Cardiology News is an independent news source that provides cardiologists with timely and relevant news and commentary about clinical developments and the impact of health care policy on cardiology and the cardiologist's practice. Cardiology News Digital Network is the online destination and multimedia properties of Cardiology News, the independent news publication for cardiologists. Cardiology news is the leading source of news and commentary about clinical developments in cardiology as well as health care policy and regulations that affect the cardiologist's practice. Cardiology News Digital Network is owned by Frontline Medical Communications.

Theme
medstat_card
Top Sections
Resources
Best Practices
card
Main menu
CARD Main Menu
Explore menu
CARD Explore Menu
Proclivity ID
18806001
Unpublish
Altmetric
Article Authors "autobrand" affiliation
Cardiology News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Medical Education Library
Education Center
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Non-Overridden Topics
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
On

Vasculopathy Can Vary in Patients With Idiopathic Pulmonary Arterial Hypertension

Article Type
Changed
Fri, 08/02/2024 - 15:05

Approximately half of adults with idiopathic pulmonary arterial hypertension (IPAH) had nonplexiform vasculopathy characterized in part by severe pulmonary microvascular remodeling, based on data from 50 individuals.

The clinical phenotype of IPAH was historically described as a rapidly progressive rare disease in young women and characterized by plexiform lesions, wrote Esther J. Nossent, MD, of Amsterdam University Medical Centers, Amsterdam, the Netherlands, and colleagues. However, the patient population with IPAH has become older and predominantly men, and the nature of vascular phenotypes and histologic patterns in patients with contemporary IPAH has not been well studied, the researchers said.

In a cross-sectional study published in CHEST, the researchers reviewed lung histology data from 50 adults with IPAH that had been assessed by two experienced pathologists. The mean age of the patients was 52 years and 58% were women. Based on a histopathologic evaluation, 24 patients had nonplexiform vasculopathy (48%) and 26 had plexiform vasculopathy (52%). Notably, microvascular remodeling involving arterioles and venules was substantial in patients with nonplexiform vasculopathy but mild or absent in those with plexiform vasculopathy, the researchers wrote.

The researchers also compared the clinical characteristics of patients with plexiform vs nonplexiform vasculopathy. Hemodynamic parameters were similar in both patient groups. However, those with nonplexiform vasculopathy were significantly older than those with plexiform vasculopathy (60 years vs 44 years), were more likely to be men (67% vs 20%), and had a lower diffusing capacity of the lungs for carbon monoxide (DLCO) at diagnosis (all P < .001). Patients with nonplexiform vasculopathy also were significantly more likely than those with plexiform vasculopathy to have a history of smoking (P = .03). Genetic testing revealed no mutations in established PAH genes in the nonplexiform group.

Low DLCO has been associated with worse outcomes regardless of hemodynamic response, the researchers noted. In the current study, “a DLCO of < 45% almost perfectly identified patients with nonplexiform vasculopathy with prominent pulmonary microvascular disease,” they said.

The findings were limited by several factors, including the small study population and the higher frequency of surgical lung biopsies in the nonplexiform group vs the plexiform group, which is not part of the general workup of patients with IPAH, the researchers noted.

More research is needed to better define the subgroup of patients with IPAH with nonplexiform vasculopathy and to identify the causes, biological features, and treatment approaches for these patients, they said. However, the results suggest that differences between patients with IPAH with plexiform vasculopathy and those with nonplexiform vasculopathy could ultimately inform targeted treatment strategies.

“Recognizing these clinical phenotypes allows revisiting current datasets to understand better the potential future clinical consequences of the vascular phenotypes for treatment response and clinical outcome,” the researchers concluded.
 

Findings May Inform More Targeted Therapy

“Any investigation that adds substantive insight into a complex disease that can translate into a better understanding of clinical patient phenotypes and eventually into improved treatments and patient outcomes has relevance at any time,” Paul Forfia, MD, professor of medicine at the Lewis Katz School of Medicine at Temple University, Philadelphia, said in an interview.

“There is focus on the antiproliferative forms of pulmonary arterial hypertension–specific therapy, and the results of the current study may have implications to these therapies,” said Dr. Forfia, who was not involved in the current study.

“In the current study, the investigators show that 48% of patients that were traditionally categorized as IPAH had a vascular phenotype that is not considered ‘typical’ or classic for IPAH,” Dr. Forfia told this news organization. “These findings highlight a significant heterogeneity of the pulmonary vascular phenotype within IPAH, which raises the question of whether the nonplexiform patient would be less responsive to the novel, antiproliferative forms of therapy,” he said.

The new findings are quite interesting but not surprising, Dr. Forfia said. “The World Symposia diagnostic groupings for pulmonary hypertension are a very important and necessary form of categorization and differentiation amongst forms of PH [pulmonary hypertension], and these groupings make a best attempt based on available evidence to separate patients of varying PH pathophysiology, both in terms of diagnosis and in how PH patients are treated,” he explained.

“However, clinical experts in PH have known that subphenotypes of PH pathophysiology exist within group I PAH, as well as in PH related to left heart disease (group 2), chronic respiratory disease (group 3), and chronic thromboembolic disease (group 4),” he said.

Findings from the current study reinforce the importance of clinical and physiological phenotyping of each patient, which can help in terms of therapy selection and in managing expectations in response to therapy, Dr. Forfia added.

“Perhaps the most evident and important clinical implication from the current study is to remind clinicians treating patients with PH that heterogeneity exists within the vascular phenotype and clinical makeup of patients even within the same type of PAH,” Dr. Forfia said. “With this insight, clinicians are more informed and thus more apt to consider nuances in the diagnosis, treatment, and expectations for treatment response within PAH,” he said.

Dr. Forfia also highlighted the potential implications of the association between cigarette smoking and the nonplexiform vascular phenotype. “This association was present in the absence of radiographic evidence of emphysema and raises the provocative notion that cigarette smoking may lead to pulmonary vascular abnormalities, perhaps even PAH, in patients without a diagnosis of emphysema,” he said.

“An important limitation from the current study is that the vascular phenotypes observed within their cohort of IPAH patients were obtained from histopathology specimens at the time of autopsy, explant at the time of lung transplantation, and surgical lung biopsy spanning over a 22-year period,” Dr. Forfia noted. Additional research is needed to explore how vascular phenotypic differences can be appreciated in the absence of histopathology and how these differences could impact therapy selection and patient outcomes, he said.

The study received no outside funding. Dr. Nossent disclosed receiving speaker fees from Janssen, MSD, and United Therapeutics/Ferrer and consulting fees from Janssen and United Therapeutics/Ferrer. Dr. Forfia had no financial conflicts to disclose.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Approximately half of adults with idiopathic pulmonary arterial hypertension (IPAH) had nonplexiform vasculopathy characterized in part by severe pulmonary microvascular remodeling, based on data from 50 individuals.

The clinical phenotype of IPAH was historically described as a rapidly progressive rare disease in young women and characterized by plexiform lesions, wrote Esther J. Nossent, MD, of Amsterdam University Medical Centers, Amsterdam, the Netherlands, and colleagues. However, the patient population with IPAH has become older and predominantly men, and the nature of vascular phenotypes and histologic patterns in patients with contemporary IPAH has not been well studied, the researchers said.

In a cross-sectional study published in CHEST, the researchers reviewed lung histology data from 50 adults with IPAH that had been assessed by two experienced pathologists. The mean age of the patients was 52 years and 58% were women. Based on a histopathologic evaluation, 24 patients had nonplexiform vasculopathy (48%) and 26 had plexiform vasculopathy (52%). Notably, microvascular remodeling involving arterioles and venules was substantial in patients with nonplexiform vasculopathy but mild or absent in those with plexiform vasculopathy, the researchers wrote.

The researchers also compared the clinical characteristics of patients with plexiform vs nonplexiform vasculopathy. Hemodynamic parameters were similar in both patient groups. However, those with nonplexiform vasculopathy were significantly older than those with plexiform vasculopathy (60 years vs 44 years), were more likely to be men (67% vs 20%), and had a lower diffusing capacity of the lungs for carbon monoxide (DLCO) at diagnosis (all P < .001). Patients with nonplexiform vasculopathy also were significantly more likely than those with plexiform vasculopathy to have a history of smoking (P = .03). Genetic testing revealed no mutations in established PAH genes in the nonplexiform group.

Low DLCO has been associated with worse outcomes regardless of hemodynamic response, the researchers noted. In the current study, “a DLCO of < 45% almost perfectly identified patients with nonplexiform vasculopathy with prominent pulmonary microvascular disease,” they said.

The findings were limited by several factors, including the small study population and the higher frequency of surgical lung biopsies in the nonplexiform group vs the plexiform group, which is not part of the general workup of patients with IPAH, the researchers noted.

More research is needed to better define the subgroup of patients with IPAH with nonplexiform vasculopathy and to identify the causes, biological features, and treatment approaches for these patients, they said. However, the results suggest that differences between patients with IPAH with plexiform vasculopathy and those with nonplexiform vasculopathy could ultimately inform targeted treatment strategies.

“Recognizing these clinical phenotypes allows revisiting current datasets to understand better the potential future clinical consequences of the vascular phenotypes for treatment response and clinical outcome,” the researchers concluded.
 

Findings May Inform More Targeted Therapy

“Any investigation that adds substantive insight into a complex disease that can translate into a better understanding of clinical patient phenotypes and eventually into improved treatments and patient outcomes has relevance at any time,” Paul Forfia, MD, professor of medicine at the Lewis Katz School of Medicine at Temple University, Philadelphia, said in an interview.

“There is focus on the antiproliferative forms of pulmonary arterial hypertension–specific therapy, and the results of the current study may have implications to these therapies,” said Dr. Forfia, who was not involved in the current study.

“In the current study, the investigators show that 48% of patients that were traditionally categorized as IPAH had a vascular phenotype that is not considered ‘typical’ or classic for IPAH,” Dr. Forfia told this news organization. “These findings highlight a significant heterogeneity of the pulmonary vascular phenotype within IPAH, which raises the question of whether the nonplexiform patient would be less responsive to the novel, antiproliferative forms of therapy,” he said.

The new findings are quite interesting but not surprising, Dr. Forfia said. “The World Symposia diagnostic groupings for pulmonary hypertension are a very important and necessary form of categorization and differentiation amongst forms of PH [pulmonary hypertension], and these groupings make a best attempt based on available evidence to separate patients of varying PH pathophysiology, both in terms of diagnosis and in how PH patients are treated,” he explained.

“However, clinical experts in PH have known that subphenotypes of PH pathophysiology exist within group I PAH, as well as in PH related to left heart disease (group 2), chronic respiratory disease (group 3), and chronic thromboembolic disease (group 4),” he said.

Findings from the current study reinforce the importance of clinical and physiological phenotyping of each patient, which can help in terms of therapy selection and in managing expectations in response to therapy, Dr. Forfia added.

“Perhaps the most evident and important clinical implication from the current study is to remind clinicians treating patients with PH that heterogeneity exists within the vascular phenotype and clinical makeup of patients even within the same type of PAH,” Dr. Forfia said. “With this insight, clinicians are more informed and thus more apt to consider nuances in the diagnosis, treatment, and expectations for treatment response within PAH,” he said.

Dr. Forfia also highlighted the potential implications of the association between cigarette smoking and the nonplexiform vascular phenotype. “This association was present in the absence of radiographic evidence of emphysema and raises the provocative notion that cigarette smoking may lead to pulmonary vascular abnormalities, perhaps even PAH, in patients without a diagnosis of emphysema,” he said.

“An important limitation from the current study is that the vascular phenotypes observed within their cohort of IPAH patients were obtained from histopathology specimens at the time of autopsy, explant at the time of lung transplantation, and surgical lung biopsy spanning over a 22-year period,” Dr. Forfia noted. Additional research is needed to explore how vascular phenotypic differences can be appreciated in the absence of histopathology and how these differences could impact therapy selection and patient outcomes, he said.

The study received no outside funding. Dr. Nossent disclosed receiving speaker fees from Janssen, MSD, and United Therapeutics/Ferrer and consulting fees from Janssen and United Therapeutics/Ferrer. Dr. Forfia had no financial conflicts to disclose.

A version of this article first appeared on Medscape.com.

Approximately half of adults with idiopathic pulmonary arterial hypertension (IPAH) had nonplexiform vasculopathy characterized in part by severe pulmonary microvascular remodeling, based on data from 50 individuals.

The clinical phenotype of IPAH was historically described as a rapidly progressive rare disease in young women and characterized by plexiform lesions, wrote Esther J. Nossent, MD, of Amsterdam University Medical Centers, Amsterdam, the Netherlands, and colleagues. However, the patient population with IPAH has become older and predominantly men, and the nature of vascular phenotypes and histologic patterns in patients with contemporary IPAH has not been well studied, the researchers said.

In a cross-sectional study published in CHEST, the researchers reviewed lung histology data from 50 adults with IPAH that had been assessed by two experienced pathologists. The mean age of the patients was 52 years and 58% were women. Based on a histopathologic evaluation, 24 patients had nonplexiform vasculopathy (48%) and 26 had plexiform vasculopathy (52%). Notably, microvascular remodeling involving arterioles and venules was substantial in patients with nonplexiform vasculopathy but mild or absent in those with plexiform vasculopathy, the researchers wrote.

The researchers also compared the clinical characteristics of patients with plexiform vs nonplexiform vasculopathy. Hemodynamic parameters were similar in both patient groups. However, those with nonplexiform vasculopathy were significantly older than those with plexiform vasculopathy (60 years vs 44 years), were more likely to be men (67% vs 20%), and had a lower diffusing capacity of the lungs for carbon monoxide (DLCO) at diagnosis (all P < .001). Patients with nonplexiform vasculopathy also were significantly more likely than those with plexiform vasculopathy to have a history of smoking (P = .03). Genetic testing revealed no mutations in established PAH genes in the nonplexiform group.

Low DLCO has been associated with worse outcomes regardless of hemodynamic response, the researchers noted. In the current study, “a DLCO of < 45% almost perfectly identified patients with nonplexiform vasculopathy with prominent pulmonary microvascular disease,” they said.

The findings were limited by several factors, including the small study population and the higher frequency of surgical lung biopsies in the nonplexiform group vs the plexiform group, which is not part of the general workup of patients with IPAH, the researchers noted.

More research is needed to better define the subgroup of patients with IPAH with nonplexiform vasculopathy and to identify the causes, biological features, and treatment approaches for these patients, they said. However, the results suggest that differences between patients with IPAH with plexiform vasculopathy and those with nonplexiform vasculopathy could ultimately inform targeted treatment strategies.

“Recognizing these clinical phenotypes allows revisiting current datasets to understand better the potential future clinical consequences of the vascular phenotypes for treatment response and clinical outcome,” the researchers concluded.
 

Findings May Inform More Targeted Therapy

“Any investigation that adds substantive insight into a complex disease that can translate into a better understanding of clinical patient phenotypes and eventually into improved treatments and patient outcomes has relevance at any time,” Paul Forfia, MD, professor of medicine at the Lewis Katz School of Medicine at Temple University, Philadelphia, said in an interview.

“There is focus on the antiproliferative forms of pulmonary arterial hypertension–specific therapy, and the results of the current study may have implications to these therapies,” said Dr. Forfia, who was not involved in the current study.

“In the current study, the investigators show that 48% of patients that were traditionally categorized as IPAH had a vascular phenotype that is not considered ‘typical’ or classic for IPAH,” Dr. Forfia told this news organization. “These findings highlight a significant heterogeneity of the pulmonary vascular phenotype within IPAH, which raises the question of whether the nonplexiform patient would be less responsive to the novel, antiproliferative forms of therapy,” he said.

The new findings are quite interesting but not surprising, Dr. Forfia said. “The World Symposia diagnostic groupings for pulmonary hypertension are a very important and necessary form of categorization and differentiation amongst forms of PH [pulmonary hypertension], and these groupings make a best attempt based on available evidence to separate patients of varying PH pathophysiology, both in terms of diagnosis and in how PH patients are treated,” he explained.

“However, clinical experts in PH have known that subphenotypes of PH pathophysiology exist within group I PAH, as well as in PH related to left heart disease (group 2), chronic respiratory disease (group 3), and chronic thromboembolic disease (group 4),” he said.

Findings from the current study reinforce the importance of clinical and physiological phenotyping of each patient, which can help in terms of therapy selection and in managing expectations in response to therapy, Dr. Forfia added.

“Perhaps the most evident and important clinical implication from the current study is to remind clinicians treating patients with PH that heterogeneity exists within the vascular phenotype and clinical makeup of patients even within the same type of PAH,” Dr. Forfia said. “With this insight, clinicians are more informed and thus more apt to consider nuances in the diagnosis, treatment, and expectations for treatment response within PAH,” he said.

Dr. Forfia also highlighted the potential implications of the association between cigarette smoking and the nonplexiform vascular phenotype. “This association was present in the absence of radiographic evidence of emphysema and raises the provocative notion that cigarette smoking may lead to pulmonary vascular abnormalities, perhaps even PAH, in patients without a diagnosis of emphysema,” he said.

“An important limitation from the current study is that the vascular phenotypes observed within their cohort of IPAH patients were obtained from histopathology specimens at the time of autopsy, explant at the time of lung transplantation, and surgical lung biopsy spanning over a 22-year period,” Dr. Forfia noted. Additional research is needed to explore how vascular phenotypic differences can be appreciated in the absence of histopathology and how these differences could impact therapy selection and patient outcomes, he said.

The study received no outside funding. Dr. Nossent disclosed receiving speaker fees from Janssen, MSD, and United Therapeutics/Ferrer and consulting fees from Janssen and United Therapeutics/Ferrer. Dr. Forfia had no financial conflicts to disclose.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Insurers’ Rules and AI for Preauthorization: ‘Ethically Nuts,’ Says Ethicist

Article Type
Changed
Thu, 08/01/2024 - 12:24

This transcript has been edited for clarity

Hi. I’m Art Caplan. I’m at the Division of Medical Ethics at New York University Grossman School of Medicine in New York City. 

There are many things screwy with our healthcare system. Many of you [reading] this are dealing with bureaucracy, paperwork, all sorts of constraints, restraints, and requirements that sometimes make the practice of medicine, or even nursing, difficult.

I don’t think I’ve seen anything screwier, from a moral point of view, than the system we have that allows for preauthorization by third-party payers, or insurers, in order to give care to patients. It’s pretty clear that a third-party payer has a conflict of interest. It’s simple: They don’t want to spend money.

Their goal as profit-making companies is to reduce what it is that they’re going to authorize. That clearly is driving how the preauthorization process works. We’re not getting a neutral review by third parties of the appropriateness of treatment recommendations or somebody saying, this is the standard of care and this is what ought to happen.

We’re letting the people who have the pocketbooks and the wallets have prior approval of what the doctor thinks is correct. That is really not the way to practice medicine. 

We now have more evidence about what really is going on. A doctor was recently interviewed by ProPublica and said that she had worked for Cigna as a reviewer. Basically, the message she got from that insurer was to speed it up, go fast, and basically “deny, deny, deny” when she got requests. Those are her words, not mine.

We get a peek under the tent of how this works, and Dr. Day is basically saying she had to leave because she just didn’t feel that it was evidence-driven. It was driven by concerns about who’s going to lose money or make money.

If you want to check to see whether something is appropriate, the question becomes, who ought to do prior review? 

Who does it now? Sometimes doctors. Sometimes nurses who aren’t in the specialty where the request is coming in for preapproval. I’ve even seen situations where some companies use nurses in other countries, such as the Philippines, to do preapproval. They send them information, like a clip, to use to deny things that basically is boilerplate language, whatever the request is.

Looming up now, some insurers are starting to think, well, maybe artificial intelligence could do it. Just review the written request, trigger certain responses on the part of the artificial intelligence — it can deny the claims just as well as a human — and maybe it’s even cheaper to set up that system for the insurer.

This is ethically nuts. We need to have a system where doctors’ judgments drive what patients get. You listen to doctors, as I do, about preapproval access and they say patients sometimes give up trying to get what they think is needed. Continuity of care is interrupted if they have to keep making requests all the time.

There are adverse events when the thing that the doctor thought was most appropriate isn’t approved and something else is used that is less safe or less efficacious. It isn’t in patient interest to have the person with the wallet saying, this is what we think you need, and then having unqualified people or even automated intelligence with no accountability and no transparency get involved in preauthorization.

This system costs us money because middlemen are doing all this work. It basically becomes one of the huge scandals, in my view, of our health system, that doctors don’t ultimately decide what the patient needs. A preauthorizing third party or robot, without transparency, without accountability, and behind closed doors second-guesses what’s going on.

I’m Art Caplan at the Division of Medical Ethics at the New York University Grossman School of Medicine.

Arthur L. Caplan, Director, Division of Medical Ethics, New York University Langone Medical Center, New York, New York, has disclosed the following relevant financial relationships: Served as a director, officer, partner, employee, advisor, consultant, or trustee for Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position). Serves as a contributing author and advisor for Medscape.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity

Hi. I’m Art Caplan. I’m at the Division of Medical Ethics at New York University Grossman School of Medicine in New York City. 

There are many things screwy with our healthcare system. Many of you [reading] this are dealing with bureaucracy, paperwork, all sorts of constraints, restraints, and requirements that sometimes make the practice of medicine, or even nursing, difficult.

I don’t think I’ve seen anything screwier, from a moral point of view, than the system we have that allows for preauthorization by third-party payers, or insurers, in order to give care to patients. It’s pretty clear that a third-party payer has a conflict of interest. It’s simple: They don’t want to spend money.

Their goal as profit-making companies is to reduce what it is that they’re going to authorize. That clearly is driving how the preauthorization process works. We’re not getting a neutral review by third parties of the appropriateness of treatment recommendations or somebody saying, this is the standard of care and this is what ought to happen.

We’re letting the people who have the pocketbooks and the wallets have prior approval of what the doctor thinks is correct. That is really not the way to practice medicine. 

We now have more evidence about what really is going on. A doctor was recently interviewed by ProPublica and said that she had worked for Cigna as a reviewer. Basically, the message she got from that insurer was to speed it up, go fast, and basically “deny, deny, deny” when she got requests. Those are her words, not mine.

We get a peek under the tent of how this works, and Dr. Day is basically saying she had to leave because she just didn’t feel that it was evidence-driven. It was driven by concerns about who’s going to lose money or make money.

If you want to check to see whether something is appropriate, the question becomes, who ought to do prior review? 

Who does it now? Sometimes doctors. Sometimes nurses who aren’t in the specialty where the request is coming in for preapproval. I’ve even seen situations where some companies use nurses in other countries, such as the Philippines, to do preapproval. They send them information, like a clip, to use to deny things that basically is boilerplate language, whatever the request is.

Looming up now, some insurers are starting to think, well, maybe artificial intelligence could do it. Just review the written request, trigger certain responses on the part of the artificial intelligence — it can deny the claims just as well as a human — and maybe it’s even cheaper to set up that system for the insurer.

This is ethically nuts. We need to have a system where doctors’ judgments drive what patients get. You listen to doctors, as I do, about preapproval access and they say patients sometimes give up trying to get what they think is needed. Continuity of care is interrupted if they have to keep making requests all the time.

There are adverse events when the thing that the doctor thought was most appropriate isn’t approved and something else is used that is less safe or less efficacious. It isn’t in patient interest to have the person with the wallet saying, this is what we think you need, and then having unqualified people or even automated intelligence with no accountability and no transparency get involved in preauthorization.

This system costs us money because middlemen are doing all this work. It basically becomes one of the huge scandals, in my view, of our health system, that doctors don’t ultimately decide what the patient needs. A preauthorizing third party or robot, without transparency, without accountability, and behind closed doors second-guesses what’s going on.

I’m Art Caplan at the Division of Medical Ethics at the New York University Grossman School of Medicine.

Arthur L. Caplan, Director, Division of Medical Ethics, New York University Langone Medical Center, New York, New York, has disclosed the following relevant financial relationships: Served as a director, officer, partner, employee, advisor, consultant, or trustee for Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position). Serves as a contributing author and advisor for Medscape.

A version of this article first appeared on Medscape.com.

This transcript has been edited for clarity

Hi. I’m Art Caplan. I’m at the Division of Medical Ethics at New York University Grossman School of Medicine in New York City. 

There are many things screwy with our healthcare system. Many of you [reading] this are dealing with bureaucracy, paperwork, all sorts of constraints, restraints, and requirements that sometimes make the practice of medicine, or even nursing, difficult.

I don’t think I’ve seen anything screwier, from a moral point of view, than the system we have that allows for preauthorization by third-party payers, or insurers, in order to give care to patients. It’s pretty clear that a third-party payer has a conflict of interest. It’s simple: They don’t want to spend money.

Their goal as profit-making companies is to reduce what it is that they’re going to authorize. That clearly is driving how the preauthorization process works. We’re not getting a neutral review by third parties of the appropriateness of treatment recommendations or somebody saying, this is the standard of care and this is what ought to happen.

We’re letting the people who have the pocketbooks and the wallets have prior approval of what the doctor thinks is correct. That is really not the way to practice medicine. 

We now have more evidence about what really is going on. A doctor was recently interviewed by ProPublica and said that she had worked for Cigna as a reviewer. Basically, the message she got from that insurer was to speed it up, go fast, and basically “deny, deny, deny” when she got requests. Those are her words, not mine.

We get a peek under the tent of how this works, and Dr. Day is basically saying she had to leave because she just didn’t feel that it was evidence-driven. It was driven by concerns about who’s going to lose money or make money.

If you want to check to see whether something is appropriate, the question becomes, who ought to do prior review? 

Who does it now? Sometimes doctors. Sometimes nurses who aren’t in the specialty where the request is coming in for preapproval. I’ve even seen situations where some companies use nurses in other countries, such as the Philippines, to do preapproval. They send them information, like a clip, to use to deny things that basically is boilerplate language, whatever the request is.

Looming up now, some insurers are starting to think, well, maybe artificial intelligence could do it. Just review the written request, trigger certain responses on the part of the artificial intelligence — it can deny the claims just as well as a human — and maybe it’s even cheaper to set up that system for the insurer.

This is ethically nuts. We need to have a system where doctors’ judgments drive what patients get. You listen to doctors, as I do, about preapproval access and they say patients sometimes give up trying to get what they think is needed. Continuity of care is interrupted if they have to keep making requests all the time.

There are adverse events when the thing that the doctor thought was most appropriate isn’t approved and something else is used that is less safe or less efficacious. It isn’t in patient interest to have the person with the wallet saying, this is what we think you need, and then having unqualified people or even automated intelligence with no accountability and no transparency get involved in preauthorization.

This system costs us money because middlemen are doing all this work. It basically becomes one of the huge scandals, in my view, of our health system, that doctors don’t ultimately decide what the patient needs. A preauthorizing third party or robot, without transparency, without accountability, and behind closed doors second-guesses what’s going on.

I’m Art Caplan at the Division of Medical Ethics at the New York University Grossman School of Medicine.

Arthur L. Caplan, Director, Division of Medical Ethics, New York University Langone Medical Center, New York, New York, has disclosed the following relevant financial relationships: Served as a director, officer, partner, employee, advisor, consultant, or trustee for Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position). Serves as a contributing author and advisor for Medscape.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Study Says Your Sedentary Lifestyle Is Killing You

Article Type
Changed
Thu, 08/01/2024 - 11:13

 

TOPLINE:

A less favorable balance between physical activity (PA) and sitting time (ST) is associated with a higher risk for all-cause mortality.

METHODOLOGY:

  • Researchers evaluated the association between PA and ST with the risk for mortality in 5836 middle-aged and older Australian adults (mean age, 56.4 years; 45% men) from the Australian Diabetes, Obesity and Lifestyle Study.
  • The Physical Activity and Sitting Time Balance Index (PASTBI) was calculated by dividing the total duration of daily PA by the duration of daily ST.
  • Participants were categorized into quartiles on the basis of their PASTBI score, ranging from low PA/high ST to high PA/low ST.
  • The primary outcome was all-cause mortality.

TAKEAWAY:

  • During a median follow-up time of 14.3 years, 885 (15%) all-cause deaths were reported.
  • The risk for all-cause mortality was 47% higher in participants with lower engagement in PA and higher ST (low PASTBI) than those with higher engagement in PA and lower ST (high PASTBI; adjusted hazard ratio, 1.47; 95% confidence interval, 1.21-1.79).

IN PRACTICE:

“The utility of the PASTBI in identifying relationships with mortality risk further highlights the importance of achieving a healthier balance in the dual health behaviors of PA [physical activity] and ST [sitting time],” the authors wrote.

SOURCE:

The study was led by Roslin Botlero, MBBS, MPH, PhD, of the School of Public Health and Preventive Medicine at Monash University in Melbourne, Australia. It was published online in the American Journal of Preventive Medicine.

LIMITATIONS:

The study relied on self-reported data for PA and ST, which may have introduced recall or reporting bias. The generalizability of the findings is restricted to a specific set of self-reported questionnaires. Even after adjustment for several potential confounders, other unmeasured or unknown confounders may have influenced the association between PASTBI and all-cause mortality.
 

DISCLOSURES:

The Australian Diabetes, Obesity and Lifestyle Study was sponsored by the National Health and Medical Research Council, the Australian Government Department of Health and Aged Care, and others. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A less favorable balance between physical activity (PA) and sitting time (ST) is associated with a higher risk for all-cause mortality.

METHODOLOGY:

  • Researchers evaluated the association between PA and ST with the risk for mortality in 5836 middle-aged and older Australian adults (mean age, 56.4 years; 45% men) from the Australian Diabetes, Obesity and Lifestyle Study.
  • The Physical Activity and Sitting Time Balance Index (PASTBI) was calculated by dividing the total duration of daily PA by the duration of daily ST.
  • Participants were categorized into quartiles on the basis of their PASTBI score, ranging from low PA/high ST to high PA/low ST.
  • The primary outcome was all-cause mortality.

TAKEAWAY:

  • During a median follow-up time of 14.3 years, 885 (15%) all-cause deaths were reported.
  • The risk for all-cause mortality was 47% higher in participants with lower engagement in PA and higher ST (low PASTBI) than those with higher engagement in PA and lower ST (high PASTBI; adjusted hazard ratio, 1.47; 95% confidence interval, 1.21-1.79).

IN PRACTICE:

“The utility of the PASTBI in identifying relationships with mortality risk further highlights the importance of achieving a healthier balance in the dual health behaviors of PA [physical activity] and ST [sitting time],” the authors wrote.

SOURCE:

The study was led by Roslin Botlero, MBBS, MPH, PhD, of the School of Public Health and Preventive Medicine at Monash University in Melbourne, Australia. It was published online in the American Journal of Preventive Medicine.

LIMITATIONS:

The study relied on self-reported data for PA and ST, which may have introduced recall or reporting bias. The generalizability of the findings is restricted to a specific set of self-reported questionnaires. Even after adjustment for several potential confounders, other unmeasured or unknown confounders may have influenced the association between PASTBI and all-cause mortality.
 

DISCLOSURES:

The Australian Diabetes, Obesity and Lifestyle Study was sponsored by the National Health and Medical Research Council, the Australian Government Department of Health and Aged Care, and others. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

A less favorable balance between physical activity (PA) and sitting time (ST) is associated with a higher risk for all-cause mortality.

METHODOLOGY:

  • Researchers evaluated the association between PA and ST with the risk for mortality in 5836 middle-aged and older Australian adults (mean age, 56.4 years; 45% men) from the Australian Diabetes, Obesity and Lifestyle Study.
  • The Physical Activity and Sitting Time Balance Index (PASTBI) was calculated by dividing the total duration of daily PA by the duration of daily ST.
  • Participants were categorized into quartiles on the basis of their PASTBI score, ranging from low PA/high ST to high PA/low ST.
  • The primary outcome was all-cause mortality.

TAKEAWAY:

  • During a median follow-up time of 14.3 years, 885 (15%) all-cause deaths were reported.
  • The risk for all-cause mortality was 47% higher in participants with lower engagement in PA and higher ST (low PASTBI) than those with higher engagement in PA and lower ST (high PASTBI; adjusted hazard ratio, 1.47; 95% confidence interval, 1.21-1.79).

IN PRACTICE:

“The utility of the PASTBI in identifying relationships with mortality risk further highlights the importance of achieving a healthier balance in the dual health behaviors of PA [physical activity] and ST [sitting time],” the authors wrote.

SOURCE:

The study was led by Roslin Botlero, MBBS, MPH, PhD, of the School of Public Health and Preventive Medicine at Monash University in Melbourne, Australia. It was published online in the American Journal of Preventive Medicine.

LIMITATIONS:

The study relied on self-reported data for PA and ST, which may have introduced recall or reporting bias. The generalizability of the findings is restricted to a specific set of self-reported questionnaires. Even after adjustment for several potential confounders, other unmeasured or unknown confounders may have influenced the association between PASTBI and all-cause mortality.
 

DISCLOSURES:

The Australian Diabetes, Obesity and Lifestyle Study was sponsored by the National Health and Medical Research Council, the Australian Government Department of Health and Aged Care, and others. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

HDL Cholesterol Increases Kidney Disease Risk in T2D

Article Type
Changed
Thu, 08/01/2024 - 10:47

 

TOPLINE:

Very high and very low levels of high-density lipoprotein cholesterol (HDL-C) are linked to a higher risk for kidney disease in women with type 2 diabetes (T2D), but not in men.

METHODOLOGY:

  • Studies have reported a strong association between low HDL-C levels and the risk for diabetic kidney disease, but whether higher HDL-C levels can influence the risk for diabetic kidney disease remains unclear.
  • Researchers conducted a cross-sectional observational study of 936 patients with T2D (mean age, about 60 years; 41% women; 33% with diabetic kidney disease) from the Endocrinology Department at the Jinhua Hospital between September 2020 and July 2021.
  • To examine the relationship between HDL-C levels and the risk for diabetic kidney disease, researchers used logistic regression to assess the continuous and categorical associations and a restricted cubic spline curve to assess the nonlinear association.
  • HDL-C levels were categorized into four groups, with 0.40-0.96 mmol/L corresponding to the lowest quartile and 1.32-6.27 mmol/L corresponding to the highest quartile.
  • The researchers observed a U-shaped association between HDL-C levels and the risk for diabetic kidney disease (Pnonlinear = .010) and selected two threshold values of 0.95 and 1.54 mmol/L.

TAKEAWAY:

  • The risk for diabetic kidney disease was higher when the HDL-C levels were < 0.95 mmol/L or > 1.54 mmol/L.
  • Compared with patients with HDL-C levels in the range of 0.95-1.54 mmol/L, those with very high and very low HDL-C levels had a 128% and 77% increased risk for diabetic kidney disease, respectively.
  • The association was significant in women (P = .006) and not in men (P = .054), after adjusting for confounding factors.
  • HDL-C level as a continuous variable was not associated with the risk for kidney disease (P = .902).

IN PRACTICE:

“Although HDL-C is generally considered a cardiovascular protective factor, at very high levels, this protective effect does not seem to hold true and may be associated with an increased DKD [diabetic kidney disease] risk,” the authors wrote.

SOURCE:

This study was led by Huabin Wang, from the Department of Clinical Laboratory, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China, and was published online in Scientific Reports.

LIMITATIONS:

The cross-sectional nature of the study limited the ability to establish a causal relationship between high HDL-C levels and the risk for diabetic kidney disease. The sample size of the study was relatively small at the higher end of the HDL-C concentration spectrum. Moreover, the study did not consider other potential confounding factors such as diet, sedentary lifestyle, obesity, genetic diseases, drug effects on HDL-C levels, and fluctuating estrogen levels, which could affect the overall findings.

DISCLOSURES:

The study was funded by the Department of Science and Technology of Zhejiang Province, China, and The Science and Technology Bureau of Jinhua City. The authors declared no competing interests.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Very high and very low levels of high-density lipoprotein cholesterol (HDL-C) are linked to a higher risk for kidney disease in women with type 2 diabetes (T2D), but not in men.

METHODOLOGY:

  • Studies have reported a strong association between low HDL-C levels and the risk for diabetic kidney disease, but whether higher HDL-C levels can influence the risk for diabetic kidney disease remains unclear.
  • Researchers conducted a cross-sectional observational study of 936 patients with T2D (mean age, about 60 years; 41% women; 33% with diabetic kidney disease) from the Endocrinology Department at the Jinhua Hospital between September 2020 and July 2021.
  • To examine the relationship between HDL-C levels and the risk for diabetic kidney disease, researchers used logistic regression to assess the continuous and categorical associations and a restricted cubic spline curve to assess the nonlinear association.
  • HDL-C levels were categorized into four groups, with 0.40-0.96 mmol/L corresponding to the lowest quartile and 1.32-6.27 mmol/L corresponding to the highest quartile.
  • The researchers observed a U-shaped association between HDL-C levels and the risk for diabetic kidney disease (Pnonlinear = .010) and selected two threshold values of 0.95 and 1.54 mmol/L.

TAKEAWAY:

  • The risk for diabetic kidney disease was higher when the HDL-C levels were < 0.95 mmol/L or > 1.54 mmol/L.
  • Compared with patients with HDL-C levels in the range of 0.95-1.54 mmol/L, those with very high and very low HDL-C levels had a 128% and 77% increased risk for diabetic kidney disease, respectively.
  • The association was significant in women (P = .006) and not in men (P = .054), after adjusting for confounding factors.
  • HDL-C level as a continuous variable was not associated with the risk for kidney disease (P = .902).

IN PRACTICE:

“Although HDL-C is generally considered a cardiovascular protective factor, at very high levels, this protective effect does not seem to hold true and may be associated with an increased DKD [diabetic kidney disease] risk,” the authors wrote.

SOURCE:

This study was led by Huabin Wang, from the Department of Clinical Laboratory, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China, and was published online in Scientific Reports.

LIMITATIONS:

The cross-sectional nature of the study limited the ability to establish a causal relationship between high HDL-C levels and the risk for diabetic kidney disease. The sample size of the study was relatively small at the higher end of the HDL-C concentration spectrum. Moreover, the study did not consider other potential confounding factors such as diet, sedentary lifestyle, obesity, genetic diseases, drug effects on HDL-C levels, and fluctuating estrogen levels, which could affect the overall findings.

DISCLOSURES:

The study was funded by the Department of Science and Technology of Zhejiang Province, China, and The Science and Technology Bureau of Jinhua City. The authors declared no competing interests.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Very high and very low levels of high-density lipoprotein cholesterol (HDL-C) are linked to a higher risk for kidney disease in women with type 2 diabetes (T2D), but not in men.

METHODOLOGY:

  • Studies have reported a strong association between low HDL-C levels and the risk for diabetic kidney disease, but whether higher HDL-C levels can influence the risk for diabetic kidney disease remains unclear.
  • Researchers conducted a cross-sectional observational study of 936 patients with T2D (mean age, about 60 years; 41% women; 33% with diabetic kidney disease) from the Endocrinology Department at the Jinhua Hospital between September 2020 and July 2021.
  • To examine the relationship between HDL-C levels and the risk for diabetic kidney disease, researchers used logistic regression to assess the continuous and categorical associations and a restricted cubic spline curve to assess the nonlinear association.
  • HDL-C levels were categorized into four groups, with 0.40-0.96 mmol/L corresponding to the lowest quartile and 1.32-6.27 mmol/L corresponding to the highest quartile.
  • The researchers observed a U-shaped association between HDL-C levels and the risk for diabetic kidney disease (Pnonlinear = .010) and selected two threshold values of 0.95 and 1.54 mmol/L.

TAKEAWAY:

  • The risk for diabetic kidney disease was higher when the HDL-C levels were < 0.95 mmol/L or > 1.54 mmol/L.
  • Compared with patients with HDL-C levels in the range of 0.95-1.54 mmol/L, those with very high and very low HDL-C levels had a 128% and 77% increased risk for diabetic kidney disease, respectively.
  • The association was significant in women (P = .006) and not in men (P = .054), after adjusting for confounding factors.
  • HDL-C level as a continuous variable was not associated with the risk for kidney disease (P = .902).

IN PRACTICE:

“Although HDL-C is generally considered a cardiovascular protective factor, at very high levels, this protective effect does not seem to hold true and may be associated with an increased DKD [diabetic kidney disease] risk,” the authors wrote.

SOURCE:

This study was led by Huabin Wang, from the Department of Clinical Laboratory, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China, and was published online in Scientific Reports.

LIMITATIONS:

The cross-sectional nature of the study limited the ability to establish a causal relationship between high HDL-C levels and the risk for diabetic kidney disease. The sample size of the study was relatively small at the higher end of the HDL-C concentration spectrum. Moreover, the study did not consider other potential confounding factors such as diet, sedentary lifestyle, obesity, genetic diseases, drug effects on HDL-C levels, and fluctuating estrogen levels, which could affect the overall findings.

DISCLOSURES:

The study was funded by the Department of Science and Technology of Zhejiang Province, China, and The Science and Technology Bureau of Jinhua City. The authors declared no competing interests.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Will Hospital-at-Home Go Mainstream?

Article Type
Changed
Wed, 07/31/2024 - 12:26

Jordan Stohler, a 42-year-old nurse in Knoxville, Tennessee, was readmitted to Fort Sanders Medical Center in June 2023 with sepsis after a double mastectomy. 

She spent 5 days in the hospital after surgery to clear up the infection. Then she was offered a choice: She could either stay in the hospital while she received IV antibiotics, or she could go home and have the antibiotics given to her there under the Advanced Care at Home program of Covenant Health, the nine-hospital system to which Fort Sanders belongs.

She opted to go home, where she knew she’d be more comfortable and would be close to her beloved dog. In the end, she was very glad she did. 

“I received great care in the hospital, but to be allowed to be in the comfort of your own home, to be around my dog, who I think is therapeutic, to be able to cook my own meals, and to have the same one-on-one nursing care that I would have gotten in the hospital was great,” Ms. Stohler said. “

Being cared for at home helped her heal, she said. “I probably would have gotten a little stir crazy if I’d stayed in the hospital any longer. I received excellent care at home.”

Covenant’s Advanced Care at Home program is an example of the hospital-at-home trend that has been growing rapidly since Medicare began reimbursing hospitals for this approach during the COVID pandemic. Currently, 322 hospitals in 37 states have Medicare waivers for these kinds of programs, although not all of them are currently functioning.

A recent survey published in JAMA found that nearly half of consumers would accept hospital-at-home, and more than a third were neutral on it. Only 17% said they’d rather be cared for in a brick-and-mortar hospital. 

The findings of the JAMA survey confirm those of earlier studies, said Bruce Leff, MD, a professor at Johns Hopkins Medical School in Baltimore, who has researched hospital-at-home since the 1990s. Like the new study, those trials found that the results had no relationship to individual traits, such as socioeconomic status, medical conditions, age, gender, or race. 

Whether a person felt comfortable with the idea of hospital-at-home boiled down “to a preference for receiving care at home or in the hospital,” he said. Some people distrust hospitals, and others feel insecure about receiving care at home, even if it is provided by qualified health care professionals.
 

How Patients Are Selected 

While the details of hospital-at-home vary from program to program, the basic scenario is that patients who need certain kinds of acute care can be sent home from hospitals, emergency departments, or clinics to receive that care at home. Among the kinds of conditions that make stable patients eligible are heart failure, COPD, pneumonia, cellulitis, and COVID-19, said John Busigin, MD, a hospitalist and medical director of Covenant Advanced Care at Home. 

When a patient is admitted to hospital-at-home, the hospital will send along whatever equipment and medications that person needs. In some cases, this may include a hospital bed, although Ms. Stohler used her own. An IV line was put into her arm, and the IV stand was placed next to the bed. 

Ms. Stohler received a computer tablet that she used to communicate with doctors and nurses in Covenant’s “command center” in Knoxville. She also wore a watch with a button she could push in case of an emergency. And she had a telephone line that went directly to her medical team, in case she had an issue and the tablet didn’t work.

Twice a day, or as needed, specially trained paramedics came to Ms. Stohler’s home. They checked on the IV line, changed the IV bag, performed tests, and uploaded vital signs from monitoring equipment to Ms. Stohler’s tablet so it could be transmitted to the command center. A physician assistant came in on the second and fourth days of her weeklong stay in the program, and she saw a hospitalist remotely every day.

While some hospital-at-home programs have registered nurses visit patients at home, RNs are in short supply. To fill this gap, Covenant’s program uses community paramedics who have been in the field for at least 5 years, doing everything from intubating patients and placing them on ventilators to providing advanced cardiac life support, Dr. Busigin said. To get certified as community paramedics, they go through a 3-month training program.

Shortly after Ms. Stohler went into hospital-at-home, she had another crisis. Excess fluid had built up in her body because of all the IV fluids she’d received in the hospital while fighting the sepsis. As a result, she became short of breath. If she had been discharged to home rather than hospital-at-home, she said, she would have had to go to the emergency room. Instead, she sent out a distress call. One of the paramedics rushed to her house and gave her an IV diuretic medication, which helped her urinate to get rid of the excess fluid.

A small number of the estimated 300 people who have gone through the program had to be admitted to the hospital, Dr. Busigin said. Nationally, he said, about 5%-10% are admitted. But readmissions among the patients in the Covenant program have been 25% lower than for patients who received conventional hospital care and had the same conditions as those in hospital-at-home.

Studies have shown that these programs not only reduce readmissions, but also cost less, on average, and create a better patient experience than traditional hospital care does. And, according to the JAMA survey, most consumers like the idea. Fifty-six percent of people who took the survey agreed with the statement that people recover faster at home than in the hospital. Fifty-nine percent agreed they’d feel safe being treated at home, and 49% said they’d be more comfortable if treated at home. 

The 1134 people who took the survey were also asked about their comfort level with providing various kinds of care to their loved ones during a hospital-at-home episode. The results varied with the type of task: For example, 82% of the respondents agreed or strongly agreed they could manage a patient’s medications, while just 41% said they’d be willing to change a feeding tube. Smaller percentages were willing to change an IV bag or a catheter or do wound care.

However, hospital-at-home programs don’t allow caregivers to take part in clinical care, which is prohibited by Medicare waivers and state licensing regulations. None of the 22 health systems that use the hospital-at-home services of Medically Home, including Covenant, ask caregivers to do anything along this line, said Pippa Shulman, DO, medical director of the company, which provides equipment, technology, and protocols for hospital programs

The only exception at Covenant, Dr. Busigin said, is that the hospital may train family members to do wound care when a patient is discharged from the hospital to Advanced Care at Home. They may also prepare meals for their loved ones, although the program provides balanced meals to patients if they want them. Ms. Stohler had some of these meals, which just had to be heated up, for the first few days of hospital-at-home, and later her relatives brought meals to her house.
 

 

 

Challenges for the Future

The number of Medicare hospital-at-home waivers has nearly doubled since 2021. A year earlier, when Medicare began reimbursing hospitals for acute care at home to help them cope with the overflow of COVID patients, there were only about 15-20 programs in the United States, said Dr. Leff of Johns Hopkins.

A big reason for the lack of use before the pandemic, Dr. Leff said, is that there was no payment system for hospitals that offered hospital-at-home. Now, they can get paid by Medicare and 10 state Medicaid programs, and a number of private payers are also coming on board. Ms. Stohler’s private insurer covered her hospital-at-home stay, and Dr. Busigin said several plans that contract with Covenant will pay for it.

Dr. Leff said he’s cautiously optimistic Congress will extend the Medicare waiver program, which is scheduled to end in December, for another 5 years. A couple of key House committees have signed off on a bill to do that, he said, and a Congressional Budget Office report found that the program did not cost Medicare more money. 

But even if the waiver is renewed, some health systems may find it tough to deliver the service. The current version of this model depends a lot on technology, because telemedicine is used and reliable communication is needed for patients in hospital-at-home. That’s why many of the hospitals hire outside vendors like Medically Home to provide the infrastructure they need.

Medically Home manages the tablets given to patients and all connection and networking services, including internet and cellphone connections. It also provides technical services in the command centers that hospitals set up for the doctors and nurses who provide care remotely. 

And the firm figures out how to deliver the standard care for each condition in each hospital-at-home. “We need to make sure that the patient is going to get what they need in the time frame it needs to be delivered in, and that it’s safe and effective for the patient,” Dr. Shulman said. “So we’ve developed logistical protocols for a multitude of disease states that allow us to provide high-acuity care in the home to a variety of complex patients.”

The health care workers use the hospital electronic health record for hospital-at-home patients, and vital signs uploaded from patient tablets flow directly into the electronic health record, she said.
 

Rural Areas Need Help

The use of hospital-at-home in rural areas holds a lot of promise, Dr. Leff said. 

“A lot of rural hospitals have been closing, and hospital-at-home could be a mechanism to create hospital-level care where facilities have closed down. It’s easier to do this in urban areas, but it can be done in rural environments as well.”

Rami Karjian, CEO of Medically Home, agreed. The firm services hospital-at-home programs in rural areas of Oklahoma and California, using cellphones and paramedics in areas that lack broadband connections and nurses, he pointed out. 

“Hospital-at-home can’t just be available to people who live in big cities,” he said. “The access problems in health care are pervasive, and this is part of how we solve access problems in rural areas.”
 

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

Jordan Stohler, a 42-year-old nurse in Knoxville, Tennessee, was readmitted to Fort Sanders Medical Center in June 2023 with sepsis after a double mastectomy. 

She spent 5 days in the hospital after surgery to clear up the infection. Then she was offered a choice: She could either stay in the hospital while she received IV antibiotics, or she could go home and have the antibiotics given to her there under the Advanced Care at Home program of Covenant Health, the nine-hospital system to which Fort Sanders belongs.

She opted to go home, where she knew she’d be more comfortable and would be close to her beloved dog. In the end, she was very glad she did. 

“I received great care in the hospital, but to be allowed to be in the comfort of your own home, to be around my dog, who I think is therapeutic, to be able to cook my own meals, and to have the same one-on-one nursing care that I would have gotten in the hospital was great,” Ms. Stohler said. “

Being cared for at home helped her heal, she said. “I probably would have gotten a little stir crazy if I’d stayed in the hospital any longer. I received excellent care at home.”

Covenant’s Advanced Care at Home program is an example of the hospital-at-home trend that has been growing rapidly since Medicare began reimbursing hospitals for this approach during the COVID pandemic. Currently, 322 hospitals in 37 states have Medicare waivers for these kinds of programs, although not all of them are currently functioning.

A recent survey published in JAMA found that nearly half of consumers would accept hospital-at-home, and more than a third were neutral on it. Only 17% said they’d rather be cared for in a brick-and-mortar hospital. 

The findings of the JAMA survey confirm those of earlier studies, said Bruce Leff, MD, a professor at Johns Hopkins Medical School in Baltimore, who has researched hospital-at-home since the 1990s. Like the new study, those trials found that the results had no relationship to individual traits, such as socioeconomic status, medical conditions, age, gender, or race. 

Whether a person felt comfortable with the idea of hospital-at-home boiled down “to a preference for receiving care at home or in the hospital,” he said. Some people distrust hospitals, and others feel insecure about receiving care at home, even if it is provided by qualified health care professionals.
 

How Patients Are Selected 

While the details of hospital-at-home vary from program to program, the basic scenario is that patients who need certain kinds of acute care can be sent home from hospitals, emergency departments, or clinics to receive that care at home. Among the kinds of conditions that make stable patients eligible are heart failure, COPD, pneumonia, cellulitis, and COVID-19, said John Busigin, MD, a hospitalist and medical director of Covenant Advanced Care at Home. 

When a patient is admitted to hospital-at-home, the hospital will send along whatever equipment and medications that person needs. In some cases, this may include a hospital bed, although Ms. Stohler used her own. An IV line was put into her arm, and the IV stand was placed next to the bed. 

Ms. Stohler received a computer tablet that she used to communicate with doctors and nurses in Covenant’s “command center” in Knoxville. She also wore a watch with a button she could push in case of an emergency. And she had a telephone line that went directly to her medical team, in case she had an issue and the tablet didn’t work.

Twice a day, or as needed, specially trained paramedics came to Ms. Stohler’s home. They checked on the IV line, changed the IV bag, performed tests, and uploaded vital signs from monitoring equipment to Ms. Stohler’s tablet so it could be transmitted to the command center. A physician assistant came in on the second and fourth days of her weeklong stay in the program, and she saw a hospitalist remotely every day.

While some hospital-at-home programs have registered nurses visit patients at home, RNs are in short supply. To fill this gap, Covenant’s program uses community paramedics who have been in the field for at least 5 years, doing everything from intubating patients and placing them on ventilators to providing advanced cardiac life support, Dr. Busigin said. To get certified as community paramedics, they go through a 3-month training program.

Shortly after Ms. Stohler went into hospital-at-home, she had another crisis. Excess fluid had built up in her body because of all the IV fluids she’d received in the hospital while fighting the sepsis. As a result, she became short of breath. If she had been discharged to home rather than hospital-at-home, she said, she would have had to go to the emergency room. Instead, she sent out a distress call. One of the paramedics rushed to her house and gave her an IV diuretic medication, which helped her urinate to get rid of the excess fluid.

A small number of the estimated 300 people who have gone through the program had to be admitted to the hospital, Dr. Busigin said. Nationally, he said, about 5%-10% are admitted. But readmissions among the patients in the Covenant program have been 25% lower than for patients who received conventional hospital care and had the same conditions as those in hospital-at-home.

Studies have shown that these programs not only reduce readmissions, but also cost less, on average, and create a better patient experience than traditional hospital care does. And, according to the JAMA survey, most consumers like the idea. Fifty-six percent of people who took the survey agreed with the statement that people recover faster at home than in the hospital. Fifty-nine percent agreed they’d feel safe being treated at home, and 49% said they’d be more comfortable if treated at home. 

The 1134 people who took the survey were also asked about their comfort level with providing various kinds of care to their loved ones during a hospital-at-home episode. The results varied with the type of task: For example, 82% of the respondents agreed or strongly agreed they could manage a patient’s medications, while just 41% said they’d be willing to change a feeding tube. Smaller percentages were willing to change an IV bag or a catheter or do wound care.

However, hospital-at-home programs don’t allow caregivers to take part in clinical care, which is prohibited by Medicare waivers and state licensing regulations. None of the 22 health systems that use the hospital-at-home services of Medically Home, including Covenant, ask caregivers to do anything along this line, said Pippa Shulman, DO, medical director of the company, which provides equipment, technology, and protocols for hospital programs

The only exception at Covenant, Dr. Busigin said, is that the hospital may train family members to do wound care when a patient is discharged from the hospital to Advanced Care at Home. They may also prepare meals for their loved ones, although the program provides balanced meals to patients if they want them. Ms. Stohler had some of these meals, which just had to be heated up, for the first few days of hospital-at-home, and later her relatives brought meals to her house.
 

 

 

Challenges for the Future

The number of Medicare hospital-at-home waivers has nearly doubled since 2021. A year earlier, when Medicare began reimbursing hospitals for acute care at home to help them cope with the overflow of COVID patients, there were only about 15-20 programs in the United States, said Dr. Leff of Johns Hopkins.

A big reason for the lack of use before the pandemic, Dr. Leff said, is that there was no payment system for hospitals that offered hospital-at-home. Now, they can get paid by Medicare and 10 state Medicaid programs, and a number of private payers are also coming on board. Ms. Stohler’s private insurer covered her hospital-at-home stay, and Dr. Busigin said several plans that contract with Covenant will pay for it.

Dr. Leff said he’s cautiously optimistic Congress will extend the Medicare waiver program, which is scheduled to end in December, for another 5 years. A couple of key House committees have signed off on a bill to do that, he said, and a Congressional Budget Office report found that the program did not cost Medicare more money. 

But even if the waiver is renewed, some health systems may find it tough to deliver the service. The current version of this model depends a lot on technology, because telemedicine is used and reliable communication is needed for patients in hospital-at-home. That’s why many of the hospitals hire outside vendors like Medically Home to provide the infrastructure they need.

Medically Home manages the tablets given to patients and all connection and networking services, including internet and cellphone connections. It also provides technical services in the command centers that hospitals set up for the doctors and nurses who provide care remotely. 

And the firm figures out how to deliver the standard care for each condition in each hospital-at-home. “We need to make sure that the patient is going to get what they need in the time frame it needs to be delivered in, and that it’s safe and effective for the patient,” Dr. Shulman said. “So we’ve developed logistical protocols for a multitude of disease states that allow us to provide high-acuity care in the home to a variety of complex patients.”

The health care workers use the hospital electronic health record for hospital-at-home patients, and vital signs uploaded from patient tablets flow directly into the electronic health record, she said.
 

Rural Areas Need Help

The use of hospital-at-home in rural areas holds a lot of promise, Dr. Leff said. 

“A lot of rural hospitals have been closing, and hospital-at-home could be a mechanism to create hospital-level care where facilities have closed down. It’s easier to do this in urban areas, but it can be done in rural environments as well.”

Rami Karjian, CEO of Medically Home, agreed. The firm services hospital-at-home programs in rural areas of Oklahoma and California, using cellphones and paramedics in areas that lack broadband connections and nurses, he pointed out. 

“Hospital-at-home can’t just be available to people who live in big cities,” he said. “The access problems in health care are pervasive, and this is part of how we solve access problems in rural areas.”
 

A version of this article first appeared on WebMD.com.

Jordan Stohler, a 42-year-old nurse in Knoxville, Tennessee, was readmitted to Fort Sanders Medical Center in June 2023 with sepsis after a double mastectomy. 

She spent 5 days in the hospital after surgery to clear up the infection. Then she was offered a choice: She could either stay in the hospital while she received IV antibiotics, or she could go home and have the antibiotics given to her there under the Advanced Care at Home program of Covenant Health, the nine-hospital system to which Fort Sanders belongs.

She opted to go home, where she knew she’d be more comfortable and would be close to her beloved dog. In the end, she was very glad she did. 

“I received great care in the hospital, but to be allowed to be in the comfort of your own home, to be around my dog, who I think is therapeutic, to be able to cook my own meals, and to have the same one-on-one nursing care that I would have gotten in the hospital was great,” Ms. Stohler said. “

Being cared for at home helped her heal, she said. “I probably would have gotten a little stir crazy if I’d stayed in the hospital any longer. I received excellent care at home.”

Covenant’s Advanced Care at Home program is an example of the hospital-at-home trend that has been growing rapidly since Medicare began reimbursing hospitals for this approach during the COVID pandemic. Currently, 322 hospitals in 37 states have Medicare waivers for these kinds of programs, although not all of them are currently functioning.

A recent survey published in JAMA found that nearly half of consumers would accept hospital-at-home, and more than a third were neutral on it. Only 17% said they’d rather be cared for in a brick-and-mortar hospital. 

The findings of the JAMA survey confirm those of earlier studies, said Bruce Leff, MD, a professor at Johns Hopkins Medical School in Baltimore, who has researched hospital-at-home since the 1990s. Like the new study, those trials found that the results had no relationship to individual traits, such as socioeconomic status, medical conditions, age, gender, or race. 

Whether a person felt comfortable with the idea of hospital-at-home boiled down “to a preference for receiving care at home or in the hospital,” he said. Some people distrust hospitals, and others feel insecure about receiving care at home, even if it is provided by qualified health care professionals.
 

How Patients Are Selected 

While the details of hospital-at-home vary from program to program, the basic scenario is that patients who need certain kinds of acute care can be sent home from hospitals, emergency departments, or clinics to receive that care at home. Among the kinds of conditions that make stable patients eligible are heart failure, COPD, pneumonia, cellulitis, and COVID-19, said John Busigin, MD, a hospitalist and medical director of Covenant Advanced Care at Home. 

When a patient is admitted to hospital-at-home, the hospital will send along whatever equipment and medications that person needs. In some cases, this may include a hospital bed, although Ms. Stohler used her own. An IV line was put into her arm, and the IV stand was placed next to the bed. 

Ms. Stohler received a computer tablet that she used to communicate with doctors and nurses in Covenant’s “command center” in Knoxville. She also wore a watch with a button she could push in case of an emergency. And she had a telephone line that went directly to her medical team, in case she had an issue and the tablet didn’t work.

Twice a day, or as needed, specially trained paramedics came to Ms. Stohler’s home. They checked on the IV line, changed the IV bag, performed tests, and uploaded vital signs from monitoring equipment to Ms. Stohler’s tablet so it could be transmitted to the command center. A physician assistant came in on the second and fourth days of her weeklong stay in the program, and she saw a hospitalist remotely every day.

While some hospital-at-home programs have registered nurses visit patients at home, RNs are in short supply. To fill this gap, Covenant’s program uses community paramedics who have been in the field for at least 5 years, doing everything from intubating patients and placing them on ventilators to providing advanced cardiac life support, Dr. Busigin said. To get certified as community paramedics, they go through a 3-month training program.

Shortly after Ms. Stohler went into hospital-at-home, she had another crisis. Excess fluid had built up in her body because of all the IV fluids she’d received in the hospital while fighting the sepsis. As a result, she became short of breath. If she had been discharged to home rather than hospital-at-home, she said, she would have had to go to the emergency room. Instead, she sent out a distress call. One of the paramedics rushed to her house and gave her an IV diuretic medication, which helped her urinate to get rid of the excess fluid.

A small number of the estimated 300 people who have gone through the program had to be admitted to the hospital, Dr. Busigin said. Nationally, he said, about 5%-10% are admitted. But readmissions among the patients in the Covenant program have been 25% lower than for patients who received conventional hospital care and had the same conditions as those in hospital-at-home.

Studies have shown that these programs not only reduce readmissions, but also cost less, on average, and create a better patient experience than traditional hospital care does. And, according to the JAMA survey, most consumers like the idea. Fifty-six percent of people who took the survey agreed with the statement that people recover faster at home than in the hospital. Fifty-nine percent agreed they’d feel safe being treated at home, and 49% said they’d be more comfortable if treated at home. 

The 1134 people who took the survey were also asked about their comfort level with providing various kinds of care to their loved ones during a hospital-at-home episode. The results varied with the type of task: For example, 82% of the respondents agreed or strongly agreed they could manage a patient’s medications, while just 41% said they’d be willing to change a feeding tube. Smaller percentages were willing to change an IV bag or a catheter or do wound care.

However, hospital-at-home programs don’t allow caregivers to take part in clinical care, which is prohibited by Medicare waivers and state licensing regulations. None of the 22 health systems that use the hospital-at-home services of Medically Home, including Covenant, ask caregivers to do anything along this line, said Pippa Shulman, DO, medical director of the company, which provides equipment, technology, and protocols for hospital programs

The only exception at Covenant, Dr. Busigin said, is that the hospital may train family members to do wound care when a patient is discharged from the hospital to Advanced Care at Home. They may also prepare meals for their loved ones, although the program provides balanced meals to patients if they want them. Ms. Stohler had some of these meals, which just had to be heated up, for the first few days of hospital-at-home, and later her relatives brought meals to her house.
 

 

 

Challenges for the Future

The number of Medicare hospital-at-home waivers has nearly doubled since 2021. A year earlier, when Medicare began reimbursing hospitals for acute care at home to help them cope with the overflow of COVID patients, there were only about 15-20 programs in the United States, said Dr. Leff of Johns Hopkins.

A big reason for the lack of use before the pandemic, Dr. Leff said, is that there was no payment system for hospitals that offered hospital-at-home. Now, they can get paid by Medicare and 10 state Medicaid programs, and a number of private payers are also coming on board. Ms. Stohler’s private insurer covered her hospital-at-home stay, and Dr. Busigin said several plans that contract with Covenant will pay for it.

Dr. Leff said he’s cautiously optimistic Congress will extend the Medicare waiver program, which is scheduled to end in December, for another 5 years. A couple of key House committees have signed off on a bill to do that, he said, and a Congressional Budget Office report found that the program did not cost Medicare more money. 

But even if the waiver is renewed, some health systems may find it tough to deliver the service. The current version of this model depends a lot on technology, because telemedicine is used and reliable communication is needed for patients in hospital-at-home. That’s why many of the hospitals hire outside vendors like Medically Home to provide the infrastructure they need.

Medically Home manages the tablets given to patients and all connection and networking services, including internet and cellphone connections. It also provides technical services in the command centers that hospitals set up for the doctors and nurses who provide care remotely. 

And the firm figures out how to deliver the standard care for each condition in each hospital-at-home. “We need to make sure that the patient is going to get what they need in the time frame it needs to be delivered in, and that it’s safe and effective for the patient,” Dr. Shulman said. “So we’ve developed logistical protocols for a multitude of disease states that allow us to provide high-acuity care in the home to a variety of complex patients.”

The health care workers use the hospital electronic health record for hospital-at-home patients, and vital signs uploaded from patient tablets flow directly into the electronic health record, she said.
 

Rural Areas Need Help

The use of hospital-at-home in rural areas holds a lot of promise, Dr. Leff said. 

“A lot of rural hospitals have been closing, and hospital-at-home could be a mechanism to create hospital-level care where facilities have closed down. It’s easier to do this in urban areas, but it can be done in rural environments as well.”

Rami Karjian, CEO of Medically Home, agreed. The firm services hospital-at-home programs in rural areas of Oklahoma and California, using cellphones and paramedics in areas that lack broadband connections and nurses, he pointed out. 

“Hospital-at-home can’t just be available to people who live in big cities,” he said. “The access problems in health care are pervasive, and this is part of how we solve access problems in rural areas.”
 

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Could Medium-Chain Fatty Acids Reduce Diabetes Risk?

Article Type
Changed
Wed, 07/31/2024 - 13:09

 

TOPLINE:

Higher levels of some serum medium-chain fatty acids found in coconut oil, palm kernel oil, and milk products are associated with a reduced risk for type 2 diabetes (T2D). This inverse relationship is more pronounced in individuals with a high genetic risk or physical inactivity.

METHODOLOGY:

  • Studies reporting a link between dietary medium-chain fatty acids and a reduced risk for T2D have been based on food intake questionnaires, but serum samples are likely to be a more precise and objective basis for understanding metabolic relationships.
  • To assess the association between medium-chain fatty acids and T2D risk, the researchers conducted a nested case-control study within the prospective China Cardiometabolic Disease and Cancer Cohort Study.
  • They included 1707 individuals who developed diabetes during a median follow-up of 3.03 years and added a propensity-matched normoglycemic control group for a total of 3414 individuals (mean age, 57.56 years; 59.4% women), all with normal glucose regulation at baseline.
  • Researchers investigated associations of baseline levels of five serum medium-chain fatty acids — octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and lauric acid — between individuals with T2D and control participants and stratified by risk factors, including diabetes genetic susceptibility.
  • The genetic risk scores were calculated as a weighted sum of 86 T2D-associated single nucleotide polymorphisms.

TAKEAWAY:

  • In an inverse association, each standard deviation increase in the baseline serum levels of octanoic acid and nonanoic acid decreased the odds of T2D by 10% and 16%, respectively (odds ratio [OR], 0.90; 95% CI, 0.82-0.98 and OR, 0.84; 95% CI, 0.74-0.95, respectively; all P < .05).
  • , with significant interactions observed for octanoic, nonanoic, and decanoic acids (P for interaction = .042, .034, and .037, respectively).
  • Moreover, the negative relationship between octanoic acid and the risk for diabetes was stronger in those with a high genetic risk, with a significant interaction (P for interaction = .003).
  • No significant associations were observed between the levels of decanoic, undecanoic, and lauric acids and the overall risk for incident diabetes.

IN PRACTICE:

“Our findings generally support the protective effect of MCFAs [medium-chain fatty acids] but also emphasize the personalized approaches in improving serum MCFA profiles for T2D prevention, which could be tailored according to individuals’ genetic and lifestyle profiles,” the authors wrote.

SOURCE:

The study was led by Xiaojing Jia, MD, and Hong Lin, PhD, of the Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. It was published online in The Journal of Clinical Endocrinology & Metabolism.

LIMITATIONS:

The study’s follow-up duration of 3 years was short, which may have compromised the statistical power of the analysis. The long-term effects of medium-chain fatty acids on the risk for diabetes may not be captured as they were assessed only at baseline. The study population was limited to Chinese adults older than 40 years, which may affect the generalizability of the findings to other ethnicities and age groups.

DISCLOSURES:

The authors declared no conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Higher levels of some serum medium-chain fatty acids found in coconut oil, palm kernel oil, and milk products are associated with a reduced risk for type 2 diabetes (T2D). This inverse relationship is more pronounced in individuals with a high genetic risk or physical inactivity.

METHODOLOGY:

  • Studies reporting a link between dietary medium-chain fatty acids and a reduced risk for T2D have been based on food intake questionnaires, but serum samples are likely to be a more precise and objective basis for understanding metabolic relationships.
  • To assess the association between medium-chain fatty acids and T2D risk, the researchers conducted a nested case-control study within the prospective China Cardiometabolic Disease and Cancer Cohort Study.
  • They included 1707 individuals who developed diabetes during a median follow-up of 3.03 years and added a propensity-matched normoglycemic control group for a total of 3414 individuals (mean age, 57.56 years; 59.4% women), all with normal glucose regulation at baseline.
  • Researchers investigated associations of baseline levels of five serum medium-chain fatty acids — octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and lauric acid — between individuals with T2D and control participants and stratified by risk factors, including diabetes genetic susceptibility.
  • The genetic risk scores were calculated as a weighted sum of 86 T2D-associated single nucleotide polymorphisms.

TAKEAWAY:

  • In an inverse association, each standard deviation increase in the baseline serum levels of octanoic acid and nonanoic acid decreased the odds of T2D by 10% and 16%, respectively (odds ratio [OR], 0.90; 95% CI, 0.82-0.98 and OR, 0.84; 95% CI, 0.74-0.95, respectively; all P < .05).
  • , with significant interactions observed for octanoic, nonanoic, and decanoic acids (P for interaction = .042, .034, and .037, respectively).
  • Moreover, the negative relationship between octanoic acid and the risk for diabetes was stronger in those with a high genetic risk, with a significant interaction (P for interaction = .003).
  • No significant associations were observed between the levels of decanoic, undecanoic, and lauric acids and the overall risk for incident diabetes.

IN PRACTICE:

“Our findings generally support the protective effect of MCFAs [medium-chain fatty acids] but also emphasize the personalized approaches in improving serum MCFA profiles for T2D prevention, which could be tailored according to individuals’ genetic and lifestyle profiles,” the authors wrote.

SOURCE:

The study was led by Xiaojing Jia, MD, and Hong Lin, PhD, of the Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. It was published online in The Journal of Clinical Endocrinology & Metabolism.

LIMITATIONS:

The study’s follow-up duration of 3 years was short, which may have compromised the statistical power of the analysis. The long-term effects of medium-chain fatty acids on the risk for diabetes may not be captured as they were assessed only at baseline. The study population was limited to Chinese adults older than 40 years, which may affect the generalizability of the findings to other ethnicities and age groups.

DISCLOSURES:

The authors declared no conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

Higher levels of some serum medium-chain fatty acids found in coconut oil, palm kernel oil, and milk products are associated with a reduced risk for type 2 diabetes (T2D). This inverse relationship is more pronounced in individuals with a high genetic risk or physical inactivity.

METHODOLOGY:

  • Studies reporting a link between dietary medium-chain fatty acids and a reduced risk for T2D have been based on food intake questionnaires, but serum samples are likely to be a more precise and objective basis for understanding metabolic relationships.
  • To assess the association between medium-chain fatty acids and T2D risk, the researchers conducted a nested case-control study within the prospective China Cardiometabolic Disease and Cancer Cohort Study.
  • They included 1707 individuals who developed diabetes during a median follow-up of 3.03 years and added a propensity-matched normoglycemic control group for a total of 3414 individuals (mean age, 57.56 years; 59.4% women), all with normal glucose regulation at baseline.
  • Researchers investigated associations of baseline levels of five serum medium-chain fatty acids — octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and lauric acid — between individuals with T2D and control participants and stratified by risk factors, including diabetes genetic susceptibility.
  • The genetic risk scores were calculated as a weighted sum of 86 T2D-associated single nucleotide polymorphisms.

TAKEAWAY:

  • In an inverse association, each standard deviation increase in the baseline serum levels of octanoic acid and nonanoic acid decreased the odds of T2D by 10% and 16%, respectively (odds ratio [OR], 0.90; 95% CI, 0.82-0.98 and OR, 0.84; 95% CI, 0.74-0.95, respectively; all P < .05).
  • , with significant interactions observed for octanoic, nonanoic, and decanoic acids (P for interaction = .042, .034, and .037, respectively).
  • Moreover, the negative relationship between octanoic acid and the risk for diabetes was stronger in those with a high genetic risk, with a significant interaction (P for interaction = .003).
  • No significant associations were observed between the levels of decanoic, undecanoic, and lauric acids and the overall risk for incident diabetes.

IN PRACTICE:

“Our findings generally support the protective effect of MCFAs [medium-chain fatty acids] but also emphasize the personalized approaches in improving serum MCFA profiles for T2D prevention, which could be tailored according to individuals’ genetic and lifestyle profiles,” the authors wrote.

SOURCE:

The study was led by Xiaojing Jia, MD, and Hong Lin, PhD, of the Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. It was published online in The Journal of Clinical Endocrinology & Metabolism.

LIMITATIONS:

The study’s follow-up duration of 3 years was short, which may have compromised the statistical power of the analysis. The long-term effects of medium-chain fatty acids on the risk for diabetes may not be captured as they were assessed only at baseline. The study population was limited to Chinese adults older than 40 years, which may affect the generalizability of the findings to other ethnicities and age groups.

DISCLOSURES:

The authors declared no conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What Time of Day Is Best to Eat to Reduce Diabetes Risk?

Article Type
Changed
Wed, 07/31/2024 - 13:18

 

TOPLINE:

Higher energy intake and glycemic load in the late morning are associated with a lower risk for type 2 diabetes (T2D) in Hispanic/Latino adults.

METHODOLOGY:

  • Glucose tolerance peaks in the morning and declines in the afternoon and evening in individuals without diabetes.
  • Researchers conducted a prospective cohort study enrolling 8868 Hispanic/Latino adults (mean age, 38.7 years; 51.5% women) without diabetes across four US communities between 2008 and 2011, with a second clinic examination conducted between 2014 and 2017.
  • Meal timing was categorized into five periods: Early morning (6:00-8:59 AM), late morning (9:00-11:59 AM), afternoon (12:00-5:59 PM), evening (6:00-11:59 PM), and night (0:00-5:59 AM).
  • Participants’ energy intake and glycemic load for each period were assessed at baseline using two 24-hour dietary recalls.
  • Incident diabetes was identified through annual follow-up calls or at the second clinic examination.

TAKEAWAY:

  • Each 100-kcal increment in energy intake and 10-unit increment in glycemic load in the late morning was associated with a 6% and 7% lower risk for T2D, respectively (both P = .001), independent of total energy intake, diet quality, and other confounders.
  • No such association was found between energy intake and glycemic load in early morning, afternoon, evening, or night meal timings and the risk for diabetes.
  • Substituting 100 kcal of energy intake from the early morning, afternoon, or evening with late-morning equivalents was associated with a 5% lower risk for diabetes (all P < .05).
  • Similarly, substituting 10 units of energy-adjusted glycemic load from the early morning, afternoon, or evening with late-morning equivalents yielded a 7%-9% lower risk for diabetes (all P < .05).

IN PRACTICE:

“Our findings further enhance the existing literature by demonstrating the potential long-term promise of eating in alignment with the diurnal rhythm of glucose tolerance for diabetes prevention,” the authors wrote.

SOURCE:

The study was led by Jin Dai, PhD, Fielding School of Public Health, University of California, Los Angeles. It was published online in Diabetes Care.

LIMITATIONS:

The study’s reliance on only two 24-hour self-reported dietary recalls may have introduced measurement error. Diabetes was self-reported, which may have led to outcome misclassification. The study’s relatively short follow-up time may have introduced reverse causation bias. As most patients had T2D, the findings predominately apply to this diabetes subtype. 

DISCLOSURES:

The study was supported by grants from the National Heart, Lung, and Blood Institute. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Higher energy intake and glycemic load in the late morning are associated with a lower risk for type 2 diabetes (T2D) in Hispanic/Latino adults.

METHODOLOGY:

  • Glucose tolerance peaks in the morning and declines in the afternoon and evening in individuals without diabetes.
  • Researchers conducted a prospective cohort study enrolling 8868 Hispanic/Latino adults (mean age, 38.7 years; 51.5% women) without diabetes across four US communities between 2008 and 2011, with a second clinic examination conducted between 2014 and 2017.
  • Meal timing was categorized into five periods: Early morning (6:00-8:59 AM), late morning (9:00-11:59 AM), afternoon (12:00-5:59 PM), evening (6:00-11:59 PM), and night (0:00-5:59 AM).
  • Participants’ energy intake and glycemic load for each period were assessed at baseline using two 24-hour dietary recalls.
  • Incident diabetes was identified through annual follow-up calls or at the second clinic examination.

TAKEAWAY:

  • Each 100-kcal increment in energy intake and 10-unit increment in glycemic load in the late morning was associated with a 6% and 7% lower risk for T2D, respectively (both P = .001), independent of total energy intake, diet quality, and other confounders.
  • No such association was found between energy intake and glycemic load in early morning, afternoon, evening, or night meal timings and the risk for diabetes.
  • Substituting 100 kcal of energy intake from the early morning, afternoon, or evening with late-morning equivalents was associated with a 5% lower risk for diabetes (all P < .05).
  • Similarly, substituting 10 units of energy-adjusted glycemic load from the early morning, afternoon, or evening with late-morning equivalents yielded a 7%-9% lower risk for diabetes (all P < .05).

IN PRACTICE:

“Our findings further enhance the existing literature by demonstrating the potential long-term promise of eating in alignment with the diurnal rhythm of glucose tolerance for diabetes prevention,” the authors wrote.

SOURCE:

The study was led by Jin Dai, PhD, Fielding School of Public Health, University of California, Los Angeles. It was published online in Diabetes Care.

LIMITATIONS:

The study’s reliance on only two 24-hour self-reported dietary recalls may have introduced measurement error. Diabetes was self-reported, which may have led to outcome misclassification. The study’s relatively short follow-up time may have introduced reverse causation bias. As most patients had T2D, the findings predominately apply to this diabetes subtype. 

DISCLOSURES:

The study was supported by grants from the National Heart, Lung, and Blood Institute. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Higher energy intake and glycemic load in the late morning are associated with a lower risk for type 2 diabetes (T2D) in Hispanic/Latino adults.

METHODOLOGY:

  • Glucose tolerance peaks in the morning and declines in the afternoon and evening in individuals without diabetes.
  • Researchers conducted a prospective cohort study enrolling 8868 Hispanic/Latino adults (mean age, 38.7 years; 51.5% women) without diabetes across four US communities between 2008 and 2011, with a second clinic examination conducted between 2014 and 2017.
  • Meal timing was categorized into five periods: Early morning (6:00-8:59 AM), late morning (9:00-11:59 AM), afternoon (12:00-5:59 PM), evening (6:00-11:59 PM), and night (0:00-5:59 AM).
  • Participants’ energy intake and glycemic load for each period were assessed at baseline using two 24-hour dietary recalls.
  • Incident diabetes was identified through annual follow-up calls or at the second clinic examination.

TAKEAWAY:

  • Each 100-kcal increment in energy intake and 10-unit increment in glycemic load in the late morning was associated with a 6% and 7% lower risk for T2D, respectively (both P = .001), independent of total energy intake, diet quality, and other confounders.
  • No such association was found between energy intake and glycemic load in early morning, afternoon, evening, or night meal timings and the risk for diabetes.
  • Substituting 100 kcal of energy intake from the early morning, afternoon, or evening with late-morning equivalents was associated with a 5% lower risk for diabetes (all P < .05).
  • Similarly, substituting 10 units of energy-adjusted glycemic load from the early morning, afternoon, or evening with late-morning equivalents yielded a 7%-9% lower risk for diabetes (all P < .05).

IN PRACTICE:

“Our findings further enhance the existing literature by demonstrating the potential long-term promise of eating in alignment with the diurnal rhythm of glucose tolerance for diabetes prevention,” the authors wrote.

SOURCE:

The study was led by Jin Dai, PhD, Fielding School of Public Health, University of California, Los Angeles. It was published online in Diabetes Care.

LIMITATIONS:

The study’s reliance on only two 24-hour self-reported dietary recalls may have introduced measurement error. Diabetes was self-reported, which may have led to outcome misclassification. The study’s relatively short follow-up time may have introduced reverse causation bias. As most patients had T2D, the findings predominately apply to this diabetes subtype. 

DISCLOSURES:

The study was supported by grants from the National Heart, Lung, and Blood Institute. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

A Guide to Eating Healthy While Working in Healthcare

Article Type
Changed
Mon, 07/29/2024 - 13:04

Eat as fast as you can whenever you can.

That was the med student mindset around food, as Catherine Harmon Toomer, MD, discovered during her school years. “Without a good system in place to counter that,” she explains, “unhealthy eating can get out of control, and that’s what happened to me.”

After med school, things got worse for Dr. Toomer. By her second year in practice as a family medicine physician, she’d gained a lot of weight and had been diagnosed with type 2 diabetes and cardiomyopathy. At 36, she went into congestive heart failure and was told she likely had 5 years to live.

A moment she described as “a huge wake-up call.”

Dr. Toomer is far from alone in her struggles to balance working in medicine and eating healthfully.

“Physicians face unique stresses because of the ubiquity of junk food in the clinical setting, easy use of food as a reward and stress reliever, and lack of time to create better wellness habits while counseling patients to do exactly that,” said John La Puma, MD, FACP, internist and cofounder of ChefMD and founder of Chef Clinic.

There is also the culture of medicine, which Dr. Toomer said looks down on self-care. “Even with break times, patient needs come before our own.” So, you sit down to eat, and there’s an emergency. Your clinic closes for lunch, but the phones still ring, and patients continue to email questions. Charting is also so time-consuming that “everything else gets put on the back burner.”

Sticking to a nutritious diet in this context can feel hopeless. But it isn’t. Really. Here are some doctor-tested, real-life ways you can nourish yourself while getting it all done.
 

Something Is Always Better Than Nothing

Sure, you might not be able to eat a balanced lunch or dinner while at work, conceded Amy Margulies, RD, LDN, owner of The Rebellious RD. But try to focus on the bigger picture and take small steps.

First, make sure you eat something, Ms. Margulies advised. “Skipping meals can lead to overeating later and negatively impact energy levels and concentration.”

Lisa Andrews, MEd, RD, LD, owner of Sound Bites Nutrition, recalled one of her patients, a gastrointestinal surgeon with reactive hypoglycemia and fatigue. “She was experiencing energy crashes mid-afternoon,” she said. It was only after starting to eat every 4-5 hours that her patient felt better.

Of course, this is easier said than done. “When you are running from one patient to the other and trying to keep on time with your schedule, there is very little time for eating and no time at all for cooking or even heating up food,” recalled Hélène Bertrand, MD, author of Low Back Pain: 3 Steps to Relief in 2 Minutes.

But during her 55 years as a family medicine physician, Dr. Bertrand found ways to improve (if not perfect) the situation. She lunched on nuts or seeds during the day or grabbed a 95% cacao chocolate bar — higher in antioxidants and lower in sugar than a candy bar.

If you don’t have time for breakfast, try drinking a complete protein shake while driving to work, Dr. Toomer recommended. “It’s not ideal, but it’s better than nothing.” Similarly, if the only way you’ll eat a high-protein, lower-carb snack like hummus is with potato chips, go for it, she said.

Basically, don’t be type A striving for perfection. Take good enough when you can and balance the rest when you have time.
 

 

 

Torpedo Temptation

From free treats in the break room to always-present pizza for residents, high-fat, high-sugar, low-nutrient fare is a constant temptation. “I worked with a physician who would bring a balanced lunch to work every day, then find whatever sweet was around for his afternoon treat,” recalled Ms. Margulies.“The cookies, cakes, and donuts were starting to add up — and stopping at one wasn’t working for him.”

What did work was Ms. Margulies’ suggestion to bring a single serving of dark chocolate and fruit to savor during a longer break. “Bringing your favorite treats in appropriate portions can help you stick with your plan throughout the day,” she explained, and you’ll have an easier time resisting what’s in the break room. “When you desire a treat, tell yourself you have what you need and don’t need to indulge in the ‘free food’ just because it’s there. You have power over your choices.”

How about tricking yourself into perceiving cherry tomatoes as treats? That might be unusual, but one of Dr. La Puma’s physician patients did just that, displaying the produce in a candy dish on his office counter. Not only did this strategy help remind him to snack healthfully, it also prompted his patients to ask about eating better, he said.
 

Preparation Is Still Underrated

Many people find meal prepping intimidating. But it doesn’t need to be complicated. For instance, try purchasing precut veggies, cooked chicken breasts, or other healthy convenience options. You can then combine them in packable containers to prep a few meals at a time. For less busy weeks, consider cooking the protein yourself and whipping up basic sauces (like pesto and vinaigrette) to jazz up your meals.

“I worked with a resident who was gaining weight each month,” recalled Ms. Margulies. “She would skip lunch, grab a random snack, then wait until she got home to eat anything she could find.”

Encouraged by Ms. Margulies, she prepared and portioned one or two balanced dinners each week, which she’d later reheat. She also bought fresh and dried fruit and high-protein snacks, keeping single servings in her car to eat on the way home.

Similarly, Jess DeGore, RD, LDN, CDCES, CHWC, a diabetes educator and owner of Dietitian Jess Nutrition, recalled an ob.gyn. client who constantly skipped meals and relied on vending machine snacks. To combat her resulting energy crashes, she followed Ms. DeGore’s advice to prep workday lunches (like quinoa salads) over the weekend and bring fruit and nut snacks to work.
 

Automate as Much as You Can

If healthy is already on hand, you’ll eat healthy, said Ms. Andrews. Build up a snack stash focusing on fiber and protein. Tote a lunch bag with a cooler pack if needed. Some suggestions:

  • Oatmeal packets
  • Individual Greek yogurt cups or drinkable yogurts
  • Protein bars
  • Protein shakes
  • Fresh fruit
  • Fresh veggie sticks
  • Nuts, dried chickpeas, or edamame
  • Trail mix
  • Single servings of hummus, nut butter, or guacamole
  • Dried seaweed snacks
  • Whole grain crackers
  • Hard-boiled eggs
  • String cheese
  • Peanut butter sandwich
  • 95% cacao chocolate bar
 

 

Try a Meal Delivery Service

Meal delivery services can be pricey, but potentially worth the expense. By bringing meals or having them sent to your office, you won’t have to find time to go to the cafeteria and stand in line, noted Janese S. Laster, MD, an internal medicine, gastroenterology, obesity medicine, and nutrition physician and founder of Gut Theory Total Digestive Care. Instead, “you’ll have something to warm up and eat while writing notes or in between patients,” she said. Plus, “you won’t have an excuse to skip meals.”

Hydration Yes, Junk Drinks No

The following can be filed in the Doctors-Know-It-But-Don’t-Always-Do-It section: “Hunger can be mistaken for thirst,” said Ms. Margulies. “Staying hydrated will help you better assess whether you’re hungry or thirsty.” Choose water over soda or energy drinks, she added, to hydrate your body without unnecessary extra sugars, sugar substitutes, calories, caffeine, or sodium — all of which can affect how you feel.

Advocate for Your Health

Convincing your institution to make changes might be difficult or even impossible, but consider asking your workplace to implement initiatives like these to boost provider nutrition, suggested Jabe Brown, BHSc (Nat), founder of Melbourne Functional Medicine:

  • Establish protected break times when doctors can step away from their duties to eat
  • Add more nutritious cafeteria options, like salads, whole grains, and lean proteins
  • Overhaul vending machine offerings
  • Offer educational workshops on nutrition

Be Tenacious About Good Eating

For Dr. Toomer, that meant taking several years off from work to improve her health. After losing more than 100 pounds, she founded TOTAL Weight Care Institute to help other healthcare professionals follow in her footsteps.

For you, the path toward a healthier diet might be gradual — grabbing a more nutritious snack, spending an extra hour per week on food shopping or prep, remembering a water bottle. Whatever it looks like, make realistic lifestyle tweaks that work for you.

Maybe even try that apple-a-day thing.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Eat as fast as you can whenever you can.

That was the med student mindset around food, as Catherine Harmon Toomer, MD, discovered during her school years. “Without a good system in place to counter that,” she explains, “unhealthy eating can get out of control, and that’s what happened to me.”

After med school, things got worse for Dr. Toomer. By her second year in practice as a family medicine physician, she’d gained a lot of weight and had been diagnosed with type 2 diabetes and cardiomyopathy. At 36, she went into congestive heart failure and was told she likely had 5 years to live.

A moment she described as “a huge wake-up call.”

Dr. Toomer is far from alone in her struggles to balance working in medicine and eating healthfully.

“Physicians face unique stresses because of the ubiquity of junk food in the clinical setting, easy use of food as a reward and stress reliever, and lack of time to create better wellness habits while counseling patients to do exactly that,” said John La Puma, MD, FACP, internist and cofounder of ChefMD and founder of Chef Clinic.

There is also the culture of medicine, which Dr. Toomer said looks down on self-care. “Even with break times, patient needs come before our own.” So, you sit down to eat, and there’s an emergency. Your clinic closes for lunch, but the phones still ring, and patients continue to email questions. Charting is also so time-consuming that “everything else gets put on the back burner.”

Sticking to a nutritious diet in this context can feel hopeless. But it isn’t. Really. Here are some doctor-tested, real-life ways you can nourish yourself while getting it all done.
 

Something Is Always Better Than Nothing

Sure, you might not be able to eat a balanced lunch or dinner while at work, conceded Amy Margulies, RD, LDN, owner of The Rebellious RD. But try to focus on the bigger picture and take small steps.

First, make sure you eat something, Ms. Margulies advised. “Skipping meals can lead to overeating later and negatively impact energy levels and concentration.”

Lisa Andrews, MEd, RD, LD, owner of Sound Bites Nutrition, recalled one of her patients, a gastrointestinal surgeon with reactive hypoglycemia and fatigue. “She was experiencing energy crashes mid-afternoon,” she said. It was only after starting to eat every 4-5 hours that her patient felt better.

Of course, this is easier said than done. “When you are running from one patient to the other and trying to keep on time with your schedule, there is very little time for eating and no time at all for cooking or even heating up food,” recalled Hélène Bertrand, MD, author of Low Back Pain: 3 Steps to Relief in 2 Minutes.

But during her 55 years as a family medicine physician, Dr. Bertrand found ways to improve (if not perfect) the situation. She lunched on nuts or seeds during the day or grabbed a 95% cacao chocolate bar — higher in antioxidants and lower in sugar than a candy bar.

If you don’t have time for breakfast, try drinking a complete protein shake while driving to work, Dr. Toomer recommended. “It’s not ideal, but it’s better than nothing.” Similarly, if the only way you’ll eat a high-protein, lower-carb snack like hummus is with potato chips, go for it, she said.

Basically, don’t be type A striving for perfection. Take good enough when you can and balance the rest when you have time.
 

 

 

Torpedo Temptation

From free treats in the break room to always-present pizza for residents, high-fat, high-sugar, low-nutrient fare is a constant temptation. “I worked with a physician who would bring a balanced lunch to work every day, then find whatever sweet was around for his afternoon treat,” recalled Ms. Margulies.“The cookies, cakes, and donuts were starting to add up — and stopping at one wasn’t working for him.”

What did work was Ms. Margulies’ suggestion to bring a single serving of dark chocolate and fruit to savor during a longer break. “Bringing your favorite treats in appropriate portions can help you stick with your plan throughout the day,” she explained, and you’ll have an easier time resisting what’s in the break room. “When you desire a treat, tell yourself you have what you need and don’t need to indulge in the ‘free food’ just because it’s there. You have power over your choices.”

How about tricking yourself into perceiving cherry tomatoes as treats? That might be unusual, but one of Dr. La Puma’s physician patients did just that, displaying the produce in a candy dish on his office counter. Not only did this strategy help remind him to snack healthfully, it also prompted his patients to ask about eating better, he said.
 

Preparation Is Still Underrated

Many people find meal prepping intimidating. But it doesn’t need to be complicated. For instance, try purchasing precut veggies, cooked chicken breasts, or other healthy convenience options. You can then combine them in packable containers to prep a few meals at a time. For less busy weeks, consider cooking the protein yourself and whipping up basic sauces (like pesto and vinaigrette) to jazz up your meals.

“I worked with a resident who was gaining weight each month,” recalled Ms. Margulies. “She would skip lunch, grab a random snack, then wait until she got home to eat anything she could find.”

Encouraged by Ms. Margulies, she prepared and portioned one or two balanced dinners each week, which she’d later reheat. She also bought fresh and dried fruit and high-protein snacks, keeping single servings in her car to eat on the way home.

Similarly, Jess DeGore, RD, LDN, CDCES, CHWC, a diabetes educator and owner of Dietitian Jess Nutrition, recalled an ob.gyn. client who constantly skipped meals and relied on vending machine snacks. To combat her resulting energy crashes, she followed Ms. DeGore’s advice to prep workday lunches (like quinoa salads) over the weekend and bring fruit and nut snacks to work.
 

Automate as Much as You Can

If healthy is already on hand, you’ll eat healthy, said Ms. Andrews. Build up a snack stash focusing on fiber and protein. Tote a lunch bag with a cooler pack if needed. Some suggestions:

  • Oatmeal packets
  • Individual Greek yogurt cups or drinkable yogurts
  • Protein bars
  • Protein shakes
  • Fresh fruit
  • Fresh veggie sticks
  • Nuts, dried chickpeas, or edamame
  • Trail mix
  • Single servings of hummus, nut butter, or guacamole
  • Dried seaweed snacks
  • Whole grain crackers
  • Hard-boiled eggs
  • String cheese
  • Peanut butter sandwich
  • 95% cacao chocolate bar
 

 

Try a Meal Delivery Service

Meal delivery services can be pricey, but potentially worth the expense. By bringing meals or having them sent to your office, you won’t have to find time to go to the cafeteria and stand in line, noted Janese S. Laster, MD, an internal medicine, gastroenterology, obesity medicine, and nutrition physician and founder of Gut Theory Total Digestive Care. Instead, “you’ll have something to warm up and eat while writing notes or in between patients,” she said. Plus, “you won’t have an excuse to skip meals.”

Hydration Yes, Junk Drinks No

The following can be filed in the Doctors-Know-It-But-Don’t-Always-Do-It section: “Hunger can be mistaken for thirst,” said Ms. Margulies. “Staying hydrated will help you better assess whether you’re hungry or thirsty.” Choose water over soda or energy drinks, she added, to hydrate your body without unnecessary extra sugars, sugar substitutes, calories, caffeine, or sodium — all of which can affect how you feel.

Advocate for Your Health

Convincing your institution to make changes might be difficult or even impossible, but consider asking your workplace to implement initiatives like these to boost provider nutrition, suggested Jabe Brown, BHSc (Nat), founder of Melbourne Functional Medicine:

  • Establish protected break times when doctors can step away from their duties to eat
  • Add more nutritious cafeteria options, like salads, whole grains, and lean proteins
  • Overhaul vending machine offerings
  • Offer educational workshops on nutrition

Be Tenacious About Good Eating

For Dr. Toomer, that meant taking several years off from work to improve her health. After losing more than 100 pounds, she founded TOTAL Weight Care Institute to help other healthcare professionals follow in her footsteps.

For you, the path toward a healthier diet might be gradual — grabbing a more nutritious snack, spending an extra hour per week on food shopping or prep, remembering a water bottle. Whatever it looks like, make realistic lifestyle tweaks that work for you.

Maybe even try that apple-a-day thing.
 

A version of this article first appeared on Medscape.com.

Eat as fast as you can whenever you can.

That was the med student mindset around food, as Catherine Harmon Toomer, MD, discovered during her school years. “Without a good system in place to counter that,” she explains, “unhealthy eating can get out of control, and that’s what happened to me.”

After med school, things got worse for Dr. Toomer. By her second year in practice as a family medicine physician, she’d gained a lot of weight and had been diagnosed with type 2 diabetes and cardiomyopathy. At 36, she went into congestive heart failure and was told she likely had 5 years to live.

A moment she described as “a huge wake-up call.”

Dr. Toomer is far from alone in her struggles to balance working in medicine and eating healthfully.

“Physicians face unique stresses because of the ubiquity of junk food in the clinical setting, easy use of food as a reward and stress reliever, and lack of time to create better wellness habits while counseling patients to do exactly that,” said John La Puma, MD, FACP, internist and cofounder of ChefMD and founder of Chef Clinic.

There is also the culture of medicine, which Dr. Toomer said looks down on self-care. “Even with break times, patient needs come before our own.” So, you sit down to eat, and there’s an emergency. Your clinic closes for lunch, but the phones still ring, and patients continue to email questions. Charting is also so time-consuming that “everything else gets put on the back burner.”

Sticking to a nutritious diet in this context can feel hopeless. But it isn’t. Really. Here are some doctor-tested, real-life ways you can nourish yourself while getting it all done.
 

Something Is Always Better Than Nothing

Sure, you might not be able to eat a balanced lunch or dinner while at work, conceded Amy Margulies, RD, LDN, owner of The Rebellious RD. But try to focus on the bigger picture and take small steps.

First, make sure you eat something, Ms. Margulies advised. “Skipping meals can lead to overeating later and negatively impact energy levels and concentration.”

Lisa Andrews, MEd, RD, LD, owner of Sound Bites Nutrition, recalled one of her patients, a gastrointestinal surgeon with reactive hypoglycemia and fatigue. “She was experiencing energy crashes mid-afternoon,” she said. It was only after starting to eat every 4-5 hours that her patient felt better.

Of course, this is easier said than done. “When you are running from one patient to the other and trying to keep on time with your schedule, there is very little time for eating and no time at all for cooking or even heating up food,” recalled Hélène Bertrand, MD, author of Low Back Pain: 3 Steps to Relief in 2 Minutes.

But during her 55 years as a family medicine physician, Dr. Bertrand found ways to improve (if not perfect) the situation. She lunched on nuts or seeds during the day or grabbed a 95% cacao chocolate bar — higher in antioxidants and lower in sugar than a candy bar.

If you don’t have time for breakfast, try drinking a complete protein shake while driving to work, Dr. Toomer recommended. “It’s not ideal, but it’s better than nothing.” Similarly, if the only way you’ll eat a high-protein, lower-carb snack like hummus is with potato chips, go for it, she said.

Basically, don’t be type A striving for perfection. Take good enough when you can and balance the rest when you have time.
 

 

 

Torpedo Temptation

From free treats in the break room to always-present pizza for residents, high-fat, high-sugar, low-nutrient fare is a constant temptation. “I worked with a physician who would bring a balanced lunch to work every day, then find whatever sweet was around for his afternoon treat,” recalled Ms. Margulies.“The cookies, cakes, and donuts were starting to add up — and stopping at one wasn’t working for him.”

What did work was Ms. Margulies’ suggestion to bring a single serving of dark chocolate and fruit to savor during a longer break. “Bringing your favorite treats in appropriate portions can help you stick with your plan throughout the day,” she explained, and you’ll have an easier time resisting what’s in the break room. “When you desire a treat, tell yourself you have what you need and don’t need to indulge in the ‘free food’ just because it’s there. You have power over your choices.”

How about tricking yourself into perceiving cherry tomatoes as treats? That might be unusual, but one of Dr. La Puma’s physician patients did just that, displaying the produce in a candy dish on his office counter. Not only did this strategy help remind him to snack healthfully, it also prompted his patients to ask about eating better, he said.
 

Preparation Is Still Underrated

Many people find meal prepping intimidating. But it doesn’t need to be complicated. For instance, try purchasing precut veggies, cooked chicken breasts, or other healthy convenience options. You can then combine them in packable containers to prep a few meals at a time. For less busy weeks, consider cooking the protein yourself and whipping up basic sauces (like pesto and vinaigrette) to jazz up your meals.

“I worked with a resident who was gaining weight each month,” recalled Ms. Margulies. “She would skip lunch, grab a random snack, then wait until she got home to eat anything she could find.”

Encouraged by Ms. Margulies, she prepared and portioned one or two balanced dinners each week, which she’d later reheat. She also bought fresh and dried fruit and high-protein snacks, keeping single servings in her car to eat on the way home.

Similarly, Jess DeGore, RD, LDN, CDCES, CHWC, a diabetes educator and owner of Dietitian Jess Nutrition, recalled an ob.gyn. client who constantly skipped meals and relied on vending machine snacks. To combat her resulting energy crashes, she followed Ms. DeGore’s advice to prep workday lunches (like quinoa salads) over the weekend and bring fruit and nut snacks to work.
 

Automate as Much as You Can

If healthy is already on hand, you’ll eat healthy, said Ms. Andrews. Build up a snack stash focusing on fiber and protein. Tote a lunch bag with a cooler pack if needed. Some suggestions:

  • Oatmeal packets
  • Individual Greek yogurt cups or drinkable yogurts
  • Protein bars
  • Protein shakes
  • Fresh fruit
  • Fresh veggie sticks
  • Nuts, dried chickpeas, or edamame
  • Trail mix
  • Single servings of hummus, nut butter, or guacamole
  • Dried seaweed snacks
  • Whole grain crackers
  • Hard-boiled eggs
  • String cheese
  • Peanut butter sandwich
  • 95% cacao chocolate bar
 

 

Try a Meal Delivery Service

Meal delivery services can be pricey, but potentially worth the expense. By bringing meals or having them sent to your office, you won’t have to find time to go to the cafeteria and stand in line, noted Janese S. Laster, MD, an internal medicine, gastroenterology, obesity medicine, and nutrition physician and founder of Gut Theory Total Digestive Care. Instead, “you’ll have something to warm up and eat while writing notes or in between patients,” she said. Plus, “you won’t have an excuse to skip meals.”

Hydration Yes, Junk Drinks No

The following can be filed in the Doctors-Know-It-But-Don’t-Always-Do-It section: “Hunger can be mistaken for thirst,” said Ms. Margulies. “Staying hydrated will help you better assess whether you’re hungry or thirsty.” Choose water over soda or energy drinks, she added, to hydrate your body without unnecessary extra sugars, sugar substitutes, calories, caffeine, or sodium — all of which can affect how you feel.

Advocate for Your Health

Convincing your institution to make changes might be difficult or even impossible, but consider asking your workplace to implement initiatives like these to boost provider nutrition, suggested Jabe Brown, BHSc (Nat), founder of Melbourne Functional Medicine:

  • Establish protected break times when doctors can step away from their duties to eat
  • Add more nutritious cafeteria options, like salads, whole grains, and lean proteins
  • Overhaul vending machine offerings
  • Offer educational workshops on nutrition

Be Tenacious About Good Eating

For Dr. Toomer, that meant taking several years off from work to improve her health. After losing more than 100 pounds, she founded TOTAL Weight Care Institute to help other healthcare professionals follow in her footsteps.

For you, the path toward a healthier diet might be gradual — grabbing a more nutritious snack, spending an extra hour per week on food shopping or prep, remembering a water bottle. Whatever it looks like, make realistic lifestyle tweaks that work for you.

Maybe even try that apple-a-day thing.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

High Blood Sugar May Drive Dementia, German Researchers Warn

Article Type
Changed
Fri, 07/26/2024 - 15:43

 

On World Brain Day (July 22, 2024), the German Society of Neurology (DGN) and the German Brain Foundation pointed out that too much sugar can harm the brain. The current results of the Global Burden of Diseases study shows that stroke and dementia are among the top 10 causes of death. A healthy, active lifestyle with sufficient exercise and sleep, along with the avoidance of harmful substances like alcohol, nicotine, or excessive sugar, protects the brain.

“Of course, the dose makes the poison as the brain, being the body’s powerhouse, needs glucose to function,” said Frank Erbguth, MD, PhD, president of the German Brain Foundation, in a press release from DGN and the German Brain Foundation. “However, with a permanent increase in blood sugar levels due to too many, too lavish meals and constant snacking on the side, we overload the system and fuel the development of neurologic diseases, particularly dementia and stroke.”

The per capita consumption of sugar was 33.2 kg in 2021/2022, which is almost twice the recommended amount. The German Nutrition Society recommends that no more than 10% of energy come from sugar. With a goal of 2000 kilocalories, that’s 50 g per day, or 18 kg per year. This total includes not only added sugar but also naturally occurring sugar, such as in fruits, honey, or juices.
 

What’s the Mechanism?

High blood sugar levels damage brain blood vessels and promote deposits on the vessel walls, thus reducing blood flow and nutrient supply to brain cells. This process can cause various limitations, as well as vascular dementia.

In Germany, around 250,000 people are diagnosed with dementia annually, and 15%-25% have vascular dementia. That proportion represents between 40,000 and 60,000 new cases each year.

In addition, glycosaminoglycans, which are complex sugar molecules, can directly impair cognition. They affect the function of synapses between nerve cells and, thus, affect neuronal plasticity. Experimental data presented at the 2023 American Chemical Society Congress have shown this phenomenon.

Twenty years ago, a study provided evidence that a diet high in fat and sugar disrupts neuronal plasticity and can impair the function of the hippocampus in the long term. A recent meta-analysis confirms these findings: Although mental performance improves at 2-12 hours after sugar consumption, sustained sugar intake can permanently damage cognitive function.

Diabetes mellitus can indirectly cause brain damage. Since the 1990s, it has been known that patients with type 2 diabetes have a significantly higher risk for dementia. It is suspected that glucose metabolism is also disrupted in neurons, thus contributing to the development of Alzheimer’s disease. Insulin also plays a role in the formation of Alzheimer’s plaques.

The Max Planck Institute for Metabolism Research demonstrated in 2023 that regular consumption of high-sugar and high-fat foods can change the brain. This leads to an increased craving for high-sugar and high-fat foods, which in turn promotes the development of obesity and type 2 diabetes.
 

Reduce Sugar Consumption

DGN and the German Brain Foundation advise minimizing sugar consumption. This process is often challenging, as even a small dose of sugar can trigger the gut to send signals to the brain via the vagus nerve, thus causing a strong craving for more sugar. “This could be the reason why some people quickly eat a whole chocolate bar after just one piece,” said Dr. Erbguth. In addition, dopamine, a “feel-good hormone,” is released in the brain when consuming sugar, thus leading to a desire for more.

“It is wise to break free from this cycle by largely avoiding sugar,” said Peter Berlit, MD, secretary general and spokesperson for DGN. “The effort is worth it, as 40% of all dementia cases and 90% of all strokes are preventable, with many of them linked to industrial sugar,” said Dr. Berlit. DGN and the German Brain Foundation support the call for a tax on particularly sugary beverages. They also pointed out that foods like yogurt or tomato ketchup contain sugar, and alcohol can also significantly raise blood sugar levels.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

On World Brain Day (July 22, 2024), the German Society of Neurology (DGN) and the German Brain Foundation pointed out that too much sugar can harm the brain. The current results of the Global Burden of Diseases study shows that stroke and dementia are among the top 10 causes of death. A healthy, active lifestyle with sufficient exercise and sleep, along with the avoidance of harmful substances like alcohol, nicotine, or excessive sugar, protects the brain.

“Of course, the dose makes the poison as the brain, being the body’s powerhouse, needs glucose to function,” said Frank Erbguth, MD, PhD, president of the German Brain Foundation, in a press release from DGN and the German Brain Foundation. “However, with a permanent increase in blood sugar levels due to too many, too lavish meals and constant snacking on the side, we overload the system and fuel the development of neurologic diseases, particularly dementia and stroke.”

The per capita consumption of sugar was 33.2 kg in 2021/2022, which is almost twice the recommended amount. The German Nutrition Society recommends that no more than 10% of energy come from sugar. With a goal of 2000 kilocalories, that’s 50 g per day, or 18 kg per year. This total includes not only added sugar but also naturally occurring sugar, such as in fruits, honey, or juices.
 

What’s the Mechanism?

High blood sugar levels damage brain blood vessels and promote deposits on the vessel walls, thus reducing blood flow and nutrient supply to brain cells. This process can cause various limitations, as well as vascular dementia.

In Germany, around 250,000 people are diagnosed with dementia annually, and 15%-25% have vascular dementia. That proportion represents between 40,000 and 60,000 new cases each year.

In addition, glycosaminoglycans, which are complex sugar molecules, can directly impair cognition. They affect the function of synapses between nerve cells and, thus, affect neuronal plasticity. Experimental data presented at the 2023 American Chemical Society Congress have shown this phenomenon.

Twenty years ago, a study provided evidence that a diet high in fat and sugar disrupts neuronal plasticity and can impair the function of the hippocampus in the long term. A recent meta-analysis confirms these findings: Although mental performance improves at 2-12 hours after sugar consumption, sustained sugar intake can permanently damage cognitive function.

Diabetes mellitus can indirectly cause brain damage. Since the 1990s, it has been known that patients with type 2 diabetes have a significantly higher risk for dementia. It is suspected that glucose metabolism is also disrupted in neurons, thus contributing to the development of Alzheimer’s disease. Insulin also plays a role in the formation of Alzheimer’s plaques.

The Max Planck Institute for Metabolism Research demonstrated in 2023 that regular consumption of high-sugar and high-fat foods can change the brain. This leads to an increased craving for high-sugar and high-fat foods, which in turn promotes the development of obesity and type 2 diabetes.
 

Reduce Sugar Consumption

DGN and the German Brain Foundation advise minimizing sugar consumption. This process is often challenging, as even a small dose of sugar can trigger the gut to send signals to the brain via the vagus nerve, thus causing a strong craving for more sugar. “This could be the reason why some people quickly eat a whole chocolate bar after just one piece,” said Dr. Erbguth. In addition, dopamine, a “feel-good hormone,” is released in the brain when consuming sugar, thus leading to a desire for more.

“It is wise to break free from this cycle by largely avoiding sugar,” said Peter Berlit, MD, secretary general and spokesperson for DGN. “The effort is worth it, as 40% of all dementia cases and 90% of all strokes are preventable, with many of them linked to industrial sugar,” said Dr. Berlit. DGN and the German Brain Foundation support the call for a tax on particularly sugary beverages. They also pointed out that foods like yogurt or tomato ketchup contain sugar, and alcohol can also significantly raise blood sugar levels.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

On World Brain Day (July 22, 2024), the German Society of Neurology (DGN) and the German Brain Foundation pointed out that too much sugar can harm the brain. The current results of the Global Burden of Diseases study shows that stroke and dementia are among the top 10 causes of death. A healthy, active lifestyle with sufficient exercise and sleep, along with the avoidance of harmful substances like alcohol, nicotine, or excessive sugar, protects the brain.

“Of course, the dose makes the poison as the brain, being the body’s powerhouse, needs glucose to function,” said Frank Erbguth, MD, PhD, president of the German Brain Foundation, in a press release from DGN and the German Brain Foundation. “However, with a permanent increase in blood sugar levels due to too many, too lavish meals and constant snacking on the side, we overload the system and fuel the development of neurologic diseases, particularly dementia and stroke.”

The per capita consumption of sugar was 33.2 kg in 2021/2022, which is almost twice the recommended amount. The German Nutrition Society recommends that no more than 10% of energy come from sugar. With a goal of 2000 kilocalories, that’s 50 g per day, or 18 kg per year. This total includes not only added sugar but also naturally occurring sugar, such as in fruits, honey, or juices.
 

What’s the Mechanism?

High blood sugar levels damage brain blood vessels and promote deposits on the vessel walls, thus reducing blood flow and nutrient supply to brain cells. This process can cause various limitations, as well as vascular dementia.

In Germany, around 250,000 people are diagnosed with dementia annually, and 15%-25% have vascular dementia. That proportion represents between 40,000 and 60,000 new cases each year.

In addition, glycosaminoglycans, which are complex sugar molecules, can directly impair cognition. They affect the function of synapses between nerve cells and, thus, affect neuronal plasticity. Experimental data presented at the 2023 American Chemical Society Congress have shown this phenomenon.

Twenty years ago, a study provided evidence that a diet high in fat and sugar disrupts neuronal plasticity and can impair the function of the hippocampus in the long term. A recent meta-analysis confirms these findings: Although mental performance improves at 2-12 hours after sugar consumption, sustained sugar intake can permanently damage cognitive function.

Diabetes mellitus can indirectly cause brain damage. Since the 1990s, it has been known that patients with type 2 diabetes have a significantly higher risk for dementia. It is suspected that glucose metabolism is also disrupted in neurons, thus contributing to the development of Alzheimer’s disease. Insulin also plays a role in the formation of Alzheimer’s plaques.

The Max Planck Institute for Metabolism Research demonstrated in 2023 that regular consumption of high-sugar and high-fat foods can change the brain. This leads to an increased craving for high-sugar and high-fat foods, which in turn promotes the development of obesity and type 2 diabetes.
 

Reduce Sugar Consumption

DGN and the German Brain Foundation advise minimizing sugar consumption. This process is often challenging, as even a small dose of sugar can trigger the gut to send signals to the brain via the vagus nerve, thus causing a strong craving for more sugar. “This could be the reason why some people quickly eat a whole chocolate bar after just one piece,” said Dr. Erbguth. In addition, dopamine, a “feel-good hormone,” is released in the brain when consuming sugar, thus leading to a desire for more.

“It is wise to break free from this cycle by largely avoiding sugar,” said Peter Berlit, MD, secretary general and spokesperson for DGN. “The effort is worth it, as 40% of all dementia cases and 90% of all strokes are preventable, with many of them linked to industrial sugar,” said Dr. Berlit. DGN and the German Brain Foundation support the call for a tax on particularly sugary beverages. They also pointed out that foods like yogurt or tomato ketchup contain sugar, and alcohol can also significantly raise blood sugar levels.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Risk of MACE Comparable Among Biologic Classes for Psoriasis, PsA

Article Type
Changed
Fri, 07/26/2024 - 12:28

 

TOPLINE:

Rates of major adverse cardiovascular events (MACE) do not differ significantly among individual biologics used for psoriasis or psoriatic arthritis (PsA), a database analysis finds. 

METHODOLOGY:

  • Data from the TriNetX health records database included 32,758 patients treated with TNF inhibitors (TNFi, 62.9%), interleukin-17 inhibitors (IL-17i, 15.4%), IL-23i (10.7%), and IL-12i/IL-23i (10.7%).
  • The researchers calculated time-dependent risk for MACE using multinomial Cox proportional hazard ratios. The reference was TNFi exposure.
  • Subset analyses compared MACE in patients with and without existing cardiovascular disease.

TAKEAWAY:

  • Compared with TNFi use, there was no difference in the incidence of MACE events in the IL-17i, IL-23i, or IL-12i/IL-23i group.
  • There were also no significant differences between biologic groups in the incidence of congestive heart failure, myocardial infarction, or cerebral vascular accident/stroke.

IN PRACTICE:

Despite some concern about increased risk for MACE with TNFi use, this study suggests no special risk for patients with psoriasis or PsA associated with TNFi vs other biologics. “Given our results, as it pertains to MACE, prescribers shouldn’t favor any one biologic class over another,” said lead investigator Shikha Singla, MD, medical director of the Psoriatic Arthritis Program at Medical College of Wisconsin in Milwaukee, Wisconsin.

SOURCE:

Bonit Gill, MD, a second-year fellow at Medical College of Wisconsin, presented the study as a poster at the annual meeting of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis

LIMITATIONS:

The study’s retrospective nature makes it impossible to prove causation and the patients included in the study were from Wisconsin, which may limit generalizability.

DISCLOSURES:

Dr. Gill had no relevant financial disclosures. Other study authors participated in trials or consulted for AbbVie, AstraZeneca, Novartis, Eli Lilly, Janssen, and UCB.

A version of this article first appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

 

TOPLINE:

Rates of major adverse cardiovascular events (MACE) do not differ significantly among individual biologics used for psoriasis or psoriatic arthritis (PsA), a database analysis finds. 

METHODOLOGY:

  • Data from the TriNetX health records database included 32,758 patients treated with TNF inhibitors (TNFi, 62.9%), interleukin-17 inhibitors (IL-17i, 15.4%), IL-23i (10.7%), and IL-12i/IL-23i (10.7%).
  • The researchers calculated time-dependent risk for MACE using multinomial Cox proportional hazard ratios. The reference was TNFi exposure.
  • Subset analyses compared MACE in patients with and without existing cardiovascular disease.

TAKEAWAY:

  • Compared with TNFi use, there was no difference in the incidence of MACE events in the IL-17i, IL-23i, or IL-12i/IL-23i group.
  • There were also no significant differences between biologic groups in the incidence of congestive heart failure, myocardial infarction, or cerebral vascular accident/stroke.

IN PRACTICE:

Despite some concern about increased risk for MACE with TNFi use, this study suggests no special risk for patients with psoriasis or PsA associated with TNFi vs other biologics. “Given our results, as it pertains to MACE, prescribers shouldn’t favor any one biologic class over another,” said lead investigator Shikha Singla, MD, medical director of the Psoriatic Arthritis Program at Medical College of Wisconsin in Milwaukee, Wisconsin.

SOURCE:

Bonit Gill, MD, a second-year fellow at Medical College of Wisconsin, presented the study as a poster at the annual meeting of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis

LIMITATIONS:

The study’s retrospective nature makes it impossible to prove causation and the patients included in the study were from Wisconsin, which may limit generalizability.

DISCLOSURES:

Dr. Gill had no relevant financial disclosures. Other study authors participated in trials or consulted for AbbVie, AstraZeneca, Novartis, Eli Lilly, Janssen, and UCB.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Rates of major adverse cardiovascular events (MACE) do not differ significantly among individual biologics used for psoriasis or psoriatic arthritis (PsA), a database analysis finds. 

METHODOLOGY:

  • Data from the TriNetX health records database included 32,758 patients treated with TNF inhibitors (TNFi, 62.9%), interleukin-17 inhibitors (IL-17i, 15.4%), IL-23i (10.7%), and IL-12i/IL-23i (10.7%).
  • The researchers calculated time-dependent risk for MACE using multinomial Cox proportional hazard ratios. The reference was TNFi exposure.
  • Subset analyses compared MACE in patients with and without existing cardiovascular disease.

TAKEAWAY:

  • Compared with TNFi use, there was no difference in the incidence of MACE events in the IL-17i, IL-23i, or IL-12i/IL-23i group.
  • There were also no significant differences between biologic groups in the incidence of congestive heart failure, myocardial infarction, or cerebral vascular accident/stroke.

IN PRACTICE:

Despite some concern about increased risk for MACE with TNFi use, this study suggests no special risk for patients with psoriasis or PsA associated with TNFi vs other biologics. “Given our results, as it pertains to MACE, prescribers shouldn’t favor any one biologic class over another,” said lead investigator Shikha Singla, MD, medical director of the Psoriatic Arthritis Program at Medical College of Wisconsin in Milwaukee, Wisconsin.

SOURCE:

Bonit Gill, MD, a second-year fellow at Medical College of Wisconsin, presented the study as a poster at the annual meeting of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis

LIMITATIONS:

The study’s retrospective nature makes it impossible to prove causation and the patients included in the study were from Wisconsin, which may limit generalizability.

DISCLOSURES:

Dr. Gill had no relevant financial disclosures. Other study authors participated in trials or consulted for AbbVie, AstraZeneca, Novartis, Eli Lilly, Janssen, and UCB.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article