Veterans showed elevated risks for any skin cancer (odds ratio [OR], 1.72; 95% CI, 1.23-2.40), melanoma (OR, 2.27; 95% CI, 1.17-4.39), and nonmelanoma skin cancer (OR, 1.80; 95% CI, 1.17-2.78) after adjusting for demographic factors.
  • Veterans also had a higher risk for psoriasis (OR, 1.61; 95% CI, 1.05-2.46), but not for eczema/dermatitis/inflamed rash in the previous 30 days anywhere on the body, although risk was significantly increased when localized to the arms.
  • Veterans were more likely to spend time outdoors on workdays (OR, 1.22; 95% CI, 1.04-2.25) but their status did not differ significantly from that of nonveterans in sunscreen use or other sun protection behaviors. However, veterans had a 44%-45% (P < .05) increased risk for severe sunburn after brief sun exposure.

IN PRACTICE:

“Public health measures seeking to address veteran healthcare differences could emphasize primary preventive strategies to mitigate risk and early detection of dermatologic conditions through regular skin examinations,” the study authors concluded. An accompanying editorial noted that “dermatologists should be aware that veterans face higher skin cancer risks even after adjusting for demographic differences, potentially due at least in part, to occupational exposures.” In addition, the editorial authors wrote, “additional research is needed to identify and quantify the effects of UV and military toxic exposures on skin cancer risk among active duty service members.”

 

SOURCE:

The study was led by Shawheen J. Rezaei, MPhil, from the Department of Dermatology, Stanford University School of Medicine, Stanford, California, and was published online in JAMA Dermatology. The authors of the editorial are from the Departments of Dermatology at Brigham and Women’s Hospital, Boston, and Vanderbilt University, Nashville, Tennessee.

LIMITATIONS: 

Skin cancer, psoriasis, and eczema/dermatitis were self-reported, and the predominance of older White men limited the generalizability of the findings.

DISCLOSURES:

The study was supported by Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, California, and Providence VA Medical Center, Providence, Rhode Island. The authors had no disclosures. The authors of the editorial disclosed receiving grants from the VA; one author’s disclosures included receiving personal fees from and being a scientific officer for Evereden, receiving grants and research funding from DermaSensor, and consulting for Oasis Pharmaceuticals and Almirall.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Compared with nonveterans, US veterans show a higher prevalence of and risk for skin cancer, sunburn, and certain dermatologic conditions, according to a study.

METHODOLOGY:

  • Researchers analyzed the prevalence and likelihood of skin cancer and other dermatologic conditions between veterans and nonveterans using national representative NHANES data collected over two decades (1999-2018).
  • They included 61,307 participants, with 54,554 nonveterans (42.76% men; 65.78% non-Hispanic White individuals) and 6753 veterans (92.74% men; 80.42% non-Hispanic White individuals).
  • A total of 54,991 participants (48,278 nonveterans and 6713 veterans) answered questions about their cancer history.

TAKEAWAY:

  • Veterans had a higher prevalence of any skin cancer than nonveterans (9% vs 2.9%; P < .001). Specifically, the prevalence of melanoma (2.2% vs 0.6%), nonmelanoma skin cancer (5.1% vs 1.6%), and skin cancer of unknown subtype (2.2% vs 0.8%) was significantly higher in veterans (P < .001, for all).
  • Veterans showed elevated risks for any skin cancer (odds ratio [OR], 1.72; 95% CI, 1.23-2.40), melanoma (OR, 2.27; 95% CI, 1.17-4.39), and nonmelanoma skin cancer (OR, 1.80; 95% CI, 1.17-2.78) after adjusting for demographic factors.
  • Veterans also had a higher risk for psoriasis (OR, 1.61; 95% CI, 1.05-2.46), but not for eczema/dermatitis/inflamed rash in the previous 30 days anywhere on the body, although risk was significantly increased when localized to the arms.
  • Veterans were more likely to spend time outdoors on workdays (OR, 1.22; 95% CI, 1.04-2.25) but their status did not differ significantly from that of nonveterans in sunscreen use or other sun protection behaviors. However, veterans had a 44%-45% (P < .05) increased risk for severe sunburn after brief sun exposure.

IN PRACTICE:

“Public health measures seeking to address veteran healthcare differences could emphasize primary preventive strategies to mitigate risk and early detection of dermatologic conditions through regular skin examinations,” the study authors concluded. An accompanying editorial noted that “dermatologists should be aware that veterans face higher skin cancer risks even after adjusting for demographic differences, potentially due at least in part, to occupational exposures.” In addition, the editorial authors wrote, “additional research is needed to identify and quantify the effects of UV and military toxic exposures on skin cancer risk among active duty service members.”

 

SOURCE:

The study was led by Shawheen J. Rezaei, MPhil, from the Department of Dermatology, Stanford University School of Medicine, Stanford, California, and was published online in JAMA Dermatology. The authors of the editorial are from the Departments of Dermatology at Brigham and Women’s Hospital, Boston, and Vanderbilt University, Nashville, Tennessee.

LIMITATIONS: 

Skin cancer, psoriasis, and eczema/dermatitis were self-reported, and the predominance of older White men limited the generalizability of the findings.

DISCLOSURES:

The study was supported by Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, California, and Providence VA Medical Center, Providence, Rhode Island. The authors had no disclosures. The authors of the editorial disclosed receiving grants from the VA; one author’s disclosures included receiving personal fees from and being a scientific officer for Evereden, receiving grants and research funding from DermaSensor, and consulting for Oasis Pharmaceuticals and Almirall.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Compared with nonveterans, US veterans show a higher prevalence of and risk for skin cancer, sunburn, and certain dermatologic conditions, according to a study.

METHODOLOGY:

  • Researchers analyzed the prevalence and likelihood of skin cancer and other dermatologic conditions between veterans and nonveterans using national representative NHANES data collected over two decades (1999-2018).
  • They included 61,307 participants, with 54,554 nonveterans (42.76% men; 65.78% non-Hispanic White individuals) and 6753 veterans (92.74% men; 80.42% non-Hispanic White individuals).
  • A total of 54,991 participants (48,278 nonveterans and 6713 veterans) answered questions about their cancer history.

TAKEAWAY:

  • Veterans had a higher prevalence of any skin cancer than nonveterans (9% vs 2.9%; P < .001). Specifically, the prevalence of melanoma (2.2% vs 0.6%), nonmelanoma skin cancer (5.1% vs 1.6%), and skin cancer of unknown subtype (2.2% vs 0.8%) was significantly higher in veterans (P < .001, for all).
  • Veterans showed elevated risks for any skin cancer (odds ratio [OR], 1.72; 95% CI, 1.23-2.40), melanoma (OR, 2.27; 95% CI, 1.17-4.39), and nonmelanoma skin cancer (OR, 1.80; 95% CI, 1.17-2.78) after adjusting for demographic factors.
  • Veterans also had a higher risk for psoriasis (OR, 1.61; 95% CI, 1.05-2.46), but not for eczema/dermatitis/inflamed rash in the previous 30 days anywhere on the body, although risk was significantly increased when localized to the arms.
  • Veterans were more likely to spend time outdoors on workdays (OR, 1.22; 95% CI, 1.04-2.25) but their status did not differ significantly from that of nonveterans in sunscreen use or other sun protection behaviors. However, veterans had a 44%-45% (P < .05) increased risk for severe sunburn after brief sun exposure.

IN PRACTICE:

“Public health measures seeking to address veteran healthcare differences could emphasize primary preventive strategies to mitigate risk and early detection of dermatologic conditions through regular skin examinations,” the study authors concluded. An accompanying editorial noted that “dermatologists should be aware that veterans face higher skin cancer risks even after adjusting for demographic differences, potentially due at least in part, to occupational exposures.” In addition, the editorial authors wrote, “additional research is needed to identify and quantify the effects of UV and military toxic exposures on skin cancer risk among active duty service members.”

 

SOURCE:

The study was led by Shawheen J. Rezaei, MPhil, from the Department of Dermatology, Stanford University School of Medicine, Stanford, California, and was published online in JAMA Dermatology. The authors of the editorial are from the Departments of Dermatology at Brigham and Women’s Hospital, Boston, and Vanderbilt University, Nashville, Tennessee.

LIMITATIONS: 

Skin cancer, psoriasis, and eczema/dermatitis were self-reported, and the predominance of older White men limited the generalizability of the findings.

DISCLOSURES:

The study was supported by Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, California, and Providence VA Medical Center, Providence, Rhode Island. The authors had no disclosures. The authors of the editorial disclosed receiving grants from the VA; one author’s disclosures included receiving personal fees from and being a scientific officer for Evereden, receiving grants and research funding from DermaSensor, and consulting for Oasis Pharmaceuticals and Almirall.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 09/18/2024 - 09:14
Un-Gate On Date
Wed, 09/18/2024 - 09:14
Use ProPublica
CFC Schedule Remove Status
Wed, 09/18/2024 - 09:14
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 09/18/2024 - 09:14

Depiction of Cancer in Movies: Not an Accurate Portrayal

Article Type
Changed
Thu, 09/05/2024 - 16:42

 

This transcript has been edited for clarity. 

I’d like to talk about a very different topic from what I normally discuss, which is probably relatively rarely addressed in clinical conversations among clinicians. There was a very provocative commentary that appeared in JCO Oncology Practice, titled “Hollywood’s Take on Oncology: Portrayal of Cancer in Movies, 2010-2020.”

All of us, as we grow up — as kids, adolescents, young adults, adults, and older individuals — watch television and movies. The older of us know that the doctor in everybody’s home that we all wanted was Marcus Welby. Of course, there was Dr. Kildare, ER, Grey’s Anatomy, and St. Elsewhere. There was Love Story and Brian’s Song. We all know about these. 

This particular review was fascinating. The authors looked at 100 English-language movies that had cancer included in the storyline over the past decade. They asked some relatively simple questions: How did they discuss it? What were the tumor types they discussed? What were the outcomes? 

The question is, what is the public seeing? If you watch these movies and you don’t have family experience or personal experience with cancer, what do you think about cancer? Maybe this is what you know about it. Despite what the National Cancer Institute or the American Society of Clinical Oncology tells you, this may be what you know.

What they showed was really quite interesting. Only one third of the movies even said the cancer type, so in two thirds, you just knew they had “cancer.”

There is another very interesting phenomenon. What do you think was the most common cancer type when they did define the cancer? It was brain tumors, even though we know that brain tumors are certainly not even within the top 10. They’re obviously very serious cancers, but if you’re talking about common cancers, brain cancer doesn’t rank in the top 10, and it was the most common cancer on these shows.

The authors of this paper made the point of whether this would be an opportunity for filmmakers. Again, with the storyline, they’re trying to sell a product here, but wouldn’t this be the opportunity to provide some information about the reality of cancer? They could emphasize the fact that smokers get lung cancer. In my opinion, they could discuss cervical cancer and comment that if HPV vaccination had been done, maybe this would not have happened.

They noted that the majority of cancers in these movies were incurable, and they commented that that’s not the reality today. Today, obviously, many of our cancers that weren’t curable have become quite curable for a percentage of patients, in addition to which, obviously, with early detection, we have a very high cure rate. How about trying to get that message out, too, that we’ve actually had increasing success?

They commented that there was very rarely, if ever, a conversation about multidisciplinary care, that somehow there are multiple doctors with multiple specialties involved. They noted that this is potentially a very important message to give out. They commented that in 12 of these movies, the patient refused cancer care. Again, that happens, but it’s clearly a rare event today. Maybe this is not really a very accurate depiction of what’s going on.

They commented on the fact that, obviously, we’re going back through the past 10 years, so there were no patients who received immunotherapy or targeted therapy. Again, the goal here is not to sell oncology care but to be accurate, or more accurate, about the state of treatment to the extent you can.

They noted that, in fact, there was essentially very little, if any, comment on palliative care or hospice care. The final point they made is that there was very little conversation in these movies about what we now recognize as financial distress in many of our patients. That’s an unfortunate reality and perhaps that might come in the future.

Again, the point of this was not to tell Hollywood how to make their movies but to have the oncology community recognize that if their patients or the families of their patients are seeing these movies, they are not getting a very accurate picture of what is happening in the oncology world today and that some education may very well be required.

Maurie Markman is Professor, Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California, and President of Medicine & Science, City of Hope Atlanta, Chicago, and Phoenix. He disclosed the following relevant financial relationships: income in an amount equal to or greater than $250 from: GlaxoSmithKline; AstraZeneca.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity. 

I’d like to talk about a very different topic from what I normally discuss, which is probably relatively rarely addressed in clinical conversations among clinicians. There was a very provocative commentary that appeared in JCO Oncology Practice, titled “Hollywood’s Take on Oncology: Portrayal of Cancer in Movies, 2010-2020.”

All of us, as we grow up — as kids, adolescents, young adults, adults, and older individuals — watch television and movies. The older of us know that the doctor in everybody’s home that we all wanted was Marcus Welby. Of course, there was Dr. Kildare, ER, Grey’s Anatomy, and St. Elsewhere. There was Love Story and Brian’s Song. We all know about these. 

This particular review was fascinating. The authors looked at 100 English-language movies that had cancer included in the storyline over the past decade. They asked some relatively simple questions: How did they discuss it? What were the tumor types they discussed? What were the outcomes? 

The question is, what is the public seeing? If you watch these movies and you don’t have family experience or personal experience with cancer, what do you think about cancer? Maybe this is what you know about it. Despite what the National Cancer Institute or the American Society of Clinical Oncology tells you, this may be what you know.

What they showed was really quite interesting. Only one third of the movies even said the cancer type, so in two thirds, you just knew they had “cancer.”

There is another very interesting phenomenon. What do you think was the most common cancer type when they did define the cancer? It was brain tumors, even though we know that brain tumors are certainly not even within the top 10. They’re obviously very serious cancers, but if you’re talking about common cancers, brain cancer doesn’t rank in the top 10, and it was the most common cancer on these shows.

The authors of this paper made the point of whether this would be an opportunity for filmmakers. Again, with the storyline, they’re trying to sell a product here, but wouldn’t this be the opportunity to provide some information about the reality of cancer? They could emphasize the fact that smokers get lung cancer. In my opinion, they could discuss cervical cancer and comment that if HPV vaccination had been done, maybe this would not have happened.

They noted that the majority of cancers in these movies were incurable, and they commented that that’s not the reality today. Today, obviously, many of our cancers that weren’t curable have become quite curable for a percentage of patients, in addition to which, obviously, with early detection, we have a very high cure rate. How about trying to get that message out, too, that we’ve actually had increasing success?

They commented that there was very rarely, if ever, a conversation about multidisciplinary care, that somehow there are multiple doctors with multiple specialties involved. They noted that this is potentially a very important message to give out. They commented that in 12 of these movies, the patient refused cancer care. Again, that happens, but it’s clearly a rare event today. Maybe this is not really a very accurate depiction of what’s going on.

They commented on the fact that, obviously, we’re going back through the past 10 years, so there were no patients who received immunotherapy or targeted therapy. Again, the goal here is not to sell oncology care but to be accurate, or more accurate, about the state of treatment to the extent you can.

They noted that, in fact, there was essentially very little, if any, comment on palliative care or hospice care. The final point they made is that there was very little conversation in these movies about what we now recognize as financial distress in many of our patients. That’s an unfortunate reality and perhaps that might come in the future.

Again, the point of this was not to tell Hollywood how to make their movies but to have the oncology community recognize that if their patients or the families of their patients are seeing these movies, they are not getting a very accurate picture of what is happening in the oncology world today and that some education may very well be required.

Maurie Markman is Professor, Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California, and President of Medicine & Science, City of Hope Atlanta, Chicago, and Phoenix. He disclosed the following relevant financial relationships: income in an amount equal to or greater than $250 from: GlaxoSmithKline; AstraZeneca.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity. 

I’d like to talk about a very different topic from what I normally discuss, which is probably relatively rarely addressed in clinical conversations among clinicians. There was a very provocative commentary that appeared in JCO Oncology Practice, titled “Hollywood’s Take on Oncology: Portrayal of Cancer in Movies, 2010-2020.”

All of us, as we grow up — as kids, adolescents, young adults, adults, and older individuals — watch television and movies. The older of us know that the doctor in everybody’s home that we all wanted was Marcus Welby. Of course, there was Dr. Kildare, ER, Grey’s Anatomy, and St. Elsewhere. There was Love Story and Brian’s Song. We all know about these. 

This particular review was fascinating. The authors looked at 100 English-language movies that had cancer included in the storyline over the past decade. They asked some relatively simple questions: How did they discuss it? What were the tumor types they discussed? What were the outcomes? 

The question is, what is the public seeing? If you watch these movies and you don’t have family experience or personal experience with cancer, what do you think about cancer? Maybe this is what you know about it. Despite what the National Cancer Institute or the American Society of Clinical Oncology tells you, this may be what you know.

What they showed was really quite interesting. Only one third of the movies even said the cancer type, so in two thirds, you just knew they had “cancer.”

There is another very interesting phenomenon. What do you think was the most common cancer type when they did define the cancer? It was brain tumors, even though we know that brain tumors are certainly not even within the top 10. They’re obviously very serious cancers, but if you’re talking about common cancers, brain cancer doesn’t rank in the top 10, and it was the most common cancer on these shows.

The authors of this paper made the point of whether this would be an opportunity for filmmakers. Again, with the storyline, they’re trying to sell a product here, but wouldn’t this be the opportunity to provide some information about the reality of cancer? They could emphasize the fact that smokers get lung cancer. In my opinion, they could discuss cervical cancer and comment that if HPV vaccination had been done, maybe this would not have happened.

They noted that the majority of cancers in these movies were incurable, and they commented that that’s not the reality today. Today, obviously, many of our cancers that weren’t curable have become quite curable for a percentage of patients, in addition to which, obviously, with early detection, we have a very high cure rate. How about trying to get that message out, too, that we’ve actually had increasing success?

They commented that there was very rarely, if ever, a conversation about multidisciplinary care, that somehow there are multiple doctors with multiple specialties involved. They noted that this is potentially a very important message to give out. They commented that in 12 of these movies, the patient refused cancer care. Again, that happens, but it’s clearly a rare event today. Maybe this is not really a very accurate depiction of what’s going on.

They commented on the fact that, obviously, we’re going back through the past 10 years, so there were no patients who received immunotherapy or targeted therapy. Again, the goal here is not to sell oncology care but to be accurate, or more accurate, about the state of treatment to the extent you can.

They noted that, in fact, there was essentially very little, if any, comment on palliative care or hospice care. The final point they made is that there was very little conversation in these movies about what we now recognize as financial distress in many of our patients. That’s an unfortunate reality and perhaps that might come in the future.

Again, the point of this was not to tell Hollywood how to make their movies but to have the oncology community recognize that if their patients or the families of their patients are seeing these movies, they are not getting a very accurate picture of what is happening in the oncology world today and that some education may very well be required.

Maurie Markman is Professor, Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California, and President of Medicine & Science, City of Hope Atlanta, Chicago, and Phoenix. He disclosed the following relevant financial relationships: income in an amount equal to or greater than $250 from: GlaxoSmithKline; AstraZeneca.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Timing of Blood Pressure Dosing Doesn’t Matter (Again): BedMed and BedMed-Frail

Article Type
Changed
Thu, 09/05/2024 - 15:34

 

This transcript has been edited for clarity.

Tricia Ward: I’m joined today by Dr. Scott R. Garrison, MD, PhD. He is a professor in the Department of Family Medicine at the University of Alberta in Edmonton, Alberta, Canada, and director of the Pragmatic Trials Collaborative.

You presented two studies at ESC. One is the BedMed study, comparing day vs nighttime dosing of blood pressure therapy. Can you tell us the top-line findings? 
 

BedMed and BedMed-Frail

Dr. Garrison: We were looking to validate an earlier study that suggested a large benefit of taking blood pressure medication at bedtime, as far as reducing major adverse cardiovascular events (MACEs). That was the MAPEC study. They suggested a 60% reduction. The BedMed trial was in hypertensive primary care patients in five Canadian provinces. We randomized well over 3000 patients to bedtime or morning medications. We looked at MACEs — so all-cause death or hospitalizations for acute coronary syndrome, stroke, or heart failure, and a bunch of safety outcomes.

Essentially, we found that it made absolutely no difference whatever time of day you took it in terms of MACEs and it didn’t make any difference to the adverse effects. It was safe to take it at bedtime. But it did not convey any extra cardiovascular benefit.

Ms. Ward: And then you did a second study, called BedMed-Frail. Do you want to tell us the reason you did that?

Dr. Garrison: BedMed-Frail took place in a nursing home population. We believed that it was possible that frail, older adults might have very different risks and benefits, and that they would probably be underrepresented, as they normally are in the main trial. 

We thought that because bedtime blood pressure medications would be theoretically preferentially lowering night pressure, which is already the lowest pressure of the day, that if you were at risk for hypotensive or ischemic adverse events, that might make it worse. We looked at falls and fractures; worsening cognition in case they had vascular dementia; and whether they developed decubitus ulcers (pressure sores) because you need a certain amount of pressure to get past any obstruction — in this case, it’s the weight of your body if you’re lying in bed all the time. 

We also looked at problem behaviors. People who have dementia have what’s called “sundowning,” where agitation and confusion are worse as the evening is going on. We looked at that on the off chance that it had anything to do with blood pressures being lower. And the BedMed-Frail results mirror those of BedMed exactly. So there was no cardiovascular benefit, and in this population, that was largely driven by mortality; one third of these people died every year. 

Ms. Ward: The median age was about 88?

Dr. Garrison: Yes, the median age was 88. There was no cardiovascular mortality advantage to bedtime dosing, but neither was there any signal of safety concerns. 
 

Other Complementary and Conflicting Studies

Ms. Ward: These two studies mirror the TIME study from the United Kingdom.

Dr. Garrison: Yes. We found exactly what TIME found. Our point estimate was pretty much the same. The hazard ratio in the main trial was 0.96. Theirs, I believe, was 0.95. Our findings agree completely with those of TIME and differ substantially from the previous trials that suggested a large benefit.

Ms. Ward: Those previous trials were MAPEC and the Hygia Chronotherapy Trial.

Dr. Garrison: MAPEC was the first one. While we were doing our trial, and while the TIME investigators were doing their trial, both of us trying to validate MAPEC, the same group published another study called Hygia, which also reported a large reduction: a 45% reduction in MACE with bedtime dosing.

Ms. Ward: You didn’t present it, but there was also a meta-analysis presented here by somebody independent.

Dr. Garrison: Yes, Ricky Turgeon. I know Ricky. We gave him patient-level data for his meta-analysis, but I was not otherwise involved. 

Ms. Ward: And the conclusion is the same.

Dr. Garrison: It’s the same. He only found the same five trials: MAPEC, Hygia, TIME, BedMed, and BedMed-Frail. Combining them all together, the CIs still span 1.0, so it didn’t end up being significant. But he also analyzed TIME and the BedMed trials separately — again suggesting that those trials showed no benefit.

Ms. Ward: There was a TIME substudy of night owls vs early risers or morning people, and there was a hint (or whatever you should say for a subanalysis of a neutral trial) that timing might make a difference there.

Dr. Garrison: They recently published, I guess it is a substudy, where they looked at people’s chronotype according to whether you consider yourself an early bird or a night owl. Their assessment was more detailed. They reported that if people were tending toward being early birds and they took their blood pressure medicine in the morning, or if they were night owls and they took it in the evening, that they tended to have statistically significantly better outcomes than the opposite timing. In that analysis, they were only looking at nonfatal myocardial infarction and nonfatal stroke. 

We did ask something that was related. We asked people: “Do we consider yourself more of an early bird or a night owl?” So we do have those data. For what I presented at ESC, we just looked at the primary outcome; we did subgroups according to early bird, night owl, and neither, and that was not statistically significant. It didn’t rule it out. There were some trends in the direction that the TIME group were suggesting. We do intend to do a closer look at that. 

But, you know, they call these “late-breaking trials,” and it really was in our case. We didn’t get the last of our data from the last province until the end of June, so we still are finishing up the analysis of the chronotype portion — so more to come in another month or so.
 

 

 

Do What You Like, or Stick to Morning Dosing?

Ms. Ward: For the purposes of people’s take-home message, does this mostly apply to once-daily–dosed antihypertensives?

Dr. Garrison: It was essentially once-daily medicines that were changed. The docs did have the opportunity to consolidate twice-daily meds into once-daily or switch to a different medication. That’s probably the area where adherence was the biggest issue, because it’s largely beta-blockers that were given twice daily at baseline, and they were less likely to want to change. 

At 6 months, 83% of once-daily medications were taken per allocation in the bedtime group and 95% per allocation in the morning group, which was actually pretty good. For angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium-channel blockers, the adherence was excellent. Again, it was beta-blockers taken twice a day where it fell down, and then also diuretics. But if you combine all diuretic medications (ie, pure diuretics and combo agents), still, 75% of them were successful at taking them at bedtime. Only 15% of people switching a diuretic to bedtime dosing actually had problems with nocturia. Most physicians think that they can’t get their patients to take those meds at bedtime, but you can. There’s probably no reason to take it at bedtime, but most people do tolerate it.

Ms. Ward: Is your advice to take it whenever you feel like? I know when TIME came out, Professor George Stergiou, who’s the incoming president of the International Society of Hypertension, said, well, maybe we should stick with the morning, because that’s what most of the trials did. 

Dr. Garrison: I think that›s a perfectly valid point of view, and maybe for a lot of people, that could be the default. There are some people, though, who will have a particular reason why one time is better. For instance, most people have no problems with calcium-channel blockers, but some get ankle swelling and you’re more likely to have that happen if you take them in the morning. Or lots of people want to take all their pills at the same time; blood pressure pills are easy ones to switch the timing of if you’re trying to accomplish that, and if that will help adherence. Basically, whatever time of day you can remember to take it the best is probably the right time.

Ms. Ward: Given where we are today, with your trials and TIME, do you think this is now settled science that it doesn’t make a difference?

Dr. Garrison: I’m probably the wrong person to ask, because I clearly have a bias. I think the methods in the TIME trial are really transparent and solid. I hope that when our papers come out, people will feel the same. You just have to look at the different trials. You need people like Dr. Stergiou to wade through the trials to help you with that.

Ms. Ward: Thank you very much for joining me today and discussing this trial.

Scott R. Garrison, MD, PhD, is Professor, Department of Family Medicine, University of Alberta in Edmonton, Alberta, Canada, and Staff Physician, Department of Family Medicine, Kaye Edmonton Clinic, and he has disclosed receiving research grants from Alberta Innovates (the Alberta Provincial Government) and the Canadian Institutes of Health Research (the Canadian Federal Government).

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

Tricia Ward: I’m joined today by Dr. Scott R. Garrison, MD, PhD. He is a professor in the Department of Family Medicine at the University of Alberta in Edmonton, Alberta, Canada, and director of the Pragmatic Trials Collaborative.

You presented two studies at ESC. One is the BedMed study, comparing day vs nighttime dosing of blood pressure therapy. Can you tell us the top-line findings? 
 

BedMed and BedMed-Frail

Dr. Garrison: We were looking to validate an earlier study that suggested a large benefit of taking blood pressure medication at bedtime, as far as reducing major adverse cardiovascular events (MACEs). That was the MAPEC study. They suggested a 60% reduction. The BedMed trial was in hypertensive primary care patients in five Canadian provinces. We randomized well over 3000 patients to bedtime or morning medications. We looked at MACEs — so all-cause death or hospitalizations for acute coronary syndrome, stroke, or heart failure, and a bunch of safety outcomes.

Essentially, we found that it made absolutely no difference whatever time of day you took it in terms of MACEs and it didn’t make any difference to the adverse effects. It was safe to take it at bedtime. But it did not convey any extra cardiovascular benefit.

Ms. Ward: And then you did a second study, called BedMed-Frail. Do you want to tell us the reason you did that?

Dr. Garrison: BedMed-Frail took place in a nursing home population. We believed that it was possible that frail, older adults might have very different risks and benefits, and that they would probably be underrepresented, as they normally are in the main trial. 

We thought that because bedtime blood pressure medications would be theoretically preferentially lowering night pressure, which is already the lowest pressure of the day, that if you were at risk for hypotensive or ischemic adverse events, that might make it worse. We looked at falls and fractures; worsening cognition in case they had vascular dementia; and whether they developed decubitus ulcers (pressure sores) because you need a certain amount of pressure to get past any obstruction — in this case, it’s the weight of your body if you’re lying in bed all the time. 

We also looked at problem behaviors. People who have dementia have what’s called “sundowning,” where agitation and confusion are worse as the evening is going on. We looked at that on the off chance that it had anything to do with blood pressures being lower. And the BedMed-Frail results mirror those of BedMed exactly. So there was no cardiovascular benefit, and in this population, that was largely driven by mortality; one third of these people died every year. 

Ms. Ward: The median age was about 88?

Dr. Garrison: Yes, the median age was 88. There was no cardiovascular mortality advantage to bedtime dosing, but neither was there any signal of safety concerns. 
 

Other Complementary and Conflicting Studies

Ms. Ward: These two studies mirror the TIME study from the United Kingdom.

Dr. Garrison: Yes. We found exactly what TIME found. Our point estimate was pretty much the same. The hazard ratio in the main trial was 0.96. Theirs, I believe, was 0.95. Our findings agree completely with those of TIME and differ substantially from the previous trials that suggested a large benefit.

Ms. Ward: Those previous trials were MAPEC and the Hygia Chronotherapy Trial.

Dr. Garrison: MAPEC was the first one. While we were doing our trial, and while the TIME investigators were doing their trial, both of us trying to validate MAPEC, the same group published another study called Hygia, which also reported a large reduction: a 45% reduction in MACE with bedtime dosing.

Ms. Ward: You didn’t present it, but there was also a meta-analysis presented here by somebody independent.

Dr. Garrison: Yes, Ricky Turgeon. I know Ricky. We gave him patient-level data for his meta-analysis, but I was not otherwise involved. 

Ms. Ward: And the conclusion is the same.

Dr. Garrison: It’s the same. He only found the same five trials: MAPEC, Hygia, TIME, BedMed, and BedMed-Frail. Combining them all together, the CIs still span 1.0, so it didn’t end up being significant. But he also analyzed TIME and the BedMed trials separately — again suggesting that those trials showed no benefit.

Ms. Ward: There was a TIME substudy of night owls vs early risers or morning people, and there was a hint (or whatever you should say for a subanalysis of a neutral trial) that timing might make a difference there.

Dr. Garrison: They recently published, I guess it is a substudy, where they looked at people’s chronotype according to whether you consider yourself an early bird or a night owl. Their assessment was more detailed. They reported that if people were tending toward being early birds and they took their blood pressure medicine in the morning, or if they were night owls and they took it in the evening, that they tended to have statistically significantly better outcomes than the opposite timing. In that analysis, they were only looking at nonfatal myocardial infarction and nonfatal stroke. 

We did ask something that was related. We asked people: “Do we consider yourself more of an early bird or a night owl?” So we do have those data. For what I presented at ESC, we just looked at the primary outcome; we did subgroups according to early bird, night owl, and neither, and that was not statistically significant. It didn’t rule it out. There were some trends in the direction that the TIME group were suggesting. We do intend to do a closer look at that. 

But, you know, they call these “late-breaking trials,” and it really was in our case. We didn’t get the last of our data from the last province until the end of June, so we still are finishing up the analysis of the chronotype portion — so more to come in another month or so.
 

 

 

Do What You Like, or Stick to Morning Dosing?

Ms. Ward: For the purposes of people’s take-home message, does this mostly apply to once-daily–dosed antihypertensives?

Dr. Garrison: It was essentially once-daily medicines that were changed. The docs did have the opportunity to consolidate twice-daily meds into once-daily or switch to a different medication. That’s probably the area where adherence was the biggest issue, because it’s largely beta-blockers that were given twice daily at baseline, and they were less likely to want to change. 

At 6 months, 83% of once-daily medications were taken per allocation in the bedtime group and 95% per allocation in the morning group, which was actually pretty good. For angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium-channel blockers, the adherence was excellent. Again, it was beta-blockers taken twice a day where it fell down, and then also diuretics. But if you combine all diuretic medications (ie, pure diuretics and combo agents), still, 75% of them were successful at taking them at bedtime. Only 15% of people switching a diuretic to bedtime dosing actually had problems with nocturia. Most physicians think that they can’t get their patients to take those meds at bedtime, but you can. There’s probably no reason to take it at bedtime, but most people do tolerate it.

Ms. Ward: Is your advice to take it whenever you feel like? I know when TIME came out, Professor George Stergiou, who’s the incoming president of the International Society of Hypertension, said, well, maybe we should stick with the morning, because that’s what most of the trials did. 

Dr. Garrison: I think that›s a perfectly valid point of view, and maybe for a lot of people, that could be the default. There are some people, though, who will have a particular reason why one time is better. For instance, most people have no problems with calcium-channel blockers, but some get ankle swelling and you’re more likely to have that happen if you take them in the morning. Or lots of people want to take all their pills at the same time; blood pressure pills are easy ones to switch the timing of if you’re trying to accomplish that, and if that will help adherence. Basically, whatever time of day you can remember to take it the best is probably the right time.

Ms. Ward: Given where we are today, with your trials and TIME, do you think this is now settled science that it doesn’t make a difference?

Dr. Garrison: I’m probably the wrong person to ask, because I clearly have a bias. I think the methods in the TIME trial are really transparent and solid. I hope that when our papers come out, people will feel the same. You just have to look at the different trials. You need people like Dr. Stergiou to wade through the trials to help you with that.

Ms. Ward: Thank you very much for joining me today and discussing this trial.

Scott R. Garrison, MD, PhD, is Professor, Department of Family Medicine, University of Alberta in Edmonton, Alberta, Canada, and Staff Physician, Department of Family Medicine, Kaye Edmonton Clinic, and he has disclosed receiving research grants from Alberta Innovates (the Alberta Provincial Government) and the Canadian Institutes of Health Research (the Canadian Federal Government).

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity.

Tricia Ward: I’m joined today by Dr. Scott R. Garrison, MD, PhD. He is a professor in the Department of Family Medicine at the University of Alberta in Edmonton, Alberta, Canada, and director of the Pragmatic Trials Collaborative.

You presented two studies at ESC. One is the BedMed study, comparing day vs nighttime dosing of blood pressure therapy. Can you tell us the top-line findings? 
 

BedMed and BedMed-Frail

Dr. Garrison: We were looking to validate an earlier study that suggested a large benefit of taking blood pressure medication at bedtime, as far as reducing major adverse cardiovascular events (MACEs). That was the MAPEC study. They suggested a 60% reduction. The BedMed trial was in hypertensive primary care patients in five Canadian provinces. We randomized well over 3000 patients to bedtime or morning medications. We looked at MACEs — so all-cause death or hospitalizations for acute coronary syndrome, stroke, or heart failure, and a bunch of safety outcomes.

Essentially, we found that it made absolutely no difference whatever time of day you took it in terms of MACEs and it didn’t make any difference to the adverse effects. It was safe to take it at bedtime. But it did not convey any extra cardiovascular benefit.

Ms. Ward: And then you did a second study, called BedMed-Frail. Do you want to tell us the reason you did that?

Dr. Garrison: BedMed-Frail took place in a nursing home population. We believed that it was possible that frail, older adults might have very different risks and benefits, and that they would probably be underrepresented, as they normally are in the main trial. 

We thought that because bedtime blood pressure medications would be theoretically preferentially lowering night pressure, which is already the lowest pressure of the day, that if you were at risk for hypotensive or ischemic adverse events, that might make it worse. We looked at falls and fractures; worsening cognition in case they had vascular dementia; and whether they developed decubitus ulcers (pressure sores) because you need a certain amount of pressure to get past any obstruction — in this case, it’s the weight of your body if you’re lying in bed all the time. 

We also looked at problem behaviors. People who have dementia have what’s called “sundowning,” where agitation and confusion are worse as the evening is going on. We looked at that on the off chance that it had anything to do with blood pressures being lower. And the BedMed-Frail results mirror those of BedMed exactly. So there was no cardiovascular benefit, and in this population, that was largely driven by mortality; one third of these people died every year. 

Ms. Ward: The median age was about 88?

Dr. Garrison: Yes, the median age was 88. There was no cardiovascular mortality advantage to bedtime dosing, but neither was there any signal of safety concerns. 
 

Other Complementary and Conflicting Studies

Ms. Ward: These two studies mirror the TIME study from the United Kingdom.

Dr. Garrison: Yes. We found exactly what TIME found. Our point estimate was pretty much the same. The hazard ratio in the main trial was 0.96. Theirs, I believe, was 0.95. Our findings agree completely with those of TIME and differ substantially from the previous trials that suggested a large benefit.

Ms. Ward: Those previous trials were MAPEC and the Hygia Chronotherapy Trial.

Dr. Garrison: MAPEC was the first one. While we were doing our trial, and while the TIME investigators were doing their trial, both of us trying to validate MAPEC, the same group published another study called Hygia, which also reported a large reduction: a 45% reduction in MACE with bedtime dosing.

Ms. Ward: You didn’t present it, but there was also a meta-analysis presented here by somebody independent.

Dr. Garrison: Yes, Ricky Turgeon. I know Ricky. We gave him patient-level data for his meta-analysis, but I was not otherwise involved. 

Ms. Ward: And the conclusion is the same.

Dr. Garrison: It’s the same. He only found the same five trials: MAPEC, Hygia, TIME, BedMed, and BedMed-Frail. Combining them all together, the CIs still span 1.0, so it didn’t end up being significant. But he also analyzed TIME and the BedMed trials separately — again suggesting that those trials showed no benefit.

Ms. Ward: There was a TIME substudy of night owls vs early risers or morning people, and there was a hint (or whatever you should say for a subanalysis of a neutral trial) that timing might make a difference there.

Dr. Garrison: They recently published, I guess it is a substudy, where they looked at people’s chronotype according to whether you consider yourself an early bird or a night owl. Their assessment was more detailed. They reported that if people were tending toward being early birds and they took their blood pressure medicine in the morning, or if they were night owls and they took it in the evening, that they tended to have statistically significantly better outcomes than the opposite timing. In that analysis, they were only looking at nonfatal myocardial infarction and nonfatal stroke. 

We did ask something that was related. We asked people: “Do we consider yourself more of an early bird or a night owl?” So we do have those data. For what I presented at ESC, we just looked at the primary outcome; we did subgroups according to early bird, night owl, and neither, and that was not statistically significant. It didn’t rule it out. There were some trends in the direction that the TIME group were suggesting. We do intend to do a closer look at that. 

But, you know, they call these “late-breaking trials,” and it really was in our case. We didn’t get the last of our data from the last province until the end of June, so we still are finishing up the analysis of the chronotype portion — so more to come in another month or so.
 

 

 

Do What You Like, or Stick to Morning Dosing?

Ms. Ward: For the purposes of people’s take-home message, does this mostly apply to once-daily–dosed antihypertensives?

Dr. Garrison: It was essentially once-daily medicines that were changed. The docs did have the opportunity to consolidate twice-daily meds into once-daily or switch to a different medication. That’s probably the area where adherence was the biggest issue, because it’s largely beta-blockers that were given twice daily at baseline, and they were less likely to want to change. 

At 6 months, 83% of once-daily medications were taken per allocation in the bedtime group and 95% per allocation in the morning group, which was actually pretty good. For angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium-channel blockers, the adherence was excellent. Again, it was beta-blockers taken twice a day where it fell down, and then also diuretics. But if you combine all diuretic medications (ie, pure diuretics and combo agents), still, 75% of them were successful at taking them at bedtime. Only 15% of people switching a diuretic to bedtime dosing actually had problems with nocturia. Most physicians think that they can’t get their patients to take those meds at bedtime, but you can. There’s probably no reason to take it at bedtime, but most people do tolerate it.

Ms. Ward: Is your advice to take it whenever you feel like? I know when TIME came out, Professor George Stergiou, who’s the incoming president of the International Society of Hypertension, said, well, maybe we should stick with the morning, because that’s what most of the trials did. 

Dr. Garrison: I think that›s a perfectly valid point of view, and maybe for a lot of people, that could be the default. There are some people, though, who will have a particular reason why one time is better. For instance, most people have no problems with calcium-channel blockers, but some get ankle swelling and you’re more likely to have that happen if you take them in the morning. Or lots of people want to take all their pills at the same time; blood pressure pills are easy ones to switch the timing of if you’re trying to accomplish that, and if that will help adherence. Basically, whatever time of day you can remember to take it the best is probably the right time.

Ms. Ward: Given where we are today, with your trials and TIME, do you think this is now settled science that it doesn’t make a difference?

Dr. Garrison: I’m probably the wrong person to ask, because I clearly have a bias. I think the methods in the TIME trial are really transparent and solid. I hope that when our papers come out, people will feel the same. You just have to look at the different trials. You need people like Dr. Stergiou to wade through the trials to help you with that.

Ms. Ward: Thank you very much for joining me today and discussing this trial.

Scott R. Garrison, MD, PhD, is Professor, Department of Family Medicine, University of Alberta in Edmonton, Alberta, Canada, and Staff Physician, Department of Family Medicine, Kaye Edmonton Clinic, and he has disclosed receiving research grants from Alberta Innovates (the Alberta Provincial Government) and the Canadian Institutes of Health Research (the Canadian Federal Government).

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ESC 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Kidney Disease May Accelerate With Higher Rheumatoid Arthritis Disease Activity

Article Type
Changed
Thu, 09/05/2024 - 15:04

 

TOPLINE:

Higher rheumatoid arthritis (RA) disease activity is associated with an accelerated kidney function decline and increased risk for chronic kidney disease (CKD) stages G3a and G3b.

METHODOLOGY:

  • Researchers analyzed data from the CorEvitas RA registry, a prospective observational cohort in the United States, between 2001 and 2022, to evaluate the longitudinal association between RA disease activity and changes in kidney function.
  • They included 31,129 patients with RA (median age, 58 years; 76.3% women) who had a baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min per 1.73 m2 and received treatment with disease-modifying antirheumatic drugs (DMARDs).
  • The participants were categorized into those in remission (n = 6647) and those with low (n = 10,028), moderate (n = 8548), and high (n = 5906) disease activity based on the time-averaged Clinical Disease Activity Index and followed for a median duration of 3.5 years.
  • The primary outcome was a longitudinal change in eGFR, and the secondary outcomes were the development of CKD stage G3a (eGFR < 60 mL/min/1.73 m2) and stage G3b (eGFR < 45 mL/min/1.73 m2).

TAKEAWAY:

  • Higher RA disease activity was associated with a faster decline in eGFR, with those having moderate and high RA disease activity experiencing an additional mean annual decline of 0.17 mL/min per 1.73 m2 and 0.18 mL/min per 1.73 m2, respectively, compared with those in remission.
  • The decline in annual eGFR was even more accelerated when patients had consistently high disease activity since the time of enrollment (−0.43 mL/min per 1.73 m2).
  • Patients with high RA disease activity had a 1.27 times (adjusted hazard ratio, 1.27; 95% CI, 1.05-1.52) higher risk of developing CKD stage G3a and a 1.93 times (aHR, 1.93; 95% CI, 1.16-3.20) higher risk for CKD stage G3b, compared with those in remission.

IN PRACTICE:

“This study suggests that controlling disease activity may potentially contribute to preserving kidney function in patients with RA,” the authors wrote.

SOURCE:

This study was led by Sho Fukui, MD, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, both in Boston, Massachusetts, and was published online in Annals of the Rheumatic Diseases.

LIMITATIONS:

This study relied on serum creatinine and not cystatin C to estimate kidney function. It also did not collect information on the severity of comorbidities, which may have introduced residual confounding. Further studies are warranted to check the effect of DMARD therapy on renal function.

DISCLOSURES:

The study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases. Some authors reported serving as scientific advisers or consultants, receiving consulting fees or salary support, or having other ties with pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Higher rheumatoid arthritis (RA) disease activity is associated with an accelerated kidney function decline and increased risk for chronic kidney disease (CKD) stages G3a and G3b.

METHODOLOGY:

  • Researchers analyzed data from the CorEvitas RA registry, a prospective observational cohort in the United States, between 2001 and 2022, to evaluate the longitudinal association between RA disease activity and changes in kidney function.
  • They included 31,129 patients with RA (median age, 58 years; 76.3% women) who had a baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min per 1.73 m2 and received treatment with disease-modifying antirheumatic drugs (DMARDs).
  • The participants were categorized into those in remission (n = 6647) and those with low (n = 10,028), moderate (n = 8548), and high (n = 5906) disease activity based on the time-averaged Clinical Disease Activity Index and followed for a median duration of 3.5 years.
  • The primary outcome was a longitudinal change in eGFR, and the secondary outcomes were the development of CKD stage G3a (eGFR < 60 mL/min/1.73 m2) and stage G3b (eGFR < 45 mL/min/1.73 m2).

TAKEAWAY:

  • Higher RA disease activity was associated with a faster decline in eGFR, with those having moderate and high RA disease activity experiencing an additional mean annual decline of 0.17 mL/min per 1.73 m2 and 0.18 mL/min per 1.73 m2, respectively, compared with those in remission.
  • The decline in annual eGFR was even more accelerated when patients had consistently high disease activity since the time of enrollment (−0.43 mL/min per 1.73 m2).
  • Patients with high RA disease activity had a 1.27 times (adjusted hazard ratio, 1.27; 95% CI, 1.05-1.52) higher risk of developing CKD stage G3a and a 1.93 times (aHR, 1.93; 95% CI, 1.16-3.20) higher risk for CKD stage G3b, compared with those in remission.

IN PRACTICE:

“This study suggests that controlling disease activity may potentially contribute to preserving kidney function in patients with RA,” the authors wrote.

SOURCE:

This study was led by Sho Fukui, MD, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, both in Boston, Massachusetts, and was published online in Annals of the Rheumatic Diseases.

LIMITATIONS:

This study relied on serum creatinine and not cystatin C to estimate kidney function. It also did not collect information on the severity of comorbidities, which may have introduced residual confounding. Further studies are warranted to check the effect of DMARD therapy on renal function.

DISCLOSURES:

The study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases. Some authors reported serving as scientific advisers or consultants, receiving consulting fees or salary support, or having other ties with pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Higher rheumatoid arthritis (RA) disease activity is associated with an accelerated kidney function decline and increased risk for chronic kidney disease (CKD) stages G3a and G3b.

METHODOLOGY:

  • Researchers analyzed data from the CorEvitas RA registry, a prospective observational cohort in the United States, between 2001 and 2022, to evaluate the longitudinal association between RA disease activity and changes in kidney function.
  • They included 31,129 patients with RA (median age, 58 years; 76.3% women) who had a baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min per 1.73 m2 and received treatment with disease-modifying antirheumatic drugs (DMARDs).
  • The participants were categorized into those in remission (n = 6647) and those with low (n = 10,028), moderate (n = 8548), and high (n = 5906) disease activity based on the time-averaged Clinical Disease Activity Index and followed for a median duration of 3.5 years.
  • The primary outcome was a longitudinal change in eGFR, and the secondary outcomes were the development of CKD stage G3a (eGFR < 60 mL/min/1.73 m2) and stage G3b (eGFR < 45 mL/min/1.73 m2).

TAKEAWAY:

  • Higher RA disease activity was associated with a faster decline in eGFR, with those having moderate and high RA disease activity experiencing an additional mean annual decline of 0.17 mL/min per 1.73 m2 and 0.18 mL/min per 1.73 m2, respectively, compared with those in remission.
  • The decline in annual eGFR was even more accelerated when patients had consistently high disease activity since the time of enrollment (−0.43 mL/min per 1.73 m2).
  • Patients with high RA disease activity had a 1.27 times (adjusted hazard ratio, 1.27; 95% CI, 1.05-1.52) higher risk of developing CKD stage G3a and a 1.93 times (aHR, 1.93; 95% CI, 1.16-3.20) higher risk for CKD stage G3b, compared with those in remission.

IN PRACTICE:

“This study suggests that controlling disease activity may potentially contribute to preserving kidney function in patients with RA,” the authors wrote.

SOURCE:

This study was led by Sho Fukui, MD, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, both in Boston, Massachusetts, and was published online in Annals of the Rheumatic Diseases.

LIMITATIONS:

This study relied on serum creatinine and not cystatin C to estimate kidney function. It also did not collect information on the severity of comorbidities, which may have introduced residual confounding. Further studies are warranted to check the effect of DMARD therapy on renal function.

DISCLOSURES:

The study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases. Some authors reported serving as scientific advisers or consultants, receiving consulting fees or salary support, or having other ties with pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

In-Hospital e-Alerts: A Step Toward Better Kidney Health?

Article Type
Changed
Thu, 09/05/2024 - 13:14

 

TOPLINE:

Electronic alerts (e-alerts) for acute kidney injury (AKI) for hospitalized patients are linked to a lower risk for AKI progression, increased consultations with nephrologists, and post-AKI reduced use of nonsteroidal anti-inflammatory drugs (NSAIDs), but not with reduced mortality. 

METHODOLOGY:

  • AKI is a common complication in hospitalized patients, leading to increased comorbidities, healthcare costs, and short- and long-term mortality, but the impact of early detection through electronic health care record systems (e-alerts) is unclear.
  • Researchers conducted an updated systematic review and meta-analysis to assess the association of e-alerts for AKI with patient outcomes and clinical practice patterns.
  • Overall, 13 studies involving 41,837 patients with AKI were included, comparing e-alerts for AKI with standard care or no e-alerts.
  • The primary outcomes were mortality, AKI progression, dialysis events, and kidney recovery, and secondary outcomes were nephrologist consultations, post-AKI exposure to NSAIDs and other medications, and hospital length of stay and costs.
  • The investigators assessed bias, the certainty of evidence, and whether the primary outcome conclusions of the meta-analysis were premature.

TAKEAWAY:

  • The use of e-alerts for AKI was not associated with reduced mortality outcomes compared with no e-alerts (risk ratio [RR], 0.96; 95% CI, 0.89-1.03; 12 studies).
  • E-alerts were associated with a reduced risk for AKI progression (RR, 0.91; 95% CI, 0.84-0.99; five studies); however, the results were found to be heterogeneous and possibly premature.
  • E-alerts for AKI were also linked to increased nephrologist consultations (RR, 1.45; 95% CI, 1.04-2.02; 11 studies), reduced post-AKI NSAID exposure (RR, 0.75; 95% CI, 0.59-0.95; four studies), and improved AKI documentation (RR, 1.28; 95% CI, 1.04-1.58; eight studies).
  • The use of e-alerts for AKI was associated with increased dialysis events (RR, 1.16; 95% CI, 1.05-1.28).

IN PRACTICE:

“We recommend that each hospital establish its own AKI e-alert system and individualized AKI management protocol tailored to its specific needs,” wrote the authors who also suggested the system be “integrated with earlier risk stratification methods, such as the renal angina index, artificial intelligence–based continuous AKI prediction, and care bundle implementation within a clinical decision support system to enhance early diagnosis and management, potentially improving outcomes.”

SOURCE:

This study was led by Jia-Jin Chen, MD, from the Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan. It was published online in JAMA Network Open.

LIMITATIONS: 

The limitations included the scarcity of randomized clinical trials in the meta-analysis. Few studies examined the impact of these e-alerts on the hospital length of stay, healthcare costs, AKI stage progression, and post-AKI kidney recovery, which limited the ability to draw conclusive statements on these aspects. Major adverse kidney events at 28 and 90 days were not reported in any of the enrolled studies, so the impact of AKI e-alerts and increased dialysis events on long-term outcomes remained uncertain.

DISCLOSURES:

The study was supported by grants from the Taiwanese Ministry of Health and Welfare and Linkou Chang Gung Memorial Hospital. The authors declared no conflicts of interests.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Electronic alerts (e-alerts) for acute kidney injury (AKI) for hospitalized patients are linked to a lower risk for AKI progression, increased consultations with nephrologists, and post-AKI reduced use of nonsteroidal anti-inflammatory drugs (NSAIDs), but not with reduced mortality. 

METHODOLOGY:

  • AKI is a common complication in hospitalized patients, leading to increased comorbidities, healthcare costs, and short- and long-term mortality, but the impact of early detection through electronic health care record systems (e-alerts) is unclear.
  • Researchers conducted an updated systematic review and meta-analysis to assess the association of e-alerts for AKI with patient outcomes and clinical practice patterns.
  • Overall, 13 studies involving 41,837 patients with AKI were included, comparing e-alerts for AKI with standard care or no e-alerts.
  • The primary outcomes were mortality, AKI progression, dialysis events, and kidney recovery, and secondary outcomes were nephrologist consultations, post-AKI exposure to NSAIDs and other medications, and hospital length of stay and costs.
  • The investigators assessed bias, the certainty of evidence, and whether the primary outcome conclusions of the meta-analysis were premature.

TAKEAWAY:

  • The use of e-alerts for AKI was not associated with reduced mortality outcomes compared with no e-alerts (risk ratio [RR], 0.96; 95% CI, 0.89-1.03; 12 studies).
  • E-alerts were associated with a reduced risk for AKI progression (RR, 0.91; 95% CI, 0.84-0.99; five studies); however, the results were found to be heterogeneous and possibly premature.
  • E-alerts for AKI were also linked to increased nephrologist consultations (RR, 1.45; 95% CI, 1.04-2.02; 11 studies), reduced post-AKI NSAID exposure (RR, 0.75; 95% CI, 0.59-0.95; four studies), and improved AKI documentation (RR, 1.28; 95% CI, 1.04-1.58; eight studies).
  • The use of e-alerts for AKI was associated with increased dialysis events (RR, 1.16; 95% CI, 1.05-1.28).

IN PRACTICE:

“We recommend that each hospital establish its own AKI e-alert system and individualized AKI management protocol tailored to its specific needs,” wrote the authors who also suggested the system be “integrated with earlier risk stratification methods, such as the renal angina index, artificial intelligence–based continuous AKI prediction, and care bundle implementation within a clinical decision support system to enhance early diagnosis and management, potentially improving outcomes.”

SOURCE:

This study was led by Jia-Jin Chen, MD, from the Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan. It was published online in JAMA Network Open.

LIMITATIONS: 

The limitations included the scarcity of randomized clinical trials in the meta-analysis. Few studies examined the impact of these e-alerts on the hospital length of stay, healthcare costs, AKI stage progression, and post-AKI kidney recovery, which limited the ability to draw conclusive statements on these aspects. Major adverse kidney events at 28 and 90 days were not reported in any of the enrolled studies, so the impact of AKI e-alerts and increased dialysis events on long-term outcomes remained uncertain.

DISCLOSURES:

The study was supported by grants from the Taiwanese Ministry of Health and Welfare and Linkou Chang Gung Memorial Hospital. The authors declared no conflicts of interests.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Electronic alerts (e-alerts) for acute kidney injury (AKI) for hospitalized patients are linked to a lower risk for AKI progression, increased consultations with nephrologists, and post-AKI reduced use of nonsteroidal anti-inflammatory drugs (NSAIDs), but not with reduced mortality. 

METHODOLOGY:

  • AKI is a common complication in hospitalized patients, leading to increased comorbidities, healthcare costs, and short- and long-term mortality, but the impact of early detection through electronic health care record systems (e-alerts) is unclear.
  • Researchers conducted an updated systematic review and meta-analysis to assess the association of e-alerts for AKI with patient outcomes and clinical practice patterns.
  • Overall, 13 studies involving 41,837 patients with AKI were included, comparing e-alerts for AKI with standard care or no e-alerts.
  • The primary outcomes were mortality, AKI progression, dialysis events, and kidney recovery, and secondary outcomes were nephrologist consultations, post-AKI exposure to NSAIDs and other medications, and hospital length of stay and costs.
  • The investigators assessed bias, the certainty of evidence, and whether the primary outcome conclusions of the meta-analysis were premature.

TAKEAWAY:

  • The use of e-alerts for AKI was not associated with reduced mortality outcomes compared with no e-alerts (risk ratio [RR], 0.96; 95% CI, 0.89-1.03; 12 studies).
  • E-alerts were associated with a reduced risk for AKI progression (RR, 0.91; 95% CI, 0.84-0.99; five studies); however, the results were found to be heterogeneous and possibly premature.
  • E-alerts for AKI were also linked to increased nephrologist consultations (RR, 1.45; 95% CI, 1.04-2.02; 11 studies), reduced post-AKI NSAID exposure (RR, 0.75; 95% CI, 0.59-0.95; four studies), and improved AKI documentation (RR, 1.28; 95% CI, 1.04-1.58; eight studies).
  • The use of e-alerts for AKI was associated with increased dialysis events (RR, 1.16; 95% CI, 1.05-1.28).

IN PRACTICE:

“We recommend that each hospital establish its own AKI e-alert system and individualized AKI management protocol tailored to its specific needs,” wrote the authors who also suggested the system be “integrated with earlier risk stratification methods, such as the renal angina index, artificial intelligence–based continuous AKI prediction, and care bundle implementation within a clinical decision support system to enhance early diagnosis and management, potentially improving outcomes.”

SOURCE:

This study was led by Jia-Jin Chen, MD, from the Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan. It was published online in JAMA Network Open.

LIMITATIONS: 

The limitations included the scarcity of randomized clinical trials in the meta-analysis. Few studies examined the impact of these e-alerts on the hospital length of stay, healthcare costs, AKI stage progression, and post-AKI kidney recovery, which limited the ability to draw conclusive statements on these aspects. Major adverse kidney events at 28 and 90 days were not reported in any of the enrolled studies, so the impact of AKI e-alerts and increased dialysis events on long-term outcomes remained uncertain.

DISCLOSURES:

The study was supported by grants from the Taiwanese Ministry of Health and Welfare and Linkou Chang Gung Memorial Hospital. The authors declared no conflicts of interests.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

As Interest From Families Wanes, Pediatricians Scale Back on COVID Shots

Article Type
Changed
Thu, 09/05/2024 - 12:40

When pediatrician Eric Ball, MD, opened a refrigerator full of childhood vaccines, all the expected shots were there — DTaP, polio, pneumococcal vaccine — except one.

“This is where we usually store our COVID vaccines, but we don’t have any right now because they all expired at the end of last year and we had to dispose of them,” said Dr. Ball, who is part of a pediatric practice in Orange County, California.

“We thought demand would be way higher than it was.”

Pediatricians across the country are preordering the updated and reformulated COVID-19 vaccine for the fall and winter respiratory virus season, but some doctors said they’re struggling to predict whether parents will be interested. Providers like Dr. Ball don’t want to waste money ordering doses that won’t be used, but they need enough on hand to vaccinate vulnerable children.

The Centers for Disease Control and Prevention recommends that anyone 6 months or older get the updated COVID vaccination, but in the 2023-24 vaccination season only about 15% of eligible children in the United States got a shot.

Dr. Ball said it was difficult to let vaccines go to waste in 2023. It was the first time the federal government was no longer picking up the tab for the shots, and providers had to pay upfront for the vaccines. Parents would often skip the COVID shot, which can have a very short shelf life, compared with other vaccines.

“Watching it sitting on our shelves expiring every 30 days, that’s like throwing away $150 repeatedly every day, multiple times a month,” Dr. Ball said.

in 2024, Dr. Ball slashed his fall vaccine order to the bare minimum to avoid another costly mistake.

“We took the number of flu vaccines that we order, and then we ordered 5% of that in COVID vaccines,” Dr. Ball said. “It’s a guess.”

That small vaccine order cost more than $63,000, he said.

Pharmacists, pharmacy interns, and techs are allowed to give COVID vaccines only to children age 3 and up, meaning babies and toddlers would need to visit a doctor’s office for inoculation.

It’s difficult to predict how parents will feel about the shots this fall, said Chicago pediatrician Scott Goldstein, MD. Unlike other vaccinations, COVID shots aren’t required for kids to attend school, and parental interest seems to wane with each new formulation. For a physician-owned practice such as Dr. Goldstein’s, the upfront cost of the vaccine can be a gamble.

“The cost of vaccines, that’s far and away our biggest expense. But it’s also the most important thing we do, you could argue, is vaccinating kids,” Dr. Goldstein said.

Insurance doesn’t necessarily cover vaccine storage accidents, which can put the practice at risk of financial ruin.

“We’ve had things happen like a refrigerator gets unplugged. And then we’re all of a sudden out $80,000 overnight,” Dr. Goldstein said.

South Carolina pediatrician Deborah Greenhouse, MD, said she would order more COVID vaccines for older children if the pharmaceutical companies that she buys from had a more forgiving return policy.

“Pfizer is creating that situation. If you’re only going to let us return 30%, we’re not going to buy much,” she said. “We can’t.”

Greenhouse owns her practice, so the remaining 70% of leftover shots would come out of her pocket.

Vaccine maker Pfizer will take back all unused COVID shots for young children, but only 30% of doses for people 12 and older.

Pfizer said in an Aug. 20 emailed statement, “The return policy was instituted as we recognize both the importance and the complexity of pediatric vaccination and wanted to ensure that pediatric offices did not have hurdles to providing vaccine to their young patients.”

Pfizer’s return policy is similar to policies from other drugmakers for pediatric flu vaccines, also recommended during the fall season. Physicians who are worried about unwanted COVID vaccines expiring on the shelves said flu shots cost them about $20 per dose, while COVID shots cost around $150 per dose.

“We run on a very thin margin. If we get stuck holding a ton of vaccine that we cannot return, we can’t absorb that kind of cost,” Dr. Greenhouse said.

Vaccine maker Moderna will accept COVID vaccine returns, but the amount depends on the individual contract with a provider. Novavax will accept the return of only unopened vaccines and doesn’t specify the amount they’ll accept.

Dr. Greenhouse wants to vaccinate as many children as possible but said she can’t afford to stock shots with a short shelf life. Once she runs out of the doses she’s ordered, Dr. Greenhouse plans to tell families to go to a pharmacy to get older children vaccinated. If pediatricians around the country are making the same calculations, doses for very small children could be harder to find at doctors’ offices.

“Frankly, it’s not an ideal situation, but it’s what we have to do to stay in business,” she said.

Dr. Ball worries that parents’ limited interest has caused pediatricians to minimize their vaccine orders, in turn making the newest COVID shots difficult to find once they become available.

“I think there’s just a misperception that it’s less of a big deal to get COVID, but I’m still sending babies to the hospital with COVID,” Dr. Ball said. “We’re still seeing kids with long COVID. This is with us forever.”

KFF Health News is a national newsroom that produces in-depth journalism about health issues and is one of the core operating programs at KFF — the independent source for health policy research, polling, and journalism.

Publications
Topics
Sections

When pediatrician Eric Ball, MD, opened a refrigerator full of childhood vaccines, all the expected shots were there — DTaP, polio, pneumococcal vaccine — except one.

“This is where we usually store our COVID vaccines, but we don’t have any right now because they all expired at the end of last year and we had to dispose of them,” said Dr. Ball, who is part of a pediatric practice in Orange County, California.

“We thought demand would be way higher than it was.”

Pediatricians across the country are preordering the updated and reformulated COVID-19 vaccine for the fall and winter respiratory virus season, but some doctors said they’re struggling to predict whether parents will be interested. Providers like Dr. Ball don’t want to waste money ordering doses that won’t be used, but they need enough on hand to vaccinate vulnerable children.

The Centers for Disease Control and Prevention recommends that anyone 6 months or older get the updated COVID vaccination, but in the 2023-24 vaccination season only about 15% of eligible children in the United States got a shot.

Dr. Ball said it was difficult to let vaccines go to waste in 2023. It was the first time the federal government was no longer picking up the tab for the shots, and providers had to pay upfront for the vaccines. Parents would often skip the COVID shot, which can have a very short shelf life, compared with other vaccines.

“Watching it sitting on our shelves expiring every 30 days, that’s like throwing away $150 repeatedly every day, multiple times a month,” Dr. Ball said.

in 2024, Dr. Ball slashed his fall vaccine order to the bare minimum to avoid another costly mistake.

“We took the number of flu vaccines that we order, and then we ordered 5% of that in COVID vaccines,” Dr. Ball said. “It’s a guess.”

That small vaccine order cost more than $63,000, he said.

Pharmacists, pharmacy interns, and techs are allowed to give COVID vaccines only to children age 3 and up, meaning babies and toddlers would need to visit a doctor’s office for inoculation.

It’s difficult to predict how parents will feel about the shots this fall, said Chicago pediatrician Scott Goldstein, MD. Unlike other vaccinations, COVID shots aren’t required for kids to attend school, and parental interest seems to wane with each new formulation. For a physician-owned practice such as Dr. Goldstein’s, the upfront cost of the vaccine can be a gamble.

“The cost of vaccines, that’s far and away our biggest expense. But it’s also the most important thing we do, you could argue, is vaccinating kids,” Dr. Goldstein said.

Insurance doesn’t necessarily cover vaccine storage accidents, which can put the practice at risk of financial ruin.

“We’ve had things happen like a refrigerator gets unplugged. And then we’re all of a sudden out $80,000 overnight,” Dr. Goldstein said.

South Carolina pediatrician Deborah Greenhouse, MD, said she would order more COVID vaccines for older children if the pharmaceutical companies that she buys from had a more forgiving return policy.

“Pfizer is creating that situation. If you’re only going to let us return 30%, we’re not going to buy much,” she said. “We can’t.”

Greenhouse owns her practice, so the remaining 70% of leftover shots would come out of her pocket.

Vaccine maker Pfizer will take back all unused COVID shots for young children, but only 30% of doses for people 12 and older.

Pfizer said in an Aug. 20 emailed statement, “The return policy was instituted as we recognize both the importance and the complexity of pediatric vaccination and wanted to ensure that pediatric offices did not have hurdles to providing vaccine to their young patients.”

Pfizer’s return policy is similar to policies from other drugmakers for pediatric flu vaccines, also recommended during the fall season. Physicians who are worried about unwanted COVID vaccines expiring on the shelves said flu shots cost them about $20 per dose, while COVID shots cost around $150 per dose.

“We run on a very thin margin. If we get stuck holding a ton of vaccine that we cannot return, we can’t absorb that kind of cost,” Dr. Greenhouse said.

Vaccine maker Moderna will accept COVID vaccine returns, but the amount depends on the individual contract with a provider. Novavax will accept the return of only unopened vaccines and doesn’t specify the amount they’ll accept.

Dr. Greenhouse wants to vaccinate as many children as possible but said she can’t afford to stock shots with a short shelf life. Once she runs out of the doses she’s ordered, Dr. Greenhouse plans to tell families to go to a pharmacy to get older children vaccinated. If pediatricians around the country are making the same calculations, doses for very small children could be harder to find at doctors’ offices.

“Frankly, it’s not an ideal situation, but it’s what we have to do to stay in business,” she said.

Dr. Ball worries that parents’ limited interest has caused pediatricians to minimize their vaccine orders, in turn making the newest COVID shots difficult to find once they become available.

“I think there’s just a misperception that it’s less of a big deal to get COVID, but I’m still sending babies to the hospital with COVID,” Dr. Ball said. “We’re still seeing kids with long COVID. This is with us forever.”

KFF Health News is a national newsroom that produces in-depth journalism about health issues and is one of the core operating programs at KFF — the independent source for health policy research, polling, and journalism.

When pediatrician Eric Ball, MD, opened a refrigerator full of childhood vaccines, all the expected shots were there — DTaP, polio, pneumococcal vaccine — except one.

“This is where we usually store our COVID vaccines, but we don’t have any right now because they all expired at the end of last year and we had to dispose of them,” said Dr. Ball, who is part of a pediatric practice in Orange County, California.

“We thought demand would be way higher than it was.”

Pediatricians across the country are preordering the updated and reformulated COVID-19 vaccine for the fall and winter respiratory virus season, but some doctors said they’re struggling to predict whether parents will be interested. Providers like Dr. Ball don’t want to waste money ordering doses that won’t be used, but they need enough on hand to vaccinate vulnerable children.

The Centers for Disease Control and Prevention recommends that anyone 6 months or older get the updated COVID vaccination, but in the 2023-24 vaccination season only about 15% of eligible children in the United States got a shot.

Dr. Ball said it was difficult to let vaccines go to waste in 2023. It was the first time the federal government was no longer picking up the tab for the shots, and providers had to pay upfront for the vaccines. Parents would often skip the COVID shot, which can have a very short shelf life, compared with other vaccines.

“Watching it sitting on our shelves expiring every 30 days, that’s like throwing away $150 repeatedly every day, multiple times a month,” Dr. Ball said.

in 2024, Dr. Ball slashed his fall vaccine order to the bare minimum to avoid another costly mistake.

“We took the number of flu vaccines that we order, and then we ordered 5% of that in COVID vaccines,” Dr. Ball said. “It’s a guess.”

That small vaccine order cost more than $63,000, he said.

Pharmacists, pharmacy interns, and techs are allowed to give COVID vaccines only to children age 3 and up, meaning babies and toddlers would need to visit a doctor’s office for inoculation.

It’s difficult to predict how parents will feel about the shots this fall, said Chicago pediatrician Scott Goldstein, MD. Unlike other vaccinations, COVID shots aren’t required for kids to attend school, and parental interest seems to wane with each new formulation. For a physician-owned practice such as Dr. Goldstein’s, the upfront cost of the vaccine can be a gamble.

“The cost of vaccines, that’s far and away our biggest expense. But it’s also the most important thing we do, you could argue, is vaccinating kids,” Dr. Goldstein said.

Insurance doesn’t necessarily cover vaccine storage accidents, which can put the practice at risk of financial ruin.

“We’ve had things happen like a refrigerator gets unplugged. And then we’re all of a sudden out $80,000 overnight,” Dr. Goldstein said.

South Carolina pediatrician Deborah Greenhouse, MD, said she would order more COVID vaccines for older children if the pharmaceutical companies that she buys from had a more forgiving return policy.

“Pfizer is creating that situation. If you’re only going to let us return 30%, we’re not going to buy much,” she said. “We can’t.”

Greenhouse owns her practice, so the remaining 70% of leftover shots would come out of her pocket.

Vaccine maker Pfizer will take back all unused COVID shots for young children, but only 30% of doses for people 12 and older.

Pfizer said in an Aug. 20 emailed statement, “The return policy was instituted as we recognize both the importance and the complexity of pediatric vaccination and wanted to ensure that pediatric offices did not have hurdles to providing vaccine to their young patients.”

Pfizer’s return policy is similar to policies from other drugmakers for pediatric flu vaccines, also recommended during the fall season. Physicians who are worried about unwanted COVID vaccines expiring on the shelves said flu shots cost them about $20 per dose, while COVID shots cost around $150 per dose.

“We run on a very thin margin. If we get stuck holding a ton of vaccine that we cannot return, we can’t absorb that kind of cost,” Dr. Greenhouse said.

Vaccine maker Moderna will accept COVID vaccine returns, but the amount depends on the individual contract with a provider. Novavax will accept the return of only unopened vaccines and doesn’t specify the amount they’ll accept.

Dr. Greenhouse wants to vaccinate as many children as possible but said she can’t afford to stock shots with a short shelf life. Once she runs out of the doses she’s ordered, Dr. Greenhouse plans to tell families to go to a pharmacy to get older children vaccinated. If pediatricians around the country are making the same calculations, doses for very small children could be harder to find at doctors’ offices.

“Frankly, it’s not an ideal situation, but it’s what we have to do to stay in business,” she said.

Dr. Ball worries that parents’ limited interest has caused pediatricians to minimize their vaccine orders, in turn making the newest COVID shots difficult to find once they become available.

“I think there’s just a misperception that it’s less of a big deal to get COVID, but I’m still sending babies to the hospital with COVID,” Dr. Ball said. “We’re still seeing kids with long COVID. This is with us forever.”

KFF Health News is a national newsroom that produces in-depth journalism about health issues and is one of the core operating programs at KFF — the independent source for health policy research, polling, and journalism.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article