News and Views that Matter to Pediatricians

Top Sections
Medical Education Library
Best Practices
Managing Your Practice
pn
Main menu
PED Main Menu
Explore menu
PED Explore Menu
Proclivity ID
18819001
Unpublish
Specialty Focus
Vaccines
Mental Health
Practice Management
Altmetric
Article Authors "autobrand" affiliation
Pediatric News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 09:06
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 09:06
Current Issue
Title
Pediatric News
Description

The leading independent newspaper covering news and commentary in pediatrics.

Current Issue Reference

Seated Doctors Better Satisfy Patients, Communication

Article Type
Changed
Fri, 08/30/2024 - 12:37

Sitting at a patient’s bedside is one of the behaviors associated with better doctor-patient communication, patient satisfaction, and trust. During a busy day of consultations, however, it can be difficult for healthcare professionals to sit regularly with patients. Previous studies have revealed that hospital doctors sit during one out of every five meetings with patients.

recent US study evaluated the impact of the practitioner’s seated position next to the patient on the quality of the doctor-patient interaction in an internal medicine department. This research involved a sample of 51 doctors (average age, 35 years; 51% men) and analyzed 125 clinical interviews (n = 125 patients; average age, 53 years; 55% men). Participants were not informed of the real objective of the study. The patient’s perception of medical care was also solicited.

The experimental protocol involved two distinct configurations. Either the chair was positioned near the bed (within 90 cm) before the doctor arrived or it remained visible in its usual place. Each meeting with a patient was randomized according to the chair location (intervention group: n = 60; control group: n = 65).

The primary criterion was the doctor’s binary decision to sit or not at a given moment during a meeting with a patient. Secondary criteria included patient satisfaction, time spent in the room, and the perception of time spent in the room by doctors and patients.

The chair’s location had no effect on the average duration of the interview, whether actual or estimated. When a chair was placed near the bed, the doctor sat in more than six out of 10 cases (63%), compared with fewer than one case out of 10 (8%) when the chair was less easily accessible (odds ratio, 20.7; 95% CI, 7.2-59.4; P < .001).

The chair arrangement did not lead to a significant difference in the average duration of presence in the room (10.6 min for both groups). Likewise, no notable difference was observed regarding the subjective estimation of this duration from the practitioners’ point of view (9.4 min vs 9.8 min) or from the patients’ point of view (13.1 min vs 13.5 min).

In the group in which the doctor sat to converse, patient satisfaction was significantly higher, with an overall difference of 3.9% (P = .02). Patients felt that the information provided was better (72% vs 52%; P =.03), and their confidence in the proposed care was also higher (58% vs 35%; P = .01). On the other hand, no significant difference appeared between the two groups regarding the information retained by the patient (doctor’s name and reason for hospitalization) or the doctor’s behavior.

The study authors acknowledged the study’s methodological limitations, which included a sample size that was lower than initially projected and the restriction to a single hospital setting. In addition, they noted that all patients were housed in individual rooms, which could be a source of bias. Despite these reservations, they suggested that even minimal environmental changes, such as the thoughtful placement of a chair, can significantly affect patients’ perceptions of the quality of care provided.
 

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Sitting at a patient’s bedside is one of the behaviors associated with better doctor-patient communication, patient satisfaction, and trust. During a busy day of consultations, however, it can be difficult for healthcare professionals to sit regularly with patients. Previous studies have revealed that hospital doctors sit during one out of every five meetings with patients.

recent US study evaluated the impact of the practitioner’s seated position next to the patient on the quality of the doctor-patient interaction in an internal medicine department. This research involved a sample of 51 doctors (average age, 35 years; 51% men) and analyzed 125 clinical interviews (n = 125 patients; average age, 53 years; 55% men). Participants were not informed of the real objective of the study. The patient’s perception of medical care was also solicited.

The experimental protocol involved two distinct configurations. Either the chair was positioned near the bed (within 90 cm) before the doctor arrived or it remained visible in its usual place. Each meeting with a patient was randomized according to the chair location (intervention group: n = 60; control group: n = 65).

The primary criterion was the doctor’s binary decision to sit or not at a given moment during a meeting with a patient. Secondary criteria included patient satisfaction, time spent in the room, and the perception of time spent in the room by doctors and patients.

The chair’s location had no effect on the average duration of the interview, whether actual or estimated. When a chair was placed near the bed, the doctor sat in more than six out of 10 cases (63%), compared with fewer than one case out of 10 (8%) when the chair was less easily accessible (odds ratio, 20.7; 95% CI, 7.2-59.4; P < .001).

The chair arrangement did not lead to a significant difference in the average duration of presence in the room (10.6 min for both groups). Likewise, no notable difference was observed regarding the subjective estimation of this duration from the practitioners’ point of view (9.4 min vs 9.8 min) or from the patients’ point of view (13.1 min vs 13.5 min).

In the group in which the doctor sat to converse, patient satisfaction was significantly higher, with an overall difference of 3.9% (P = .02). Patients felt that the information provided was better (72% vs 52%; P =.03), and their confidence in the proposed care was also higher (58% vs 35%; P = .01). On the other hand, no significant difference appeared between the two groups regarding the information retained by the patient (doctor’s name and reason for hospitalization) or the doctor’s behavior.

The study authors acknowledged the study’s methodological limitations, which included a sample size that was lower than initially projected and the restriction to a single hospital setting. In addition, they noted that all patients were housed in individual rooms, which could be a source of bias. Despite these reservations, they suggested that even minimal environmental changes, such as the thoughtful placement of a chair, can significantly affect patients’ perceptions of the quality of care provided.
 

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Sitting at a patient’s bedside is one of the behaviors associated with better doctor-patient communication, patient satisfaction, and trust. During a busy day of consultations, however, it can be difficult for healthcare professionals to sit regularly with patients. Previous studies have revealed that hospital doctors sit during one out of every five meetings with patients.

recent US study evaluated the impact of the practitioner’s seated position next to the patient on the quality of the doctor-patient interaction in an internal medicine department. This research involved a sample of 51 doctors (average age, 35 years; 51% men) and analyzed 125 clinical interviews (n = 125 patients; average age, 53 years; 55% men). Participants were not informed of the real objective of the study. The patient’s perception of medical care was also solicited.

The experimental protocol involved two distinct configurations. Either the chair was positioned near the bed (within 90 cm) before the doctor arrived or it remained visible in its usual place. Each meeting with a patient was randomized according to the chair location (intervention group: n = 60; control group: n = 65).

The primary criterion was the doctor’s binary decision to sit or not at a given moment during a meeting with a patient. Secondary criteria included patient satisfaction, time spent in the room, and the perception of time spent in the room by doctors and patients.

The chair’s location had no effect on the average duration of the interview, whether actual or estimated. When a chair was placed near the bed, the doctor sat in more than six out of 10 cases (63%), compared with fewer than one case out of 10 (8%) when the chair was less easily accessible (odds ratio, 20.7; 95% CI, 7.2-59.4; P < .001).

The chair arrangement did not lead to a significant difference in the average duration of presence in the room (10.6 min for both groups). Likewise, no notable difference was observed regarding the subjective estimation of this duration from the practitioners’ point of view (9.4 min vs 9.8 min) or from the patients’ point of view (13.1 min vs 13.5 min).

In the group in which the doctor sat to converse, patient satisfaction was significantly higher, with an overall difference of 3.9% (P = .02). Patients felt that the information provided was better (72% vs 52%; P =.03), and their confidence in the proposed care was also higher (58% vs 35%; P = .01). On the other hand, no significant difference appeared between the two groups regarding the information retained by the patient (doctor’s name and reason for hospitalization) or the doctor’s behavior.

The study authors acknowledged the study’s methodological limitations, which included a sample size that was lower than initially projected and the restriction to a single hospital setting. In addition, they noted that all patients were housed in individual rooms, which could be a source of bias. Despite these reservations, they suggested that even minimal environmental changes, such as the thoughtful placement of a chair, can significantly affect patients’ perceptions of the quality of care provided.
 

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Part of Taking a Good (Human) Patient History Includes Asking About Pet Vaccinations

Article Type
Changed
Tue, 09/03/2024 - 05:08

 

This transcript has been edited for clarity.

In my job, I spend 99% of my time thinking about ethical issues that arise in the care of human beings. That is the focus of our medical school, and that’s what we do. 

However, there are behaviors that are emerging with respect to pets that bear on human health and require the attention of doctors and nurses who deal with people who are pet owners.

Recently, there has been a great increase in the number of pet owners who are saying, “I’m not going to vaccinate my pets.” As horrible as this sounds, what’s happening is vaccine hesitancy about vaccines used in humans is extending through some people to their pets. 

The number of people who say they don’t trust things like rabies vaccine to be effective or safe for their pet animals is 40%, at least in surveys, and the American Veterinary Medical Association reports that 15%-18% of pet owners are not, in fact, vaccinating their pets against rabies.

Rabies, as I hope everybody knows, is one horrible disease. Even the treatment of it, should you get bitten by a rabid animal, is no fun, expensive, and hopefully something that can be administered quickly. It’s not always the case. Worldwide, at least 70,000 people die from rabies every year.

Obviously, there are many countries that are so terrified of rabies, they won’t let you bring pets in without quarantining them, say, England, for at least 6 months to a year, I believe, because they don’t want rabies getting into their country. They’re very strict about the movement of pets.

It is inexcusable for people, first, not to give their pets vaccines that prevent them getting distemper, parvovirus, or many other diseases that harm the pet. It’s also inexcusable to shorten your pet’s life or ask your patients to care for pets who get sick from many of these diseases that are vaccine preventable.

Worst of all, it’s inexcusable for any pet owner not to give a rabies vaccine to their pets. Were it up to me, I’d say you have to license your pet, and as part of that, you must mandate rabies vaccines for your dogs, cats, and other pets. 

We know what happens when people encounter wild animals like raccoons and rabbits. It is not a good situation. Your pets can easily encounter a rabid animal and then put themselves in a position where they can harm their human owners. 

We have an efficacious, safe treatment. If you’re dealing with someone, it might make sense to ask them, “Do you own a pet? Are you vaccinating?” It may not be something you’d ever thought about, but what we don’t need is rabies back in a bigger way in the United States than it’s been in the past.

I think, as a matter of prudence and public health, maybe firing up that question, “Got a pet in the house and are you vaccinating,” could be part of taking a good history.

 

Dr. Caplan is director of the division of medical ethics at New York University Langone Medical Center, New York City. He disclosed conflicts of interest with Johnson & Johnson and Medscape.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

In my job, I spend 99% of my time thinking about ethical issues that arise in the care of human beings. That is the focus of our medical school, and that’s what we do. 

However, there are behaviors that are emerging with respect to pets that bear on human health and require the attention of doctors and nurses who deal with people who are pet owners.

Recently, there has been a great increase in the number of pet owners who are saying, “I’m not going to vaccinate my pets.” As horrible as this sounds, what’s happening is vaccine hesitancy about vaccines used in humans is extending through some people to their pets. 

The number of people who say they don’t trust things like rabies vaccine to be effective or safe for their pet animals is 40%, at least in surveys, and the American Veterinary Medical Association reports that 15%-18% of pet owners are not, in fact, vaccinating their pets against rabies.

Rabies, as I hope everybody knows, is one horrible disease. Even the treatment of it, should you get bitten by a rabid animal, is no fun, expensive, and hopefully something that can be administered quickly. It’s not always the case. Worldwide, at least 70,000 people die from rabies every year.

Obviously, there are many countries that are so terrified of rabies, they won’t let you bring pets in without quarantining them, say, England, for at least 6 months to a year, I believe, because they don’t want rabies getting into their country. They’re very strict about the movement of pets.

It is inexcusable for people, first, not to give their pets vaccines that prevent them getting distemper, parvovirus, or many other diseases that harm the pet. It’s also inexcusable to shorten your pet’s life or ask your patients to care for pets who get sick from many of these diseases that are vaccine preventable.

Worst of all, it’s inexcusable for any pet owner not to give a rabies vaccine to their pets. Were it up to me, I’d say you have to license your pet, and as part of that, you must mandate rabies vaccines for your dogs, cats, and other pets. 

We know what happens when people encounter wild animals like raccoons and rabbits. It is not a good situation. Your pets can easily encounter a rabid animal and then put themselves in a position where they can harm their human owners. 

We have an efficacious, safe treatment. If you’re dealing with someone, it might make sense to ask them, “Do you own a pet? Are you vaccinating?” It may not be something you’d ever thought about, but what we don’t need is rabies back in a bigger way in the United States than it’s been in the past.

I think, as a matter of prudence and public health, maybe firing up that question, “Got a pet in the house and are you vaccinating,” could be part of taking a good history.

 

Dr. Caplan is director of the division of medical ethics at New York University Langone Medical Center, New York City. He disclosed conflicts of interest with Johnson & Johnson and Medscape.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity.

In my job, I spend 99% of my time thinking about ethical issues that arise in the care of human beings. That is the focus of our medical school, and that’s what we do. 

However, there are behaviors that are emerging with respect to pets that bear on human health and require the attention of doctors and nurses who deal with people who are pet owners.

Recently, there has been a great increase in the number of pet owners who are saying, “I’m not going to vaccinate my pets.” As horrible as this sounds, what’s happening is vaccine hesitancy about vaccines used in humans is extending through some people to their pets. 

The number of people who say they don’t trust things like rabies vaccine to be effective or safe for their pet animals is 40%, at least in surveys, and the American Veterinary Medical Association reports that 15%-18% of pet owners are not, in fact, vaccinating their pets against rabies.

Rabies, as I hope everybody knows, is one horrible disease. Even the treatment of it, should you get bitten by a rabid animal, is no fun, expensive, and hopefully something that can be administered quickly. It’s not always the case. Worldwide, at least 70,000 people die from rabies every year.

Obviously, there are many countries that are so terrified of rabies, they won’t let you bring pets in without quarantining them, say, England, for at least 6 months to a year, I believe, because they don’t want rabies getting into their country. They’re very strict about the movement of pets.

It is inexcusable for people, first, not to give their pets vaccines that prevent them getting distemper, parvovirus, or many other diseases that harm the pet. It’s also inexcusable to shorten your pet’s life or ask your patients to care for pets who get sick from many of these diseases that are vaccine preventable.

Worst of all, it’s inexcusable for any pet owner not to give a rabies vaccine to their pets. Were it up to me, I’d say you have to license your pet, and as part of that, you must mandate rabies vaccines for your dogs, cats, and other pets. 

We know what happens when people encounter wild animals like raccoons and rabbits. It is not a good situation. Your pets can easily encounter a rabid animal and then put themselves in a position where they can harm their human owners. 

We have an efficacious, safe treatment. If you’re dealing with someone, it might make sense to ask them, “Do you own a pet? Are you vaccinating?” It may not be something you’d ever thought about, but what we don’t need is rabies back in a bigger way in the United States than it’s been in the past.

I think, as a matter of prudence and public health, maybe firing up that question, “Got a pet in the house and are you vaccinating,” could be part of taking a good history.

 

Dr. Caplan is director of the division of medical ethics at New York University Langone Medical Center, New York City. He disclosed conflicts of interest with Johnson & Johnson and Medscape.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How Intermittent Fasting Could Transform Adolescent Obesity

Article Type
Changed
Thu, 08/29/2024 - 11:34

 

TOPLINE:

Intermittent energy restriction (IER) and continuous energy restriction (CER) reduced body mass index (BMI) in adolescents with obesity after 52 weeks, with no major differences found in body composition or cardiometabolic outcomes.

METHODOLOGY:

  • Researchers conducted a 52-week randomized clinical trial at two pediatric centers in Australia that involved 141 adolescents aged 13-17 years with obesity and at least one associated complication.
  • Participants were divided into two groups: IER and CER, with three phases: Very low-energy diet (weeks 0-4), intensive intervention (weeks 5-16), and continued intervention/maintenance (weeks 17-52).
  • Interventions included a very low-energy diet of 3350 kJ/d (800 kcal/d) for the first 4 weeks, followed by either IER intervention (2500-2950 kJ [600-700 kcal 3 days/wk]) or a daily CER intervention (6000-8000 kJ/d based on age; 1430-1670 kcal/d for teens aged 13-14 years and 1670-1900 kcal/d for teens aged 15-17 years).
  • Participants were provided with multivitamins and met with dietitians regularly, with additional support via telephone, text message, or email.

TAKEAWAY:

  • Teens in both the IER and CER groups showed a 0.28 reduction in BMI z-scores at 52 weeks with no significant differences between the two.
  • The researchers observed no differences in body composition or cardiometabolic outcomes between the IER and CER groups.
  • The occurrence of insulin resistance was reduced in both groups at week 16, but this effect was maintained only in the CER group at week 52.
  • The study found no significant differences in the occurrence of dyslipidemia or impaired hepatic function between the IER and CER groups.

IN PRACTICE:

“These findings suggest that for adolescents with obesity-associated complications, IER can be incorporated into a behavioral weight management program, providing an option in addition to CER and offering participants more choice,” the authors of the study wrote.

SOURCE:

The study was led by Natalie B. Lister, PhD, of the University of Sydney in Australia and was published online in JAMA Pediatrics.

LIMITATIONS:

The COVID-19 pandemic and subsequent lockdowns limited the sample size. Some dietitian visits were conducted via telehealth.

DISCLOSURES:

Dr. Lister received grants from the National Health and Medical Research Council of Australia. A coauthor, Louise A. Baur, MBBS, PhD, received speakers’ fees from Novo Nordisk and served as a member of the Eli Lilly Advisory Committee.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Intermittent energy restriction (IER) and continuous energy restriction (CER) reduced body mass index (BMI) in adolescents with obesity after 52 weeks, with no major differences found in body composition or cardiometabolic outcomes.

METHODOLOGY:

  • Researchers conducted a 52-week randomized clinical trial at two pediatric centers in Australia that involved 141 adolescents aged 13-17 years with obesity and at least one associated complication.
  • Participants were divided into two groups: IER and CER, with three phases: Very low-energy diet (weeks 0-4), intensive intervention (weeks 5-16), and continued intervention/maintenance (weeks 17-52).
  • Interventions included a very low-energy diet of 3350 kJ/d (800 kcal/d) for the first 4 weeks, followed by either IER intervention (2500-2950 kJ [600-700 kcal 3 days/wk]) or a daily CER intervention (6000-8000 kJ/d based on age; 1430-1670 kcal/d for teens aged 13-14 years and 1670-1900 kcal/d for teens aged 15-17 years).
  • Participants were provided with multivitamins and met with dietitians regularly, with additional support via telephone, text message, or email.

TAKEAWAY:

  • Teens in both the IER and CER groups showed a 0.28 reduction in BMI z-scores at 52 weeks with no significant differences between the two.
  • The researchers observed no differences in body composition or cardiometabolic outcomes between the IER and CER groups.
  • The occurrence of insulin resistance was reduced in both groups at week 16, but this effect was maintained only in the CER group at week 52.
  • The study found no significant differences in the occurrence of dyslipidemia or impaired hepatic function between the IER and CER groups.

IN PRACTICE:

“These findings suggest that for adolescents with obesity-associated complications, IER can be incorporated into a behavioral weight management program, providing an option in addition to CER and offering participants more choice,” the authors of the study wrote.

SOURCE:

The study was led by Natalie B. Lister, PhD, of the University of Sydney in Australia and was published online in JAMA Pediatrics.

LIMITATIONS:

The COVID-19 pandemic and subsequent lockdowns limited the sample size. Some dietitian visits were conducted via telehealth.

DISCLOSURES:

Dr. Lister received grants from the National Health and Medical Research Council of Australia. A coauthor, Louise A. Baur, MBBS, PhD, received speakers’ fees from Novo Nordisk and served as a member of the Eli Lilly Advisory Committee.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Intermittent energy restriction (IER) and continuous energy restriction (CER) reduced body mass index (BMI) in adolescents with obesity after 52 weeks, with no major differences found in body composition or cardiometabolic outcomes.

METHODOLOGY:

  • Researchers conducted a 52-week randomized clinical trial at two pediatric centers in Australia that involved 141 adolescents aged 13-17 years with obesity and at least one associated complication.
  • Participants were divided into two groups: IER and CER, with three phases: Very low-energy diet (weeks 0-4), intensive intervention (weeks 5-16), and continued intervention/maintenance (weeks 17-52).
  • Interventions included a very low-energy diet of 3350 kJ/d (800 kcal/d) for the first 4 weeks, followed by either IER intervention (2500-2950 kJ [600-700 kcal 3 days/wk]) or a daily CER intervention (6000-8000 kJ/d based on age; 1430-1670 kcal/d for teens aged 13-14 years and 1670-1900 kcal/d for teens aged 15-17 years).
  • Participants were provided with multivitamins and met with dietitians regularly, with additional support via telephone, text message, or email.

TAKEAWAY:

  • Teens in both the IER and CER groups showed a 0.28 reduction in BMI z-scores at 52 weeks with no significant differences between the two.
  • The researchers observed no differences in body composition or cardiometabolic outcomes between the IER and CER groups.
  • The occurrence of insulin resistance was reduced in both groups at week 16, but this effect was maintained only in the CER group at week 52.
  • The study found no significant differences in the occurrence of dyslipidemia or impaired hepatic function between the IER and CER groups.

IN PRACTICE:

“These findings suggest that for adolescents with obesity-associated complications, IER can be incorporated into a behavioral weight management program, providing an option in addition to CER and offering participants more choice,” the authors of the study wrote.

SOURCE:

The study was led by Natalie B. Lister, PhD, of the University of Sydney in Australia and was published online in JAMA Pediatrics.

LIMITATIONS:

The COVID-19 pandemic and subsequent lockdowns limited the sample size. Some dietitian visits were conducted via telehealth.

DISCLOSURES:

Dr. Lister received grants from the National Health and Medical Research Council of Australia. A coauthor, Louise A. Baur, MBBS, PhD, received speakers’ fees from Novo Nordisk and served as a member of the Eli Lilly Advisory Committee.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

From Scrubs to Social Media: How Some Med Students Become Influencers

Article Type
Changed
Wed, 08/28/2024 - 15:59

A medical student’s life is an endless cycle of classes, exams, clinical rotations, and residency preparation. While students typically have little free time, some still manage to build a mega social media presence. On TikTok and Instagram, among other sites, they share medical school experiences and lessons learned in the classroom and advocate for causes such as increased diversity and gender rights in the medical field.

This news organization caught up with a few social media influencers with a large online following to learn how medical students can effectively use social media to build a professional brand and network. Most of the students interviewed said that their social media platforms offered an opportunity to educate others about significant medical developments, feel part of a community with a like-minded audience, and network with doctors who may lead them to a future residency or career path.

Many med students said that they built their large audiences by creating a platform for people of their ethnic background, nationality, race, gender, or simply what others weren’t already talking about. They said they saw a niche in social media that was missing or others hadn’t tackled in the same way.

When Joel Bervell began med school in 2020, he questioned some of the lessons he learned about how race is used in medical practice, which didn’t make sense to him. So, he began his own research. He had about 2000 followers on Instagram at the time.

Mr. Bervell read a new study about pulse oximeters and how they often produce misleading readings on patients with dark skin.

He wondered why he hadn’t learned this in medical school, so he posted it on TikTok. Within 24 hours, about 500,000 people viewed it. Most of the comments were from doctors, nurses, and physician assistants who said they weren’t aware of the disparity.

While his initial posts detailed his journey to medical school and a day-in-the-life of a medical student, he transitioned to posts primarily about race, health equity, and what he perceives as racial bias in medicine.

Now, the fourth-year Ghanaian-American student at the Elson S. Floyd College of Medicine at Washington State University Spokane has close to 1.2 million followers on Instagram and TikTok combined. He frequently visits the White House to advise on social media’s influence on healthcare and has appeared on the Kelly Clarkson Show, Good Morning America, CNN, and ABC, among others.

He said he also uses social media to translate complex medical information for a general audience, many of whom access health information online so they can manage their own healthcare. He sees his social media work as an extension of his medical education, allowing him to delve deeper into subjects and report on them as if he were publishing research in a medical journal.

“When I came to medical school, yes, I wanted to be a doctor. But I also wanted to impact people.” Social media allows him to educate many more people than individual patients, the 29-year-old told this news organization.
 

Inspiring Minorities

Tabhata Paulet, 27, started her TikTok presence as a premed student in 2021. She aimed to provide free resources to help low-income, first-generation Latinx students like herself study for standardized exams.

“I always looked online for guidance and resources, and the medical influencers did not share a similar background. So, I shared my story and what I had to do as a first-generation and first person in my family to become a physician. I did not have access to the same resources as my peers,” said Ms. Paulet, who was born in Peru and came to New Jersey as a child.

Students who are Hispanic, Latinx, or of Spanish origin made up 6.8% of total medical school enrollment in 2023-2024, up slightly from 6.7% in 2022-2023, according to the Association of American Medical Colleges (AAMC).

Ms. Paulet’s online presence grew when she began documenting her experiences as a first-year medical student, bridging the language barrier for Spanish-speaking patients so they could understand their diagnosis and treatment. She often posts about health disparity and barriers to care for underserved communities.

Most of her nearly 22,000 followers are Hispanic, said the now fourth-year student at Rutgers New Jersey Medical School in Newark, New Jersey. “I talk a lot about my interesting Spanish-speaking patients ... and how sometimes speaking their native language truly makes a difference in their care.”

She believes that she serves an important role in social media. “It can be very inspirational for those who come after you [in med school] to see someone from a similar culture and upbringing.”
 

Creating a Community

It was during a therapy session 4 years ago that Jeremy “JP” Scott decided to share Instagram posts about his experiences as a nontraditional medical student. The 37-year-old was studying at Ross University School of Medicine in Barbados and was feeling lonely as an international medical student training to be a doctor as a second career.

Before starting med school, Mr. Scott was an adjunct professor and lab supervisor at the University of Hartford Biology Department, West Hartford, Connecticut, and then a research assistant and lab manager at the Wistar Institute in Philadelphia.

Although he wanted to follow his mother’s path to becoming a doctor, it was more difficult than he envisioned, said the fourth-year student who completed clinical rotations in the United States and is now applying for residencies.

“I talked about how medical school is not what it appears to be ... There are a lot of challenges we are going through,” especially as people of color, he said.

Mr. Scott believes social media helps people feel included and less alone. He said many of his followers are med students and physicians.

His posts often focus on LGBTQIA+ pride and being a minority as a Black man in medicine.

“The pandemic spurred a lot of us. We had a racial reckoning in our country at the time. It inspired us to talk as Black creators and Black medical students.”

Black or African American medical students made up 8.5% of total med school enrollment in 2023-2024, a slight increase from 2022 to 2023, according to AAMC figures. Black men represented 7% of total enrollment in 2023-2024, while Black women represented 9.8%.

After only a handful of online posts in which Mr. Scott candidly discussed his mental health struggles and relationships, he attracted the attention of several medical apparel companies, including the popular FIGS scrubs. He’s now an ambassador for the company, which supports him and his content.

“My association with FIGS has helped attract a wider online audience, increasing my presence.” Today, he has 14,000 Instagram followers. “It opened up so many opportunities,” Mr. Scott said. One example is working with the national LGBTQIA+ community.

“The goal was never to be a social media influencer, to gain sponsorships or photo opportunities,” he said.

“My job, first, is as a medical student. Everything else is second. I am not trying to be a professional social media personality. I’m trying to be an actual physician.” He also tries to separate JP “social media” from Jeremy, the medical student.

“On Instagram, anyone can pull it up and see what you’re doing. The last thing I want is for them to think that I’m not serious about what I’m doing, that I’m not here to learn and become a doctor.”
 

 

 

Benefits and Drawbacks

Ms. Paulet said her social media following helped her connect with leaders in the Latinx medical community, including an obstetrics anesthesiologist, her intended specialty. “I don’t think I’d be able to do that without a social media platform.”

Her online activity also propelled her from regional to national leadership in the Latino Medical Student Association (LMSA). She now also runs their Instagram page, which has 14,000 followers.

Mr. Bervell believes social media is a great way to network. He’s connected with people he wouldn’t have met otherwise, including physicians. “I think it will help me get into a residency,” he said. “It allows people to know who you are ... They will be able to tell in a few videos the type of doctor I want to be.”

On the other hand, Mr. Bervell is aware of the negative impacts of social media on mental health. “You can get lost in social media.” For that reason, he often tries to disconnect. “I can go days without my phone.”

Posting on social media can be time-consuming, Mr. Bervell admitted. He said he spent about 2 hours a day researching, editing, and posting on TikTok when he first started building his following. Now, he spends about 2-3 hours a week creating videos. “I don’t post every day anymore. I don’t have the time.”

When she started building her TikTok presence, Ms. Paulet said she devoted 15 hours a week to the endeavor, but now she spends 10-12 hours a week posting online, including on LMSA’s Instagram page. “Whenever you are done with an exam or have a study break, this is something fun to do.” She also says you never know who you’re going to inspire when you put yourself out there.

“Talk about your journey, rotations, or your experience in your first or second year of medical school. Talk about milestones like board exams.”
 

Word to the Wise

Some students may be concerned that their posts might affect a potential residency program. But the medical students interviewed say they want to find programs that align with their values and accept them for who they are.

Mr. Scott said he’s not worried about someone not liking him because of who he is. “I am Black and openly gay. If it’s a problem, I don’t need to work with you or your institution.”

Mr. Bervell stressed that medical students should stay professional online. “I reach 5-10 million people a month, and I have to think: Would I want them to see this? You have to know at all times that someone is watching. I’m very careful about how I post. I script out every video.”

Mr. Scott agreed. He advises those interested in becoming medical influencers to know what they can’t post online. For example, to ensure safety and privacy, Mr. Scott doesn’t take photos in the hospital, show his medical badge, or post patient information. “You want to be respectful of your future medical profession,” he said.

“If it’s something my mother would be ashamed of, I don’t need to post about it.”
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

A medical student’s life is an endless cycle of classes, exams, clinical rotations, and residency preparation. While students typically have little free time, some still manage to build a mega social media presence. On TikTok and Instagram, among other sites, they share medical school experiences and lessons learned in the classroom and advocate for causes such as increased diversity and gender rights in the medical field.

This news organization caught up with a few social media influencers with a large online following to learn how medical students can effectively use social media to build a professional brand and network. Most of the students interviewed said that their social media platforms offered an opportunity to educate others about significant medical developments, feel part of a community with a like-minded audience, and network with doctors who may lead them to a future residency or career path.

Many med students said that they built their large audiences by creating a platform for people of their ethnic background, nationality, race, gender, or simply what others weren’t already talking about. They said they saw a niche in social media that was missing or others hadn’t tackled in the same way.

When Joel Bervell began med school in 2020, he questioned some of the lessons he learned about how race is used in medical practice, which didn’t make sense to him. So, he began his own research. He had about 2000 followers on Instagram at the time.

Mr. Bervell read a new study about pulse oximeters and how they often produce misleading readings on patients with dark skin.

He wondered why he hadn’t learned this in medical school, so he posted it on TikTok. Within 24 hours, about 500,000 people viewed it. Most of the comments were from doctors, nurses, and physician assistants who said they weren’t aware of the disparity.

While his initial posts detailed his journey to medical school and a day-in-the-life of a medical student, he transitioned to posts primarily about race, health equity, and what he perceives as racial bias in medicine.

Now, the fourth-year Ghanaian-American student at the Elson S. Floyd College of Medicine at Washington State University Spokane has close to 1.2 million followers on Instagram and TikTok combined. He frequently visits the White House to advise on social media’s influence on healthcare and has appeared on the Kelly Clarkson Show, Good Morning America, CNN, and ABC, among others.

He said he also uses social media to translate complex medical information for a general audience, many of whom access health information online so they can manage their own healthcare. He sees his social media work as an extension of his medical education, allowing him to delve deeper into subjects and report on them as if he were publishing research in a medical journal.

“When I came to medical school, yes, I wanted to be a doctor. But I also wanted to impact people.” Social media allows him to educate many more people than individual patients, the 29-year-old told this news organization.
 

Inspiring Minorities

Tabhata Paulet, 27, started her TikTok presence as a premed student in 2021. She aimed to provide free resources to help low-income, first-generation Latinx students like herself study for standardized exams.

“I always looked online for guidance and resources, and the medical influencers did not share a similar background. So, I shared my story and what I had to do as a first-generation and first person in my family to become a physician. I did not have access to the same resources as my peers,” said Ms. Paulet, who was born in Peru and came to New Jersey as a child.

Students who are Hispanic, Latinx, or of Spanish origin made up 6.8% of total medical school enrollment in 2023-2024, up slightly from 6.7% in 2022-2023, according to the Association of American Medical Colleges (AAMC).

Ms. Paulet’s online presence grew when she began documenting her experiences as a first-year medical student, bridging the language barrier for Spanish-speaking patients so they could understand their diagnosis and treatment. She often posts about health disparity and barriers to care for underserved communities.

Most of her nearly 22,000 followers are Hispanic, said the now fourth-year student at Rutgers New Jersey Medical School in Newark, New Jersey. “I talk a lot about my interesting Spanish-speaking patients ... and how sometimes speaking their native language truly makes a difference in their care.”

She believes that she serves an important role in social media. “It can be very inspirational for those who come after you [in med school] to see someone from a similar culture and upbringing.”
 

Creating a Community

It was during a therapy session 4 years ago that Jeremy “JP” Scott decided to share Instagram posts about his experiences as a nontraditional medical student. The 37-year-old was studying at Ross University School of Medicine in Barbados and was feeling lonely as an international medical student training to be a doctor as a second career.

Before starting med school, Mr. Scott was an adjunct professor and lab supervisor at the University of Hartford Biology Department, West Hartford, Connecticut, and then a research assistant and lab manager at the Wistar Institute in Philadelphia.

Although he wanted to follow his mother’s path to becoming a doctor, it was more difficult than he envisioned, said the fourth-year student who completed clinical rotations in the United States and is now applying for residencies.

“I talked about how medical school is not what it appears to be ... There are a lot of challenges we are going through,” especially as people of color, he said.

Mr. Scott believes social media helps people feel included and less alone. He said many of his followers are med students and physicians.

His posts often focus on LGBTQIA+ pride and being a minority as a Black man in medicine.

“The pandemic spurred a lot of us. We had a racial reckoning in our country at the time. It inspired us to talk as Black creators and Black medical students.”

Black or African American medical students made up 8.5% of total med school enrollment in 2023-2024, a slight increase from 2022 to 2023, according to AAMC figures. Black men represented 7% of total enrollment in 2023-2024, while Black women represented 9.8%.

After only a handful of online posts in which Mr. Scott candidly discussed his mental health struggles and relationships, he attracted the attention of several medical apparel companies, including the popular FIGS scrubs. He’s now an ambassador for the company, which supports him and his content.

“My association with FIGS has helped attract a wider online audience, increasing my presence.” Today, he has 14,000 Instagram followers. “It opened up so many opportunities,” Mr. Scott said. One example is working with the national LGBTQIA+ community.

“The goal was never to be a social media influencer, to gain sponsorships or photo opportunities,” he said.

“My job, first, is as a medical student. Everything else is second. I am not trying to be a professional social media personality. I’m trying to be an actual physician.” He also tries to separate JP “social media” from Jeremy, the medical student.

“On Instagram, anyone can pull it up and see what you’re doing. The last thing I want is for them to think that I’m not serious about what I’m doing, that I’m not here to learn and become a doctor.”
 

 

 

Benefits and Drawbacks

Ms. Paulet said her social media following helped her connect with leaders in the Latinx medical community, including an obstetrics anesthesiologist, her intended specialty. “I don’t think I’d be able to do that without a social media platform.”

Her online activity also propelled her from regional to national leadership in the Latino Medical Student Association (LMSA). She now also runs their Instagram page, which has 14,000 followers.

Mr. Bervell believes social media is a great way to network. He’s connected with people he wouldn’t have met otherwise, including physicians. “I think it will help me get into a residency,” he said. “It allows people to know who you are ... They will be able to tell in a few videos the type of doctor I want to be.”

On the other hand, Mr. Bervell is aware of the negative impacts of social media on mental health. “You can get lost in social media.” For that reason, he often tries to disconnect. “I can go days without my phone.”

Posting on social media can be time-consuming, Mr. Bervell admitted. He said he spent about 2 hours a day researching, editing, and posting on TikTok when he first started building his following. Now, he spends about 2-3 hours a week creating videos. “I don’t post every day anymore. I don’t have the time.”

When she started building her TikTok presence, Ms. Paulet said she devoted 15 hours a week to the endeavor, but now she spends 10-12 hours a week posting online, including on LMSA’s Instagram page. “Whenever you are done with an exam or have a study break, this is something fun to do.” She also says you never know who you’re going to inspire when you put yourself out there.

“Talk about your journey, rotations, or your experience in your first or second year of medical school. Talk about milestones like board exams.”
 

Word to the Wise

Some students may be concerned that their posts might affect a potential residency program. But the medical students interviewed say they want to find programs that align with their values and accept them for who they are.

Mr. Scott said he’s not worried about someone not liking him because of who he is. “I am Black and openly gay. If it’s a problem, I don’t need to work with you or your institution.”

Mr. Bervell stressed that medical students should stay professional online. “I reach 5-10 million people a month, and I have to think: Would I want them to see this? You have to know at all times that someone is watching. I’m very careful about how I post. I script out every video.”

Mr. Scott agreed. He advises those interested in becoming medical influencers to know what they can’t post online. For example, to ensure safety and privacy, Mr. Scott doesn’t take photos in the hospital, show his medical badge, or post patient information. “You want to be respectful of your future medical profession,” he said.

“If it’s something my mother would be ashamed of, I don’t need to post about it.”
 

A version of this article first appeared on Medscape.com.

A medical student’s life is an endless cycle of classes, exams, clinical rotations, and residency preparation. While students typically have little free time, some still manage to build a mega social media presence. On TikTok and Instagram, among other sites, they share medical school experiences and lessons learned in the classroom and advocate for causes such as increased diversity and gender rights in the medical field.

This news organization caught up with a few social media influencers with a large online following to learn how medical students can effectively use social media to build a professional brand and network. Most of the students interviewed said that their social media platforms offered an opportunity to educate others about significant medical developments, feel part of a community with a like-minded audience, and network with doctors who may lead them to a future residency or career path.

Many med students said that they built their large audiences by creating a platform for people of their ethnic background, nationality, race, gender, or simply what others weren’t already talking about. They said they saw a niche in social media that was missing or others hadn’t tackled in the same way.

When Joel Bervell began med school in 2020, he questioned some of the lessons he learned about how race is used in medical practice, which didn’t make sense to him. So, he began his own research. He had about 2000 followers on Instagram at the time.

Mr. Bervell read a new study about pulse oximeters and how they often produce misleading readings on patients with dark skin.

He wondered why he hadn’t learned this in medical school, so he posted it on TikTok. Within 24 hours, about 500,000 people viewed it. Most of the comments were from doctors, nurses, and physician assistants who said they weren’t aware of the disparity.

While his initial posts detailed his journey to medical school and a day-in-the-life of a medical student, he transitioned to posts primarily about race, health equity, and what he perceives as racial bias in medicine.

Now, the fourth-year Ghanaian-American student at the Elson S. Floyd College of Medicine at Washington State University Spokane has close to 1.2 million followers on Instagram and TikTok combined. He frequently visits the White House to advise on social media’s influence on healthcare and has appeared on the Kelly Clarkson Show, Good Morning America, CNN, and ABC, among others.

He said he also uses social media to translate complex medical information for a general audience, many of whom access health information online so they can manage their own healthcare. He sees his social media work as an extension of his medical education, allowing him to delve deeper into subjects and report on them as if he were publishing research in a medical journal.

“When I came to medical school, yes, I wanted to be a doctor. But I also wanted to impact people.” Social media allows him to educate many more people than individual patients, the 29-year-old told this news organization.
 

Inspiring Minorities

Tabhata Paulet, 27, started her TikTok presence as a premed student in 2021. She aimed to provide free resources to help low-income, first-generation Latinx students like herself study for standardized exams.

“I always looked online for guidance and resources, and the medical influencers did not share a similar background. So, I shared my story and what I had to do as a first-generation and first person in my family to become a physician. I did not have access to the same resources as my peers,” said Ms. Paulet, who was born in Peru and came to New Jersey as a child.

Students who are Hispanic, Latinx, or of Spanish origin made up 6.8% of total medical school enrollment in 2023-2024, up slightly from 6.7% in 2022-2023, according to the Association of American Medical Colleges (AAMC).

Ms. Paulet’s online presence grew when she began documenting her experiences as a first-year medical student, bridging the language barrier for Spanish-speaking patients so they could understand their diagnosis and treatment. She often posts about health disparity and barriers to care for underserved communities.

Most of her nearly 22,000 followers are Hispanic, said the now fourth-year student at Rutgers New Jersey Medical School in Newark, New Jersey. “I talk a lot about my interesting Spanish-speaking patients ... and how sometimes speaking their native language truly makes a difference in their care.”

She believes that she serves an important role in social media. “It can be very inspirational for those who come after you [in med school] to see someone from a similar culture and upbringing.”
 

Creating a Community

It was during a therapy session 4 years ago that Jeremy “JP” Scott decided to share Instagram posts about his experiences as a nontraditional medical student. The 37-year-old was studying at Ross University School of Medicine in Barbados and was feeling lonely as an international medical student training to be a doctor as a second career.

Before starting med school, Mr. Scott was an adjunct professor and lab supervisor at the University of Hartford Biology Department, West Hartford, Connecticut, and then a research assistant and lab manager at the Wistar Institute in Philadelphia.

Although he wanted to follow his mother’s path to becoming a doctor, it was more difficult than he envisioned, said the fourth-year student who completed clinical rotations in the United States and is now applying for residencies.

“I talked about how medical school is not what it appears to be ... There are a lot of challenges we are going through,” especially as people of color, he said.

Mr. Scott believes social media helps people feel included and less alone. He said many of his followers are med students and physicians.

His posts often focus on LGBTQIA+ pride and being a minority as a Black man in medicine.

“The pandemic spurred a lot of us. We had a racial reckoning in our country at the time. It inspired us to talk as Black creators and Black medical students.”

Black or African American medical students made up 8.5% of total med school enrollment in 2023-2024, a slight increase from 2022 to 2023, according to AAMC figures. Black men represented 7% of total enrollment in 2023-2024, while Black women represented 9.8%.

After only a handful of online posts in which Mr. Scott candidly discussed his mental health struggles and relationships, he attracted the attention of several medical apparel companies, including the popular FIGS scrubs. He’s now an ambassador for the company, which supports him and his content.

“My association with FIGS has helped attract a wider online audience, increasing my presence.” Today, he has 14,000 Instagram followers. “It opened up so many opportunities,” Mr. Scott said. One example is working with the national LGBTQIA+ community.

“The goal was never to be a social media influencer, to gain sponsorships or photo opportunities,” he said.

“My job, first, is as a medical student. Everything else is second. I am not trying to be a professional social media personality. I’m trying to be an actual physician.” He also tries to separate JP “social media” from Jeremy, the medical student.

“On Instagram, anyone can pull it up and see what you’re doing. The last thing I want is for them to think that I’m not serious about what I’m doing, that I’m not here to learn and become a doctor.”
 

 

 

Benefits and Drawbacks

Ms. Paulet said her social media following helped her connect with leaders in the Latinx medical community, including an obstetrics anesthesiologist, her intended specialty. “I don’t think I’d be able to do that without a social media platform.”

Her online activity also propelled her from regional to national leadership in the Latino Medical Student Association (LMSA). She now also runs their Instagram page, which has 14,000 followers.

Mr. Bervell believes social media is a great way to network. He’s connected with people he wouldn’t have met otherwise, including physicians. “I think it will help me get into a residency,” he said. “It allows people to know who you are ... They will be able to tell in a few videos the type of doctor I want to be.”

On the other hand, Mr. Bervell is aware of the negative impacts of social media on mental health. “You can get lost in social media.” For that reason, he often tries to disconnect. “I can go days without my phone.”

Posting on social media can be time-consuming, Mr. Bervell admitted. He said he spent about 2 hours a day researching, editing, and posting on TikTok when he first started building his following. Now, he spends about 2-3 hours a week creating videos. “I don’t post every day anymore. I don’t have the time.”

When she started building her TikTok presence, Ms. Paulet said she devoted 15 hours a week to the endeavor, but now she spends 10-12 hours a week posting online, including on LMSA’s Instagram page. “Whenever you are done with an exam or have a study break, this is something fun to do.” She also says you never know who you’re going to inspire when you put yourself out there.

“Talk about your journey, rotations, or your experience in your first or second year of medical school. Talk about milestones like board exams.”
 

Word to the Wise

Some students may be concerned that their posts might affect a potential residency program. But the medical students interviewed say they want to find programs that align with their values and accept them for who they are.

Mr. Scott said he’s not worried about someone not liking him because of who he is. “I am Black and openly gay. If it’s a problem, I don’t need to work with you or your institution.”

Mr. Bervell stressed that medical students should stay professional online. “I reach 5-10 million people a month, and I have to think: Would I want them to see this? You have to know at all times that someone is watching. I’m very careful about how I post. I script out every video.”

Mr. Scott agreed. He advises those interested in becoming medical influencers to know what they can’t post online. For example, to ensure safety and privacy, Mr. Scott doesn’t take photos in the hospital, show his medical badge, or post patient information. “You want to be respectful of your future medical profession,” he said.

“If it’s something my mother would be ashamed of, I don’t need to post about it.”
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

COVID-19 Booster Vaccine Shortens Menstrual Cycles in Teens

Article Type
Changed
Wed, 08/28/2024 - 12:19

 

TOPLINE:

The COVID-19 booster was linked to shorter menstrual cycles in adolescent girls in the 4 months following administration, particularly when teens were in their follicular phase. The vaccine did not appear to be associated with shifts in menstrual flow, pain, or other symptoms.
 

METHODOLOGY:

  • Reports of menstrual cycle changes following the COVID-19 vaccination began to emerge in early 2021, raising concerns about the impact of the vaccine on menstrual health.
  • Researchers conducted a prospective study including 65 adolescent girls (mean age, 17.3 years), of whom 47 had received an initial series of COVID-19 vaccination at least 6 months prior to receiving a booster dose (booster group), and 18 had not received the booster vaccine (control group), two of whom had never received any COVID-19 vaccine, four who had received an initial vaccine but not a booster, and 12 who had received an initial vaccine and booster but more than 6 months prior to the study.
  • Menstrual cycle length was measured for three cycles prior to and four cycles after vaccination in the booster group and for seven cycles in the control group.
  • Menstrual flow, pain, and stress were measured at baseline and monthly for 3 months post vaccination.

TAKEAWAY:

  • Participants in the booster group experienced shorter cycles by an average of 5.35 days after receiving the COVID-19 booster vaccine (P = .03), particularly during the second cycle. In contrast, those in the control group did not experience any changes in the menstrual cycle length.
  • Receiving the booster dose in the follicular phase was associated with significantly shorter menstrual cycles, compared with pre-booster cycles (P = .0157).
  • Menstrual flow, pain, and other symptoms remained unaffected after the COVID-19 booster vaccination.
  • Higher stress levels at baseline were also associated with a shorter length of the menstrual cycle (P = .03) in both groups, regardless of the booster vaccination status.

IN PRACTICE:

“These data are potentially important for counseling parents regarding potential vaccine refusal in the future for their teen daughters,” the authors wrote.

SOURCE:

This study was led by Laura A. Payne, PhD, from McLean Hospital in Boston, and was published online in the Journal of Adolescent Health.

LIMITATIONS:

The sample size for the booster and control groups was relatively small and homogeneous. The study did not include the height, weight, birth control use, or other chronic conditions of the participants, which may have influenced the functioning of the menstrual cycle. The control group included a majority of teens who had previously received a vaccine and even a booster, which could have affected results.

DISCLOSURES:

This study was supported by grants from the Eunice Kennedy Shriver National Institute for Child Health and Human Development. Some authors received consulting fees, travel reimbursements, honoraria, research funding, and royalties from Bayer Healthcare, Mahana Therapeutics, Gates, and Merck, among others.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The COVID-19 booster was linked to shorter menstrual cycles in adolescent girls in the 4 months following administration, particularly when teens were in their follicular phase. The vaccine did not appear to be associated with shifts in menstrual flow, pain, or other symptoms.
 

METHODOLOGY:

  • Reports of menstrual cycle changes following the COVID-19 vaccination began to emerge in early 2021, raising concerns about the impact of the vaccine on menstrual health.
  • Researchers conducted a prospective study including 65 adolescent girls (mean age, 17.3 years), of whom 47 had received an initial series of COVID-19 vaccination at least 6 months prior to receiving a booster dose (booster group), and 18 had not received the booster vaccine (control group), two of whom had never received any COVID-19 vaccine, four who had received an initial vaccine but not a booster, and 12 who had received an initial vaccine and booster but more than 6 months prior to the study.
  • Menstrual cycle length was measured for three cycles prior to and four cycles after vaccination in the booster group and for seven cycles in the control group.
  • Menstrual flow, pain, and stress were measured at baseline and monthly for 3 months post vaccination.

TAKEAWAY:

  • Participants in the booster group experienced shorter cycles by an average of 5.35 days after receiving the COVID-19 booster vaccine (P = .03), particularly during the second cycle. In contrast, those in the control group did not experience any changes in the menstrual cycle length.
  • Receiving the booster dose in the follicular phase was associated with significantly shorter menstrual cycles, compared with pre-booster cycles (P = .0157).
  • Menstrual flow, pain, and other symptoms remained unaffected after the COVID-19 booster vaccination.
  • Higher stress levels at baseline were also associated with a shorter length of the menstrual cycle (P = .03) in both groups, regardless of the booster vaccination status.

IN PRACTICE:

“These data are potentially important for counseling parents regarding potential vaccine refusal in the future for their teen daughters,” the authors wrote.

SOURCE:

This study was led by Laura A. Payne, PhD, from McLean Hospital in Boston, and was published online in the Journal of Adolescent Health.

LIMITATIONS:

The sample size for the booster and control groups was relatively small and homogeneous. The study did not include the height, weight, birth control use, or other chronic conditions of the participants, which may have influenced the functioning of the menstrual cycle. The control group included a majority of teens who had previously received a vaccine and even a booster, which could have affected results.

DISCLOSURES:

This study was supported by grants from the Eunice Kennedy Shriver National Institute for Child Health and Human Development. Some authors received consulting fees, travel reimbursements, honoraria, research funding, and royalties from Bayer Healthcare, Mahana Therapeutics, Gates, and Merck, among others.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

The COVID-19 booster was linked to shorter menstrual cycles in adolescent girls in the 4 months following administration, particularly when teens were in their follicular phase. The vaccine did not appear to be associated with shifts in menstrual flow, pain, or other symptoms.
 

METHODOLOGY:

  • Reports of menstrual cycle changes following the COVID-19 vaccination began to emerge in early 2021, raising concerns about the impact of the vaccine on menstrual health.
  • Researchers conducted a prospective study including 65 adolescent girls (mean age, 17.3 years), of whom 47 had received an initial series of COVID-19 vaccination at least 6 months prior to receiving a booster dose (booster group), and 18 had not received the booster vaccine (control group), two of whom had never received any COVID-19 vaccine, four who had received an initial vaccine but not a booster, and 12 who had received an initial vaccine and booster but more than 6 months prior to the study.
  • Menstrual cycle length was measured for three cycles prior to and four cycles after vaccination in the booster group and for seven cycles in the control group.
  • Menstrual flow, pain, and stress were measured at baseline and monthly for 3 months post vaccination.

TAKEAWAY:

  • Participants in the booster group experienced shorter cycles by an average of 5.35 days after receiving the COVID-19 booster vaccine (P = .03), particularly during the second cycle. In contrast, those in the control group did not experience any changes in the menstrual cycle length.
  • Receiving the booster dose in the follicular phase was associated with significantly shorter menstrual cycles, compared with pre-booster cycles (P = .0157).
  • Menstrual flow, pain, and other symptoms remained unaffected after the COVID-19 booster vaccination.
  • Higher stress levels at baseline were also associated with a shorter length of the menstrual cycle (P = .03) in both groups, regardless of the booster vaccination status.

IN PRACTICE:

“These data are potentially important for counseling parents regarding potential vaccine refusal in the future for their teen daughters,” the authors wrote.

SOURCE:

This study was led by Laura A. Payne, PhD, from McLean Hospital in Boston, and was published online in the Journal of Adolescent Health.

LIMITATIONS:

The sample size for the booster and control groups was relatively small and homogeneous. The study did not include the height, weight, birth control use, or other chronic conditions of the participants, which may have influenced the functioning of the menstrual cycle. The control group included a majority of teens who had previously received a vaccine and even a booster, which could have affected results.

DISCLOSURES:

This study was supported by grants from the Eunice Kennedy Shriver National Institute for Child Health and Human Development. Some authors received consulting fees, travel reimbursements, honoraria, research funding, and royalties from Bayer Healthcare, Mahana Therapeutics, Gates, and Merck, among others.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Identifying Child Abuse Through Oral Health: What Every Clinician Should Know

Article Type
Changed
Tue, 08/27/2024 - 13:34

 

TOPLINE:

Researchers detail best practices for pediatricians in evaluating dental indications of child abuse and how to work with other physicians to detect and report these incidents.

METHODOLOGY:

  • Approximately 323,000 children in the United States were identified as having experienced physical abuse in 2006, the most recent year evaluated, according to the Fourth National Incidence Study of Child Abuse and Neglect.
  • One in seven children in the United States are abused or neglected each year; craniofacial, head, face, and neck injuries occur in more than half of child abuse cases.
  • Children with orofacial and torso bruising who are younger than age 4 years are at risk for future, more serious abuse.
  • Child trafficking survivors are twice as likely to have dental issues due to poor nutrition and inadequate care.

TAKEAWAY:

  • In cases of possible oral sexual abuse, physicians should test for sexually transmitted infections and document incidents to support forensic investigations.
  • Pediatricians should consult with forensic pediatric dentists or child abuse specialists for assistance in evaluating bite marks or any other indications of abuse.
  • If a parent fails to seek treatment for a child’s oral or dental disease after detection, pediatricians should report the case to child protective services regarding concerns of dental neglect.
  • Because trafficked children may receive medical or dental care while in captivity, physicians should use screening tools to identify children at risk of trafficking, regardless of gender.
  • Physicians should be mindful of having a bias against reporting because of sharing a similar background to the parents or other caregivers of a child who is suspected of experiencing abuse.

IN PRACTICE:

“Pediatric dentists and oral and maxillofacial surgeons, whose advanced education programs include a mandated child abuse curriculum, can provide valuable information and assistance to other health care providers about oral and dental aspects of child abuse and neglect,” the study authors wrote.

SOURCE:

The study was led by Anupama Rao Tate, DMD, MPH, of the American Academy of Pediatrics, and was published online in Pediatrics.

LIMITATIONS:

No limitations were reported.

DISCLOSURES:

Susan A. Fischer-Owens reported financial connections with Colgate. No other disclosures were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Researchers detail best practices for pediatricians in evaluating dental indications of child abuse and how to work with other physicians to detect and report these incidents.

METHODOLOGY:

  • Approximately 323,000 children in the United States were identified as having experienced physical abuse in 2006, the most recent year evaluated, according to the Fourth National Incidence Study of Child Abuse and Neglect.
  • One in seven children in the United States are abused or neglected each year; craniofacial, head, face, and neck injuries occur in more than half of child abuse cases.
  • Children with orofacial and torso bruising who are younger than age 4 years are at risk for future, more serious abuse.
  • Child trafficking survivors are twice as likely to have dental issues due to poor nutrition and inadequate care.

TAKEAWAY:

  • In cases of possible oral sexual abuse, physicians should test for sexually transmitted infections and document incidents to support forensic investigations.
  • Pediatricians should consult with forensic pediatric dentists or child abuse specialists for assistance in evaluating bite marks or any other indications of abuse.
  • If a parent fails to seek treatment for a child’s oral or dental disease after detection, pediatricians should report the case to child protective services regarding concerns of dental neglect.
  • Because trafficked children may receive medical or dental care while in captivity, physicians should use screening tools to identify children at risk of trafficking, regardless of gender.
  • Physicians should be mindful of having a bias against reporting because of sharing a similar background to the parents or other caregivers of a child who is suspected of experiencing abuse.

IN PRACTICE:

“Pediatric dentists and oral and maxillofacial surgeons, whose advanced education programs include a mandated child abuse curriculum, can provide valuable information and assistance to other health care providers about oral and dental aspects of child abuse and neglect,” the study authors wrote.

SOURCE:

The study was led by Anupama Rao Tate, DMD, MPH, of the American Academy of Pediatrics, and was published online in Pediatrics.

LIMITATIONS:

No limitations were reported.

DISCLOSURES:

Susan A. Fischer-Owens reported financial connections with Colgate. No other disclosures were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Researchers detail best practices for pediatricians in evaluating dental indications of child abuse and how to work with other physicians to detect and report these incidents.

METHODOLOGY:

  • Approximately 323,000 children in the United States were identified as having experienced physical abuse in 2006, the most recent year evaluated, according to the Fourth National Incidence Study of Child Abuse and Neglect.
  • One in seven children in the United States are abused or neglected each year; craniofacial, head, face, and neck injuries occur in more than half of child abuse cases.
  • Children with orofacial and torso bruising who are younger than age 4 years are at risk for future, more serious abuse.
  • Child trafficking survivors are twice as likely to have dental issues due to poor nutrition and inadequate care.

TAKEAWAY:

  • In cases of possible oral sexual abuse, physicians should test for sexually transmitted infections and document incidents to support forensic investigations.
  • Pediatricians should consult with forensic pediatric dentists or child abuse specialists for assistance in evaluating bite marks or any other indications of abuse.
  • If a parent fails to seek treatment for a child’s oral or dental disease after detection, pediatricians should report the case to child protective services regarding concerns of dental neglect.
  • Because trafficked children may receive medical or dental care while in captivity, physicians should use screening tools to identify children at risk of trafficking, regardless of gender.
  • Physicians should be mindful of having a bias against reporting because of sharing a similar background to the parents or other caregivers of a child who is suspected of experiencing abuse.

IN PRACTICE:

“Pediatric dentists and oral and maxillofacial surgeons, whose advanced education programs include a mandated child abuse curriculum, can provide valuable information and assistance to other health care providers about oral and dental aspects of child abuse and neglect,” the study authors wrote.

SOURCE:

The study was led by Anupama Rao Tate, DMD, MPH, of the American Academy of Pediatrics, and was published online in Pediatrics.

LIMITATIONS:

No limitations were reported.

DISCLOSURES:

Susan A. Fischer-Owens reported financial connections with Colgate. No other disclosures were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Promoting a Weight-Inclusive Approach to Treat Obesity

Article Type
Changed
Tue, 08/27/2024 - 13:08

Clinicians continue to argue that solely focusing on weight in discussions with patients with obesity can be harmful. But with highly effective agents like semaglutide and tirzepatide, more discussions are being had about obesity, in and out of the doctor’s office. 

In this time of new therapeutic options, it’s critical to be thoughtful in how we broach the topic of weight management and obesity treatments with our patients.

With a stigmatized topic like obesity, it’s not surprising that there is contention surrounding the issue. Weight stigma and discrimination persist worldwide, even though there is ample scientific evidence that weight regulation is strongly determined by uncontrollable factors. 

However, the debate to discuss weight or not doesn’t need to be polarized. There is a common denominator: Help patients live healthy, long lives. Let’s review the principles of the various approaches to care.
 

Chronic Disease–Centric Paradigm

Historically, physicians have addressed and managed chronic diseases, such as type 2 diabeteshypertension, and dyslipidemia. Even though obesity is a known risk factor for these conditions and can cause many other diseases through low-grade chronic inflammation issues and organ dysfunction, weight management treatment was an afterthought or never entertained.

During my training, I often wondered why we focused on prescribing medications for multiple chronic diseases instead of addressing obesity directly, which could potentially improve all these conditions. 

There are numerous reasons why this paradigm was viewed as the “standard of care” for so many decades. First, it provided a framework for managing an ever-growing list of chronic diseases. And even though the American Medical Association declared obesity a disease in 2013, this was not widely accepted in the healthcare community. 

Healthcare systems and the US reimbursement model have been aligned with a chronic disease treatment paradigm. At the same time, healthcare professionals, like others in society, harbor prejudices. These have presented significant barriers to providing weight management care. 

Additionally, medical education was, and remains, inadequate in training physicians how to prevent and treat obesity.
 

Weight-Centric Paradigm

The literature defines a weight-centric approach to care as one that places significant emphasis on body weight as a primary indicator of health — a perspective that may view lower body weight as inherently healthier. This approach includes comprehensive treatment of obesity that factors in lifestyle, pharmacotherapy, procedures, and surgery. A weight-centric approach has been described as having six tenets, examples of which are “weight is mostly volitional and within the control of the individual,” and “excess body weight causes disease and premature death.” This approach heavily relies on body mass index (BMI) as an indicator of a patients’ current and future health status. 

We know that using BMI as a measure of health has inherent limitations. Recent recommendations suggest that it be used alongside other measurements and assessments, such as waist circumference and waist-to-hip ratio. One major concern with the paradigm, however, is that it can perpetuate weight stigmatization through an overemphasis on weight vs global health. The definition doesn’t acknowledge the wealth of data demonstrating the associated risk increased that central adiposity poses for increased morbidity and mortality. The answer needs to be more nuanced.

Instead of watering down a “weight-centric approach” to be equated with “weight equals health,” I propose it could mean addressing obesity upstream (ie, an adipose-centric approach) to prevent associated morbidity and mortality downstream. 

Also, measuring a patient’s weight in the clinic would be an impartial act, obtaining a routine data point, like measuring a person’s blood pressure. Just as it is necessary to obtain a patient’s blood pressure data to treat hypertension, it is necessary to obtain adiposity health-related data (eg, weight, waist circumference, neck circumference, waist-to-hip ratio, weight history, physical exam, lab tests) to make informed clinical decisions and safeguard delivery of evidence-based care. 

A weight-centric approach is a positive shift from focusing solely on chronic diseases because it allows us to address obesity and explore treatment options. However, challenges remain with this approach in ensuring that weight management discussions are handled holistically, without bias, and with sensitivity. 
 

 

 

Weight-Inclusive Paradigm

A weight-inclusive approach promotes overall health and well-being while providing nonstigmatizing care to patients. There is an emphasis on respect for body diversity, with advocacy for body size acceptance and body positivity. When I use this approach in my clinical practice, I emphasize to patients that the ultimate goal we are striving for is improved health and not a particular number on the scale or particular body type. 

This approach supports equal treatment and access to healthcare for all individuals. At its core, the weight inclusive paradigm is a holistic, nonbiased approach to all patients, regardless of body size. For this reason, I use a patient-centered treatment plan with my patients that is comprehensive, is multipronged, and considers all tools available in the toolbox indicated for that individual. 

The weight-inclusive paradigm has much in common with the principles of Health at Every Size. Both share common goals of focusing on health rather than weight, challenging weight stigma and weight discrimination.

Because a weight-inclusive approach encourages body acceptance, some contend that this leads to disregard of the risk that visceral adiposity poses for increased morbidity and mortality. But this is not an either/or situation. Healthcare professionals can accept individuals for who they are regardless of body size and, with patient permission, address obesity in the context of broader health considerations with an individualized, patient-centered treatment plan.
 

Human-Inclusive and Health-Centered Paradigm

Appreciating the evolution of healthcare delivery paradigms, and with greater understanding of the pathophysiology of obesity and arrival of newer, effective treatments, I propose a human-inclusive and health-centered (HIHC) approach to patient care. This model weaves together the fundamental theme of a focus on health, not weight, and aligns with the Hippocratic Oath: to treat patients to the best of our ability and do no harm. 

Unfortunately, history has played out differently. Owing to a confluence of variables, from a lack of training in obesity treatment to a societal obsession with thinness that fosters an anti-fat bias culture, patients have unduly endured tremendous shame and blame for living with overweight and obesity over the years. Now is our chance to do better.

It is our responsibility as healthcare professionals to provide bias-free, patient-centered care to each and every patient, no matter their race, ethnicity, sexual orientation, religion, or body shape and size. Why limit the phrasing to “weight inclusive” when we should strive for a “human inclusive” approach?

When it comes to discussing weight with patients, there is no universally established methodology to introducing the topic. Still, recommended strategies do exist. And we know that individuals with obesity who experience weight bias and stigma have increased morbidity and mortality, regardless of their weight or BMI.

Hence, we must generate compassionate and respectful conversations, free of judgment and bias, when discussing obesity and obesity treatments with patients. Let’s ensure we broaden the discussion beyond weight; acknowledge social determinants of health; and empower individuals to make choices that support their overall health, functionality, and quality of life. 

As we embark on an HIHC paradigm, it will be important not to swing into healthism, whereby those who aren’t healthy or those who don’t pursue health are stigmatized as being less-than. Preserving dignity means accepting patient autonomy and choices. 

I think we all want the same thing: acceptance of all, access to healthcare for all, and bias-free support of patients to live healthy lives. Let’s do this.

Dr. Velazquez, assistant professor of surgery and medicine, Cedars-Sinai Medical Center, and director of obesity medicine, Department of Surgery, Cedars-Sinai Center for Weight Management and Metabolic Health, Los Angeles, California, disclosed ties with Intellihealth, Weight Watchers, Novo Nordisk, and Lilly. She received a research grant from NIH Grant — National Heart, Lung, and Blood Institute (NCT0517662).

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Clinicians continue to argue that solely focusing on weight in discussions with patients with obesity can be harmful. But with highly effective agents like semaglutide and tirzepatide, more discussions are being had about obesity, in and out of the doctor’s office. 

In this time of new therapeutic options, it’s critical to be thoughtful in how we broach the topic of weight management and obesity treatments with our patients.

With a stigmatized topic like obesity, it’s not surprising that there is contention surrounding the issue. Weight stigma and discrimination persist worldwide, even though there is ample scientific evidence that weight regulation is strongly determined by uncontrollable factors. 

However, the debate to discuss weight or not doesn’t need to be polarized. There is a common denominator: Help patients live healthy, long lives. Let’s review the principles of the various approaches to care.
 

Chronic Disease–Centric Paradigm

Historically, physicians have addressed and managed chronic diseases, such as type 2 diabeteshypertension, and dyslipidemia. Even though obesity is a known risk factor for these conditions and can cause many other diseases through low-grade chronic inflammation issues and organ dysfunction, weight management treatment was an afterthought or never entertained.

During my training, I often wondered why we focused on prescribing medications for multiple chronic diseases instead of addressing obesity directly, which could potentially improve all these conditions. 

There are numerous reasons why this paradigm was viewed as the “standard of care” for so many decades. First, it provided a framework for managing an ever-growing list of chronic diseases. And even though the American Medical Association declared obesity a disease in 2013, this was not widely accepted in the healthcare community. 

Healthcare systems and the US reimbursement model have been aligned with a chronic disease treatment paradigm. At the same time, healthcare professionals, like others in society, harbor prejudices. These have presented significant barriers to providing weight management care. 

Additionally, medical education was, and remains, inadequate in training physicians how to prevent and treat obesity.
 

Weight-Centric Paradigm

The literature defines a weight-centric approach to care as one that places significant emphasis on body weight as a primary indicator of health — a perspective that may view lower body weight as inherently healthier. This approach includes comprehensive treatment of obesity that factors in lifestyle, pharmacotherapy, procedures, and surgery. A weight-centric approach has been described as having six tenets, examples of which are “weight is mostly volitional and within the control of the individual,” and “excess body weight causes disease and premature death.” This approach heavily relies on body mass index (BMI) as an indicator of a patients’ current and future health status. 

We know that using BMI as a measure of health has inherent limitations. Recent recommendations suggest that it be used alongside other measurements and assessments, such as waist circumference and waist-to-hip ratio. One major concern with the paradigm, however, is that it can perpetuate weight stigmatization through an overemphasis on weight vs global health. The definition doesn’t acknowledge the wealth of data demonstrating the associated risk increased that central adiposity poses for increased morbidity and mortality. The answer needs to be more nuanced.

Instead of watering down a “weight-centric approach” to be equated with “weight equals health,” I propose it could mean addressing obesity upstream (ie, an adipose-centric approach) to prevent associated morbidity and mortality downstream. 

Also, measuring a patient’s weight in the clinic would be an impartial act, obtaining a routine data point, like measuring a person’s blood pressure. Just as it is necessary to obtain a patient’s blood pressure data to treat hypertension, it is necessary to obtain adiposity health-related data (eg, weight, waist circumference, neck circumference, waist-to-hip ratio, weight history, physical exam, lab tests) to make informed clinical decisions and safeguard delivery of evidence-based care. 

A weight-centric approach is a positive shift from focusing solely on chronic diseases because it allows us to address obesity and explore treatment options. However, challenges remain with this approach in ensuring that weight management discussions are handled holistically, without bias, and with sensitivity. 
 

 

 

Weight-Inclusive Paradigm

A weight-inclusive approach promotes overall health and well-being while providing nonstigmatizing care to patients. There is an emphasis on respect for body diversity, with advocacy for body size acceptance and body positivity. When I use this approach in my clinical practice, I emphasize to patients that the ultimate goal we are striving for is improved health and not a particular number on the scale or particular body type. 

This approach supports equal treatment and access to healthcare for all individuals. At its core, the weight inclusive paradigm is a holistic, nonbiased approach to all patients, regardless of body size. For this reason, I use a patient-centered treatment plan with my patients that is comprehensive, is multipronged, and considers all tools available in the toolbox indicated for that individual. 

The weight-inclusive paradigm has much in common with the principles of Health at Every Size. Both share common goals of focusing on health rather than weight, challenging weight stigma and weight discrimination.

Because a weight-inclusive approach encourages body acceptance, some contend that this leads to disregard of the risk that visceral adiposity poses for increased morbidity and mortality. But this is not an either/or situation. Healthcare professionals can accept individuals for who they are regardless of body size and, with patient permission, address obesity in the context of broader health considerations with an individualized, patient-centered treatment plan.
 

Human-Inclusive and Health-Centered Paradigm

Appreciating the evolution of healthcare delivery paradigms, and with greater understanding of the pathophysiology of obesity and arrival of newer, effective treatments, I propose a human-inclusive and health-centered (HIHC) approach to patient care. This model weaves together the fundamental theme of a focus on health, not weight, and aligns with the Hippocratic Oath: to treat patients to the best of our ability and do no harm. 

Unfortunately, history has played out differently. Owing to a confluence of variables, from a lack of training in obesity treatment to a societal obsession with thinness that fosters an anti-fat bias culture, patients have unduly endured tremendous shame and blame for living with overweight and obesity over the years. Now is our chance to do better.

It is our responsibility as healthcare professionals to provide bias-free, patient-centered care to each and every patient, no matter their race, ethnicity, sexual orientation, religion, or body shape and size. Why limit the phrasing to “weight inclusive” when we should strive for a “human inclusive” approach?

When it comes to discussing weight with patients, there is no universally established methodology to introducing the topic. Still, recommended strategies do exist. And we know that individuals with obesity who experience weight bias and stigma have increased morbidity and mortality, regardless of their weight or BMI.

Hence, we must generate compassionate and respectful conversations, free of judgment and bias, when discussing obesity and obesity treatments with patients. Let’s ensure we broaden the discussion beyond weight; acknowledge social determinants of health; and empower individuals to make choices that support their overall health, functionality, and quality of life. 

As we embark on an HIHC paradigm, it will be important not to swing into healthism, whereby those who aren’t healthy or those who don’t pursue health are stigmatized as being less-than. Preserving dignity means accepting patient autonomy and choices. 

I think we all want the same thing: acceptance of all, access to healthcare for all, and bias-free support of patients to live healthy lives. Let’s do this.

Dr. Velazquez, assistant professor of surgery and medicine, Cedars-Sinai Medical Center, and director of obesity medicine, Department of Surgery, Cedars-Sinai Center for Weight Management and Metabolic Health, Los Angeles, California, disclosed ties with Intellihealth, Weight Watchers, Novo Nordisk, and Lilly. She received a research grant from NIH Grant — National Heart, Lung, and Blood Institute (NCT0517662).

A version of this article appeared on Medscape.com.

Clinicians continue to argue that solely focusing on weight in discussions with patients with obesity can be harmful. But with highly effective agents like semaglutide and tirzepatide, more discussions are being had about obesity, in and out of the doctor’s office. 

In this time of new therapeutic options, it’s critical to be thoughtful in how we broach the topic of weight management and obesity treatments with our patients.

With a stigmatized topic like obesity, it’s not surprising that there is contention surrounding the issue. Weight stigma and discrimination persist worldwide, even though there is ample scientific evidence that weight regulation is strongly determined by uncontrollable factors. 

However, the debate to discuss weight or not doesn’t need to be polarized. There is a common denominator: Help patients live healthy, long lives. Let’s review the principles of the various approaches to care.
 

Chronic Disease–Centric Paradigm

Historically, physicians have addressed and managed chronic diseases, such as type 2 diabeteshypertension, and dyslipidemia. Even though obesity is a known risk factor for these conditions and can cause many other diseases through low-grade chronic inflammation issues and organ dysfunction, weight management treatment was an afterthought or never entertained.

During my training, I often wondered why we focused on prescribing medications for multiple chronic diseases instead of addressing obesity directly, which could potentially improve all these conditions. 

There are numerous reasons why this paradigm was viewed as the “standard of care” for so many decades. First, it provided a framework for managing an ever-growing list of chronic diseases. And even though the American Medical Association declared obesity a disease in 2013, this was not widely accepted in the healthcare community. 

Healthcare systems and the US reimbursement model have been aligned with a chronic disease treatment paradigm. At the same time, healthcare professionals, like others in society, harbor prejudices. These have presented significant barriers to providing weight management care. 

Additionally, medical education was, and remains, inadequate in training physicians how to prevent and treat obesity.
 

Weight-Centric Paradigm

The literature defines a weight-centric approach to care as one that places significant emphasis on body weight as a primary indicator of health — a perspective that may view lower body weight as inherently healthier. This approach includes comprehensive treatment of obesity that factors in lifestyle, pharmacotherapy, procedures, and surgery. A weight-centric approach has been described as having six tenets, examples of which are “weight is mostly volitional and within the control of the individual,” and “excess body weight causes disease and premature death.” This approach heavily relies on body mass index (BMI) as an indicator of a patients’ current and future health status. 

We know that using BMI as a measure of health has inherent limitations. Recent recommendations suggest that it be used alongside other measurements and assessments, such as waist circumference and waist-to-hip ratio. One major concern with the paradigm, however, is that it can perpetuate weight stigmatization through an overemphasis on weight vs global health. The definition doesn’t acknowledge the wealth of data demonstrating the associated risk increased that central adiposity poses for increased morbidity and mortality. The answer needs to be more nuanced.

Instead of watering down a “weight-centric approach” to be equated with “weight equals health,” I propose it could mean addressing obesity upstream (ie, an adipose-centric approach) to prevent associated morbidity and mortality downstream. 

Also, measuring a patient’s weight in the clinic would be an impartial act, obtaining a routine data point, like measuring a person’s blood pressure. Just as it is necessary to obtain a patient’s blood pressure data to treat hypertension, it is necessary to obtain adiposity health-related data (eg, weight, waist circumference, neck circumference, waist-to-hip ratio, weight history, physical exam, lab tests) to make informed clinical decisions and safeguard delivery of evidence-based care. 

A weight-centric approach is a positive shift from focusing solely on chronic diseases because it allows us to address obesity and explore treatment options. However, challenges remain with this approach in ensuring that weight management discussions are handled holistically, without bias, and with sensitivity. 
 

 

 

Weight-Inclusive Paradigm

A weight-inclusive approach promotes overall health and well-being while providing nonstigmatizing care to patients. There is an emphasis on respect for body diversity, with advocacy for body size acceptance and body positivity. When I use this approach in my clinical practice, I emphasize to patients that the ultimate goal we are striving for is improved health and not a particular number on the scale or particular body type. 

This approach supports equal treatment and access to healthcare for all individuals. At its core, the weight inclusive paradigm is a holistic, nonbiased approach to all patients, regardless of body size. For this reason, I use a patient-centered treatment plan with my patients that is comprehensive, is multipronged, and considers all tools available in the toolbox indicated for that individual. 

The weight-inclusive paradigm has much in common with the principles of Health at Every Size. Both share common goals of focusing on health rather than weight, challenging weight stigma and weight discrimination.

Because a weight-inclusive approach encourages body acceptance, some contend that this leads to disregard of the risk that visceral adiposity poses for increased morbidity and mortality. But this is not an either/or situation. Healthcare professionals can accept individuals for who they are regardless of body size and, with patient permission, address obesity in the context of broader health considerations with an individualized, patient-centered treatment plan.
 

Human-Inclusive and Health-Centered Paradigm

Appreciating the evolution of healthcare delivery paradigms, and with greater understanding of the pathophysiology of obesity and arrival of newer, effective treatments, I propose a human-inclusive and health-centered (HIHC) approach to patient care. This model weaves together the fundamental theme of a focus on health, not weight, and aligns with the Hippocratic Oath: to treat patients to the best of our ability and do no harm. 

Unfortunately, history has played out differently. Owing to a confluence of variables, from a lack of training in obesity treatment to a societal obsession with thinness that fosters an anti-fat bias culture, patients have unduly endured tremendous shame and blame for living with overweight and obesity over the years. Now is our chance to do better.

It is our responsibility as healthcare professionals to provide bias-free, patient-centered care to each and every patient, no matter their race, ethnicity, sexual orientation, religion, or body shape and size. Why limit the phrasing to “weight inclusive” when we should strive for a “human inclusive” approach?

When it comes to discussing weight with patients, there is no universally established methodology to introducing the topic. Still, recommended strategies do exist. And we know that individuals with obesity who experience weight bias and stigma have increased morbidity and mortality, regardless of their weight or BMI.

Hence, we must generate compassionate and respectful conversations, free of judgment and bias, when discussing obesity and obesity treatments with patients. Let’s ensure we broaden the discussion beyond weight; acknowledge social determinants of health; and empower individuals to make choices that support their overall health, functionality, and quality of life. 

As we embark on an HIHC paradigm, it will be important not to swing into healthism, whereby those who aren’t healthy or those who don’t pursue health are stigmatized as being less-than. Preserving dignity means accepting patient autonomy and choices. 

I think we all want the same thing: acceptance of all, access to healthcare for all, and bias-free support of patients to live healthy lives. Let’s do this.

Dr. Velazquez, assistant professor of surgery and medicine, Cedars-Sinai Medical Center, and director of obesity medicine, Department of Surgery, Cedars-Sinai Center for Weight Management and Metabolic Health, Los Angeles, California, disclosed ties with Intellihealth, Weight Watchers, Novo Nordisk, and Lilly. She received a research grant from NIH Grant — National Heart, Lung, and Blood Institute (NCT0517662).

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

No Surprises Act: Private Equity Scores Big in Arbitrations

Article Type
Changed
Tue, 08/27/2024 - 09:40

Four organizations owned by private equity firms — including two provider groups — dominated the No Surprises Act’s disputed bill arbitration process in its first year, filing about 70% of 657,040 cases against insurers in 2023, a new report finds. 

The findings, recently published in Health Affairs, suggest that private equity–owned organizations are forcefully challenging insurers about payments for certain kinds of out-of-network care. 

Their fighting stance has paid off: The percentage of resolved arbitration cases won by providers jumped from 72% in the first quarter of 2023 to 85% in the last quarter, and they were awarded a median of more than 300% the contracted in-network rates for the services in question.

With many more out-of-network bills disputed by providers than expected, “the system is not working exactly the way it was anticipated when this law was written,” lead author Jack Hoadley, PhD, a research professor emeritus at Georgetown University’s McCourt School of Public Policy, Washington, DC, told this news organization.

And, he said, the public and the federal government may end up paying a price. 

Congress passed the No Surprises Act in 2020 and then-President Donald Trump signed it. The landmark bill, which went into effect in 2022, was designed to protect patients from unexpected and often exorbitant “surprise” bills after they received some kinds of out-of-network care. 

Now, many types of providers are forbidden from billing patients beyond normal in-network costs. In these cases, health plans and out-of-network providers — who don’t have mutual agreements — must wrangle over payment amounts, which are intended to not exceed inflation-adjusted 2019 median levels. 

A binding arbitration process kicks in when a provider and a health plan fail to agree about how much the plan will pay for a service. Then, a third-party arbitrator is called in to make a ruling that’s binding. The process is controversial, and a flurry of lawsuits from providers have challenged it. 

The new report, which updates an earlier analysis, examines data about disputed cases from all of 2023.

Of the 657,040 new cases filed in 2023, about 70% came from four private equity-funded organizations: Team Health, SCP Health, Radiology Partners, and Envision, which each provide physician services.

About half of the 2023 cases were from just four states: Texas, Florida, Tennessee, and Georgia. The report says the four organizations are especially active in those states. In contrast, Connecticut, Maryland, Massachusetts, and Washington state each had just 1500 or fewer cases filed last year. 

Health plans challenged a third of cases as ineligible, and 22% of all resolved cases were deemed ineligible.

Providers won 80% of resolved challenges in 2023, although it’s not clear how much money they reaped. Still, it’s clear that “in the vast majority of the cases, insurers have to pay larger amounts to the provider,” Dr. Hoadley said.

Radiologists made a median of at least 500% of the in-network rate in their cases. Surgeons and neurologists made even more money — a median of at least 800% of the in-network rate. Overall, providers made 322%-350% of in-network rates, depending on the quarter.

Dr. Hoadley cautioned that only a small percentage of medical payments are disputed. In those cases, “the amount that the insurer offers is accepted, and that’s the end of the story.”

Why are the providers often reaping much more than typical payments for in-network services? It’s “really hard to know,” Dr. Hoadley said. But one factor, he said, may be the fact that providers are able to offer evidence challenging that amounts that insurers say they paid previously: “Hey, when we were in network, we were paid this much.”

It’s not clear whether the dispute-and-arbitration system will cost insurers — and patients — more in the long run. The Congressional Budget Office actually thought the No Surprises Act might lower the growth of premiums slightly and save the federal government money, Dr. Hoadley said, but that could potentially not happen. The flood of litigation also contributes to uncertainty, he said. 

Alan Sager, PhD, professor of Health Law, Policy, and Management at Boston University School of Public Health, told this news organization that premiums are bound to rise as insurers react to higher costs. He also expects that providers will question the value of being in-network. “If you’re out-of-network and can obtain much higher payments, why would any doctor or hospital remain in-network, especially since they don’t lose out on patient volume?”

Why are provider groups owned by private equity firms so aggressive at challenging health plans? Loren Adler, a fellow and associate director of the Brookings Institution’s Center on Health Policy, told this news organization that these companies play large roles in fields affected by the No Surprises Act. These include emergency medicine, radiology, and anesthesiology, said Mr. Adler, who’s also studied the No Surprises Act’s dispute/arbitration system.

Mr. Adler added that larger companies “are better suited to deal with technical complexities of this process and spend the sort of upfront money to go through it.”

In the big picture, Mr. Adler said, the new study “raises question of whether Congress at some point wants to try to basically bring prices from the arbitration process back in line with average in-network prices.”

The study was funded by the Commonwealth Fund and Arnold Ventures. Dr. Hoadley, Dr. Sager, and Mr. Adler had no disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Four organizations owned by private equity firms — including two provider groups — dominated the No Surprises Act’s disputed bill arbitration process in its first year, filing about 70% of 657,040 cases against insurers in 2023, a new report finds. 

The findings, recently published in Health Affairs, suggest that private equity–owned organizations are forcefully challenging insurers about payments for certain kinds of out-of-network care. 

Their fighting stance has paid off: The percentage of resolved arbitration cases won by providers jumped from 72% in the first quarter of 2023 to 85% in the last quarter, and they were awarded a median of more than 300% the contracted in-network rates for the services in question.

With many more out-of-network bills disputed by providers than expected, “the system is not working exactly the way it was anticipated when this law was written,” lead author Jack Hoadley, PhD, a research professor emeritus at Georgetown University’s McCourt School of Public Policy, Washington, DC, told this news organization.

And, he said, the public and the federal government may end up paying a price. 

Congress passed the No Surprises Act in 2020 and then-President Donald Trump signed it. The landmark bill, which went into effect in 2022, was designed to protect patients from unexpected and often exorbitant “surprise” bills after they received some kinds of out-of-network care. 

Now, many types of providers are forbidden from billing patients beyond normal in-network costs. In these cases, health plans and out-of-network providers — who don’t have mutual agreements — must wrangle over payment amounts, which are intended to not exceed inflation-adjusted 2019 median levels. 

A binding arbitration process kicks in when a provider and a health plan fail to agree about how much the plan will pay for a service. Then, a third-party arbitrator is called in to make a ruling that’s binding. The process is controversial, and a flurry of lawsuits from providers have challenged it. 

The new report, which updates an earlier analysis, examines data about disputed cases from all of 2023.

Of the 657,040 new cases filed in 2023, about 70% came from four private equity-funded organizations: Team Health, SCP Health, Radiology Partners, and Envision, which each provide physician services.

About half of the 2023 cases were from just four states: Texas, Florida, Tennessee, and Georgia. The report says the four organizations are especially active in those states. In contrast, Connecticut, Maryland, Massachusetts, and Washington state each had just 1500 or fewer cases filed last year. 

Health plans challenged a third of cases as ineligible, and 22% of all resolved cases were deemed ineligible.

Providers won 80% of resolved challenges in 2023, although it’s not clear how much money they reaped. Still, it’s clear that “in the vast majority of the cases, insurers have to pay larger amounts to the provider,” Dr. Hoadley said.

Radiologists made a median of at least 500% of the in-network rate in their cases. Surgeons and neurologists made even more money — a median of at least 800% of the in-network rate. Overall, providers made 322%-350% of in-network rates, depending on the quarter.

Dr. Hoadley cautioned that only a small percentage of medical payments are disputed. In those cases, “the amount that the insurer offers is accepted, and that’s the end of the story.”

Why are the providers often reaping much more than typical payments for in-network services? It’s “really hard to know,” Dr. Hoadley said. But one factor, he said, may be the fact that providers are able to offer evidence challenging that amounts that insurers say they paid previously: “Hey, when we were in network, we were paid this much.”

It’s not clear whether the dispute-and-arbitration system will cost insurers — and patients — more in the long run. The Congressional Budget Office actually thought the No Surprises Act might lower the growth of premiums slightly and save the federal government money, Dr. Hoadley said, but that could potentially not happen. The flood of litigation also contributes to uncertainty, he said. 

Alan Sager, PhD, professor of Health Law, Policy, and Management at Boston University School of Public Health, told this news organization that premiums are bound to rise as insurers react to higher costs. He also expects that providers will question the value of being in-network. “If you’re out-of-network and can obtain much higher payments, why would any doctor or hospital remain in-network, especially since they don’t lose out on patient volume?”

Why are provider groups owned by private equity firms so aggressive at challenging health plans? Loren Adler, a fellow and associate director of the Brookings Institution’s Center on Health Policy, told this news organization that these companies play large roles in fields affected by the No Surprises Act. These include emergency medicine, radiology, and anesthesiology, said Mr. Adler, who’s also studied the No Surprises Act’s dispute/arbitration system.

Mr. Adler added that larger companies “are better suited to deal with technical complexities of this process and spend the sort of upfront money to go through it.”

In the big picture, Mr. Adler said, the new study “raises question of whether Congress at some point wants to try to basically bring prices from the arbitration process back in line with average in-network prices.”

The study was funded by the Commonwealth Fund and Arnold Ventures. Dr. Hoadley, Dr. Sager, and Mr. Adler had no disclosures.

A version of this article first appeared on Medscape.com.

Four organizations owned by private equity firms — including two provider groups — dominated the No Surprises Act’s disputed bill arbitration process in its first year, filing about 70% of 657,040 cases against insurers in 2023, a new report finds. 

The findings, recently published in Health Affairs, suggest that private equity–owned organizations are forcefully challenging insurers about payments for certain kinds of out-of-network care. 

Their fighting stance has paid off: The percentage of resolved arbitration cases won by providers jumped from 72% in the first quarter of 2023 to 85% in the last quarter, and they were awarded a median of more than 300% the contracted in-network rates for the services in question.

With many more out-of-network bills disputed by providers than expected, “the system is not working exactly the way it was anticipated when this law was written,” lead author Jack Hoadley, PhD, a research professor emeritus at Georgetown University’s McCourt School of Public Policy, Washington, DC, told this news organization.

And, he said, the public and the federal government may end up paying a price. 

Congress passed the No Surprises Act in 2020 and then-President Donald Trump signed it. The landmark bill, which went into effect in 2022, was designed to protect patients from unexpected and often exorbitant “surprise” bills after they received some kinds of out-of-network care. 

Now, many types of providers are forbidden from billing patients beyond normal in-network costs. In these cases, health plans and out-of-network providers — who don’t have mutual agreements — must wrangle over payment amounts, which are intended to not exceed inflation-adjusted 2019 median levels. 

A binding arbitration process kicks in when a provider and a health plan fail to agree about how much the plan will pay for a service. Then, a third-party arbitrator is called in to make a ruling that’s binding. The process is controversial, and a flurry of lawsuits from providers have challenged it. 

The new report, which updates an earlier analysis, examines data about disputed cases from all of 2023.

Of the 657,040 new cases filed in 2023, about 70% came from four private equity-funded organizations: Team Health, SCP Health, Radiology Partners, and Envision, which each provide physician services.

About half of the 2023 cases were from just four states: Texas, Florida, Tennessee, and Georgia. The report says the four organizations are especially active in those states. In contrast, Connecticut, Maryland, Massachusetts, and Washington state each had just 1500 or fewer cases filed last year. 

Health plans challenged a third of cases as ineligible, and 22% of all resolved cases were deemed ineligible.

Providers won 80% of resolved challenges in 2023, although it’s not clear how much money they reaped. Still, it’s clear that “in the vast majority of the cases, insurers have to pay larger amounts to the provider,” Dr. Hoadley said.

Radiologists made a median of at least 500% of the in-network rate in their cases. Surgeons and neurologists made even more money — a median of at least 800% of the in-network rate. Overall, providers made 322%-350% of in-network rates, depending on the quarter.

Dr. Hoadley cautioned that only a small percentage of medical payments are disputed. In those cases, “the amount that the insurer offers is accepted, and that’s the end of the story.”

Why are the providers often reaping much more than typical payments for in-network services? It’s “really hard to know,” Dr. Hoadley said. But one factor, he said, may be the fact that providers are able to offer evidence challenging that amounts that insurers say they paid previously: “Hey, when we were in network, we were paid this much.”

It’s not clear whether the dispute-and-arbitration system will cost insurers — and patients — more in the long run. The Congressional Budget Office actually thought the No Surprises Act might lower the growth of premiums slightly and save the federal government money, Dr. Hoadley said, but that could potentially not happen. The flood of litigation also contributes to uncertainty, he said. 

Alan Sager, PhD, professor of Health Law, Policy, and Management at Boston University School of Public Health, told this news organization that premiums are bound to rise as insurers react to higher costs. He also expects that providers will question the value of being in-network. “If you’re out-of-network and can obtain much higher payments, why would any doctor or hospital remain in-network, especially since they don’t lose out on patient volume?”

Why are provider groups owned by private equity firms so aggressive at challenging health plans? Loren Adler, a fellow and associate director of the Brookings Institution’s Center on Health Policy, told this news organization that these companies play large roles in fields affected by the No Surprises Act. These include emergency medicine, radiology, and anesthesiology, said Mr. Adler, who’s also studied the No Surprises Act’s dispute/arbitration system.

Mr. Adler added that larger companies “are better suited to deal with technical complexities of this process and spend the sort of upfront money to go through it.”

In the big picture, Mr. Adler said, the new study “raises question of whether Congress at some point wants to try to basically bring prices from the arbitration process back in line with average in-network prices.”

The study was funded by the Commonwealth Fund and Arnold Ventures. Dr. Hoadley, Dr. Sager, and Mr. Adler had no disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The New Formula for Stronger, Longer-Lasting Vaccines

Article Type
Changed
Tue, 08/27/2024 - 09:36

Vaccines work pretty well. But with a little help, they could work better.

Stanford researchers have developed a new vaccine helper that combines two kinds of adjuvants, ingredients that improve a vaccine’s efficacy, in a novel, customizable system.

In lab tests, the experimental additive improved the effectiveness of COVID-19 and HIV vaccine candidates, though it could be adapted to stimulate immune responses to a variety of pathogens, the researchers said. It could also be used one day to fine-tune vaccines for vulnerable groups like young children, older adults, and those with compromised immune systems.

“Current vaccines are not perfect,” said lead study author Ben Ou, a PhD candidate and researcher in the lab of Eric Appel, PhD, an associate professor of materials science and engineering, at Stanford University in California. “Many fail to generate long-lasting immunity or immunity against closely related strains [such as] flu or COVID vaccines. One way to improve them is to design more potent vaccine adjuvants.”

The study marks an advance in an area of growing scientific interest: Combining different adjuvants to enhance the immune-stimulating effect.

The Stanford scientists developed sphere-shaped nanoparticles, like tiny round cages, made of saponins, immune-stimulating molecules common in adjuvant development. To these nanoparticles, they attached Toll-like receptor (TLR) agonists, molecules that have become a focus in vaccine research because they stimulate a variety of immune responses.

Dr. Ou and the team tested the new adjuvant platform in COVID and HIV vaccines, comparing it to vaccines containing alum, a widely used adjuvant. (Alum is not used in COVID vaccines available in the United States.)

The nanoparticle-adjuvanted vaccines triggered stronger, longer-lasting effects. 

Notably, the combination of the new adjuvant system with a SARS-CoV-2 virus vaccine was effective in mice against the original SARS-CoV-2 virus and against Delta, Omicron, and other variants that emerged in the months and years after the initial outbreak. 

“Since our nanoparticle adjuvant platform is more potent than traditional/clinical vaccine adjuvants,” Dr. Ou said, “we expected mice to produce broadly neutralizing antibodies and better breadth responses.”
 

100 Years of Adjuvants

The first vaccine adjuvants were aluminum salts mixed into shots against pertussis, diphtheria, and tetanus in the 1920s. Today, alum is still used in many vaccines, including shots for diphtheria, tetanus, and pertussis; hepatitis A and B; human papillomavirus; and pneumococcal disease.

But since the 1990s, new adjuvants have come on the scene. Saponin-based compounds, harvested from the soapbark tree, are used in the Novavax COVID-19 Vaccine, Adjuvanted; a synthetic DNA adjuvant in the Heplisav-B vaccine against hepatitis B; and oil in water adjuvants using squalene in the Fluad and Fluad Quadrivalent influenza vaccines. Other vaccines, including those for chickenpox, cholera, measles, mumps, rubella, and mRNA-based COVID vaccines from Pfizer-BioNTech and Moderna, don’t contain adjuvants

TLR agonists have recently become research hotspots in vaccine science. 

“TLR agonists activate the innate immune system, putting it on a heightened alert state that can result in a higher antibody production and longer-lasting protection,” said David Burkhart, PhD, a research professor in biomedical and pharmaceutical sciences at the University of Montana in Missoula. He is also the chief operating officer of Inimmune, a biotech company developing vaccines and immunotherapies.

Dr. Burkhart studies TLR agonists in vaccines and other applications. “Different combinations activate different parts of the immune system,” he said. “TLR4 might activate the army, while TLR7 might activate the air force. You might need both in one vaccine.”

TLR agonists have also shown promise against Alzheimer’s disease, allergies, cancer, and even addiction. In immune’s experimental immunotherapy using TLR agonists for advanced solid tumors has just entered human trials, and the company is looking at a TLR agonist therapy for allergic rhinitis
 

 

 

Combining Forces

In the new study, researchers tested five different combinations of TLR agonists hooked to the saponin nanoparticle framework. Each elicited a slightly different response from the immune cells. 

“Our immune systems generate different downstream immune responses based on which TLRs are activated,” Dr. Ou said.

Ultimately, the advance could spur the development of vaccines tuned for stronger immune protection.

“We need different immune responses to fight different types of pathogens,” Dr. Ou said. “Depending on what specific virus/disease the vaccine is formulated for, activation of one specific TLR may confer better protection than another TLR.”

According to Dr. Burkhart, combining a saponin with a TLR agonist has found success before.

Biopharma company GSK (formerly GlaxoSmithKline) used the combination in its AS01 adjuvant, in the vaccine Shingrix against herpes zoster. The live-attenuated yellow fever vaccine, given to more than 600 million people around the world and considered one of the most powerful vaccines ever developed, uses several TLR agonists. 

The Stanford paper, Dr. Burkhart said, “is a nice demonstration of the enhanced efficacy [that] adjuvants can provide to vaccines by exploiting the synergy different adjuvants and TLR agonists can provide when used in combination.”
 

Tailoring Vaccines

The customizable aspect of TLR agonists is important too, Dr. Burkhart said. 

“The human immune system changes dramatically from birth to childhood into adulthood into older maturity,” he said. “It’s not a one-size-fits-all. Vaccines need to be tailored to these populations for maximum effectiveness and safety. TLRAs [TLR agonists] are a highly valuable tool in the vaccine toolbox. I think it’s inevitable we’ll have more in the future.”

That’s what the Stanford researchers hope for.

They noted in the study that the nanoparticle platform could easily be used to test different TLR agonist adjuvant combinations in vaccines.

But human studies are still a ways off. Tests in larger animals would likely come next, Dr. Ou said. 

“We now have a single nanoparticle adjuvant platform with formulations containing different TLRs,” Dr. Ou said. “Scientists can pick which specific formulation is the most suitable for their needs.”

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Vaccines work pretty well. But with a little help, they could work better.

Stanford researchers have developed a new vaccine helper that combines two kinds of adjuvants, ingredients that improve a vaccine’s efficacy, in a novel, customizable system.

In lab tests, the experimental additive improved the effectiveness of COVID-19 and HIV vaccine candidates, though it could be adapted to stimulate immune responses to a variety of pathogens, the researchers said. It could also be used one day to fine-tune vaccines for vulnerable groups like young children, older adults, and those with compromised immune systems.

“Current vaccines are not perfect,” said lead study author Ben Ou, a PhD candidate and researcher in the lab of Eric Appel, PhD, an associate professor of materials science and engineering, at Stanford University in California. “Many fail to generate long-lasting immunity or immunity against closely related strains [such as] flu or COVID vaccines. One way to improve them is to design more potent vaccine adjuvants.”

The study marks an advance in an area of growing scientific interest: Combining different adjuvants to enhance the immune-stimulating effect.

The Stanford scientists developed sphere-shaped nanoparticles, like tiny round cages, made of saponins, immune-stimulating molecules common in adjuvant development. To these nanoparticles, they attached Toll-like receptor (TLR) agonists, molecules that have become a focus in vaccine research because they stimulate a variety of immune responses.

Dr. Ou and the team tested the new adjuvant platform in COVID and HIV vaccines, comparing it to vaccines containing alum, a widely used adjuvant. (Alum is not used in COVID vaccines available in the United States.)

The nanoparticle-adjuvanted vaccines triggered stronger, longer-lasting effects. 

Notably, the combination of the new adjuvant system with a SARS-CoV-2 virus vaccine was effective in mice against the original SARS-CoV-2 virus and against Delta, Omicron, and other variants that emerged in the months and years after the initial outbreak. 

“Since our nanoparticle adjuvant platform is more potent than traditional/clinical vaccine adjuvants,” Dr. Ou said, “we expected mice to produce broadly neutralizing antibodies and better breadth responses.”
 

100 Years of Adjuvants

The first vaccine adjuvants were aluminum salts mixed into shots against pertussis, diphtheria, and tetanus in the 1920s. Today, alum is still used in many vaccines, including shots for diphtheria, tetanus, and pertussis; hepatitis A and B; human papillomavirus; and pneumococcal disease.

But since the 1990s, new adjuvants have come on the scene. Saponin-based compounds, harvested from the soapbark tree, are used in the Novavax COVID-19 Vaccine, Adjuvanted; a synthetic DNA adjuvant in the Heplisav-B vaccine against hepatitis B; and oil in water adjuvants using squalene in the Fluad and Fluad Quadrivalent influenza vaccines. Other vaccines, including those for chickenpox, cholera, measles, mumps, rubella, and mRNA-based COVID vaccines from Pfizer-BioNTech and Moderna, don’t contain adjuvants

TLR agonists have recently become research hotspots in vaccine science. 

“TLR agonists activate the innate immune system, putting it on a heightened alert state that can result in a higher antibody production and longer-lasting protection,” said David Burkhart, PhD, a research professor in biomedical and pharmaceutical sciences at the University of Montana in Missoula. He is also the chief operating officer of Inimmune, a biotech company developing vaccines and immunotherapies.

Dr. Burkhart studies TLR agonists in vaccines and other applications. “Different combinations activate different parts of the immune system,” he said. “TLR4 might activate the army, while TLR7 might activate the air force. You might need both in one vaccine.”

TLR agonists have also shown promise against Alzheimer’s disease, allergies, cancer, and even addiction. In immune’s experimental immunotherapy using TLR agonists for advanced solid tumors has just entered human trials, and the company is looking at a TLR agonist therapy for allergic rhinitis
 

 

 

Combining Forces

In the new study, researchers tested five different combinations of TLR agonists hooked to the saponin nanoparticle framework. Each elicited a slightly different response from the immune cells. 

“Our immune systems generate different downstream immune responses based on which TLRs are activated,” Dr. Ou said.

Ultimately, the advance could spur the development of vaccines tuned for stronger immune protection.

“We need different immune responses to fight different types of pathogens,” Dr. Ou said. “Depending on what specific virus/disease the vaccine is formulated for, activation of one specific TLR may confer better protection than another TLR.”

According to Dr. Burkhart, combining a saponin with a TLR agonist has found success before.

Biopharma company GSK (formerly GlaxoSmithKline) used the combination in its AS01 adjuvant, in the vaccine Shingrix against herpes zoster. The live-attenuated yellow fever vaccine, given to more than 600 million people around the world and considered one of the most powerful vaccines ever developed, uses several TLR agonists. 

The Stanford paper, Dr. Burkhart said, “is a nice demonstration of the enhanced efficacy [that] adjuvants can provide to vaccines by exploiting the synergy different adjuvants and TLR agonists can provide when used in combination.”
 

Tailoring Vaccines

The customizable aspect of TLR agonists is important too, Dr. Burkhart said. 

“The human immune system changes dramatically from birth to childhood into adulthood into older maturity,” he said. “It’s not a one-size-fits-all. Vaccines need to be tailored to these populations for maximum effectiveness and safety. TLRAs [TLR agonists] are a highly valuable tool in the vaccine toolbox. I think it’s inevitable we’ll have more in the future.”

That’s what the Stanford researchers hope for.

They noted in the study that the nanoparticle platform could easily be used to test different TLR agonist adjuvant combinations in vaccines.

But human studies are still a ways off. Tests in larger animals would likely come next, Dr. Ou said. 

“We now have a single nanoparticle adjuvant platform with formulations containing different TLRs,” Dr. Ou said. “Scientists can pick which specific formulation is the most suitable for their needs.”

A version of this article first appeared on Medscape.com.

Vaccines work pretty well. But with a little help, they could work better.

Stanford researchers have developed a new vaccine helper that combines two kinds of adjuvants, ingredients that improve a vaccine’s efficacy, in a novel, customizable system.

In lab tests, the experimental additive improved the effectiveness of COVID-19 and HIV vaccine candidates, though it could be adapted to stimulate immune responses to a variety of pathogens, the researchers said. It could also be used one day to fine-tune vaccines for vulnerable groups like young children, older adults, and those with compromised immune systems.

“Current vaccines are not perfect,” said lead study author Ben Ou, a PhD candidate and researcher in the lab of Eric Appel, PhD, an associate professor of materials science and engineering, at Stanford University in California. “Many fail to generate long-lasting immunity or immunity against closely related strains [such as] flu or COVID vaccines. One way to improve them is to design more potent vaccine adjuvants.”

The study marks an advance in an area of growing scientific interest: Combining different adjuvants to enhance the immune-stimulating effect.

The Stanford scientists developed sphere-shaped nanoparticles, like tiny round cages, made of saponins, immune-stimulating molecules common in adjuvant development. To these nanoparticles, they attached Toll-like receptor (TLR) agonists, molecules that have become a focus in vaccine research because they stimulate a variety of immune responses.

Dr. Ou and the team tested the new adjuvant platform in COVID and HIV vaccines, comparing it to vaccines containing alum, a widely used adjuvant. (Alum is not used in COVID vaccines available in the United States.)

The nanoparticle-adjuvanted vaccines triggered stronger, longer-lasting effects. 

Notably, the combination of the new adjuvant system with a SARS-CoV-2 virus vaccine was effective in mice against the original SARS-CoV-2 virus and against Delta, Omicron, and other variants that emerged in the months and years after the initial outbreak. 

“Since our nanoparticle adjuvant platform is more potent than traditional/clinical vaccine adjuvants,” Dr. Ou said, “we expected mice to produce broadly neutralizing antibodies and better breadth responses.”
 

100 Years of Adjuvants

The first vaccine adjuvants were aluminum salts mixed into shots against pertussis, diphtheria, and tetanus in the 1920s. Today, alum is still used in many vaccines, including shots for diphtheria, tetanus, and pertussis; hepatitis A and B; human papillomavirus; and pneumococcal disease.

But since the 1990s, new adjuvants have come on the scene. Saponin-based compounds, harvested from the soapbark tree, are used in the Novavax COVID-19 Vaccine, Adjuvanted; a synthetic DNA adjuvant in the Heplisav-B vaccine against hepatitis B; and oil in water adjuvants using squalene in the Fluad and Fluad Quadrivalent influenza vaccines. Other vaccines, including those for chickenpox, cholera, measles, mumps, rubella, and mRNA-based COVID vaccines from Pfizer-BioNTech and Moderna, don’t contain adjuvants

TLR agonists have recently become research hotspots in vaccine science. 

“TLR agonists activate the innate immune system, putting it on a heightened alert state that can result in a higher antibody production and longer-lasting protection,” said David Burkhart, PhD, a research professor in biomedical and pharmaceutical sciences at the University of Montana in Missoula. He is also the chief operating officer of Inimmune, a biotech company developing vaccines and immunotherapies.

Dr. Burkhart studies TLR agonists in vaccines and other applications. “Different combinations activate different parts of the immune system,” he said. “TLR4 might activate the army, while TLR7 might activate the air force. You might need both in one vaccine.”

TLR agonists have also shown promise against Alzheimer’s disease, allergies, cancer, and even addiction. In immune’s experimental immunotherapy using TLR agonists for advanced solid tumors has just entered human trials, and the company is looking at a TLR agonist therapy for allergic rhinitis
 

 

 

Combining Forces

In the new study, researchers tested five different combinations of TLR agonists hooked to the saponin nanoparticle framework. Each elicited a slightly different response from the immune cells. 

“Our immune systems generate different downstream immune responses based on which TLRs are activated,” Dr. Ou said.

Ultimately, the advance could spur the development of vaccines tuned for stronger immune protection.

“We need different immune responses to fight different types of pathogens,” Dr. Ou said. “Depending on what specific virus/disease the vaccine is formulated for, activation of one specific TLR may confer better protection than another TLR.”

According to Dr. Burkhart, combining a saponin with a TLR agonist has found success before.

Biopharma company GSK (formerly GlaxoSmithKline) used the combination in its AS01 adjuvant, in the vaccine Shingrix against herpes zoster. The live-attenuated yellow fever vaccine, given to more than 600 million people around the world and considered one of the most powerful vaccines ever developed, uses several TLR agonists. 

The Stanford paper, Dr. Burkhart said, “is a nice demonstration of the enhanced efficacy [that] adjuvants can provide to vaccines by exploiting the synergy different adjuvants and TLR agonists can provide when used in combination.”
 

Tailoring Vaccines

The customizable aspect of TLR agonists is important too, Dr. Burkhart said. 

“The human immune system changes dramatically from birth to childhood into adulthood into older maturity,” he said. “It’s not a one-size-fits-all. Vaccines need to be tailored to these populations for maximum effectiveness and safety. TLRAs [TLR agonists] are a highly valuable tool in the vaccine toolbox. I think it’s inevitable we’ll have more in the future.”

That’s what the Stanford researchers hope for.

They noted in the study that the nanoparticle platform could easily be used to test different TLR agonist adjuvant combinations in vaccines.

But human studies are still a ways off. Tests in larger animals would likely come next, Dr. Ou said. 

“We now have a single nanoparticle adjuvant platform with formulations containing different TLRs,” Dr. Ou said. “Scientists can pick which specific formulation is the most suitable for their needs.”

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SCIENCE ADVANCES

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Treatment 101: A Primer for Non-Oncologists

Article Type
Changed
Fri, 08/23/2024 - 13:14

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.

Table. Chemotherapy Outcomes


Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.

Table. Chemotherapy Outcomes


Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.

Table. Chemotherapy Outcomes


Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article