How Abdominal Fibrogenesis Affects Adolescents With Obesity

Article Type
Changed
Thu, 04/04/2024 - 11:56

 

TOPLINE:

Insulin resistance and obesity in adolescents may lead to increased abdominal fibrogenesis, impairing the capacity of the abdominal subcutaneous adipose tissue (SAT) to store lipids, which may cause fat accumulation in the visceral adipose tissue (VAT) depot and in other organs such as the liver.

METHODOLOGY:

  • Abdominal fibrogenesis, but not adipose tissue expandability, is known to increase in adults with obesity and reduce insulin sensitivity; however, little is known about fibrogenesis in adolescents with obesity.
  • In this study, researchers investigated if lipid dynamics, fibrogenesis, and abdominal and gluteal adipocyte turnover show dysregulation to a greater extent in insulin-resistant adolescents with obesity than in insulin-sensitive adolescents with obesity.
  • They recruited 14 individuals between 12 and 20 years with a body mass index over 30 from the Yale  Clinic, of whom seven participants were classified as insulin resistant.
  • Deuterated water methodologies were used to study the indices of adipocyte turnover, lipid dynamics, and fibrogenesis in abdominal and gluteal fat deposits.
  • A 3-hour oral glucose tolerance test and multisection MRI scan of the abdominal region were used to assess the indices of glucose metabolism, abdominal fat distribution patterns, and liver fat content.

TAKEAWAY:

  • The abdominal and gluteal SAT turnover rate of lipid components (triglyceride production and breakdown as well as de novo lipogenesis contribution) was similar in insulin-resistant and insulin-sensitive adolescents with obesity.
  • The insoluble collagen (type I, subunit alpha2) level was higher in the abdominal adipose tissue of insulin-resistant adolescents than in insulin-sensitive adolescents (difference in fractional synthesis rate, 0.611; P < .001), indicating increased abdominal fibrogenesis.
  • Abdominal insoluble collagen I alpha2 was associated with higher fasting plasma insulin levels (correlation [r], 0.579; P = .015), a higher visceral to total adipose tissue ratio (r, 0.643; P = .007), and a lower whole-body insulin sensitivity index (r, -0.540; P = .023).
  • There was no evidence of increased collagen production in the gluteal adipose tissue, and as a result, fibrogenesis was observed.

IN PRACTICE:

“The increased formation of insoluble collagen observed in insulin-resistant compared with insulin-sensitive individuals contributes to lipid spillover from SAT to VAT and, in turn, serves as a critically important mechanism involved in the complex sequelae of obesity-related metabolic and liver disease pathology,” the authors wrote.

SOURCE:

This study, led by Aaron L. Slusher, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, was published online in Obesity.

LIMITATIONS:

The researchers did not measure hepatic collagen synthesis rates. The analysis was performed on a small study population. The authors were also unable to assess potential sex differences.

DISCLOSURES:

The study was funded by the Foundation for the National Institutes of Health and Clara Guthrie Patterson Trust Mentored Research Award. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Insulin resistance and obesity in adolescents may lead to increased abdominal fibrogenesis, impairing the capacity of the abdominal subcutaneous adipose tissue (SAT) to store lipids, which may cause fat accumulation in the visceral adipose tissue (VAT) depot and in other organs such as the liver.

METHODOLOGY:

  • Abdominal fibrogenesis, but not adipose tissue expandability, is known to increase in adults with obesity and reduce insulin sensitivity; however, little is known about fibrogenesis in adolescents with obesity.
  • In this study, researchers investigated if lipid dynamics, fibrogenesis, and abdominal and gluteal adipocyte turnover show dysregulation to a greater extent in insulin-resistant adolescents with obesity than in insulin-sensitive adolescents with obesity.
  • They recruited 14 individuals between 12 and 20 years with a body mass index over 30 from the Yale  Clinic, of whom seven participants were classified as insulin resistant.
  • Deuterated water methodologies were used to study the indices of adipocyte turnover, lipid dynamics, and fibrogenesis in abdominal and gluteal fat deposits.
  • A 3-hour oral glucose tolerance test and multisection MRI scan of the abdominal region were used to assess the indices of glucose metabolism, abdominal fat distribution patterns, and liver fat content.

TAKEAWAY:

  • The abdominal and gluteal SAT turnover rate of lipid components (triglyceride production and breakdown as well as de novo lipogenesis contribution) was similar in insulin-resistant and insulin-sensitive adolescents with obesity.
  • The insoluble collagen (type I, subunit alpha2) level was higher in the abdominal adipose tissue of insulin-resistant adolescents than in insulin-sensitive adolescents (difference in fractional synthesis rate, 0.611; P < .001), indicating increased abdominal fibrogenesis.
  • Abdominal insoluble collagen I alpha2 was associated with higher fasting plasma insulin levels (correlation [r], 0.579; P = .015), a higher visceral to total adipose tissue ratio (r, 0.643; P = .007), and a lower whole-body insulin sensitivity index (r, -0.540; P = .023).
  • There was no evidence of increased collagen production in the gluteal adipose tissue, and as a result, fibrogenesis was observed.

IN PRACTICE:

“The increased formation of insoluble collagen observed in insulin-resistant compared with insulin-sensitive individuals contributes to lipid spillover from SAT to VAT and, in turn, serves as a critically important mechanism involved in the complex sequelae of obesity-related metabolic and liver disease pathology,” the authors wrote.

SOURCE:

This study, led by Aaron L. Slusher, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, was published online in Obesity.

LIMITATIONS:

The researchers did not measure hepatic collagen synthesis rates. The analysis was performed on a small study population. The authors were also unable to assess potential sex differences.

DISCLOSURES:

The study was funded by the Foundation for the National Institutes of Health and Clara Guthrie Patterson Trust Mentored Research Award. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Insulin resistance and obesity in adolescents may lead to increased abdominal fibrogenesis, impairing the capacity of the abdominal subcutaneous adipose tissue (SAT) to store lipids, which may cause fat accumulation in the visceral adipose tissue (VAT) depot and in other organs such as the liver.

METHODOLOGY:

  • Abdominal fibrogenesis, but not adipose tissue expandability, is known to increase in adults with obesity and reduce insulin sensitivity; however, little is known about fibrogenesis in adolescents with obesity.
  • In this study, researchers investigated if lipid dynamics, fibrogenesis, and abdominal and gluteal adipocyte turnover show dysregulation to a greater extent in insulin-resistant adolescents with obesity than in insulin-sensitive adolescents with obesity.
  • They recruited 14 individuals between 12 and 20 years with a body mass index over 30 from the Yale  Clinic, of whom seven participants were classified as insulin resistant.
  • Deuterated water methodologies were used to study the indices of adipocyte turnover, lipid dynamics, and fibrogenesis in abdominal and gluteal fat deposits.
  • A 3-hour oral glucose tolerance test and multisection MRI scan of the abdominal region were used to assess the indices of glucose metabolism, abdominal fat distribution patterns, and liver fat content.

TAKEAWAY:

  • The abdominal and gluteal SAT turnover rate of lipid components (triglyceride production and breakdown as well as de novo lipogenesis contribution) was similar in insulin-resistant and insulin-sensitive adolescents with obesity.
  • The insoluble collagen (type I, subunit alpha2) level was higher in the abdominal adipose tissue of insulin-resistant adolescents than in insulin-sensitive adolescents (difference in fractional synthesis rate, 0.611; P < .001), indicating increased abdominal fibrogenesis.
  • Abdominal insoluble collagen I alpha2 was associated with higher fasting plasma insulin levels (correlation [r], 0.579; P = .015), a higher visceral to total adipose tissue ratio (r, 0.643; P = .007), and a lower whole-body insulin sensitivity index (r, -0.540; P = .023).
  • There was no evidence of increased collagen production in the gluteal adipose tissue, and as a result, fibrogenesis was observed.

IN PRACTICE:

“The increased formation of insoluble collagen observed in insulin-resistant compared with insulin-sensitive individuals contributes to lipid spillover from SAT to VAT and, in turn, serves as a critically important mechanism involved in the complex sequelae of obesity-related metabolic and liver disease pathology,” the authors wrote.

SOURCE:

This study, led by Aaron L. Slusher, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, was published online in Obesity.

LIMITATIONS:

The researchers did not measure hepatic collagen synthesis rates. The analysis was performed on a small study population. The authors were also unable to assess potential sex differences.

DISCLOSURES:

The study was funded by the Foundation for the National Institutes of Health and Clara Guthrie Patterson Trust Mentored Research Award. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Regular Exercise Linked to Better Sleep

Article Type
Changed
Wed, 04/03/2024 - 07:31

 

TOPLINE:

Over time, exercising at least twice a week is associated with significantly fewer insomnia symptoms and better sleep duration, new research shows.

METHODOLOGY:

  • The study included 4339 adults aged 39-67 years (48% men) from 21 centers in nine countries participating in the third follow-up to the European Community Respiratory Health Survey (ECRHS III).
  • Participants responded to questions about physical activity, insomnia symptoms, sleep duration, and daytime sleepiness at 10-year follow-up.
  • Being “physically active” was defined as exercising with a frequency of at least twice a week for ≥ 1 hour per week.
  • The main outcome measures were insomnia, sleep time, and daytime sleepiness in relation to physical activity.

TAKEAWAY:

  • From baseline to follow-up, 37% of participants were persistently inactive, 25% were persistently active, 20% became inactive, and 18% became active.
  • After adjustment for age, sex, body mass index, smoking history, and study center, persistently active participants were less likely to report difficulties with sleep initiation (adjusted odds ratio [aOR], 0.60; 95% CI, 0.45-0.78), with short sleep duration of ≤ 6 hours/night (aOR, 0.71; 95% CI, 0.59-0.85) and long sleep of ≥ 9 hours/night (aOR, 0.53; 95% CI, 0.33-0.84), compared with persistently nonactive subjects.
  • Those who were persistently active were 22% less likely to report any symptoms of insomnia, 40% less likely to report two symptoms, and 37% less likely to report three symptoms.
  • Daytime sleepiness and difficulties maintaining sleep were found to be unrelated to physical activity status.

IN PRACTICE:

“This study has a long follow-up period (10 years) and indicates strongly that consistency in physical activity might be an important factor in optimizing sleep duration and reducing the symptoms of insomnia,” the authors wrote.

SOURCE:

Erla Björnsdóttir, of the Department of Psychology, Reykjavik University, Reykjavik, Iceland, was the co-senior author and corresponding author of the study. It was published online on March 25 in BMJ Open.

LIMITATIONS:

It’s unclear whether individuals who were active at both timepoints had been continuously physically active throughout the study period or only at those two timepoints. Sleep variables were available only at follow-up and were all subjectively reported, meaning the associations between physical activity and sleep may not be longitudinal. Residual confounders (eg, mental health and musculoskeletal disorders or chronic pain) that can influence both sleep and exercise were not explored.

DISCLOSURES:

Financial support for ECRHS III was provided by the National Health and Medical Research Council (Australia); Antwerp South, Antwerp City: Research Foundation Flanders (Belgium); Estonian Ministry of Education (Estonia); and other international agencies. Additional sources of funding were listed on the original paper. The authors reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Over time, exercising at least twice a week is associated with significantly fewer insomnia symptoms and better sleep duration, new research shows.

METHODOLOGY:

  • The study included 4339 adults aged 39-67 years (48% men) from 21 centers in nine countries participating in the third follow-up to the European Community Respiratory Health Survey (ECRHS III).
  • Participants responded to questions about physical activity, insomnia symptoms, sleep duration, and daytime sleepiness at 10-year follow-up.
  • Being “physically active” was defined as exercising with a frequency of at least twice a week for ≥ 1 hour per week.
  • The main outcome measures were insomnia, sleep time, and daytime sleepiness in relation to physical activity.

TAKEAWAY:

  • From baseline to follow-up, 37% of participants were persistently inactive, 25% were persistently active, 20% became inactive, and 18% became active.
  • After adjustment for age, sex, body mass index, smoking history, and study center, persistently active participants were less likely to report difficulties with sleep initiation (adjusted odds ratio [aOR], 0.60; 95% CI, 0.45-0.78), with short sleep duration of ≤ 6 hours/night (aOR, 0.71; 95% CI, 0.59-0.85) and long sleep of ≥ 9 hours/night (aOR, 0.53; 95% CI, 0.33-0.84), compared with persistently nonactive subjects.
  • Those who were persistently active were 22% less likely to report any symptoms of insomnia, 40% less likely to report two symptoms, and 37% less likely to report three symptoms.
  • Daytime sleepiness and difficulties maintaining sleep were found to be unrelated to physical activity status.

IN PRACTICE:

“This study has a long follow-up period (10 years) and indicates strongly that consistency in physical activity might be an important factor in optimizing sleep duration and reducing the symptoms of insomnia,” the authors wrote.

SOURCE:

Erla Björnsdóttir, of the Department of Psychology, Reykjavik University, Reykjavik, Iceland, was the co-senior author and corresponding author of the study. It was published online on March 25 in BMJ Open.

LIMITATIONS:

It’s unclear whether individuals who were active at both timepoints had been continuously physically active throughout the study period or only at those two timepoints. Sleep variables were available only at follow-up and were all subjectively reported, meaning the associations between physical activity and sleep may not be longitudinal. Residual confounders (eg, mental health and musculoskeletal disorders or chronic pain) that can influence both sleep and exercise were not explored.

DISCLOSURES:

Financial support for ECRHS III was provided by the National Health and Medical Research Council (Australia); Antwerp South, Antwerp City: Research Foundation Flanders (Belgium); Estonian Ministry of Education (Estonia); and other international agencies. Additional sources of funding were listed on the original paper. The authors reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Over time, exercising at least twice a week is associated with significantly fewer insomnia symptoms and better sleep duration, new research shows.

METHODOLOGY:

  • The study included 4339 adults aged 39-67 years (48% men) from 21 centers in nine countries participating in the third follow-up to the European Community Respiratory Health Survey (ECRHS III).
  • Participants responded to questions about physical activity, insomnia symptoms, sleep duration, and daytime sleepiness at 10-year follow-up.
  • Being “physically active” was defined as exercising with a frequency of at least twice a week for ≥ 1 hour per week.
  • The main outcome measures were insomnia, sleep time, and daytime sleepiness in relation to physical activity.

TAKEAWAY:

  • From baseline to follow-up, 37% of participants were persistently inactive, 25% were persistently active, 20% became inactive, and 18% became active.
  • After adjustment for age, sex, body mass index, smoking history, and study center, persistently active participants were less likely to report difficulties with sleep initiation (adjusted odds ratio [aOR], 0.60; 95% CI, 0.45-0.78), with short sleep duration of ≤ 6 hours/night (aOR, 0.71; 95% CI, 0.59-0.85) and long sleep of ≥ 9 hours/night (aOR, 0.53; 95% CI, 0.33-0.84), compared with persistently nonactive subjects.
  • Those who were persistently active were 22% less likely to report any symptoms of insomnia, 40% less likely to report two symptoms, and 37% less likely to report three symptoms.
  • Daytime sleepiness and difficulties maintaining sleep were found to be unrelated to physical activity status.

IN PRACTICE:

“This study has a long follow-up period (10 years) and indicates strongly that consistency in physical activity might be an important factor in optimizing sleep duration and reducing the symptoms of insomnia,” the authors wrote.

SOURCE:

Erla Björnsdóttir, of the Department of Psychology, Reykjavik University, Reykjavik, Iceland, was the co-senior author and corresponding author of the study. It was published online on March 25 in BMJ Open.

LIMITATIONS:

It’s unclear whether individuals who were active at both timepoints had been continuously physically active throughout the study period or only at those two timepoints. Sleep variables were available only at follow-up and were all subjectively reported, meaning the associations between physical activity and sleep may not be longitudinal. Residual confounders (eg, mental health and musculoskeletal disorders or chronic pain) that can influence both sleep and exercise were not explored.

DISCLOSURES:

Financial support for ECRHS III was provided by the National Health and Medical Research Council (Australia); Antwerp South, Antwerp City: Research Foundation Flanders (Belgium); Estonian Ministry of Education (Estonia); and other international agencies. Additional sources of funding were listed on the original paper. The authors reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Experts Aim to Use Brown Fat to Burn Fat More Effectively

Article Type
Changed
Fri, 03/29/2024 - 13:06

Can brown fat tissue be targeted for fat burning? Current findings on this topic were presented at the 67th German Congress of Endocrinology. Some statistics highlighted the need. Approximately 53% of the German population (almost 47% of women and 60% of men) are overweight (including obesity). Obesity is present in 19% of adults. The condition not only results in a shorter life expectancy but also increases the risk for cancer, diabetes, and cardiovascular diseases.

“The current treatment focuses on reducing energy intake, for example, through GLP-1 [glucagon-like peptide 1] agonists, which induce a feeling of satiety and significantly reduce body weight,” explained PD Tim Hollstein, MD, of the Institute of Diabetes and Clinical Metabolic Research at the University Hospital Schleswig-Holstein in Kiel, Germany. But the effect of weight loss injections only lasts for the duration of their application, and they are expensive.

“A potentially more sustainable treatment option would be to increase energy expenditure,” said Dr. Hollstein. He explained the role of brown fat tissue at a press conference for the German Society of Endocrinology (DGE) Congress.

While white fat tissue stores energy and can make up to 50% of a person’s body mass, brown fat tissue (brown adipose tissue [BAT]) burns energy to generate heat. The many mitochondria in brown fat tissue give it its characteristic brown color. “Brown fat tissue is like a heater for our body and kicks in when we are cold,” said Dr. Hollstein.

Brown fat tissue is primarily found in babies who cannot generate heat through muscle shivering. It has only been known for about 15 years that adults also possess brown fat. PET scans have shown that women generally have a higher amount of BAT and a higher energy intake capacity. The chance of discovering brown fat tissue was lower in older patients (P < .001), at higher outside temperatures (P = .02), in older patients with higher body mass index (P = .007), and if the patients were taking beta-blockers (P < .001).

Two Metabolic Types

An average person has about 100-300 g of brown fat tissue, mainly around the neck and collarbone and along the spine. Interestingly, just 50 g of active BAT can burn up to 300 kcal/d. “That’s roughly equivalent to a chocolate brownie,” said Dr. Hollstein. Lean individuals have more active BAT than overweight people, suggesting that BAT plays a role in our body weight.

In addition to its “heating function,” BAT also produces hormones, so-called “batokines,” which influence metabolism and organs such as the heart and liver. An example of a batokine is the hormone fibroblast growth factor 21, which promotes fat burning in the liver and can protect against fatty liver.

Recent studies have shown that BAT is activated not only by cold but also by food intake. BAT thus contributes to so-called “diet-induced thermogenesis,” which is the energy the body needs for digestion. Some people have a higher digestive energy than others, despite having the same food intake. They burn excess calories and can thus protect themselves from being overweight.

“There are people who have a more wasteful metabolism and people who have a more economical metabolic type, meaning they have less brown fat,” explained Dr. Hollstein. Interestingly, BAT also seems to induce a feeling of satiety in the brain, which could be significant for regulating food intake.
 

 

 

Activating Brown Fat

According to Dr. Hollstein, batokines probably have diverse effects and influence not only satiety and inflammatory processes but also cardiovascular diseases, diabetes, and fatty liver. It is important to research what distinguishes patients who have a lot of brown fat tissue from those who have little.

BAT can be trained and increased through regular cold exposure, which subsequently melts body fat. In a Japanese study, acute cold exposure (19 °C) for 2 hours increased energy consumption. Cold-induced increases in energy consumption correlated strongly with BAT activity, regardless of age and fat-free mass. Daily 2-hour cold exposure at 17 °C for 6 weeks led to a parallel increase in BAT activity.

“You can train brown fat tissue through cold exposure, which also leads to improvements in metabolism and a slight loss of fat mass, but the effect is very small,” explained Dr. Hollstein. The changes in metabolism are significant. Blood lipid levels improve, insulin sensitivity increases, and inflammation values decrease, according to Dr. Hollstein.

Evidence also indicates that capsaicin contained in chili peppers can activate brown fat tissue. However, the effects are small, and so far, there is no evidence that consumption can help with weight loss.
 

Medications Activate Brown Fat

Because permanent cold and daily consumption of chili peppers are not a real option, especially because the effects on BAT are rather small, research is being conducted to find drugs that activate brown fat tissue.

Preliminary results come from the United States. Mirabegron, originally developed for an overactive bladder, can selectively activate BAT and boost metabolism. A single injection of mirabegron activated BAT and increased energy consumption in the short term. Plasma levels of high-density lipoproteins cholesterol and apolipoprotein A1 increased, as did the total amount of bile acids.

The hormone adiponectin, which has antidiabetic and anti-inflammatory properties, also increased and was 35% higher after the study’s completion. An intravenous glucose tolerance test showed higher insulin sensitivity, glucose efficiency, and insulin secretion.

After 4 weeks of therapy in healthy women, brown fat tissue increased, but the participants did not lose weight or body fat.

New studies have also identified the widely used drug salbutamol as a BAT activator. However, the problem with both drugs is that they have side effects such as a faster heartbeat and increased blood pressure.

As Dr. Hollstein reported, attempts have also been made to transplant brown fat tissue into overweight mice. However, in most cases, the brown fat tissue was converted into white fat.

In Dr. Hollstein’s estimation, BAT offers enormous potential in the treatment of obesity and related metabolic diseases, and its activation could make a significant contribution to combating the obesity epidemic. “I believe that brown fat tissue will occupy us even more in the future. In combination with weight loss injections, increased energy consumption through brown fat tissue could have synergistic effects,” he concluded.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Can brown fat tissue be targeted for fat burning? Current findings on this topic were presented at the 67th German Congress of Endocrinology. Some statistics highlighted the need. Approximately 53% of the German population (almost 47% of women and 60% of men) are overweight (including obesity). Obesity is present in 19% of adults. The condition not only results in a shorter life expectancy but also increases the risk for cancer, diabetes, and cardiovascular diseases.

“The current treatment focuses on reducing energy intake, for example, through GLP-1 [glucagon-like peptide 1] agonists, which induce a feeling of satiety and significantly reduce body weight,” explained PD Tim Hollstein, MD, of the Institute of Diabetes and Clinical Metabolic Research at the University Hospital Schleswig-Holstein in Kiel, Germany. But the effect of weight loss injections only lasts for the duration of their application, and they are expensive.

“A potentially more sustainable treatment option would be to increase energy expenditure,” said Dr. Hollstein. He explained the role of brown fat tissue at a press conference for the German Society of Endocrinology (DGE) Congress.

While white fat tissue stores energy and can make up to 50% of a person’s body mass, brown fat tissue (brown adipose tissue [BAT]) burns energy to generate heat. The many mitochondria in brown fat tissue give it its characteristic brown color. “Brown fat tissue is like a heater for our body and kicks in when we are cold,” said Dr. Hollstein.

Brown fat tissue is primarily found in babies who cannot generate heat through muscle shivering. It has only been known for about 15 years that adults also possess brown fat. PET scans have shown that women generally have a higher amount of BAT and a higher energy intake capacity. The chance of discovering brown fat tissue was lower in older patients (P < .001), at higher outside temperatures (P = .02), in older patients with higher body mass index (P = .007), and if the patients were taking beta-blockers (P < .001).

Two Metabolic Types

An average person has about 100-300 g of brown fat tissue, mainly around the neck and collarbone and along the spine. Interestingly, just 50 g of active BAT can burn up to 300 kcal/d. “That’s roughly equivalent to a chocolate brownie,” said Dr. Hollstein. Lean individuals have more active BAT than overweight people, suggesting that BAT plays a role in our body weight.

In addition to its “heating function,” BAT also produces hormones, so-called “batokines,” which influence metabolism and organs such as the heart and liver. An example of a batokine is the hormone fibroblast growth factor 21, which promotes fat burning in the liver and can protect against fatty liver.

Recent studies have shown that BAT is activated not only by cold but also by food intake. BAT thus contributes to so-called “diet-induced thermogenesis,” which is the energy the body needs for digestion. Some people have a higher digestive energy than others, despite having the same food intake. They burn excess calories and can thus protect themselves from being overweight.

“There are people who have a more wasteful metabolism and people who have a more economical metabolic type, meaning they have less brown fat,” explained Dr. Hollstein. Interestingly, BAT also seems to induce a feeling of satiety in the brain, which could be significant for regulating food intake.
 

 

 

Activating Brown Fat

According to Dr. Hollstein, batokines probably have diverse effects and influence not only satiety and inflammatory processes but also cardiovascular diseases, diabetes, and fatty liver. It is important to research what distinguishes patients who have a lot of brown fat tissue from those who have little.

BAT can be trained and increased through regular cold exposure, which subsequently melts body fat. In a Japanese study, acute cold exposure (19 °C) for 2 hours increased energy consumption. Cold-induced increases in energy consumption correlated strongly with BAT activity, regardless of age and fat-free mass. Daily 2-hour cold exposure at 17 °C for 6 weeks led to a parallel increase in BAT activity.

“You can train brown fat tissue through cold exposure, which also leads to improvements in metabolism and a slight loss of fat mass, but the effect is very small,” explained Dr. Hollstein. The changes in metabolism are significant. Blood lipid levels improve, insulin sensitivity increases, and inflammation values decrease, according to Dr. Hollstein.

Evidence also indicates that capsaicin contained in chili peppers can activate brown fat tissue. However, the effects are small, and so far, there is no evidence that consumption can help with weight loss.
 

Medications Activate Brown Fat

Because permanent cold and daily consumption of chili peppers are not a real option, especially because the effects on BAT are rather small, research is being conducted to find drugs that activate brown fat tissue.

Preliminary results come from the United States. Mirabegron, originally developed for an overactive bladder, can selectively activate BAT and boost metabolism. A single injection of mirabegron activated BAT and increased energy consumption in the short term. Plasma levels of high-density lipoproteins cholesterol and apolipoprotein A1 increased, as did the total amount of bile acids.

The hormone adiponectin, which has antidiabetic and anti-inflammatory properties, also increased and was 35% higher after the study’s completion. An intravenous glucose tolerance test showed higher insulin sensitivity, glucose efficiency, and insulin secretion.

After 4 weeks of therapy in healthy women, brown fat tissue increased, but the participants did not lose weight or body fat.

New studies have also identified the widely used drug salbutamol as a BAT activator. However, the problem with both drugs is that they have side effects such as a faster heartbeat and increased blood pressure.

As Dr. Hollstein reported, attempts have also been made to transplant brown fat tissue into overweight mice. However, in most cases, the brown fat tissue was converted into white fat.

In Dr. Hollstein’s estimation, BAT offers enormous potential in the treatment of obesity and related metabolic diseases, and its activation could make a significant contribution to combating the obesity epidemic. “I believe that brown fat tissue will occupy us even more in the future. In combination with weight loss injections, increased energy consumption through brown fat tissue could have synergistic effects,” he concluded.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Can brown fat tissue be targeted for fat burning? Current findings on this topic were presented at the 67th German Congress of Endocrinology. Some statistics highlighted the need. Approximately 53% of the German population (almost 47% of women and 60% of men) are overweight (including obesity). Obesity is present in 19% of adults. The condition not only results in a shorter life expectancy but also increases the risk for cancer, diabetes, and cardiovascular diseases.

“The current treatment focuses on reducing energy intake, for example, through GLP-1 [glucagon-like peptide 1] agonists, which induce a feeling of satiety and significantly reduce body weight,” explained PD Tim Hollstein, MD, of the Institute of Diabetes and Clinical Metabolic Research at the University Hospital Schleswig-Holstein in Kiel, Germany. But the effect of weight loss injections only lasts for the duration of their application, and they are expensive.

“A potentially more sustainable treatment option would be to increase energy expenditure,” said Dr. Hollstein. He explained the role of brown fat tissue at a press conference for the German Society of Endocrinology (DGE) Congress.

While white fat tissue stores energy and can make up to 50% of a person’s body mass, brown fat tissue (brown adipose tissue [BAT]) burns energy to generate heat. The many mitochondria in brown fat tissue give it its characteristic brown color. “Brown fat tissue is like a heater for our body and kicks in when we are cold,” said Dr. Hollstein.

Brown fat tissue is primarily found in babies who cannot generate heat through muscle shivering. It has only been known for about 15 years that adults also possess brown fat. PET scans have shown that women generally have a higher amount of BAT and a higher energy intake capacity. The chance of discovering brown fat tissue was lower in older patients (P < .001), at higher outside temperatures (P = .02), in older patients with higher body mass index (P = .007), and if the patients were taking beta-blockers (P < .001).

Two Metabolic Types

An average person has about 100-300 g of brown fat tissue, mainly around the neck and collarbone and along the spine. Interestingly, just 50 g of active BAT can burn up to 300 kcal/d. “That’s roughly equivalent to a chocolate brownie,” said Dr. Hollstein. Lean individuals have more active BAT than overweight people, suggesting that BAT plays a role in our body weight.

In addition to its “heating function,” BAT also produces hormones, so-called “batokines,” which influence metabolism and organs such as the heart and liver. An example of a batokine is the hormone fibroblast growth factor 21, which promotes fat burning in the liver and can protect against fatty liver.

Recent studies have shown that BAT is activated not only by cold but also by food intake. BAT thus contributes to so-called “diet-induced thermogenesis,” which is the energy the body needs for digestion. Some people have a higher digestive energy than others, despite having the same food intake. They burn excess calories and can thus protect themselves from being overweight.

“There are people who have a more wasteful metabolism and people who have a more economical metabolic type, meaning they have less brown fat,” explained Dr. Hollstein. Interestingly, BAT also seems to induce a feeling of satiety in the brain, which could be significant for regulating food intake.
 

 

 

Activating Brown Fat

According to Dr. Hollstein, batokines probably have diverse effects and influence not only satiety and inflammatory processes but also cardiovascular diseases, diabetes, and fatty liver. It is important to research what distinguishes patients who have a lot of brown fat tissue from those who have little.

BAT can be trained and increased through regular cold exposure, which subsequently melts body fat. In a Japanese study, acute cold exposure (19 °C) for 2 hours increased energy consumption. Cold-induced increases in energy consumption correlated strongly with BAT activity, regardless of age and fat-free mass. Daily 2-hour cold exposure at 17 °C for 6 weeks led to a parallel increase in BAT activity.

“You can train brown fat tissue through cold exposure, which also leads to improvements in metabolism and a slight loss of fat mass, but the effect is very small,” explained Dr. Hollstein. The changes in metabolism are significant. Blood lipid levels improve, insulin sensitivity increases, and inflammation values decrease, according to Dr. Hollstein.

Evidence also indicates that capsaicin contained in chili peppers can activate brown fat tissue. However, the effects are small, and so far, there is no evidence that consumption can help with weight loss.
 

Medications Activate Brown Fat

Because permanent cold and daily consumption of chili peppers are not a real option, especially because the effects on BAT are rather small, research is being conducted to find drugs that activate brown fat tissue.

Preliminary results come from the United States. Mirabegron, originally developed for an overactive bladder, can selectively activate BAT and boost metabolism. A single injection of mirabegron activated BAT and increased energy consumption in the short term. Plasma levels of high-density lipoproteins cholesterol and apolipoprotein A1 increased, as did the total amount of bile acids.

The hormone adiponectin, which has antidiabetic and anti-inflammatory properties, also increased and was 35% higher after the study’s completion. An intravenous glucose tolerance test showed higher insulin sensitivity, glucose efficiency, and insulin secretion.

After 4 weeks of therapy in healthy women, brown fat tissue increased, but the participants did not lose weight or body fat.

New studies have also identified the widely used drug salbutamol as a BAT activator. However, the problem with both drugs is that they have side effects such as a faster heartbeat and increased blood pressure.

As Dr. Hollstein reported, attempts have also been made to transplant brown fat tissue into overweight mice. However, in most cases, the brown fat tissue was converted into white fat.

In Dr. Hollstein’s estimation, BAT offers enormous potential in the treatment of obesity and related metabolic diseases, and its activation could make a significant contribution to combating the obesity epidemic. “I believe that brown fat tissue will occupy us even more in the future. In combination with weight loss injections, increased energy consumption through brown fat tissue could have synergistic effects,” he concluded.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

AI Identifies Two Natural Bioactive GLP-1 Compounds

Article Type
Changed
Fri, 03/29/2024 - 13:05

Artificial intelligence (AI) has identified two plant-based bioactive compounds with potential as glucagon-like-peptide-1 receptor (GLP-1R) agonists for weight loss as possible alternatives to pharmaceutical weight-loss drugs, but with potentially fewer side effects and oral administration.

Using AI, the work aimed to identify novel, natural-derived bioactive compounds that may activate the GLP-1R, which is the site of action of existing weight loss pharmaceutical drugs including semaglutide (Wegovy, Novo Nordisk) and dual agonist tirzepatide (Zepbound, Eli Lilly).

Presenter Elena Murcia, PhD, of the Structural Bioinformatics and High-Performance Computing Research Group & Eating Disorders Research Unit, Catholic University of Dr. Murcia, Dr. Murcia, Spain, will be sharing her work at the upcoming European Congress on Obesity (ECO 2024) in May.

Although GLP-1 agonists have shown effectiveness in trials, “there are some side effects associated with their use — gastrointestinal issues such as nausea and vomiting, as well as mental health changes like anxiety and irritability. Recent data has also confirmed that when patients stop treatment, they regain lost weight,” she said.

In addition, there is the issue of having to inject the drugs rather than taking them orally due to the peptide nature of existing GLP-1 agonists that risk degradation by stomach enzymes before they exert the required effect.

“Drugs that aren’t peptides may have fewer side effects and be easier to administer, meaning they could be given as pills rather than injections,” said Dr. Murcia.

Other recent research has highlighted two promising non-peptide compounds, TTOAD2 and orforglipron. “These are synthetic, and we were interested in finding natural alternatives,” she added.
 

Natural Versions of Compounds That Activate GLP-1Rs

Drawing on recent understanding around the TTOAD2 and orforglipron compounds, the present work focuses on using AI to identify new non-peptidic, natural-derived bioactive compounds to activate the GLP-1R, according to the researcher in her abstract and a preconference press release from ECO.

Using advanced AI techniques (an in silico approach that entails experimentation by computer), Dr. Murcia selected natural molecules as bioactive compounds with GLP-1R agonist activity in a stepwise process that initially used ligand and structure-based virtual screening of over 10,000 compounds, followed by additional visual analysis of the top 100 compounds with the highest similarity to determine their degree of interaction with amino acids on the GLP-1 receptors. Arriving at a shortlist of 65, the researchers synthesized these data to identify the compounds with the highest potential as GLP-1R agonists, and two of these, referred to as Compound A and Compound B — both plant-derived — were found to bind strongly to the key amino acids in a similar way to TTOAD2 and orforglipron.

“These compounds are currently being further investigated for their efficacy in obesity treatment through in vitro analysis,” wrote Dr. Murcia and her colleagues in their abstract.

Asked to comment on the work, Felix Wong, PhD, postdoctoral fellow at the Broad Institute of MIT and Harvard, Cambridge, Massachusetts, who recently discovered a new class of antibiotics with activity against methicillin-resistant Staphylococcus aureus using deep learning, told this news organization that, “The promise of AI for drug discovery has increasingly been realized, and just recently we have seen the discoveries of new antibiotics, senolytics, and anti-fibrotic compounds, among others.”

“This study, which is based on molecular docking, suggests that similar computational methods can be applied to popular therapeutic areas like GLP-1R agonist discovery,” he said, adding that “the study will need experimental validation given that computational predictions can lead to false positives and that natural products are often promiscuous.”

Dr. Murcia has declared no relevant conflicts. Dr. Wong has declared he is cofounder of Integrated Biosciences, an early-stage biotechnology company.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Artificial intelligence (AI) has identified two plant-based bioactive compounds with potential as glucagon-like-peptide-1 receptor (GLP-1R) agonists for weight loss as possible alternatives to pharmaceutical weight-loss drugs, but with potentially fewer side effects and oral administration.

Using AI, the work aimed to identify novel, natural-derived bioactive compounds that may activate the GLP-1R, which is the site of action of existing weight loss pharmaceutical drugs including semaglutide (Wegovy, Novo Nordisk) and dual agonist tirzepatide (Zepbound, Eli Lilly).

Presenter Elena Murcia, PhD, of the Structural Bioinformatics and High-Performance Computing Research Group & Eating Disorders Research Unit, Catholic University of Dr. Murcia, Dr. Murcia, Spain, will be sharing her work at the upcoming European Congress on Obesity (ECO 2024) in May.

Although GLP-1 agonists have shown effectiveness in trials, “there are some side effects associated with their use — gastrointestinal issues such as nausea and vomiting, as well as mental health changes like anxiety and irritability. Recent data has also confirmed that when patients stop treatment, they regain lost weight,” she said.

In addition, there is the issue of having to inject the drugs rather than taking them orally due to the peptide nature of existing GLP-1 agonists that risk degradation by stomach enzymes before they exert the required effect.

“Drugs that aren’t peptides may have fewer side effects and be easier to administer, meaning they could be given as pills rather than injections,” said Dr. Murcia.

Other recent research has highlighted two promising non-peptide compounds, TTOAD2 and orforglipron. “These are synthetic, and we were interested in finding natural alternatives,” she added.
 

Natural Versions of Compounds That Activate GLP-1Rs

Drawing on recent understanding around the TTOAD2 and orforglipron compounds, the present work focuses on using AI to identify new non-peptidic, natural-derived bioactive compounds to activate the GLP-1R, according to the researcher in her abstract and a preconference press release from ECO.

Using advanced AI techniques (an in silico approach that entails experimentation by computer), Dr. Murcia selected natural molecules as bioactive compounds with GLP-1R agonist activity in a stepwise process that initially used ligand and structure-based virtual screening of over 10,000 compounds, followed by additional visual analysis of the top 100 compounds with the highest similarity to determine their degree of interaction with amino acids on the GLP-1 receptors. Arriving at a shortlist of 65, the researchers synthesized these data to identify the compounds with the highest potential as GLP-1R agonists, and two of these, referred to as Compound A and Compound B — both plant-derived — were found to bind strongly to the key amino acids in a similar way to TTOAD2 and orforglipron.

“These compounds are currently being further investigated for their efficacy in obesity treatment through in vitro analysis,” wrote Dr. Murcia and her colleagues in their abstract.

Asked to comment on the work, Felix Wong, PhD, postdoctoral fellow at the Broad Institute of MIT and Harvard, Cambridge, Massachusetts, who recently discovered a new class of antibiotics with activity against methicillin-resistant Staphylococcus aureus using deep learning, told this news organization that, “The promise of AI for drug discovery has increasingly been realized, and just recently we have seen the discoveries of new antibiotics, senolytics, and anti-fibrotic compounds, among others.”

“This study, which is based on molecular docking, suggests that similar computational methods can be applied to popular therapeutic areas like GLP-1R agonist discovery,” he said, adding that “the study will need experimental validation given that computational predictions can lead to false positives and that natural products are often promiscuous.”

Dr. Murcia has declared no relevant conflicts. Dr. Wong has declared he is cofounder of Integrated Biosciences, an early-stage biotechnology company.

A version of this article appeared on Medscape.com.

Artificial intelligence (AI) has identified two plant-based bioactive compounds with potential as glucagon-like-peptide-1 receptor (GLP-1R) agonists for weight loss as possible alternatives to pharmaceutical weight-loss drugs, but with potentially fewer side effects and oral administration.

Using AI, the work aimed to identify novel, natural-derived bioactive compounds that may activate the GLP-1R, which is the site of action of existing weight loss pharmaceutical drugs including semaglutide (Wegovy, Novo Nordisk) and dual agonist tirzepatide (Zepbound, Eli Lilly).

Presenter Elena Murcia, PhD, of the Structural Bioinformatics and High-Performance Computing Research Group & Eating Disorders Research Unit, Catholic University of Dr. Murcia, Dr. Murcia, Spain, will be sharing her work at the upcoming European Congress on Obesity (ECO 2024) in May.

Although GLP-1 agonists have shown effectiveness in trials, “there are some side effects associated with their use — gastrointestinal issues such as nausea and vomiting, as well as mental health changes like anxiety and irritability. Recent data has also confirmed that when patients stop treatment, they regain lost weight,” she said.

In addition, there is the issue of having to inject the drugs rather than taking them orally due to the peptide nature of existing GLP-1 agonists that risk degradation by stomach enzymes before they exert the required effect.

“Drugs that aren’t peptides may have fewer side effects and be easier to administer, meaning they could be given as pills rather than injections,” said Dr. Murcia.

Other recent research has highlighted two promising non-peptide compounds, TTOAD2 and orforglipron. “These are synthetic, and we were interested in finding natural alternatives,” she added.
 

Natural Versions of Compounds That Activate GLP-1Rs

Drawing on recent understanding around the TTOAD2 and orforglipron compounds, the present work focuses on using AI to identify new non-peptidic, natural-derived bioactive compounds to activate the GLP-1R, according to the researcher in her abstract and a preconference press release from ECO.

Using advanced AI techniques (an in silico approach that entails experimentation by computer), Dr. Murcia selected natural molecules as bioactive compounds with GLP-1R agonist activity in a stepwise process that initially used ligand and structure-based virtual screening of over 10,000 compounds, followed by additional visual analysis of the top 100 compounds with the highest similarity to determine their degree of interaction with amino acids on the GLP-1 receptors. Arriving at a shortlist of 65, the researchers synthesized these data to identify the compounds with the highest potential as GLP-1R agonists, and two of these, referred to as Compound A and Compound B — both plant-derived — were found to bind strongly to the key amino acids in a similar way to TTOAD2 and orforglipron.

“These compounds are currently being further investigated for their efficacy in obesity treatment through in vitro analysis,” wrote Dr. Murcia and her colleagues in their abstract.

Asked to comment on the work, Felix Wong, PhD, postdoctoral fellow at the Broad Institute of MIT and Harvard, Cambridge, Massachusetts, who recently discovered a new class of antibiotics with activity against methicillin-resistant Staphylococcus aureus using deep learning, told this news organization that, “The promise of AI for drug discovery has increasingly been realized, and just recently we have seen the discoveries of new antibiotics, senolytics, and anti-fibrotic compounds, among others.”

“This study, which is based on molecular docking, suggests that similar computational methods can be applied to popular therapeutic areas like GLP-1R agonist discovery,” he said, adding that “the study will need experimental validation given that computational predictions can lead to false positives and that natural products are often promiscuous.”

Dr. Murcia has declared no relevant conflicts. Dr. Wong has declared he is cofounder of Integrated Biosciences, an early-stage biotechnology company.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Sarcopenia With Obesity Increases Risk for Death

Article Type
Changed
Fri, 03/29/2024 - 11:31

 

TOPLINE:

Patients with sarcopenic obesity (SO) are at a greater risk for earlier death, but screening for muscle function could offer an opportunity for intervention.

METHODOLOGY:

  • The proportion of older adults living with high body fat and/or low muscle function and mass has risen in recent years, but sarcopenia and SO are undiagnosed conditions.
  • Researchers evaluated 5888 individuals who participated in a population-based cohort study in the Netherlands: Participants were largely of European descent (98%); the mean age of participants was 69.5 years, and 56.8% were female.
  • Participants were included if they had available measurements of handgrip strength and had received a dual-energy x-ray absorptiometry scan.
  • Sarcopenia was defined by researchers in JAMA Network Open as having low handgrip strength and was confirmed with a low appendicular skeletal muscle mass index; SO was defined as a body mass index (BMI) over 27, having low handgrip strength, a high fat percentage, and/or a low appendicular skeletal muscle index, which were defined as altered body composition (BC).

TAKEAWAY:

  • Participants with probable and confirmed sarcopenia had a higher risk for all-cause mortality than those without during the 10-year follow-up period after adjusting for age, sex, and BMI (hazard ratios [HRs], 1.29, 1.93, respectively).
  • Participants with SO and one BC component were at a higher risk for all-cause mortality (hazard ratio [HR], 1.94; 95% CI, 1.60-2.33).
  • Participants with SO and both components of BC had almost three times the risk for mortality as those without (HR, 2.84; 95% CI, 1.97-4.11).

IN PRACTICE:

“These results suggest that screening for SO might be implemented in primary care. In addition, early nonpharmacologic interventions, such as nutrition and exercise training, should be included to delay the onset of and to treat sarcopenia, especially SO,” the researchers wrote.

SOURCE:

Yves Boirie, MD, PhD, of the Human Nutrition Unit at Université Clermont Auvergne in Clermont-Ferrand, France, is the corresponding author for this study. The study was funded by the Netherlands Organisation for Health Research and Development, the French National Research Agency, and the European Union’s Horizon 2020 research and innovation program, among others.

LIMITATIONS:

The researchers also did not consider specific causes of death. Because the most participants had European ancestry, the results cannot be generalized.

DISCLOSURES:

Various authors report receiving grants from the Agence Nationale de la Recherche and Agencia Estatal de Investigación. Other authors report being members of advisory board panels for Pfizer, Eli Lilly, Novo Nordisk, and Nutricia Research.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Patients with sarcopenic obesity (SO) are at a greater risk for earlier death, but screening for muscle function could offer an opportunity for intervention.

METHODOLOGY:

  • The proportion of older adults living with high body fat and/or low muscle function and mass has risen in recent years, but sarcopenia and SO are undiagnosed conditions.
  • Researchers evaluated 5888 individuals who participated in a population-based cohort study in the Netherlands: Participants were largely of European descent (98%); the mean age of participants was 69.5 years, and 56.8% were female.
  • Participants were included if they had available measurements of handgrip strength and had received a dual-energy x-ray absorptiometry scan.
  • Sarcopenia was defined by researchers in JAMA Network Open as having low handgrip strength and was confirmed with a low appendicular skeletal muscle mass index; SO was defined as a body mass index (BMI) over 27, having low handgrip strength, a high fat percentage, and/or a low appendicular skeletal muscle index, which were defined as altered body composition (BC).

TAKEAWAY:

  • Participants with probable and confirmed sarcopenia had a higher risk for all-cause mortality than those without during the 10-year follow-up period after adjusting for age, sex, and BMI (hazard ratios [HRs], 1.29, 1.93, respectively).
  • Participants with SO and one BC component were at a higher risk for all-cause mortality (hazard ratio [HR], 1.94; 95% CI, 1.60-2.33).
  • Participants with SO and both components of BC had almost three times the risk for mortality as those without (HR, 2.84; 95% CI, 1.97-4.11).

IN PRACTICE:

“These results suggest that screening for SO might be implemented in primary care. In addition, early nonpharmacologic interventions, such as nutrition and exercise training, should be included to delay the onset of and to treat sarcopenia, especially SO,” the researchers wrote.

SOURCE:

Yves Boirie, MD, PhD, of the Human Nutrition Unit at Université Clermont Auvergne in Clermont-Ferrand, France, is the corresponding author for this study. The study was funded by the Netherlands Organisation for Health Research and Development, the French National Research Agency, and the European Union’s Horizon 2020 research and innovation program, among others.

LIMITATIONS:

The researchers also did not consider specific causes of death. Because the most participants had European ancestry, the results cannot be generalized.

DISCLOSURES:

Various authors report receiving grants from the Agence Nationale de la Recherche and Agencia Estatal de Investigación. Other authors report being members of advisory board panels for Pfizer, Eli Lilly, Novo Nordisk, and Nutricia Research.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Patients with sarcopenic obesity (SO) are at a greater risk for earlier death, but screening for muscle function could offer an opportunity for intervention.

METHODOLOGY:

  • The proportion of older adults living with high body fat and/or low muscle function and mass has risen in recent years, but sarcopenia and SO are undiagnosed conditions.
  • Researchers evaluated 5888 individuals who participated in a population-based cohort study in the Netherlands: Participants were largely of European descent (98%); the mean age of participants was 69.5 years, and 56.8% were female.
  • Participants were included if they had available measurements of handgrip strength and had received a dual-energy x-ray absorptiometry scan.
  • Sarcopenia was defined by researchers in JAMA Network Open as having low handgrip strength and was confirmed with a low appendicular skeletal muscle mass index; SO was defined as a body mass index (BMI) over 27, having low handgrip strength, a high fat percentage, and/or a low appendicular skeletal muscle index, which were defined as altered body composition (BC).

TAKEAWAY:

  • Participants with probable and confirmed sarcopenia had a higher risk for all-cause mortality than those without during the 10-year follow-up period after adjusting for age, sex, and BMI (hazard ratios [HRs], 1.29, 1.93, respectively).
  • Participants with SO and one BC component were at a higher risk for all-cause mortality (hazard ratio [HR], 1.94; 95% CI, 1.60-2.33).
  • Participants with SO and both components of BC had almost three times the risk for mortality as those without (HR, 2.84; 95% CI, 1.97-4.11).

IN PRACTICE:

“These results suggest that screening for SO might be implemented in primary care. In addition, early nonpharmacologic interventions, such as nutrition and exercise training, should be included to delay the onset of and to treat sarcopenia, especially SO,” the researchers wrote.

SOURCE:

Yves Boirie, MD, PhD, of the Human Nutrition Unit at Université Clermont Auvergne in Clermont-Ferrand, France, is the corresponding author for this study. The study was funded by the Netherlands Organisation for Health Research and Development, the French National Research Agency, and the European Union’s Horizon 2020 research and innovation program, among others.

LIMITATIONS:

The researchers also did not consider specific causes of death. Because the most participants had European ancestry, the results cannot be generalized.

DISCLOSURES:

Various authors report receiving grants from the Agence Nationale de la Recherche and Agencia Estatal de Investigación. Other authors report being members of advisory board panels for Pfizer, Eli Lilly, Novo Nordisk, and Nutricia Research.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Can Sweeteners Improve Weight Maintenance, Overeating?

Article Type
Changed
Tue, 04/02/2024 - 14:52

 

TOPLINE:

The inclusion of sugar-substitute sweeteners and sweetness enhancers in a sugar-reduced maintenance diet following weight loss improves weight maintenance as well as well-being in adults, with no increases in type 2 diabetes or cardiovascular disease risk compared with a diet excluding the sweeteners, a randomized trial showed.

The study also showed that among overweight or obese children, greater reductions in uncontrolled eating were observed among those receiving the sweeteners.

The findings counter previous reports that raised concerns about the non-sugar sweeteners, including recent research from the World Health Organization suggesting no benefits in weight control and a possible increase in the risk for type 2 diabetes or cardiovascular disease with the sweeteners.

METHODOLOGY:

  • The findings are from an exploratory analysis of the multicenter, randomized SWEET trial.
  • The trial involved 341 adults with overweight or obesity (aged 18-65 years, 71% women, body mass index [BMI] ≥ 25) and 38 children with overweight (aged 6-12 years, 60% girls, BMI-for-age > 85th percentile), recruited in Denmark, Spain, Greece, and the Netherlands through webpages, social media, newspapers, and registries.
  • For the first 2 months of the trial, adults were instructed to follow a low-energy diet (the Cambridge Weight Plan) with the goal of achieving at least 5% weight loss, while children received dietary advice to maintain body weight.
  • In the subsequent 10 months, adults as well as children were randomized to healthy diets that either consisted of less than 10% of calories from added sugar but permitted foods and drinks with sweeteners and sweetness enhancers, or the same diet but not allowing the use of the sweeteners or sweetness enhancers.
  • Participants had weight, BMI, anthropometry, and risk markers for type 2 diabetes and cardiovascular disease monitored at the trial’s baseline, as well as at 2, 6, and 12 months.
  • In addition, participants completed food frequency questionnaires and provided urine samples to assess biomarkers of the sweeteners, fructose and sucrose, in order to measure compliance with the dietary instructions.

TAKEAWAY:

  • While the sweetener and non-sweetener groups both had decreases in consumption of products high in sugar, the reduction was significantly higher in the group that allowed use of the sweeteners (P = .002).
  • In the intention-to-treat analyses, adults (n = 277) permitted sweeteners showed a small but significantly greater weight loss maintenance after 1 year than the non-sweetener group (average weight loss, 7.2 kg vs 5.6 kg; P = .029).
  • Among 203 participants who completed the trial, there were no differences between the groups in terms of markers for type 2 diabetes and cardiovascular disease.
  • There were also no differences between the groups in terms of subjective appetite sensations and appetite hormones in a subgroup of 104 patients.
  • In an analysis of 22 children who completed the study, there were no differences in BMI-for-age z scores between sweetener and non-sweetener groups.
  • In terms of effects on eating behavior, adults in the sweetener group reported greater diet satisfaction when eating out (P = .03), increased positive mood (P = .013), and reduced craving for sweet food (P = .034) at 6 months than in the non-sweetener group.
  • Conversely, those receiving no sweeteners had a greater liking bias for sweet vs savory foods at 6 months (P = .023) and 12 months (P = .005).
  • There were no differences between the groups in reported physical activity or quality of life.
  • However, among children with higher uncontrolled eating scores at baseline, the uncontrolled eating scores at 12 months were significantly lower among children who were allowed the sugar-substitute sweeteners vs the non-sweetener children (P = .021).
 

 

IN PRACTICE:

“Our findings suggest that the inclusion of low/no energy-sweetened products may benefit children who show high levels of uncontrolled eating,” said the study’s co-lead author, Clarissa Dakin, of the Appetite Control and Energy Balance Research Group at the University of Leeds, Leeds, England, in a press statement.

“Together, these findings provide important insights for the ongoing reevaluation of food additive sweeteners by the European Food Safety Authority and other health agencies worldwide,” she said.

Coauthor Jason Halford, head of the School of Psychology at the University of Leeds, added in the press statement that “the use of low-calorie sweeteners in weight management has been questioned, in part because of the link between their use and apparent weight gain in observational studies.”

“However, increasingly, it is becoming apparent that is not the case in long-term studies,” said a study co-author in a press statement.”

SOURCE:

The findings from the two abstracts will be presented in May at the European Association for the Study of Obesity. The study abstracts were issued in advance.

LIMITATIONS:

Some of the results, particularly in children’s subgroups, were limited by the relatively low number of children, underscoring the need for future studies on the issue, the authors noted.

DISCLOSURES:

Dr. Halford has received research funding from the American Beverage Association.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The inclusion of sugar-substitute sweeteners and sweetness enhancers in a sugar-reduced maintenance diet following weight loss improves weight maintenance as well as well-being in adults, with no increases in type 2 diabetes or cardiovascular disease risk compared with a diet excluding the sweeteners, a randomized trial showed.

The study also showed that among overweight or obese children, greater reductions in uncontrolled eating were observed among those receiving the sweeteners.

The findings counter previous reports that raised concerns about the non-sugar sweeteners, including recent research from the World Health Organization suggesting no benefits in weight control and a possible increase in the risk for type 2 diabetes or cardiovascular disease with the sweeteners.

METHODOLOGY:

  • The findings are from an exploratory analysis of the multicenter, randomized SWEET trial.
  • The trial involved 341 adults with overweight or obesity (aged 18-65 years, 71% women, body mass index [BMI] ≥ 25) and 38 children with overweight (aged 6-12 years, 60% girls, BMI-for-age > 85th percentile), recruited in Denmark, Spain, Greece, and the Netherlands through webpages, social media, newspapers, and registries.
  • For the first 2 months of the trial, adults were instructed to follow a low-energy diet (the Cambridge Weight Plan) with the goal of achieving at least 5% weight loss, while children received dietary advice to maintain body weight.
  • In the subsequent 10 months, adults as well as children were randomized to healthy diets that either consisted of less than 10% of calories from added sugar but permitted foods and drinks with sweeteners and sweetness enhancers, or the same diet but not allowing the use of the sweeteners or sweetness enhancers.
  • Participants had weight, BMI, anthropometry, and risk markers for type 2 diabetes and cardiovascular disease monitored at the trial’s baseline, as well as at 2, 6, and 12 months.
  • In addition, participants completed food frequency questionnaires and provided urine samples to assess biomarkers of the sweeteners, fructose and sucrose, in order to measure compliance with the dietary instructions.

TAKEAWAY:

  • While the sweetener and non-sweetener groups both had decreases in consumption of products high in sugar, the reduction was significantly higher in the group that allowed use of the sweeteners (P = .002).
  • In the intention-to-treat analyses, adults (n = 277) permitted sweeteners showed a small but significantly greater weight loss maintenance after 1 year than the non-sweetener group (average weight loss, 7.2 kg vs 5.6 kg; P = .029).
  • Among 203 participants who completed the trial, there were no differences between the groups in terms of markers for type 2 diabetes and cardiovascular disease.
  • There were also no differences between the groups in terms of subjective appetite sensations and appetite hormones in a subgroup of 104 patients.
  • In an analysis of 22 children who completed the study, there were no differences in BMI-for-age z scores between sweetener and non-sweetener groups.
  • In terms of effects on eating behavior, adults in the sweetener group reported greater diet satisfaction when eating out (P = .03), increased positive mood (P = .013), and reduced craving for sweet food (P = .034) at 6 months than in the non-sweetener group.
  • Conversely, those receiving no sweeteners had a greater liking bias for sweet vs savory foods at 6 months (P = .023) and 12 months (P = .005).
  • There were no differences between the groups in reported physical activity or quality of life.
  • However, among children with higher uncontrolled eating scores at baseline, the uncontrolled eating scores at 12 months were significantly lower among children who were allowed the sugar-substitute sweeteners vs the non-sweetener children (P = .021).
 

 

IN PRACTICE:

“Our findings suggest that the inclusion of low/no energy-sweetened products may benefit children who show high levels of uncontrolled eating,” said the study’s co-lead author, Clarissa Dakin, of the Appetite Control and Energy Balance Research Group at the University of Leeds, Leeds, England, in a press statement.

“Together, these findings provide important insights for the ongoing reevaluation of food additive sweeteners by the European Food Safety Authority and other health agencies worldwide,” she said.

Coauthor Jason Halford, head of the School of Psychology at the University of Leeds, added in the press statement that “the use of low-calorie sweeteners in weight management has been questioned, in part because of the link between their use and apparent weight gain in observational studies.”

“However, increasingly, it is becoming apparent that is not the case in long-term studies,” said a study co-author in a press statement.”

SOURCE:

The findings from the two abstracts will be presented in May at the European Association for the Study of Obesity. The study abstracts were issued in advance.

LIMITATIONS:

Some of the results, particularly in children’s subgroups, were limited by the relatively low number of children, underscoring the need for future studies on the issue, the authors noted.

DISCLOSURES:

Dr. Halford has received research funding from the American Beverage Association.

A version of this article appeared on Medscape.com.

 

TOPLINE:

The inclusion of sugar-substitute sweeteners and sweetness enhancers in a sugar-reduced maintenance diet following weight loss improves weight maintenance as well as well-being in adults, with no increases in type 2 diabetes or cardiovascular disease risk compared with a diet excluding the sweeteners, a randomized trial showed.

The study also showed that among overweight or obese children, greater reductions in uncontrolled eating were observed among those receiving the sweeteners.

The findings counter previous reports that raised concerns about the non-sugar sweeteners, including recent research from the World Health Organization suggesting no benefits in weight control and a possible increase in the risk for type 2 diabetes or cardiovascular disease with the sweeteners.

METHODOLOGY:

  • The findings are from an exploratory analysis of the multicenter, randomized SWEET trial.
  • The trial involved 341 adults with overweight or obesity (aged 18-65 years, 71% women, body mass index [BMI] ≥ 25) and 38 children with overweight (aged 6-12 years, 60% girls, BMI-for-age > 85th percentile), recruited in Denmark, Spain, Greece, and the Netherlands through webpages, social media, newspapers, and registries.
  • For the first 2 months of the trial, adults were instructed to follow a low-energy diet (the Cambridge Weight Plan) with the goal of achieving at least 5% weight loss, while children received dietary advice to maintain body weight.
  • In the subsequent 10 months, adults as well as children were randomized to healthy diets that either consisted of less than 10% of calories from added sugar but permitted foods and drinks with sweeteners and sweetness enhancers, or the same diet but not allowing the use of the sweeteners or sweetness enhancers.
  • Participants had weight, BMI, anthropometry, and risk markers for type 2 diabetes and cardiovascular disease monitored at the trial’s baseline, as well as at 2, 6, and 12 months.
  • In addition, participants completed food frequency questionnaires and provided urine samples to assess biomarkers of the sweeteners, fructose and sucrose, in order to measure compliance with the dietary instructions.

TAKEAWAY:

  • While the sweetener and non-sweetener groups both had decreases in consumption of products high in sugar, the reduction was significantly higher in the group that allowed use of the sweeteners (P = .002).
  • In the intention-to-treat analyses, adults (n = 277) permitted sweeteners showed a small but significantly greater weight loss maintenance after 1 year than the non-sweetener group (average weight loss, 7.2 kg vs 5.6 kg; P = .029).
  • Among 203 participants who completed the trial, there were no differences between the groups in terms of markers for type 2 diabetes and cardiovascular disease.
  • There were also no differences between the groups in terms of subjective appetite sensations and appetite hormones in a subgroup of 104 patients.
  • In an analysis of 22 children who completed the study, there were no differences in BMI-for-age z scores between sweetener and non-sweetener groups.
  • In terms of effects on eating behavior, adults in the sweetener group reported greater diet satisfaction when eating out (P = .03), increased positive mood (P = .013), and reduced craving for sweet food (P = .034) at 6 months than in the non-sweetener group.
  • Conversely, those receiving no sweeteners had a greater liking bias for sweet vs savory foods at 6 months (P = .023) and 12 months (P = .005).
  • There were no differences between the groups in reported physical activity or quality of life.
  • However, among children with higher uncontrolled eating scores at baseline, the uncontrolled eating scores at 12 months were significantly lower among children who were allowed the sugar-substitute sweeteners vs the non-sweetener children (P = .021).
 

 

IN PRACTICE:

“Our findings suggest that the inclusion of low/no energy-sweetened products may benefit children who show high levels of uncontrolled eating,” said the study’s co-lead author, Clarissa Dakin, of the Appetite Control and Energy Balance Research Group at the University of Leeds, Leeds, England, in a press statement.

“Together, these findings provide important insights for the ongoing reevaluation of food additive sweeteners by the European Food Safety Authority and other health agencies worldwide,” she said.

Coauthor Jason Halford, head of the School of Psychology at the University of Leeds, added in the press statement that “the use of low-calorie sweeteners in weight management has been questioned, in part because of the link between their use and apparent weight gain in observational studies.”

“However, increasingly, it is becoming apparent that is not the case in long-term studies,” said a study co-author in a press statement.”

SOURCE:

The findings from the two abstracts will be presented in May at the European Association for the Study of Obesity. The study abstracts were issued in advance.

LIMITATIONS:

Some of the results, particularly in children’s subgroups, were limited by the relatively low number of children, underscoring the need for future studies on the issue, the authors noted.

DISCLOSURES:

Dr. Halford has received research funding from the American Beverage Association.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Truth About Compounded GLP-1s That Doctors Need to Know

Article Type
Changed
Thu, 04/11/2024 - 16:00

As a cardiologist specializing in obesity medicine, I often encounter patients who would greatly benefit from the new generation of weight loss drugs that work as glucagon-like peptide 1 (GLP-1) agonists. In the recently published SELECT trial results, for example, semaglutide (marketed by Novo Nordisk as Wegovy for weight loss and Ozempic for type 2 diabetes) demonstrated a 20% risk reduction of heart attacks and strokes in overweight and obese individuals without diabetes and with cardiovascular disease, establishing it as a cardiovascular disease–modifying medication in people without type 2 diabetes.

Unfortunately, the high demand for these new weight loss medications has resulted in a frustrating, long-lasting shortage. The manufacturers of the two FDA-approved drugs, Novo Nordisk and Eli Lilly (tirzepatide, marketed as Zepbound for weight loss and Mounjaro for type 2 diabetes), are struggling to meet the overwhelming need.

To ensure continuation of patient care, federal law allows compounding pharmacies to make “essentially a copy” of the medications that are listed as “currently in shortage” on the US Food and Drug Administration (FDA) drug shortage list. Both semaglutide and tirzepatide are on that list. For Americans who suffer from obesity and other weight-related diseases, these drugs could be a lifeline.

Despite this, the medical community has broadly criticized the utilization of compounded GLP-1 agonists, even those obtained from reputable and legitimate compounding pharmacies.

Yes, high demand has led to the emergence of unregulated companies and scammers producing substandard or counterfeit versions of these medications.

The FDA has found fraudulent products (masquerading as the weight loss drugs) and has issued warning letters to stop the distribution of illegally marketed semaglutide. “These drugs may be counterfeit, which means they could contain the wrong ingredients, contain too little, too much or no active ingredient at all, or contain other harmful ingredients,” it cautions. Some products use a similar-sounding semaglutide sodium salt, which has uncertain safety and efficacy, and had generated warnings from the FDA and state boards of pharmacy.

Many of these products are marketed directly to consumers online through websites and social media, with little to no medical oversight. This practice is a significant concern, as it may affect patient safety, and should be discouraged.

However, according to a statement from the Alliance for Pharmacy Compounding (APC), legitimate compounding pharmacies aren’t the ones selling these dubious products on the black market, particularly online. This illegal practice has garnered media attention and is sometimes incorrectly associated with legitimate pharmacy compounding.

In contrast, legal and certified versions of GLP-1 agonist medications can be obtained from well-regulated and reputable compounding pharmacies. These pharmacies must adhere to all federal and state regulations and dispense medications only with a valid prescription from a licensed physician.

Meanwhile, the APC statement notes, Novo Nordisk and Eli Lilly have sued compounding companies in several states, questioning, among other things, the purity and potency of some compounded products.

There are different designations for compounding pharmacies: 503A and 503B. 503As are state-licensed pharmacies and physicians, and 503B pharmacies are federally regulated outsourcing facilities that are strictly regulated by the FDA. This regulation, established following a 2012 fungal meningitis outbreak linked to a compounding pharmacy, ensures higher-quality control and oversight, especially for medications intended for intravenous or epidural use. These standards exceed those required for subcutaneous injections like GLP-1 analogs.

In the face of this Wild West climate, where compounded drugs may vary in their source, formulation, potency, and purity, The Obesity Society, the Obesity Medical Association, and the Obesity Action Coalition published a joint statement that advised against the use of compounded GLP-1 agonists, citing safety concerns and lack of regulatory oversight.

This stance, while aimed at ensuring patient safety, inadvertently raises a critical issue.

By completely dismissing compounded medications, experts may unintentionally bolster the black market and overlook the needs of patients who could benefit from these medications, contrary to the intentions of the exemption provided in federal law for compounding during a drug shortage. In fact, the presence of unreliable suppliers highlights the need to direct the public toward trustworthy sources, rather than imposing a total ban on medically appropriate alternatives.

The joint statement calls compounded GLP-1 agonists “counterfeit.” This inaccurate overgeneralization probably stems from a misunderstanding of the compounding process and its regulations. Legitimate and regulated pharmacies compound base GLP-1 agonists, which are “essentially a copy” of FDA-approved medications, not counterfeits. Recognizing this is crucial for maintaining trust in both compounding pharmacies and regulatory bodies.

It is correct that “the only FDA-approved manufacturers of these medications are the companies that created the active pharmaceutical ingredients — Novo Nordisk and Eli Lilly,” but the joint statement fails to mention the exemptions provided by law that allow compounding copies of the branded medications if they are on the shortage list.

Compounding pharmacies must obtain active pharmaceutical ingredients (APIs) from FDA-registered facilities, which are required to adhere to Current Good Manufacturing Practices (cGMP). This ensures the APIs’ quality, potency, and purity, crucial for the safety and efficacy of compounded medications.

Compounded drugs are not FDA approved, but they aren’t inherently unsafe. Compounded medications include critical drugs such as resuscitation medications and antibiotics, and are often used in healthcare settings, especially when there’s a shortage. This raises the question of why compounded GLP-1 agonists would be treated any differently in such scenarios.

And in the case of alternative drugs for individuals with obesity who have a higher risk for cardiovascular disease, the brand-name FDA-approved alternative may be of more concern than the compounded GLP-1 agonist. The obesity societies advise: “If you cannot find or get access to a GLP-1-based treatment now, there are other treatments available,” echoing experts. While the statement doesn’t specify the names of the alternatives, experts have advised using alternatives such as Qsymia and Contrave, despite their potential cardiovascular concerns. This recommendation to the public may not represent a responsible risk-benefit analysis.

Chart of FDA approval process
Courtesy Dr. Einav


Rather than outright banning compounded GLP-1 medications, expert associations can contribute to the solution by creating a “seal of approval,” recognizing high-quality compounded medications. This would contribute to informed decision-making for clinicians and patients.
 

 

 

Possible Solutions

When prescribing GLP-1 agonists for obesity treatment, doctors should consider all of the following steps to ensure patient safety and effective treatment:

Preference for FDA-approved brands: FDA-approved branded GLP-1 agonist medications should be the primary choice because of their established safety and efficacy.

Risk-benefit analysis for non–FDA-approved products: In cases where FDA-approved options are not available, doctors may consider prescribing a non–FDA-approved copy of the branded medication. Prior to this, conduct a thorough risk-benefit analysis with the patient, ensuring that they are fully informed about the potential risks and benefits of using a non–FDA-approved product.

Choosing semaglutide copies for specific cases: In patients with obesity and cardiovascular disease, the benefits of using a compounded copy of semaglutide, with its cardiovascular disease–modifying properties, may outweigh the risks compared with other FDA-approved antiobesity drugs that might pose cardiovascular risks or compared with no antiobesity treatment at all.

Informed consent and monitoring: When prescribing a non–FDA-approved version of a GLP-1 agonist, obtaining informed consent from the patient is advised. They should be made aware of the differences between the FDA-approved and nonapproved versions.

Choosing between 503A and 503B pharmacies: Prescriptions for non–FDA-approved GLP-1 agonists can be directed to either 503A or 503B compounding pharmacies. However, it’s advisable to check whether the product can be compounded by a 503B pharmacy, which is subject to an additional layer of FDA regulation, offering greater quality assurance.

Clear prescription specifications: Ensure that the prescription explicitly states that the compounded GLP-1 agonist should be the base compound without additives.

Requesting a Certificate of Analysis: To further ensure safety, request a Certificate of Analysis from the compounding pharmacy. This provides detailed quality and composition information about the product.

Ongoing monitoring: Continuously monitor the patient’s response to the medication and adjust the treatment plan as necessary, maintaining regular follow-ups.

By adhering to these guidelines, doctors can navigate the complexities of prescribing GLP-1 agonists in a way that prioritizes patient well-being, particularly in scenarios where conventional treatment options are limited.
 

Dr. Einav is a board-certified cardiologist and a Diplomate of the American Board of Obesity Medicine. He is a fellow of the American College of Cardiology and a member of the Obesity Medicine Association. He serves as the medical director of cardiometabolic health in Guthrie Lourdes in Binghamton, New York, and is the founder of myW8/Cardiometabolic Health located in Beverly Hills, California. This article solely reflects the personal views of Dr. Einav and should not be considered as representing the official stance of Guthrie Lourdes. Dr. Einav served as a promotional speaker for Novo Nordisk in 2022. As of now, he has not prescribed any compounded GLP-1 agonist medications in his medical practice.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

As a cardiologist specializing in obesity medicine, I often encounter patients who would greatly benefit from the new generation of weight loss drugs that work as glucagon-like peptide 1 (GLP-1) agonists. In the recently published SELECT trial results, for example, semaglutide (marketed by Novo Nordisk as Wegovy for weight loss and Ozempic for type 2 diabetes) demonstrated a 20% risk reduction of heart attacks and strokes in overweight and obese individuals without diabetes and with cardiovascular disease, establishing it as a cardiovascular disease–modifying medication in people without type 2 diabetes.

Unfortunately, the high demand for these new weight loss medications has resulted in a frustrating, long-lasting shortage. The manufacturers of the two FDA-approved drugs, Novo Nordisk and Eli Lilly (tirzepatide, marketed as Zepbound for weight loss and Mounjaro for type 2 diabetes), are struggling to meet the overwhelming need.

To ensure continuation of patient care, federal law allows compounding pharmacies to make “essentially a copy” of the medications that are listed as “currently in shortage” on the US Food and Drug Administration (FDA) drug shortage list. Both semaglutide and tirzepatide are on that list. For Americans who suffer from obesity and other weight-related diseases, these drugs could be a lifeline.

Despite this, the medical community has broadly criticized the utilization of compounded GLP-1 agonists, even those obtained from reputable and legitimate compounding pharmacies.

Yes, high demand has led to the emergence of unregulated companies and scammers producing substandard or counterfeit versions of these medications.

The FDA has found fraudulent products (masquerading as the weight loss drugs) and has issued warning letters to stop the distribution of illegally marketed semaglutide. “These drugs may be counterfeit, which means they could contain the wrong ingredients, contain too little, too much or no active ingredient at all, or contain other harmful ingredients,” it cautions. Some products use a similar-sounding semaglutide sodium salt, which has uncertain safety and efficacy, and had generated warnings from the FDA and state boards of pharmacy.

Many of these products are marketed directly to consumers online through websites and social media, with little to no medical oversight. This practice is a significant concern, as it may affect patient safety, and should be discouraged.

However, according to a statement from the Alliance for Pharmacy Compounding (APC), legitimate compounding pharmacies aren’t the ones selling these dubious products on the black market, particularly online. This illegal practice has garnered media attention and is sometimes incorrectly associated with legitimate pharmacy compounding.

In contrast, legal and certified versions of GLP-1 agonist medications can be obtained from well-regulated and reputable compounding pharmacies. These pharmacies must adhere to all federal and state regulations and dispense medications only with a valid prescription from a licensed physician.

Meanwhile, the APC statement notes, Novo Nordisk and Eli Lilly have sued compounding companies in several states, questioning, among other things, the purity and potency of some compounded products.

There are different designations for compounding pharmacies: 503A and 503B. 503As are state-licensed pharmacies and physicians, and 503B pharmacies are federally regulated outsourcing facilities that are strictly regulated by the FDA. This regulation, established following a 2012 fungal meningitis outbreak linked to a compounding pharmacy, ensures higher-quality control and oversight, especially for medications intended for intravenous or epidural use. These standards exceed those required for subcutaneous injections like GLP-1 analogs.

In the face of this Wild West climate, where compounded drugs may vary in their source, formulation, potency, and purity, The Obesity Society, the Obesity Medical Association, and the Obesity Action Coalition published a joint statement that advised against the use of compounded GLP-1 agonists, citing safety concerns and lack of regulatory oversight.

This stance, while aimed at ensuring patient safety, inadvertently raises a critical issue.

By completely dismissing compounded medications, experts may unintentionally bolster the black market and overlook the needs of patients who could benefit from these medications, contrary to the intentions of the exemption provided in federal law for compounding during a drug shortage. In fact, the presence of unreliable suppliers highlights the need to direct the public toward trustworthy sources, rather than imposing a total ban on medically appropriate alternatives.

The joint statement calls compounded GLP-1 agonists “counterfeit.” This inaccurate overgeneralization probably stems from a misunderstanding of the compounding process and its regulations. Legitimate and regulated pharmacies compound base GLP-1 agonists, which are “essentially a copy” of FDA-approved medications, not counterfeits. Recognizing this is crucial for maintaining trust in both compounding pharmacies and regulatory bodies.

It is correct that “the only FDA-approved manufacturers of these medications are the companies that created the active pharmaceutical ingredients — Novo Nordisk and Eli Lilly,” but the joint statement fails to mention the exemptions provided by law that allow compounding copies of the branded medications if they are on the shortage list.

Compounding pharmacies must obtain active pharmaceutical ingredients (APIs) from FDA-registered facilities, which are required to adhere to Current Good Manufacturing Practices (cGMP). This ensures the APIs’ quality, potency, and purity, crucial for the safety and efficacy of compounded medications.

Compounded drugs are not FDA approved, but they aren’t inherently unsafe. Compounded medications include critical drugs such as resuscitation medications and antibiotics, and are often used in healthcare settings, especially when there’s a shortage. This raises the question of why compounded GLP-1 agonists would be treated any differently in such scenarios.

And in the case of alternative drugs for individuals with obesity who have a higher risk for cardiovascular disease, the brand-name FDA-approved alternative may be of more concern than the compounded GLP-1 agonist. The obesity societies advise: “If you cannot find or get access to a GLP-1-based treatment now, there are other treatments available,” echoing experts. While the statement doesn’t specify the names of the alternatives, experts have advised using alternatives such as Qsymia and Contrave, despite their potential cardiovascular concerns. This recommendation to the public may not represent a responsible risk-benefit analysis.

Chart of FDA approval process
Courtesy Dr. Einav


Rather than outright banning compounded GLP-1 medications, expert associations can contribute to the solution by creating a “seal of approval,” recognizing high-quality compounded medications. This would contribute to informed decision-making for clinicians and patients.
 

 

 

Possible Solutions

When prescribing GLP-1 agonists for obesity treatment, doctors should consider all of the following steps to ensure patient safety and effective treatment:

Preference for FDA-approved brands: FDA-approved branded GLP-1 agonist medications should be the primary choice because of their established safety and efficacy.

Risk-benefit analysis for non–FDA-approved products: In cases where FDA-approved options are not available, doctors may consider prescribing a non–FDA-approved copy of the branded medication. Prior to this, conduct a thorough risk-benefit analysis with the patient, ensuring that they are fully informed about the potential risks and benefits of using a non–FDA-approved product.

Choosing semaglutide copies for specific cases: In patients with obesity and cardiovascular disease, the benefits of using a compounded copy of semaglutide, with its cardiovascular disease–modifying properties, may outweigh the risks compared with other FDA-approved antiobesity drugs that might pose cardiovascular risks or compared with no antiobesity treatment at all.

Informed consent and monitoring: When prescribing a non–FDA-approved version of a GLP-1 agonist, obtaining informed consent from the patient is advised. They should be made aware of the differences between the FDA-approved and nonapproved versions.

Choosing between 503A and 503B pharmacies: Prescriptions for non–FDA-approved GLP-1 agonists can be directed to either 503A or 503B compounding pharmacies. However, it’s advisable to check whether the product can be compounded by a 503B pharmacy, which is subject to an additional layer of FDA regulation, offering greater quality assurance.

Clear prescription specifications: Ensure that the prescription explicitly states that the compounded GLP-1 agonist should be the base compound without additives.

Requesting a Certificate of Analysis: To further ensure safety, request a Certificate of Analysis from the compounding pharmacy. This provides detailed quality and composition information about the product.

Ongoing monitoring: Continuously monitor the patient’s response to the medication and adjust the treatment plan as necessary, maintaining regular follow-ups.

By adhering to these guidelines, doctors can navigate the complexities of prescribing GLP-1 agonists in a way that prioritizes patient well-being, particularly in scenarios where conventional treatment options are limited.
 

Dr. Einav is a board-certified cardiologist and a Diplomate of the American Board of Obesity Medicine. He is a fellow of the American College of Cardiology and a member of the Obesity Medicine Association. He serves as the medical director of cardiometabolic health in Guthrie Lourdes in Binghamton, New York, and is the founder of myW8/Cardiometabolic Health located in Beverly Hills, California. This article solely reflects the personal views of Dr. Einav and should not be considered as representing the official stance of Guthrie Lourdes. Dr. Einav served as a promotional speaker for Novo Nordisk in 2022. As of now, he has not prescribed any compounded GLP-1 agonist medications in his medical practice.

A version of this article appeared on Medscape.com.

As a cardiologist specializing in obesity medicine, I often encounter patients who would greatly benefit from the new generation of weight loss drugs that work as glucagon-like peptide 1 (GLP-1) agonists. In the recently published SELECT trial results, for example, semaglutide (marketed by Novo Nordisk as Wegovy for weight loss and Ozempic for type 2 diabetes) demonstrated a 20% risk reduction of heart attacks and strokes in overweight and obese individuals without diabetes and with cardiovascular disease, establishing it as a cardiovascular disease–modifying medication in people without type 2 diabetes.

Unfortunately, the high demand for these new weight loss medications has resulted in a frustrating, long-lasting shortage. The manufacturers of the two FDA-approved drugs, Novo Nordisk and Eli Lilly (tirzepatide, marketed as Zepbound for weight loss and Mounjaro for type 2 diabetes), are struggling to meet the overwhelming need.

To ensure continuation of patient care, federal law allows compounding pharmacies to make “essentially a copy” of the medications that are listed as “currently in shortage” on the US Food and Drug Administration (FDA) drug shortage list. Both semaglutide and tirzepatide are on that list. For Americans who suffer from obesity and other weight-related diseases, these drugs could be a lifeline.

Despite this, the medical community has broadly criticized the utilization of compounded GLP-1 agonists, even those obtained from reputable and legitimate compounding pharmacies.

Yes, high demand has led to the emergence of unregulated companies and scammers producing substandard or counterfeit versions of these medications.

The FDA has found fraudulent products (masquerading as the weight loss drugs) and has issued warning letters to stop the distribution of illegally marketed semaglutide. “These drugs may be counterfeit, which means they could contain the wrong ingredients, contain too little, too much or no active ingredient at all, or contain other harmful ingredients,” it cautions. Some products use a similar-sounding semaglutide sodium salt, which has uncertain safety and efficacy, and had generated warnings from the FDA and state boards of pharmacy.

Many of these products are marketed directly to consumers online through websites and social media, with little to no medical oversight. This practice is a significant concern, as it may affect patient safety, and should be discouraged.

However, according to a statement from the Alliance for Pharmacy Compounding (APC), legitimate compounding pharmacies aren’t the ones selling these dubious products on the black market, particularly online. This illegal practice has garnered media attention and is sometimes incorrectly associated with legitimate pharmacy compounding.

In contrast, legal and certified versions of GLP-1 agonist medications can be obtained from well-regulated and reputable compounding pharmacies. These pharmacies must adhere to all federal and state regulations and dispense medications only with a valid prescription from a licensed physician.

Meanwhile, the APC statement notes, Novo Nordisk and Eli Lilly have sued compounding companies in several states, questioning, among other things, the purity and potency of some compounded products.

There are different designations for compounding pharmacies: 503A and 503B. 503As are state-licensed pharmacies and physicians, and 503B pharmacies are federally regulated outsourcing facilities that are strictly regulated by the FDA. This regulation, established following a 2012 fungal meningitis outbreak linked to a compounding pharmacy, ensures higher-quality control and oversight, especially for medications intended for intravenous or epidural use. These standards exceed those required for subcutaneous injections like GLP-1 analogs.

In the face of this Wild West climate, where compounded drugs may vary in their source, formulation, potency, and purity, The Obesity Society, the Obesity Medical Association, and the Obesity Action Coalition published a joint statement that advised against the use of compounded GLP-1 agonists, citing safety concerns and lack of regulatory oversight.

This stance, while aimed at ensuring patient safety, inadvertently raises a critical issue.

By completely dismissing compounded medications, experts may unintentionally bolster the black market and overlook the needs of patients who could benefit from these medications, contrary to the intentions of the exemption provided in federal law for compounding during a drug shortage. In fact, the presence of unreliable suppliers highlights the need to direct the public toward trustworthy sources, rather than imposing a total ban on medically appropriate alternatives.

The joint statement calls compounded GLP-1 agonists “counterfeit.” This inaccurate overgeneralization probably stems from a misunderstanding of the compounding process and its regulations. Legitimate and regulated pharmacies compound base GLP-1 agonists, which are “essentially a copy” of FDA-approved medications, not counterfeits. Recognizing this is crucial for maintaining trust in both compounding pharmacies and regulatory bodies.

It is correct that “the only FDA-approved manufacturers of these medications are the companies that created the active pharmaceutical ingredients — Novo Nordisk and Eli Lilly,” but the joint statement fails to mention the exemptions provided by law that allow compounding copies of the branded medications if they are on the shortage list.

Compounding pharmacies must obtain active pharmaceutical ingredients (APIs) from FDA-registered facilities, which are required to adhere to Current Good Manufacturing Practices (cGMP). This ensures the APIs’ quality, potency, and purity, crucial for the safety and efficacy of compounded medications.

Compounded drugs are not FDA approved, but they aren’t inherently unsafe. Compounded medications include critical drugs such as resuscitation medications and antibiotics, and are often used in healthcare settings, especially when there’s a shortage. This raises the question of why compounded GLP-1 agonists would be treated any differently in such scenarios.

And in the case of alternative drugs for individuals with obesity who have a higher risk for cardiovascular disease, the brand-name FDA-approved alternative may be of more concern than the compounded GLP-1 agonist. The obesity societies advise: “If you cannot find or get access to a GLP-1-based treatment now, there are other treatments available,” echoing experts. While the statement doesn’t specify the names of the alternatives, experts have advised using alternatives such as Qsymia and Contrave, despite their potential cardiovascular concerns. This recommendation to the public may not represent a responsible risk-benefit analysis.

Chart of FDA approval process
Courtesy Dr. Einav


Rather than outright banning compounded GLP-1 medications, expert associations can contribute to the solution by creating a “seal of approval,” recognizing high-quality compounded medications. This would contribute to informed decision-making for clinicians and patients.
 

 

 

Possible Solutions

When prescribing GLP-1 agonists for obesity treatment, doctors should consider all of the following steps to ensure patient safety and effective treatment:

Preference for FDA-approved brands: FDA-approved branded GLP-1 agonist medications should be the primary choice because of their established safety and efficacy.

Risk-benefit analysis for non–FDA-approved products: In cases where FDA-approved options are not available, doctors may consider prescribing a non–FDA-approved copy of the branded medication. Prior to this, conduct a thorough risk-benefit analysis with the patient, ensuring that they are fully informed about the potential risks and benefits of using a non–FDA-approved product.

Choosing semaglutide copies for specific cases: In patients with obesity and cardiovascular disease, the benefits of using a compounded copy of semaglutide, with its cardiovascular disease–modifying properties, may outweigh the risks compared with other FDA-approved antiobesity drugs that might pose cardiovascular risks or compared with no antiobesity treatment at all.

Informed consent and monitoring: When prescribing a non–FDA-approved version of a GLP-1 agonist, obtaining informed consent from the patient is advised. They should be made aware of the differences between the FDA-approved and nonapproved versions.

Choosing between 503A and 503B pharmacies: Prescriptions for non–FDA-approved GLP-1 agonists can be directed to either 503A or 503B compounding pharmacies. However, it’s advisable to check whether the product can be compounded by a 503B pharmacy, which is subject to an additional layer of FDA regulation, offering greater quality assurance.

Clear prescription specifications: Ensure that the prescription explicitly states that the compounded GLP-1 agonist should be the base compound without additives.

Requesting a Certificate of Analysis: To further ensure safety, request a Certificate of Analysis from the compounding pharmacy. This provides detailed quality and composition information about the product.

Ongoing monitoring: Continuously monitor the patient’s response to the medication and adjust the treatment plan as necessary, maintaining regular follow-ups.

By adhering to these guidelines, doctors can navigate the complexities of prescribing GLP-1 agonists in a way that prioritizes patient well-being, particularly in scenarios where conventional treatment options are limited.
 

Dr. Einav is a board-certified cardiologist and a Diplomate of the American Board of Obesity Medicine. He is a fellow of the American College of Cardiology and a member of the Obesity Medicine Association. He serves as the medical director of cardiometabolic health in Guthrie Lourdes in Binghamton, New York, and is the founder of myW8/Cardiometabolic Health located in Beverly Hills, California. This article solely reflects the personal views of Dr. Einav and should not be considered as representing the official stance of Guthrie Lourdes. Dr. Einav served as a promotional speaker for Novo Nordisk in 2022. As of now, he has not prescribed any compounded GLP-1 agonist medications in his medical practice.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Losing More Than Fat

Article Type
Changed
Wed, 03/27/2024 - 13:01

Whether you have totally bought into the “obesity is a disease” paradigm or are still in denial, you must admit that the development of a suite of effective weight loss medications has created a tsunami of interest and economic activity in this country on a scale not seen since the Beanie Baby craze of the mid-1990s. But, obesity management is serious business. While most of those soft cuddly toys are gathering dust in shoeboxes across this country, weight loss medications are likely to be the vanguard of rapidly evolving revolution in healthcare management that will be with us for the foreseeable future.

Most thoughtful folks who purchased Beanie Babies in 1994 had no illusions and knew that in a few short years this bubble of soft cuddly toys was going to burst. However, do those of us on the front line of medical care know what the future holds for the patients who are being prescribed or are scavenging those too-good-to-be-true medications?

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

My guess is that in the long run we will need a combination of some serious tinkering by the pharmaceutical industry and a trek up some steep learning curves before we eventually arrive at a safe and effective chemical management for obese patients. I recently read an article by an obesity management specialist at Harvard Medical School who voiced her concerns that we are missing an opportunity to make this explosion of popularity in GLP-1 drugs into an important learning experience.

In an opinion piece in JAMA Internal Medicine, Dr. Fatima Cody Stanford and her coauthors argue that we, actually the US Food and Drug Administration (FDA), is over-focused on weight loss in determining the efficacy of anti-obesity medications. Dr. Stanford and colleagues point out that when a patient loses weight it isn’t just fat — it is complex process that may include muscle and bone mineralization as well. She has consulted for at least one obesity-drug manufacturer and says that these companies have the resources to produce data on body composition that could help clinicians create management plans that would address the patients’ overall health. However, the FDA has not demanded this broader and deeper assessment of general health when reviewing the drug trials.

I don’t think we can blame the patients for not asking whether they will healthier while taking these medications. They have already spent a lifetime, even if it is just a decade, of suffering as the “fat one.” A new outfit and a look in the mirror can’t help but make them feel better ... in the short term anyway. We as physicians must shoulder some of the blame for focusing on weight. Our spoken or unspoken message has been “Lose weight and you will be healthier.” We may make our message sound more professional by tossing around terms like “BMI,” but as Dr. Stanford points out, “we have known BMI is a flawed metric for a long time.”

There is the notion that obese people have had to build more muscle to help them carry around the extra weight, so that we should expect them to lose that extra muscle along with the fat. However, in older adults there is an entity called sarcopenic obesity, in which the patient doesn’t have that extra muscle to lose.

In a brief Internet research venture, I could find little on the subject of muscle loss and GLP-1s, other than “it can happen.” And, nothing on the effect in adolescents. And that is one of Dr. Stanford’s points. We just don’t know. She said that looking at body composition can be costly and not something that the clinician can do. However, as far as muscle mass is concerned, we need to be alert to the potential for loss. Simple assessments of strength can help us tailor our management to the specific patient’s need.

The bottom line is this ... now that we have effective medications for “weight loss,” we need to redefine the relationship between weight and health. “We” means us as clinicians. It means the folks at FDA. And, if we can improve our messaging, it will osmose to the rest of the population. Just because you’ve dropped two dress sizes doesn’t mean you’re healthy.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Topics
Sections

Whether you have totally bought into the “obesity is a disease” paradigm or are still in denial, you must admit that the development of a suite of effective weight loss medications has created a tsunami of interest and economic activity in this country on a scale not seen since the Beanie Baby craze of the mid-1990s. But, obesity management is serious business. While most of those soft cuddly toys are gathering dust in shoeboxes across this country, weight loss medications are likely to be the vanguard of rapidly evolving revolution in healthcare management that will be with us for the foreseeable future.

Most thoughtful folks who purchased Beanie Babies in 1994 had no illusions and knew that in a few short years this bubble of soft cuddly toys was going to burst. However, do those of us on the front line of medical care know what the future holds for the patients who are being prescribed or are scavenging those too-good-to-be-true medications?

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

My guess is that in the long run we will need a combination of some serious tinkering by the pharmaceutical industry and a trek up some steep learning curves before we eventually arrive at a safe and effective chemical management for obese patients. I recently read an article by an obesity management specialist at Harvard Medical School who voiced her concerns that we are missing an opportunity to make this explosion of popularity in GLP-1 drugs into an important learning experience.

In an opinion piece in JAMA Internal Medicine, Dr. Fatima Cody Stanford and her coauthors argue that we, actually the US Food and Drug Administration (FDA), is over-focused on weight loss in determining the efficacy of anti-obesity medications. Dr. Stanford and colleagues point out that when a patient loses weight it isn’t just fat — it is complex process that may include muscle and bone mineralization as well. She has consulted for at least one obesity-drug manufacturer and says that these companies have the resources to produce data on body composition that could help clinicians create management plans that would address the patients’ overall health. However, the FDA has not demanded this broader and deeper assessment of general health when reviewing the drug trials.

I don’t think we can blame the patients for not asking whether they will healthier while taking these medications. They have already spent a lifetime, even if it is just a decade, of suffering as the “fat one.” A new outfit and a look in the mirror can’t help but make them feel better ... in the short term anyway. We as physicians must shoulder some of the blame for focusing on weight. Our spoken or unspoken message has been “Lose weight and you will be healthier.” We may make our message sound more professional by tossing around terms like “BMI,” but as Dr. Stanford points out, “we have known BMI is a flawed metric for a long time.”

There is the notion that obese people have had to build more muscle to help them carry around the extra weight, so that we should expect them to lose that extra muscle along with the fat. However, in older adults there is an entity called sarcopenic obesity, in which the patient doesn’t have that extra muscle to lose.

In a brief Internet research venture, I could find little on the subject of muscle loss and GLP-1s, other than “it can happen.” And, nothing on the effect in adolescents. And that is one of Dr. Stanford’s points. We just don’t know. She said that looking at body composition can be costly and not something that the clinician can do. However, as far as muscle mass is concerned, we need to be alert to the potential for loss. Simple assessments of strength can help us tailor our management to the specific patient’s need.

The bottom line is this ... now that we have effective medications for “weight loss,” we need to redefine the relationship between weight and health. “We” means us as clinicians. It means the folks at FDA. And, if we can improve our messaging, it will osmose to the rest of the population. Just because you’ve dropped two dress sizes doesn’t mean you’re healthy.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Whether you have totally bought into the “obesity is a disease” paradigm or are still in denial, you must admit that the development of a suite of effective weight loss medications has created a tsunami of interest and economic activity in this country on a scale not seen since the Beanie Baby craze of the mid-1990s. But, obesity management is serious business. While most of those soft cuddly toys are gathering dust in shoeboxes across this country, weight loss medications are likely to be the vanguard of rapidly evolving revolution in healthcare management that will be with us for the foreseeable future.

Most thoughtful folks who purchased Beanie Babies in 1994 had no illusions and knew that in a few short years this bubble of soft cuddly toys was going to burst. However, do those of us on the front line of medical care know what the future holds for the patients who are being prescribed or are scavenging those too-good-to-be-true medications?

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

My guess is that in the long run we will need a combination of some serious tinkering by the pharmaceutical industry and a trek up some steep learning curves before we eventually arrive at a safe and effective chemical management for obese patients. I recently read an article by an obesity management specialist at Harvard Medical School who voiced her concerns that we are missing an opportunity to make this explosion of popularity in GLP-1 drugs into an important learning experience.

In an opinion piece in JAMA Internal Medicine, Dr. Fatima Cody Stanford and her coauthors argue that we, actually the US Food and Drug Administration (FDA), is over-focused on weight loss in determining the efficacy of anti-obesity medications. Dr. Stanford and colleagues point out that when a patient loses weight it isn’t just fat — it is complex process that may include muscle and bone mineralization as well. She has consulted for at least one obesity-drug manufacturer and says that these companies have the resources to produce data on body composition that could help clinicians create management plans that would address the patients’ overall health. However, the FDA has not demanded this broader and deeper assessment of general health when reviewing the drug trials.

I don’t think we can blame the patients for not asking whether they will healthier while taking these medications. They have already spent a lifetime, even if it is just a decade, of suffering as the “fat one.” A new outfit and a look in the mirror can’t help but make them feel better ... in the short term anyway. We as physicians must shoulder some of the blame for focusing on weight. Our spoken or unspoken message has been “Lose weight and you will be healthier.” We may make our message sound more professional by tossing around terms like “BMI,” but as Dr. Stanford points out, “we have known BMI is a flawed metric for a long time.”

There is the notion that obese people have had to build more muscle to help them carry around the extra weight, so that we should expect them to lose that extra muscle along with the fat. However, in older adults there is an entity called sarcopenic obesity, in which the patient doesn’t have that extra muscle to lose.

In a brief Internet research venture, I could find little on the subject of muscle loss and GLP-1s, other than “it can happen.” And, nothing on the effect in adolescents. And that is one of Dr. Stanford’s points. We just don’t know. She said that looking at body composition can be costly and not something that the clinician can do. However, as far as muscle mass is concerned, we need to be alert to the potential for loss. Simple assessments of strength can help us tailor our management to the specific patient’s need.

The bottom line is this ... now that we have effective medications for “weight loss,” we need to redefine the relationship between weight and health. “We” means us as clinicians. It means the folks at FDA. And, if we can improve our messaging, it will osmose to the rest of the population. Just because you’ve dropped two dress sizes doesn’t mean you’re healthy.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Magnesium and Metabolic Syndrome: Any Connection?

Article Type
Changed
Wed, 03/27/2024 - 14:31

 

TOPLINE:

Higher urinary magnesium loss, as indicated by an elevated magnesium depletion score (MDS), may be an independent risk factor for metabolic syndrome in US adults.

METHODOLOGY:

  • Increasing evidence suggests that chronic hypomagnesemia may play a role in the pathogenesis of metabolic disorders, including overweight and obesity, insulin resistance, type 2 diabetes, hypertension, and dyslipidemia.
  • Researchers examined the relationship between magnesium status and metabolic syndrome in 15,565 US adults (mean age, 47 years; half women) participating in the National Health and Nutrition Examination Survey (2003-2018), of whom 5438 had metabolic syndrome (mean age, 55 years).
  • Magnesium deficiency was predicted by MDS, a four-factor score that aggregates diuretic use (one point), proton pump inhibitor (one point), kidney function (estimated glomerular filtration rate; one or two points), and heavy  (one point).
  • MDS was categorized into six levels (by scores 0-5), with a higher MDS indicating a more severe magnesium deficiency.
  • Metabolic syndrome was defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report.

TAKEAWAY:

  • The proportion of patients with MDS ≥ 2 was higher in the group with vs without metabolic syndrome (P < .05).
  • Even after adjusting for potential confounding factors, each 1-unit increase in the MDS increased the odds of metabolic syndrome by about 30% (adjusted odds ratio, 1.31; 95% CI, 1.17-1.45).
  • A dose-response relationship was observed between MDS and metabolic syndrome, with MDS level 1 being associated with 1.28-fold higher odds of metabolic syndrome (95% CI, 1.06-1.55) than MDS level 0; further escalation in the odds was noted for MDS levels 2, 3, and 4.
  • The association between metabolic syndrome and MDS remained consistent across all population subgroups defined by age, gender, race (except Mexican American), body mass index, drinking status, or smoking status.

IN PRACTICE:

“It is possible to prevent and reduce MetS [metabolic syndrome] by supplementing with magnesium supplements or encouraging higher magnesium intake diet because the diet is a factor that can be changed,” the authors wrote.

SOURCE:

The study was led by Xiaohao Wang, Department of Geriatrics, the First Affiliated Hospital, School of Medicine, Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, China. It was published online in the Journal of Clinical Endocrinology & Metabolism.

LIMITATIONS:

The study found no significant link between MDS level 5 and metabolic syndrome, likely due to the small sample size at this level. The study could not draw any causal relationship between metabolic syndrome and MDS owing to its cross-sectional nature. It also could not determine whether MDS was a better marker of magnesium deficiency than serum magnesium levels. MDS is a categorical, not continuous, variable.

DISCLOSURES:

This study was supported by grants from the National Natural Science Foundation of China and the Natural Science Foundation of Shenzhen City, China. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Higher urinary magnesium loss, as indicated by an elevated magnesium depletion score (MDS), may be an independent risk factor for metabolic syndrome in US adults.

METHODOLOGY:

  • Increasing evidence suggests that chronic hypomagnesemia may play a role in the pathogenesis of metabolic disorders, including overweight and obesity, insulin resistance, type 2 diabetes, hypertension, and dyslipidemia.
  • Researchers examined the relationship between magnesium status and metabolic syndrome in 15,565 US adults (mean age, 47 years; half women) participating in the National Health and Nutrition Examination Survey (2003-2018), of whom 5438 had metabolic syndrome (mean age, 55 years).
  • Magnesium deficiency was predicted by MDS, a four-factor score that aggregates diuretic use (one point), proton pump inhibitor (one point), kidney function (estimated glomerular filtration rate; one or two points), and heavy  (one point).
  • MDS was categorized into six levels (by scores 0-5), with a higher MDS indicating a more severe magnesium deficiency.
  • Metabolic syndrome was defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report.

TAKEAWAY:

  • The proportion of patients with MDS ≥ 2 was higher in the group with vs without metabolic syndrome (P < .05).
  • Even after adjusting for potential confounding factors, each 1-unit increase in the MDS increased the odds of metabolic syndrome by about 30% (adjusted odds ratio, 1.31; 95% CI, 1.17-1.45).
  • A dose-response relationship was observed between MDS and metabolic syndrome, with MDS level 1 being associated with 1.28-fold higher odds of metabolic syndrome (95% CI, 1.06-1.55) than MDS level 0; further escalation in the odds was noted for MDS levels 2, 3, and 4.
  • The association between metabolic syndrome and MDS remained consistent across all population subgroups defined by age, gender, race (except Mexican American), body mass index, drinking status, or smoking status.

IN PRACTICE:

“It is possible to prevent and reduce MetS [metabolic syndrome] by supplementing with magnesium supplements or encouraging higher magnesium intake diet because the diet is a factor that can be changed,” the authors wrote.

SOURCE:

The study was led by Xiaohao Wang, Department of Geriatrics, the First Affiliated Hospital, School of Medicine, Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, China. It was published online in the Journal of Clinical Endocrinology & Metabolism.

LIMITATIONS:

The study found no significant link between MDS level 5 and metabolic syndrome, likely due to the small sample size at this level. The study could not draw any causal relationship between metabolic syndrome and MDS owing to its cross-sectional nature. It also could not determine whether MDS was a better marker of magnesium deficiency than serum magnesium levels. MDS is a categorical, not continuous, variable.

DISCLOSURES:

This study was supported by grants from the National Natural Science Foundation of China and the Natural Science Foundation of Shenzhen City, China. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Higher urinary magnesium loss, as indicated by an elevated magnesium depletion score (MDS), may be an independent risk factor for metabolic syndrome in US adults.

METHODOLOGY:

  • Increasing evidence suggests that chronic hypomagnesemia may play a role in the pathogenesis of metabolic disorders, including overweight and obesity, insulin resistance, type 2 diabetes, hypertension, and dyslipidemia.
  • Researchers examined the relationship between magnesium status and metabolic syndrome in 15,565 US adults (mean age, 47 years; half women) participating in the National Health and Nutrition Examination Survey (2003-2018), of whom 5438 had metabolic syndrome (mean age, 55 years).
  • Magnesium deficiency was predicted by MDS, a four-factor score that aggregates diuretic use (one point), proton pump inhibitor (one point), kidney function (estimated glomerular filtration rate; one or two points), and heavy  (one point).
  • MDS was categorized into six levels (by scores 0-5), with a higher MDS indicating a more severe magnesium deficiency.
  • Metabolic syndrome was defined according to the National Cholesterol Education Program’s Adult Treatment Panel III report.

TAKEAWAY:

  • The proportion of patients with MDS ≥ 2 was higher in the group with vs without metabolic syndrome (P < .05).
  • Even after adjusting for potential confounding factors, each 1-unit increase in the MDS increased the odds of metabolic syndrome by about 30% (adjusted odds ratio, 1.31; 95% CI, 1.17-1.45).
  • A dose-response relationship was observed between MDS and metabolic syndrome, with MDS level 1 being associated with 1.28-fold higher odds of metabolic syndrome (95% CI, 1.06-1.55) than MDS level 0; further escalation in the odds was noted for MDS levels 2, 3, and 4.
  • The association between metabolic syndrome and MDS remained consistent across all population subgroups defined by age, gender, race (except Mexican American), body mass index, drinking status, or smoking status.

IN PRACTICE:

“It is possible to prevent and reduce MetS [metabolic syndrome] by supplementing with magnesium supplements or encouraging higher magnesium intake diet because the diet is a factor that can be changed,” the authors wrote.

SOURCE:

The study was led by Xiaohao Wang, Department of Geriatrics, the First Affiliated Hospital, School of Medicine, Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, China. It was published online in the Journal of Clinical Endocrinology & Metabolism.

LIMITATIONS:

The study found no significant link between MDS level 5 and metabolic syndrome, likely due to the small sample size at this level. The study could not draw any causal relationship between metabolic syndrome and MDS owing to its cross-sectional nature. It also could not determine whether MDS was a better marker of magnesium deficiency than serum magnesium levels. MDS is a categorical, not continuous, variable.

DISCLOSURES:

This study was supported by grants from the National Natural Science Foundation of China and the Natural Science Foundation of Shenzhen City, China. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Restrictions Eased on Bariatric Surgery Because of GLP-1 Costs

Article Type
Changed
Wed, 03/27/2024 - 11:13

Amid rising concern about the potential long-term costs of using glucagon-like peptide 1 (GLP-1) agonists to treat obesity, some insurers are making access to bariatric surgery easier.

While the relationship may not be entirely causal, data do suggest that at least for now, these new agents for treating obesity including semaglutide (Wegovy) and tirzepatide (Zepbound) are not cost-effective, whereas the surgery is.

According to GoodRx, Wegovy (semaglutide) has a list price of about $1350 for a 28-day supply. And the American Society for Metabolic and Bariatric Surgery (ASMBS) said that the average cost of bariatric surgery ranges between $17,000 and $26,000. But ASMBS added that third-party payers will recover those costs within 2-4 years due to reduction or elimination of obesity-related conditions and associated treatment costs, with an approximate 29% healthcare cost reduction at 5 years.

Recently, for example, Geisinger Health of Pennsylvania and Blue Cross/Blue Shield of Massachusetts expanded body mass index (BMI) eligibility for bariatric surgery procedures, while Blue Cross Blue Shield of Michigan dropped prior authorization requirements for several services, including bariatric surgery.

While most major health insurers cover Wegovy for obesity treatment, they typically require prior authorization and/or trials of other therapies first. Recently, some employers have denied coverage for the medications for treating obesity. Medicare does not cover these drugs. Coverage varies across state Medicaid plans.

“For years, insurers…have played games with the surgery, making people jump through hoops, hoping that they would just give up and go away. And now that health plans are getting concerned about [the cost of] drugs for obesity, and they’re getting so much attention, they’re thinking oh, maybe we shouldn’t be playing these games anymore,” obesity policy expert Ted Kyle, RPh, founder of ConscienHealth, told this news organization.

However, Christopher Doubet Still, DO, director of Nutrition and Weight Management at Geisinger Medical Center, Danville, Pennsylvania, told this news organization that Geisinger Health Plan’s change in May 2023 to lower the BMI surgery eligibility cutoff from 35 kg/m2 to 30 kg/m2 for people with comorbidities was not related to the cost of GLP-1 drugs.

“To date, bariatric surgery remains the most effective, enduring treatment of obesity, and most importantly, its comorbid medical problems. So that was really the reasoning. The weight loss is secondary to the profound medical benefits of bariatric surgery. I think that was the impetus of that change, not having really anything to do at the time with GLP-1s,” Dr. Still said.

The Geisinger Health Plan does not currently cover antiobesity medications, although Geisinger Health Plan Family, a state Medicaid plan, does because Pennsylvania is now one of a handful of states that cover the medications through Medicaid.
 

The Equation Keeps Changing

Health economist James Chambers, PhD, of Tufts University, Boston, Massachusetts, told this news organizations, “when you think about the value of a treatment, you don’t look at it in isolation. You’re looking at the difference in cost and benefits. So now that you have these expensive drugs, it’s not that surgeries become less expensive, but it does make you interpret the cost differently. When diet and exercise and counseling were the only real options, surgeries seemed like a much more expensive intervention. But with the advent of the GLP-1s, then, maybe plans consider the costs of surgery a little bit differently.”

And that equation is likely to change further, Dr. Still noted.

“I just think we’re dealing with a short-term financial problem because there’s basically only two main medications so the prices are high, but as more medications come on the market, the prices will come down,” he said.

Cristy Ms. Gallagher, MPAff, research project director of the STOP Obesity Alliance at the Milken Institute School of Public Health at George Washington University, Washington, DC, agreed.

“We have a lot of data on obesity treatment coverage from before 2023. But then this [GLP-1] explosion happened in 2023…The health payers are out there trying to figure out coverage, and they’re trying to figure out what this is going to look like for them,” Ms. Gallagher said.

However, she pointed out, “there is no treatment that fits everyone. The GLP-1s won’t work for every person because of the different stages of obesity, the side effects, and then because of the coverage. I think that you will not see a decrease in bariatric surgery in the near term, by any means.”

Ms. Gallagher also noted that although the data now suggest people will have to keep taking the drugs for life, there may be other future approaches.

“Once a person hits their goal weight, maybe then they could be transferred to a different pill form that might be cheaper, something that’s sort of more of a maintenance drug. I think that is a huge unknown right now,” she said.

And Mr. Kyle said that while bariatric surgery does provide the most durable benefit, “weight regain after surgery is a fact of life. People are still healthier 5 years later, but they do have some weight regain. And in those cases, you might want to follow-up with medicines…It’s not necessarily an either/or proposition any more than surgical treatment of cancer, surgical oncology is an either/or with medical oncology.”
 

A New View of Obesity

According to Mr. Kyle, all this attention on the new medications “is prompting people to rethink or think differently about obesity and consider it more carefully as a chronic medical condition and not a condition of appearance and behavior. And that’s all good, whether you’re thinking about it from the standpoint of bariatric surgery or from the standpoint of medical treatment of obesity because then people start considering options more rationally.”

This shifting view of obesity has meant that bariatric surgeons and medical obesity specialists are starting to work more collaboratively, he said.

“There is a trend that I detect toward more integrated approaches to obesity,” Mr. Kyle said.

He added, “We now have more tools. And we’re in the messy middle of figuring out how, as a practical matter, to use them.”

And as far as insurance coverage, “people are going to make mistakes. They are making mistakes. But I have been the eternal optimist, and I have faith that people are also figuring it out. It would be hard to do worse.”

For now, any initiatives to increase bariatric surgery rates in the GLP-1 era haven’t yet had an impact, American Society for Metabolic and Bariatric Surgery President Marina S. Kurian, MD, told this news organization in a statement.

“While we have heard of some insurers possibly changing their requirements for bariatric surgery, we have not seen a significant rise in procedures related to changes in insurance coverage for either antiobesity medications or metabolic and bariatric surgery,” Dr. Kurian said.

Mr. Kyle had accepted speaking or professional fees from Novo Nordisk, Behringer Ingelheim, Nutrisystem, Roman Health, and Emerald Lake Safety. Dr. Still was on the speaker’s bureau and did clinical trials for Eli Lilly and Novo Nordisk. Dr. Chambers and Gallagher had no disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Amid rising concern about the potential long-term costs of using glucagon-like peptide 1 (GLP-1) agonists to treat obesity, some insurers are making access to bariatric surgery easier.

While the relationship may not be entirely causal, data do suggest that at least for now, these new agents for treating obesity including semaglutide (Wegovy) and tirzepatide (Zepbound) are not cost-effective, whereas the surgery is.

According to GoodRx, Wegovy (semaglutide) has a list price of about $1350 for a 28-day supply. And the American Society for Metabolic and Bariatric Surgery (ASMBS) said that the average cost of bariatric surgery ranges between $17,000 and $26,000. But ASMBS added that third-party payers will recover those costs within 2-4 years due to reduction or elimination of obesity-related conditions and associated treatment costs, with an approximate 29% healthcare cost reduction at 5 years.

Recently, for example, Geisinger Health of Pennsylvania and Blue Cross/Blue Shield of Massachusetts expanded body mass index (BMI) eligibility for bariatric surgery procedures, while Blue Cross Blue Shield of Michigan dropped prior authorization requirements for several services, including bariatric surgery.

While most major health insurers cover Wegovy for obesity treatment, they typically require prior authorization and/or trials of other therapies first. Recently, some employers have denied coverage for the medications for treating obesity. Medicare does not cover these drugs. Coverage varies across state Medicaid plans.

“For years, insurers…have played games with the surgery, making people jump through hoops, hoping that they would just give up and go away. And now that health plans are getting concerned about [the cost of] drugs for obesity, and they’re getting so much attention, they’re thinking oh, maybe we shouldn’t be playing these games anymore,” obesity policy expert Ted Kyle, RPh, founder of ConscienHealth, told this news organization.

However, Christopher Doubet Still, DO, director of Nutrition and Weight Management at Geisinger Medical Center, Danville, Pennsylvania, told this news organization that Geisinger Health Plan’s change in May 2023 to lower the BMI surgery eligibility cutoff from 35 kg/m2 to 30 kg/m2 for people with comorbidities was not related to the cost of GLP-1 drugs.

“To date, bariatric surgery remains the most effective, enduring treatment of obesity, and most importantly, its comorbid medical problems. So that was really the reasoning. The weight loss is secondary to the profound medical benefits of bariatric surgery. I think that was the impetus of that change, not having really anything to do at the time with GLP-1s,” Dr. Still said.

The Geisinger Health Plan does not currently cover antiobesity medications, although Geisinger Health Plan Family, a state Medicaid plan, does because Pennsylvania is now one of a handful of states that cover the medications through Medicaid.
 

The Equation Keeps Changing

Health economist James Chambers, PhD, of Tufts University, Boston, Massachusetts, told this news organizations, “when you think about the value of a treatment, you don’t look at it in isolation. You’re looking at the difference in cost and benefits. So now that you have these expensive drugs, it’s not that surgeries become less expensive, but it does make you interpret the cost differently. When diet and exercise and counseling were the only real options, surgeries seemed like a much more expensive intervention. But with the advent of the GLP-1s, then, maybe plans consider the costs of surgery a little bit differently.”

And that equation is likely to change further, Dr. Still noted.

“I just think we’re dealing with a short-term financial problem because there’s basically only two main medications so the prices are high, but as more medications come on the market, the prices will come down,” he said.

Cristy Ms. Gallagher, MPAff, research project director of the STOP Obesity Alliance at the Milken Institute School of Public Health at George Washington University, Washington, DC, agreed.

“We have a lot of data on obesity treatment coverage from before 2023. But then this [GLP-1] explosion happened in 2023…The health payers are out there trying to figure out coverage, and they’re trying to figure out what this is going to look like for them,” Ms. Gallagher said.

However, she pointed out, “there is no treatment that fits everyone. The GLP-1s won’t work for every person because of the different stages of obesity, the side effects, and then because of the coverage. I think that you will not see a decrease in bariatric surgery in the near term, by any means.”

Ms. Gallagher also noted that although the data now suggest people will have to keep taking the drugs for life, there may be other future approaches.

“Once a person hits their goal weight, maybe then they could be transferred to a different pill form that might be cheaper, something that’s sort of more of a maintenance drug. I think that is a huge unknown right now,” she said.

And Mr. Kyle said that while bariatric surgery does provide the most durable benefit, “weight regain after surgery is a fact of life. People are still healthier 5 years later, but they do have some weight regain. And in those cases, you might want to follow-up with medicines…It’s not necessarily an either/or proposition any more than surgical treatment of cancer, surgical oncology is an either/or with medical oncology.”
 

A New View of Obesity

According to Mr. Kyle, all this attention on the new medications “is prompting people to rethink or think differently about obesity and consider it more carefully as a chronic medical condition and not a condition of appearance and behavior. And that’s all good, whether you’re thinking about it from the standpoint of bariatric surgery or from the standpoint of medical treatment of obesity because then people start considering options more rationally.”

This shifting view of obesity has meant that bariatric surgeons and medical obesity specialists are starting to work more collaboratively, he said.

“There is a trend that I detect toward more integrated approaches to obesity,” Mr. Kyle said.

He added, “We now have more tools. And we’re in the messy middle of figuring out how, as a practical matter, to use them.”

And as far as insurance coverage, “people are going to make mistakes. They are making mistakes. But I have been the eternal optimist, and I have faith that people are also figuring it out. It would be hard to do worse.”

For now, any initiatives to increase bariatric surgery rates in the GLP-1 era haven’t yet had an impact, American Society for Metabolic and Bariatric Surgery President Marina S. Kurian, MD, told this news organization in a statement.

“While we have heard of some insurers possibly changing their requirements for bariatric surgery, we have not seen a significant rise in procedures related to changes in insurance coverage for either antiobesity medications or metabolic and bariatric surgery,” Dr. Kurian said.

Mr. Kyle had accepted speaking or professional fees from Novo Nordisk, Behringer Ingelheim, Nutrisystem, Roman Health, and Emerald Lake Safety. Dr. Still was on the speaker’s bureau and did clinical trials for Eli Lilly and Novo Nordisk. Dr. Chambers and Gallagher had no disclosures.

A version of this article appeared on Medscape.com.

Amid rising concern about the potential long-term costs of using glucagon-like peptide 1 (GLP-1) agonists to treat obesity, some insurers are making access to bariatric surgery easier.

While the relationship may not be entirely causal, data do suggest that at least for now, these new agents for treating obesity including semaglutide (Wegovy) and tirzepatide (Zepbound) are not cost-effective, whereas the surgery is.

According to GoodRx, Wegovy (semaglutide) has a list price of about $1350 for a 28-day supply. And the American Society for Metabolic and Bariatric Surgery (ASMBS) said that the average cost of bariatric surgery ranges between $17,000 and $26,000. But ASMBS added that third-party payers will recover those costs within 2-4 years due to reduction or elimination of obesity-related conditions and associated treatment costs, with an approximate 29% healthcare cost reduction at 5 years.

Recently, for example, Geisinger Health of Pennsylvania and Blue Cross/Blue Shield of Massachusetts expanded body mass index (BMI) eligibility for bariatric surgery procedures, while Blue Cross Blue Shield of Michigan dropped prior authorization requirements for several services, including bariatric surgery.

While most major health insurers cover Wegovy for obesity treatment, they typically require prior authorization and/or trials of other therapies first. Recently, some employers have denied coverage for the medications for treating obesity. Medicare does not cover these drugs. Coverage varies across state Medicaid plans.

“For years, insurers…have played games with the surgery, making people jump through hoops, hoping that they would just give up and go away. And now that health plans are getting concerned about [the cost of] drugs for obesity, and they’re getting so much attention, they’re thinking oh, maybe we shouldn’t be playing these games anymore,” obesity policy expert Ted Kyle, RPh, founder of ConscienHealth, told this news organization.

However, Christopher Doubet Still, DO, director of Nutrition and Weight Management at Geisinger Medical Center, Danville, Pennsylvania, told this news organization that Geisinger Health Plan’s change in May 2023 to lower the BMI surgery eligibility cutoff from 35 kg/m2 to 30 kg/m2 for people with comorbidities was not related to the cost of GLP-1 drugs.

“To date, bariatric surgery remains the most effective, enduring treatment of obesity, and most importantly, its comorbid medical problems. So that was really the reasoning. The weight loss is secondary to the profound medical benefits of bariatric surgery. I think that was the impetus of that change, not having really anything to do at the time with GLP-1s,” Dr. Still said.

The Geisinger Health Plan does not currently cover antiobesity medications, although Geisinger Health Plan Family, a state Medicaid plan, does because Pennsylvania is now one of a handful of states that cover the medications through Medicaid.
 

The Equation Keeps Changing

Health economist James Chambers, PhD, of Tufts University, Boston, Massachusetts, told this news organizations, “when you think about the value of a treatment, you don’t look at it in isolation. You’re looking at the difference in cost and benefits. So now that you have these expensive drugs, it’s not that surgeries become less expensive, but it does make you interpret the cost differently. When diet and exercise and counseling were the only real options, surgeries seemed like a much more expensive intervention. But with the advent of the GLP-1s, then, maybe plans consider the costs of surgery a little bit differently.”

And that equation is likely to change further, Dr. Still noted.

“I just think we’re dealing with a short-term financial problem because there’s basically only two main medications so the prices are high, but as more medications come on the market, the prices will come down,” he said.

Cristy Ms. Gallagher, MPAff, research project director of the STOP Obesity Alliance at the Milken Institute School of Public Health at George Washington University, Washington, DC, agreed.

“We have a lot of data on obesity treatment coverage from before 2023. But then this [GLP-1] explosion happened in 2023…The health payers are out there trying to figure out coverage, and they’re trying to figure out what this is going to look like for them,” Ms. Gallagher said.

However, she pointed out, “there is no treatment that fits everyone. The GLP-1s won’t work for every person because of the different stages of obesity, the side effects, and then because of the coverage. I think that you will not see a decrease in bariatric surgery in the near term, by any means.”

Ms. Gallagher also noted that although the data now suggest people will have to keep taking the drugs for life, there may be other future approaches.

“Once a person hits their goal weight, maybe then they could be transferred to a different pill form that might be cheaper, something that’s sort of more of a maintenance drug. I think that is a huge unknown right now,” she said.

And Mr. Kyle said that while bariatric surgery does provide the most durable benefit, “weight regain after surgery is a fact of life. People are still healthier 5 years later, but they do have some weight regain. And in those cases, you might want to follow-up with medicines…It’s not necessarily an either/or proposition any more than surgical treatment of cancer, surgical oncology is an either/or with medical oncology.”
 

A New View of Obesity

According to Mr. Kyle, all this attention on the new medications “is prompting people to rethink or think differently about obesity and consider it more carefully as a chronic medical condition and not a condition of appearance and behavior. And that’s all good, whether you’re thinking about it from the standpoint of bariatric surgery or from the standpoint of medical treatment of obesity because then people start considering options more rationally.”

This shifting view of obesity has meant that bariatric surgeons and medical obesity specialists are starting to work more collaboratively, he said.

“There is a trend that I detect toward more integrated approaches to obesity,” Mr. Kyle said.

He added, “We now have more tools. And we’re in the messy middle of figuring out how, as a practical matter, to use them.”

And as far as insurance coverage, “people are going to make mistakes. They are making mistakes. But I have been the eternal optimist, and I have faith that people are also figuring it out. It would be hard to do worse.”

For now, any initiatives to increase bariatric surgery rates in the GLP-1 era haven’t yet had an impact, American Society for Metabolic and Bariatric Surgery President Marina S. Kurian, MD, told this news organization in a statement.

“While we have heard of some insurers possibly changing their requirements for bariatric surgery, we have not seen a significant rise in procedures related to changes in insurance coverage for either antiobesity medications or metabolic and bariatric surgery,” Dr. Kurian said.

Mr. Kyle had accepted speaking or professional fees from Novo Nordisk, Behringer Ingelheim, Nutrisystem, Roman Health, and Emerald Lake Safety. Dr. Still was on the speaker’s bureau and did clinical trials for Eli Lilly and Novo Nordisk. Dr. Chambers and Gallagher had no disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article