Top Sections
The Optimized Doctor
ACO Insider
Managing Your Practice
im
Main menu
IMN Main Menu
Explore menu
IMN Explore Menu
Proclivity ID
18818001
Unpublish
Specialty Focus
Mental Health
Vaccines
Addiction Medicine
Geriatrics
Negative Keywords
gaming
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
effective for the treatment of a baby
effective for the treatment of a boy
effective for the treatment of a child
effective for the treatment of a female
effective for the treatment of a girl
effective for the treatment of a kid
effective for the treatment of a minor
effective for the treatment of a newborn
effective for the treatment of a teen
effective for the treatment of a teenager
effective for the treatment of a toddler
effective for the treatment of a woman
effective for the treatment of adolescents
effective for the treatment of an adolescent
effective for the treatment of an infant
effective for the treatment of babies
effective for the treatment of baby
effective for the treatment of body building
effective for the treatment of boys
effective for the treatment of breast feeding
effective for the treatment of children
effective for the treatment of females
effective for the treatment of fetus
effective for the treatment of girls
effective for the treatment of infants
effective for the treatment of kids
effective for the treatment of minors
effective for the treatment of newborn
effective for the treatment of pediatric
effective for the treatment of pregnancy
effective for the treatment of pregnant
effective for the treatment of teenagers
effective for the treatment of teens
effective for the treatment of toddlers
effective for the treatment of women
effective for the treatment of youths
for the relief of a baby
for the relief of a boy
for the relief of a child
for the relief of a female
for the relief of a girl
for the relief of a kid
for the relief of a minor
for the relief of a newborn
for the relief of a teen
for the relief of a teenager
for the relief of a toddler
for the relief of a woman
for the relief of adolescents
for the relief of an adolescent
for the relief of an infant
for the relief of babies
for the relief of baby
for the relief of body building
for the relief of boys
for the relief of breast feeding
for the relief of children
for the relief of females
for the relief of fetus
for the relief of girls
for the relief of infants
for the relief of kids
for the relief of minors
for the relief of newborn
for the relief of pediatric
for the relief of pregnancy
for the relief of pregnant
for the relief of teenagers
for the relief of teens
for the relief of toddlers
for the relief of women
for the relief of youths
medicating a baby
medicating a boy
medicating a child
medicating a female
medicating a girl
medicating a kid
medicating a minor
medicating a newborn
medicating a teen
medicating a teenager
medicating a toddler
medicating a woman
medicating adolescents
medicating an adolescent
medicating an infant
medicating babies
medicating baby
medicating body building
medicating boys
medicating breast feeding
medicating children
medicating females
medicating fetus
medicating girls
medicating infants
medicating kids
medicating minors
medicating newborn
medicating pediatric
medicating pregnancy
medicating pregnant
medicating teenagers
medicating teens
medicating toddlers
medicating women
medicating youths
at risk for a baby
at risk for a boy
at risk for a child
at risk for a female
at risk for a girl
at risk for a kid
at risk for a minor
at risk for a newborn
at risk for a teen
at risk for a teenager
at risk for a toddler
at risk for a woman
at risk for adolescents
at risk for an adolescent
at risk for an infant
at risk for babies
at risk for baby
at risk for body building
at risk for boys
at risk for breast feeding
at risk for children
at risk for females
at risk for fetus
at risk for girls
at risk for infants
at risk for kids
at risk for minors
at risk for newborn
at risk for pediatric
at risk for pregnancy
at risk for pregnant
at risk for teenagers
at risk for teens
at risk for toddlers
at risk for women
at risk for youths
treating a baby
treating a boy
treating a child
treating a female
treating a girl
treating a kid
treating a minor
treating a newborn
treating a teen
treating a teenager
treating a toddler
treating a woman
treating adolescents
treating an adolescent
treating an infant
treating babies
treating baby
treating body building
treating boys
treating breast feeding
treating children
treating females
treating fetus
treating girls
treating infants
treating kids
treating minors
treating newborn
treating pediatric
treating pregnancy
treating pregnant
treating teenagers
treating teens
treating toddlers
treating women
treating youths
treatment for a baby
treatment for a boy
treatment for a child
treatment for a female
treatment for a girl
treatment for a kid
treatment for a minor
treatment for a newborn
treatment for a teen
treatment for a teenager
treatment for a toddler
treatment for a woman
treatment for adolescents
treatment for an adolescent
treatment for an infant
treatment for babies
treatment for baby
treatment for body building
treatment for boys
treatment for breast feeding
treatment for children
treatment for females
treatment for fetus
treatment for girls
treatment for infants
treatment for kids
treatment for minors
treatment for newborn
treatment for pediatric
treatment for pregnancy
treatment for pregnant
treatment for teenagers
treatment for teens
treatment for toddlers
treatment for women
treatment for youths
treatments for a baby
treatments for a boy
treatments for a child
treatments for a female
treatments for a girl
treatments for a kid
treatments for a minor
treatments for a newborn
treatments for a teen
treatments for a teenager
treatments for a toddler
treatments for a woman
treatments for adolescents
treatments for an adolescent
treatments for an infant
treatments for babies
treatments for baby
treatments for body building
treatments for boys
treatments for breast feeding
treatments for children
treatments for females
treatments for fetus
treatments for girls
treatments for infants
treatments for kids
treatments for minors
treatments for newborn
treatments for pediatric
treatments for pregnancy
treatments for pregnant
treatments for teenagers
treatments for teens
treatments for toddlers
treatments for women
treatments for youths
diagnosing a baby
diagnosing a boy
diagnosing a child
diagnosing a female
diagnosing a girl
diagnosing a kid
diagnosing a minor
diagnosing a newborn
diagnosing a teen
diagnosing a teenager
diagnosing a toddler
diagnosing a woman
diagnosing adolescents
diagnosing an adolescent
diagnosing an infant
diagnosing babies
diagnosing baby
diagnosing body building
diagnosing boys
diagnosing breast feeding
diagnosing children
diagnosing females
diagnosing fetus
diagnosing girls
diagnosing infants
diagnosing kids
diagnosing minors
diagnosing newborn
diagnosing pediatric
diagnosing pregnancy
diagnosing pregnant
diagnosing teenagers
diagnosing teens
diagnosing toddlers
diagnosing women
diagnosing youths
indicated for a baby
indicated for a boy
indicated for a child
indicated for a female
indicated for a girl
indicated for a kid
indicated for a minor
indicated for a newborn
indicated for a teen
indicated for a teenager
indicated for a toddler
indicated for a woman
indicated for adolescents
indicated for an adolescent
indicated for an infant
indicated for babies
indicated for baby
indicated for body building
indicated for boys
indicated for breast feeding
indicated for children
indicated for females
indicated for fetus
indicated for girls
indicated for infants
indicated for kids
indicated for minors
indicated for newborn
indicated for pediatric
indicated for pregnancy
indicated for pregnant
indicated for teenagers
indicated for teens
indicated for toddlers
indicated for women
indicated for youths
useful for a baby
useful for a boy
useful for a child
useful for a female
useful for a girl
useful for a kid
useful for a minor
useful for a newborn
useful for a teen
useful for a teenager
useful for a toddler
useful for a woman
useful for adolescents
useful for an adolescent
useful for an infant
useful for babies
useful for baby
useful for body building
useful for boys
useful for breast feeding
useful for children
useful for females
useful for fetus
useful for girls
useful for infants
useful for kids
useful for minors
useful for newborn
useful for pediatric
useful for pregnancy
useful for pregnant
useful for teenagers
useful for teens
useful for toddlers
useful for women
useful for youths
effective for a baby
effective for a boy
effective for a child
effective for a female
effective for a girl
effective for a kid
effective for a minor
effective for a newborn
effective for a teen
effective for a teenager
effective for a toddler
effective for a woman
effective for adolescents
effective for an adolescent
effective for an infant
effective for babies
effective for baby
effective for body building
effective for boys
effective for breast feeding
effective for children
effective for females
effective for fetus
effective for girls
effective for infants
effective for kids
effective for minors
effective for newborn
effective for pediatric
effective for pregnancy
effective for pregnant
effective for teenagers
effective for teens
effective for toddlers
effective for women
effective for youths
cures for a baby
cures for a boy
cures for a child
cures for a female
cures for a girl
cures for a kid
cures for a minor
cures for a newborn
cures for a teen
cures for a teenager
cures for a toddler
cures for a woman
cures for adolescents
cures for an adolescent
cures for an infant
cures for babies
cures for baby
cures for body building
cures for boys
cures for breast feeding
cures for children
cures for females
cures for fetus
cures for girls
cures for infants
cures for kids
cures for minors
cures for newborn
cures for pediatric
cures for pregnancy
cures for pregnant
cures for teenagers
cures for teens
cures for toddlers
cures for women
cures for youths
use in a baby
use in a boy
use in a child
use in a female
use in a girl
use in a kid
use in a minor
use in a newborn
use in a teen
use in a teenager
use in a toddler
use in a woman
use in adolescents
use in an adolescent
use in an infant
use in babies
use in baby
use in body building
use in boys
use in breast feeding
use in children
use in females
use in fetus
use in girls
use in infants
use in kids
use in minors
use in newborn
use in pediatric
use in pregnancy
use in pregnant
use in teenagers
use in teens
use in toddlers
use in women
use in youths
use in patients with a baby
use in patients with a boy
use in patients with a child
use in patients with a female
use in patients with a girl
use in patients with a kid
use in patients with a minor
use in patients with a newborn
use in patients with a teen
use in patients with a teenager
use in patients with a toddler
use in patients with a woman
use in patients with adolescents
use in patients with an adolescent
use in patients with an infant
use in patients with babies
use in patients with baby
use in patients with body building
use in patients with boys
use in patients with breast feeding
use in patients with children
use in patients with females
use in patients with fetus
use in patients with girls
use in patients with infants
use in patients with kids
use in patients with minors
use in patients with newborn
use in patients with pediatric
use in patients with pregnancy
use in patients with pregnant
use in patients with teenagers
use in patients with teens
use in patients with toddlers
use in patients with women
use in patients with youths
a baby diagnosis
a boy diagnosis
a child diagnosis
a female diagnosis
a girl diagnosis
a kid diagnosis
a minor diagnosis
a newborn diagnosis
a teen diagnosis
a teenager diagnosis
a toddler diagnosis
a woman diagnosis
adolescents diagnosis
an adolescent diagnosis
an infant diagnosis
babies diagnosis
baby diagnosis
body building diagnosis
boys diagnosis
breast feeding diagnosis
children diagnosis
females diagnosis
fetus diagnosis
girls diagnosis
infants diagnosis
kids diagnosis
minors diagnosis
newborn diagnosis
pediatric diagnosis
pregnancy diagnosis
pregnant diagnosis
teenagers diagnosis
teens diagnosis
toddlers diagnosis
women diagnosis
youths diagnosis
a baby medication
a boy medication
a child medication
a female medication
a girl medication
a kid medication
a minor medication
a newborn medication
a teen medication
a teenager medication
a toddler medication
a woman medication
adolescents medication
an adolescent medication
an infant medication
babies medication
baby medication
body building medication
boys medication
breast feeding medication
children medication
females medication
fetus medication
girls medication
infants medication
kids medication
minors medication
newborn medication
pediatric medication
pregnancy medication
pregnant medication
teenagers medication
teens medication
toddlers medication
women medication
youths medication
a baby therapy
a boy therapy
a child therapy
a female therapy
a girl therapy
a kid therapy
a minor therapy
a newborn therapy
a teen therapy
a teenager therapy
a toddler therapy
a woman therapy
adolescents therapy
an adolescent therapy
an infant therapy
babies therapy
baby therapy
body building therapy
boys therapy
breast feeding therapy
children therapy
females therapy
fetus therapy
girls therapy
infants therapy
kids therapy
minors therapy
newborn therapy
pediatric therapy
pregnancy therapy
pregnant therapy
teenagers therapy
teens therapy
toddlers therapy
women therapy
youths therapy
a baby treatment
a boy treatment
a child treatment
a female treatment
a girl treatment
a kid treatment
a minor treatment
a newborn treatment
a teen treatment
a teenager treatment
a toddler treatment
a woman treatment
adolescents treatment
an adolescent treatment
an infant treatment
babies treatment
baby treatment
body building treatment
boys treatment
breast feeding treatment
children treatment
females treatment
fetus treatment
girls treatment
infants treatment
kids treatment
minors treatment
newborn treatment
pediatric treatment
pregnancy treatment
pregnant treatment
teenagers treatment
teens treatment
toddlers treatment
women treatment
youths treatment
a baby cure
a boy cure
a child cure
a female cure
a girl cure
a kid cure
a minor cure
a newborn cure
a teen cure
a teenager cure
a toddler cure
a woman cure
adolescents cure
an adolescent cure
an infant cure
babies cure
baby cure
body building cure
boys cure
breast feeding cure
children cure
females cure
fetus cure
girls cure
infants cure
kids cure
minors cure
newborn cure
pediatric cure
pregnancy cure
pregnant cure
teenagers cure
teens cure
toddlers cure
women cure
youths cure
a baby symptoms
a boy symptoms
a child symptoms
a female symptoms
a girl symptoms
a kid symptoms
a minor symptoms
a newborn symptoms
a teen symptoms
a teenager symptoms
a toddler symptoms
a woman symptoms
adolescents symptoms
an adolescent symptoms
an infant symptoms
babies symptoms
baby symptoms
body building symptoms
boys symptoms
breast feeding symptoms
children symptoms
females symptoms
fetus symptoms
girls symptoms
infants symptoms
kids symptoms
minors symptoms
newborn symptoms
pediatric symptoms
pregnancy symptoms
pregnant symptoms
teenagers symptoms
teens symptoms
toddlers symptoms
women symptoms
youths symptoms
a baby medicine
a boy medicine
a child medicine
a female medicine
a girl medicine
a kid medicine
a minor medicine
a newborn medicine
a teen medicine
a teenager medicine
a toddler medicine
a woman medicine
adolescents medicine
an adolescent medicine
an infant medicine
babies medicine
baby medicine
body building medicine
boys medicine
breast feeding medicine
children medicine
females medicine
fetus medicine
girls medicine
infants medicine
kids medicine
minors medicine
newborn medicine
pediatric medicine
pregnancy medicine
pregnant medicine
teenagers medicine
teens medicine
toddlers medicine
women medicine
youths medicine
a baby usage
a boy usage
a child usage
a female usage
a girl usage
a kid usage
a minor usage
a newborn usage
a teen usage
a teenager usage
a toddler usage
a woman usage
adolescents usage
an adolescent usage
an infant usage
babies usage
baby usage
body building usage
boys usage
breast feeding usage
children usage
females usage
fetus usage
girls usage
infants usage
kids usage
minors usage
newborn usage
pediatric usage
pregnancy usage
pregnant usage
teenagers usage
teens usage
toddlers usage
women usage
youths usage
a baby remedy
a boy remedy
a child remedy
a female remedy
a girl remedy
a kid remedy
a minor remedy
a newborn remedy
a teen remedy
a teenager remedy
a toddler remedy
a woman remedy
adolescents remedy
an adolescent remedy
an infant remedy
babies remedy
baby remedy
body building remedy
boys remedy
breast feeding remedy
children remedy
females remedy
fetus remedy
girls remedy
infants remedy
kids remedy
minors remedy
newborn remedy
pediatric remedy
pregnancy remedy
pregnant remedy
teenagers remedy
teens remedy
toddlers remedy
women remedy
youths remedy
a baby prescription
a boy prescription
a child prescription
a female prescription
a girl prescription
a kid prescription
a minor prescription
a newborn prescription
a teen prescription
a teenager prescription
a toddler prescription
a woman prescription
adolescents prescription
an adolescent prescription
an infant prescription
babies prescription
baby prescription
body building prescription
boys prescription
breast feeding prescription
children prescription
females prescription
fetus prescription
girls prescription
infants prescription
kids prescription
minors prescription
newborn prescription
pediatric prescription
pregnancy prescription
pregnant prescription
teenagers prescription
teens prescription
toddlers prescription
women prescription
youths prescription
a baby pill
a boy pill
a child pill
a female pill
a girl pill
a kid pill
a minor pill
a newborn pill
a teen pill
a teenager pill
a toddler pill
a woman pill
adolescents pill
an adolescent pill
an infant pill
babies pill
baby pill
body building pill
boys pill
breast feeding pill
children pill
females pill
fetus pill
girls pill
infants pill
kids pill
minors pill
newborn pill
pediatric pill
pregnancy pill
pregnant pill
teenagers pill
teens pill
toddlers pill
women pill
youths pill
a baby drug
a boy drug
a child drug
a female drug
a girl drug
a kid drug
a minor drug
a newborn drug
a teen drug
a teenager drug
a toddler drug
a woman drug
adolescents drug
an adolescent drug
an infant drug
babies drug
baby drug
body building drug
boys drug
breast feeding drug
children drug
females drug
fetus drug
girls drug
infants drug
kids drug
minors drug
newborn drug
pediatric drug
pregnancy drug
pregnant drug
teenagers drug
teens drug
toddlers drug
women drug
youths drug
a baby tablet
a boy tablet
a child tablet
a female tablet
a girl tablet
a kid tablet
a minor tablet
a newborn tablet
a teen tablet
a teenager tablet
a toddler tablet
a woman tablet
adolescents tablet
an adolescent tablet
an infant tablet
babies tablet
baby tablet
body building tablet
boys tablet
breast feeding tablet
children tablet
females tablet
fetus tablet
girls tablet
infants tablet
kids tablet
minors tablet
newborn tablet
pediatric tablet
pregnancy tablet
pregnant tablet
teenagers tablet
teens tablet
toddlers tablet
women tablet
youths tablet
a baby management
a boy management
a child management
a female management
a girl management
a kid management
a minor management
a newborn management
a teen management
a teenager management
a toddler management
a woman management
adolescents management
an adolescent management
an infant management
babies management
baby management
body building management
boys management
breast feeding management
children management
females management
fetus management
girls management
infants management
kids management
minors management
newborn management
pediatric management
pregnancy management
pregnant management
teenagers management
teens management
toddlers management
women management
youths management
a baby indication
a boy indication
a child indication
a female indication
a girl indication
a kid indication
a minor indication
a newborn indication
a teen indication
a teenager indication
a toddler indication
a woman indication
adolescents indication
an adolescent indication
an infant indication
babies indication
baby indication
body building indication
boys indication
breast feeding indication
children indication
females indication
fetus indication
girls indication
infants indication
kids indication
minors indication
newborn indication
pediatric indication
pregnancy indication
pregnant indication
teenagers indication
teens indication
toddlers indication
women indication
youths indication
breast cancer a baby
breast cancer a boy
breast cancer a child
breast cancer a female
breast cancer a girl
breast cancer a kid
breast cancer a minor
breast cancer a newborn
breast cancer a teen
breast cancer a teenager
breast cancer a toddler
breast cancer a woman
breast cancer adolescents
breast cancer an adolescent
breast cancer an infant
breast cancer babies
breast cancer baby
breast cancer body building
breast cancer boys
breast cancer breast feeding
breast cancer children
breast cancer females
breast cancer fetus
breast cancer girls
breast cancer infants
breast cancer kids
breast cancer minors
breast cancer newborn
breast cancer pediatric
breast cancer pregnancy
breast cancer pregnant
breast cancer teenagers
breast cancer teens
breast cancer toddlers
breast cancer women
breast cancer youths
prostate cancer a baby
prostate cancer a boy
prostate cancer a child
prostate cancer a female
prostate cancer a girl
prostate cancer a kid
prostate cancer a minor
prostate cancer a newborn
prostate cancer a teen
prostate cancer a teenager
prostate cancer a toddler
prostate cancer a woman
prostate cancer adolescents
prostate cancer an adolescent
prostate cancer an infant
prostate cancer babies
prostate cancer baby
prostate cancer body building
prostate cancer boys
prostate cancer breast feeding
prostate cancer children
prostate cancer females
prostate cancer fetus
prostate cancer girls
prostate cancer infants
prostate cancer kids
prostate cancer minors
prostate cancer newborn
prostate cancer pediatric
prostate cancer pregnancy
prostate cancer pregnant
prostate cancer teenagers
prostate cancer teens
prostate cancer toddlers
prostate cancer women
prostate cancer youths
steroid a baby
steroid a boy
steroid a child
steroid a female
steroid a girl
steroid a kid
steroid a minor
steroid a newborn
steroid a teen
steroid a teenager
steroid a toddler
steroid a woman
steroid adolescents
steroid an adolescent
steroid an infant
steroid babies
steroid baby
steroid body building
steroid boys
steroid breast feeding
steroid children
steroid females
steroid fetus
steroid girls
steroid infants
steroid kids
steroid minors
steroid newborn
steroid pediatric
steroid pregnancy
steroid pregnant
steroid teenagers
steroid teens
steroid toddlers
steroid women
steroid youths
steroids a baby
steroids a boy
steroids a child
steroids a female
steroids a girl
steroids a kid
steroids a minor
steroids a newborn
steroids a teen
steroids a teenager
steroids a toddler
steroids a woman
steroids adolescents
steroids an adolescent
steroids an infant
steroids babies
steroids baby
steroids body building
steroids boys
steroids breast feeding
steroids children
steroids females
steroids fetus
steroids girls
steroids infants
steroids kids
steroids minors
steroids newborn
steroids pediatric
steroids pregnancy
steroids pregnant
steroids teenagers
steroids teens
steroids toddlers
steroids women
steroids youths
abbvie
AbbVie
acid
addicted
addiction
adolescent
adult sites
Advocacy
advocacy
agitated states
AJO, postsurgical analgesic, knee, replacement, surgery
alcohol
amphetamine
androgen
antibody
apple cider vinegar
assistance
Assistance
association
at home
attorney
audit
ayurvedic
baby
ban
baricitinib
bed bugs
best
bible
bisexual
black
bleach
blog
bulimia nervosa
buy
cannabis
certificate
certification
certified
cervical cancer, concurrent chemoradiotherapy, intravoxel incoherent motion magnetic resonance imaging, MRI, IVIM, diffusion-weighted MRI, DWI
charlie sheen
cheap
cheapest
child
childhood
childlike
children
chronic fatigue syndrome
Cladribine Tablets
cocaine
cock
combination therapies, synergistic antitumor efficacy, pertuzumab, trastuzumab, ipilimumab, nivolumab, palbociclib, letrozole, lapatinib, docetaxel, trametinib, dabrafenib, carflzomib, lenalidomide
contagious
Cortical Lesions
cream
creams
crime
criminal
cure
dangerous
dangers
dasabuvir
Dasabuvir
dead
deadly
death
dementia
dependence
dependent
depression
dermatillomania
die
diet
Disability
Discount
discount
dog
drink
drug abuse
drug-induced
dying
eastern medicine
eat
ect
eczema
electroconvulsive therapy
electromagnetic therapy
electrotherapy
epa
epilepsy
erectile dysfunction
explosive disorder
fake
Fake-ovir
fatal
fatalities
fatality
fibromyalgia
financial
Financial
fish oil
food
foods
foundation
free
Gabriel Pardo
gaston
general hospital
genetic
geriatric
Giancarlo Comi
gilead
Gilead
glaucoma
Glenn S. Williams
Glenn Williams
Gloria Dalla Costa
gonorrhea
Greedy
greedy
guns
hallucinations
harvoni
Harvoni
herbal
herbs
heroin
herpes
Hidradenitis Suppurativa
holistic
home
home remedies
home remedy
homeopathic
homeopathy
hydrocortisone
ice
image
images
job
kid
kids
kill
killer
laser
lawsuit
lawyer
ledipasvir
Ledipasvir
lesbian
lesions
lights
liver
lupus
marijuana
melancholic
memory loss
menopausal
mental retardation
military
milk
moisturizers
monoamine oxidase inhibitor drugs
MRI
MS
murder
national
natural
natural cure
natural cures
natural medications
natural medicine
natural medicines
natural remedies
natural remedy
natural treatment
natural treatments
naturally
Needy
needy
Neurology Reviews
neuropathic
nightclub massacre
nightclub shooting
nude
nudity
nutraceuticals
OASIS
oasis
off label
ombitasvir
Ombitasvir
ombitasvir/paritaprevir/ritonavir with dasabuvir
orlando shooting
overactive thyroid gland
overdose
overdosed
Paolo Preziosa
paritaprevir
Paritaprevir
pediatric
pedophile
photo
photos
picture
post partum
postnatal
pregnancy
pregnant
prenatal
prepartum
prison
program
Program
Protest
protest
psychedelics
pulse nightclub
puppy
purchase
purchasing
rape
recall
recreational drug
Rehabilitation
Retinal Measurements
retrograde ejaculation
risperdal
ritonavir
Ritonavir
ritonavir with dasabuvir
robin williams
sales
sasquatch
schizophrenia
seizure
seizures
sex
sexual
sexy
shock treatment
silver
sleep disorders
smoking
sociopath
sofosbuvir
Sofosbuvir
sovaldi
ssri
store
sue
suicidal
suicide
supplements
support
Support
Support Path
teen
teenage
teenagers
Telerehabilitation
testosterone
Th17
Th17:FoxP3+Treg cell ratio
Th22
toxic
toxin
tragedy
treatment resistant
V Pak
vagina
velpatasvir
Viekira Pa
Viekira Pak
viekira pak
violence
virgin
vitamin
VPak
weight loss
withdrawal
wrinkles
xxx
young adult
young adults
zoloft
financial
sofosbuvir
ritonavir with dasabuvir
discount
support path
program
ritonavir
greedy
ledipasvir
assistance
viekira pak
vpak
advocacy
needy
protest
abbvie
paritaprevir
ombitasvir
direct-acting antivirals
dasabuvir
gilead
fake-ovir
support
v pak
oasis
harvoni
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-imn')]
div[contains(@class, 'pane-pub-home-imn')]
div[contains(@class, 'pane-pub-topic-imn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Internal Medicine News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 09:05
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 09:05

Seated Doctors Better Satisfy Patients, Communication

Article Type
Changed
Fri, 08/30/2024 - 12:37

Sitting at a patient’s bedside is one of the behaviors associated with better doctor-patient communication, patient satisfaction, and trust. During a busy day of consultations, however, it can be difficult for healthcare professionals to sit regularly with patients. Previous studies have revealed that hospital doctors sit during one out of every five meetings with patients.

recent US study evaluated the impact of the practitioner’s seated position next to the patient on the quality of the doctor-patient interaction in an internal medicine department. This research involved a sample of 51 doctors (average age, 35 years; 51% men) and analyzed 125 clinical interviews (n = 125 patients; average age, 53 years; 55% men). Participants were not informed of the real objective of the study. The patient’s perception of medical care was also solicited.

The experimental protocol involved two distinct configurations. Either the chair was positioned near the bed (within 90 cm) before the doctor arrived or it remained visible in its usual place. Each meeting with a patient was randomized according to the chair location (intervention group: n = 60; control group: n = 65).

The primary criterion was the doctor’s binary decision to sit or not at a given moment during a meeting with a patient. Secondary criteria included patient satisfaction, time spent in the room, and the perception of time spent in the room by doctors and patients.

The chair’s location had no effect on the average duration of the interview, whether actual or estimated. When a chair was placed near the bed, the doctor sat in more than six out of 10 cases (63%), compared with fewer than one case out of 10 (8%) when the chair was less easily accessible (odds ratio, 20.7; 95% CI, 7.2-59.4; P < .001).

The chair arrangement did not lead to a significant difference in the average duration of presence in the room (10.6 min for both groups). Likewise, no notable difference was observed regarding the subjective estimation of this duration from the practitioners’ point of view (9.4 min vs 9.8 min) or from the patients’ point of view (13.1 min vs 13.5 min).

In the group in which the doctor sat to converse, patient satisfaction was significantly higher, with an overall difference of 3.9% (P = .02). Patients felt that the information provided was better (72% vs 52%; P =.03), and their confidence in the proposed care was also higher (58% vs 35%; P = .01). On the other hand, no significant difference appeared between the two groups regarding the information retained by the patient (doctor’s name and reason for hospitalization) or the doctor’s behavior.

The study authors acknowledged the study’s methodological limitations, which included a sample size that was lower than initially projected and the restriction to a single hospital setting. In addition, they noted that all patients were housed in individual rooms, which could be a source of bias. Despite these reservations, they suggested that even minimal environmental changes, such as the thoughtful placement of a chair, can significantly affect patients’ perceptions of the quality of care provided.
 

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Sitting at a patient’s bedside is one of the behaviors associated with better doctor-patient communication, patient satisfaction, and trust. During a busy day of consultations, however, it can be difficult for healthcare professionals to sit regularly with patients. Previous studies have revealed that hospital doctors sit during one out of every five meetings with patients.

recent US study evaluated the impact of the practitioner’s seated position next to the patient on the quality of the doctor-patient interaction in an internal medicine department. This research involved a sample of 51 doctors (average age, 35 years; 51% men) and analyzed 125 clinical interviews (n = 125 patients; average age, 53 years; 55% men). Participants were not informed of the real objective of the study. The patient’s perception of medical care was also solicited.

The experimental protocol involved two distinct configurations. Either the chair was positioned near the bed (within 90 cm) before the doctor arrived or it remained visible in its usual place. Each meeting with a patient was randomized according to the chair location (intervention group: n = 60; control group: n = 65).

The primary criterion was the doctor’s binary decision to sit or not at a given moment during a meeting with a patient. Secondary criteria included patient satisfaction, time spent in the room, and the perception of time spent in the room by doctors and patients.

The chair’s location had no effect on the average duration of the interview, whether actual or estimated. When a chair was placed near the bed, the doctor sat in more than six out of 10 cases (63%), compared with fewer than one case out of 10 (8%) when the chair was less easily accessible (odds ratio, 20.7; 95% CI, 7.2-59.4; P < .001).

The chair arrangement did not lead to a significant difference in the average duration of presence in the room (10.6 min for both groups). Likewise, no notable difference was observed regarding the subjective estimation of this duration from the practitioners’ point of view (9.4 min vs 9.8 min) or from the patients’ point of view (13.1 min vs 13.5 min).

In the group in which the doctor sat to converse, patient satisfaction was significantly higher, with an overall difference of 3.9% (P = .02). Patients felt that the information provided was better (72% vs 52%; P =.03), and their confidence in the proposed care was also higher (58% vs 35%; P = .01). On the other hand, no significant difference appeared between the two groups regarding the information retained by the patient (doctor’s name and reason for hospitalization) or the doctor’s behavior.

The study authors acknowledged the study’s methodological limitations, which included a sample size that was lower than initially projected and the restriction to a single hospital setting. In addition, they noted that all patients were housed in individual rooms, which could be a source of bias. Despite these reservations, they suggested that even minimal environmental changes, such as the thoughtful placement of a chair, can significantly affect patients’ perceptions of the quality of care provided.
 

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Sitting at a patient’s bedside is one of the behaviors associated with better doctor-patient communication, patient satisfaction, and trust. During a busy day of consultations, however, it can be difficult for healthcare professionals to sit regularly with patients. Previous studies have revealed that hospital doctors sit during one out of every five meetings with patients.

recent US study evaluated the impact of the practitioner’s seated position next to the patient on the quality of the doctor-patient interaction in an internal medicine department. This research involved a sample of 51 doctors (average age, 35 years; 51% men) and analyzed 125 clinical interviews (n = 125 patients; average age, 53 years; 55% men). Participants were not informed of the real objective of the study. The patient’s perception of medical care was also solicited.

The experimental protocol involved two distinct configurations. Either the chair was positioned near the bed (within 90 cm) before the doctor arrived or it remained visible in its usual place. Each meeting with a patient was randomized according to the chair location (intervention group: n = 60; control group: n = 65).

The primary criterion was the doctor’s binary decision to sit or not at a given moment during a meeting with a patient. Secondary criteria included patient satisfaction, time spent in the room, and the perception of time spent in the room by doctors and patients.

The chair’s location had no effect on the average duration of the interview, whether actual or estimated. When a chair was placed near the bed, the doctor sat in more than six out of 10 cases (63%), compared with fewer than one case out of 10 (8%) when the chair was less easily accessible (odds ratio, 20.7; 95% CI, 7.2-59.4; P < .001).

The chair arrangement did not lead to a significant difference in the average duration of presence in the room (10.6 min for both groups). Likewise, no notable difference was observed regarding the subjective estimation of this duration from the practitioners’ point of view (9.4 min vs 9.8 min) or from the patients’ point of view (13.1 min vs 13.5 min).

In the group in which the doctor sat to converse, patient satisfaction was significantly higher, with an overall difference of 3.9% (P = .02). Patients felt that the information provided was better (72% vs 52%; P =.03), and their confidence in the proposed care was also higher (58% vs 35%; P = .01). On the other hand, no significant difference appeared between the two groups regarding the information retained by the patient (doctor’s name and reason for hospitalization) or the doctor’s behavior.

The study authors acknowledged the study’s methodological limitations, which included a sample size that was lower than initially projected and the restriction to a single hospital setting. In addition, they noted that all patients were housed in individual rooms, which could be a source of bias. Despite these reservations, they suggested that even minimal environmental changes, such as the thoughtful placement of a chair, can significantly affect patients’ perceptions of the quality of care provided.
 

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Statins Linked to Improved Liver Health in MASLD

Article Type
Changed
Tue, 09/03/2024 - 05:16

 

TOPLINE:

Statin usage in patients with metabolic dysfunction–associated steatotic liver disease (MASLD) is associated with a lower long-term risk for all-cause mortality, liver-related events, and progression of liver stiffness.

METHODOLOGY:

  • Although many patients with MASLD have indications for statins, including cardiovascular disease, they are not widely used owing to concerns about possible liver damage and muscle weakness.
  • Researchers conducted an observational cohort study to evaluate the long-term effects of statin use in 7988 patients (mean age, 53 years; 58.2% women) with MASLD who underwent at least two vibration-controlled transient elastography exams. The study involved 16 centers in the United States, Europe, and Asia.
  • Patients were classified into those with compensated advanced chronic liver disease (cACLD; liver stiffness measurement ≥ 10 kPa) and those without cACLD (liver stiffness measurement < 10 kPa). At baseline, 17% of patients had cACLD.
  • Statin prescriptions included simvastatin, pravastatin, atorvastatin, rosuvastatin, lovastatin, fluvastatin, and pitavastatin. At baseline, 40.5% of patients used statins.
  • The primary outcome was the composite of all-cause mortality and liver-related events, including cirrhosis, hepatocellular carcinoma, or liver-related mortality. Secondary outcomes included changes in liver stiffness assessed over a median follow-up duration of 4.6 years.

TAKEAWAY:

  • Statin usage was associated with a 76.7% lower risk for all-cause mortality and a 62% lower risk of liver-related events than non-use (both P < .001).
  • Statin use also was associated with a 46% and 55% lower risk for liver stiffness progression in the cACLD and non-cACLD groups, respectively, than non-use (both P < .001).
  • No significant association was found between statin use and liver stiffness regression.

IN PRACTICE:

“The results of this cohort study suggest that statin usage may help reduce CVD [cardiovascular disease] morbidity and mortality rates and slow down liver stiffness progression in both cACLD and non-cALCD patients,” the authors wrote.

SOURCE:

The study, led by Xiao-Dong Zhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, was published online in Gut.

LIMITATIONS:

The assessment of patients at different intervals may have affected the interpretation of the data. The median follow-up period may be considered short for assessing the progression of CLD. Additionally, residual confounding in statin users could have led to an overestimation of the benefits of statins.

DISCLOSURES:

This study was supported by grants from the National Natural Science Foundation of China and National Key R&D Program of China. Some authors reported receiving personal fees, consulting fees, speaker bureau fees, grants, nonfinancial support, and honoraria for lectures and travel expenses and owning stock options with pharmaceutical and medical device companies outside of the submitted work. Two researchers were employed by Echosens during the conduct of the study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Statin usage in patients with metabolic dysfunction–associated steatotic liver disease (MASLD) is associated with a lower long-term risk for all-cause mortality, liver-related events, and progression of liver stiffness.

METHODOLOGY:

  • Although many patients with MASLD have indications for statins, including cardiovascular disease, they are not widely used owing to concerns about possible liver damage and muscle weakness.
  • Researchers conducted an observational cohort study to evaluate the long-term effects of statin use in 7988 patients (mean age, 53 years; 58.2% women) with MASLD who underwent at least two vibration-controlled transient elastography exams. The study involved 16 centers in the United States, Europe, and Asia.
  • Patients were classified into those with compensated advanced chronic liver disease (cACLD; liver stiffness measurement ≥ 10 kPa) and those without cACLD (liver stiffness measurement < 10 kPa). At baseline, 17% of patients had cACLD.
  • Statin prescriptions included simvastatin, pravastatin, atorvastatin, rosuvastatin, lovastatin, fluvastatin, and pitavastatin. At baseline, 40.5% of patients used statins.
  • The primary outcome was the composite of all-cause mortality and liver-related events, including cirrhosis, hepatocellular carcinoma, or liver-related mortality. Secondary outcomes included changes in liver stiffness assessed over a median follow-up duration of 4.6 years.

TAKEAWAY:

  • Statin usage was associated with a 76.7% lower risk for all-cause mortality and a 62% lower risk of liver-related events than non-use (both P < .001).
  • Statin use also was associated with a 46% and 55% lower risk for liver stiffness progression in the cACLD and non-cACLD groups, respectively, than non-use (both P < .001).
  • No significant association was found between statin use and liver stiffness regression.

IN PRACTICE:

“The results of this cohort study suggest that statin usage may help reduce CVD [cardiovascular disease] morbidity and mortality rates and slow down liver stiffness progression in both cACLD and non-cALCD patients,” the authors wrote.

SOURCE:

The study, led by Xiao-Dong Zhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, was published online in Gut.

LIMITATIONS:

The assessment of patients at different intervals may have affected the interpretation of the data. The median follow-up period may be considered short for assessing the progression of CLD. Additionally, residual confounding in statin users could have led to an overestimation of the benefits of statins.

DISCLOSURES:

This study was supported by grants from the National Natural Science Foundation of China and National Key R&D Program of China. Some authors reported receiving personal fees, consulting fees, speaker bureau fees, grants, nonfinancial support, and honoraria for lectures and travel expenses and owning stock options with pharmaceutical and medical device companies outside of the submitted work. Two researchers were employed by Echosens during the conduct of the study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Statin usage in patients with metabolic dysfunction–associated steatotic liver disease (MASLD) is associated with a lower long-term risk for all-cause mortality, liver-related events, and progression of liver stiffness.

METHODOLOGY:

  • Although many patients with MASLD have indications for statins, including cardiovascular disease, they are not widely used owing to concerns about possible liver damage and muscle weakness.
  • Researchers conducted an observational cohort study to evaluate the long-term effects of statin use in 7988 patients (mean age, 53 years; 58.2% women) with MASLD who underwent at least two vibration-controlled transient elastography exams. The study involved 16 centers in the United States, Europe, and Asia.
  • Patients were classified into those with compensated advanced chronic liver disease (cACLD; liver stiffness measurement ≥ 10 kPa) and those without cACLD (liver stiffness measurement < 10 kPa). At baseline, 17% of patients had cACLD.
  • Statin prescriptions included simvastatin, pravastatin, atorvastatin, rosuvastatin, lovastatin, fluvastatin, and pitavastatin. At baseline, 40.5% of patients used statins.
  • The primary outcome was the composite of all-cause mortality and liver-related events, including cirrhosis, hepatocellular carcinoma, or liver-related mortality. Secondary outcomes included changes in liver stiffness assessed over a median follow-up duration of 4.6 years.

TAKEAWAY:

  • Statin usage was associated with a 76.7% lower risk for all-cause mortality and a 62% lower risk of liver-related events than non-use (both P < .001).
  • Statin use also was associated with a 46% and 55% lower risk for liver stiffness progression in the cACLD and non-cACLD groups, respectively, than non-use (both P < .001).
  • No significant association was found between statin use and liver stiffness regression.

IN PRACTICE:

“The results of this cohort study suggest that statin usage may help reduce CVD [cardiovascular disease] morbidity and mortality rates and slow down liver stiffness progression in both cACLD and non-cALCD patients,” the authors wrote.

SOURCE:

The study, led by Xiao-Dong Zhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, was published online in Gut.

LIMITATIONS:

The assessment of patients at different intervals may have affected the interpretation of the data. The median follow-up period may be considered short for assessing the progression of CLD. Additionally, residual confounding in statin users could have led to an overestimation of the benefits of statins.

DISCLOSURES:

This study was supported by grants from the National Natural Science Foundation of China and National Key R&D Program of China. Some authors reported receiving personal fees, consulting fees, speaker bureau fees, grants, nonfinancial support, and honoraria for lectures and travel expenses and owning stock options with pharmaceutical and medical device companies outside of the submitted work. Two researchers were employed by Echosens during the conduct of the study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Cases, Deaths in Men Predicted to Surge by 2050

Article Type
Changed
Tue, 09/17/2024 - 19:29

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 09/17/2024 - 19:29
Un-Gate On Date
Tue, 09/17/2024 - 19:29
Use ProPublica
CFC Schedule Remove Status
Tue, 09/17/2024 - 19:29
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 09/17/2024 - 19:29

Inhaled Insulin Aids Patients With Fear of Needles

Article Type
Changed
Fri, 08/30/2024 - 10:30

 

This transcript has been edited for clarity. 

Akshay B. Jain, MD: I’m Dr. Akshay Jain, an endocrinologist from Vancouver, and I’m joined by Dr. James Kim, a primary care physician from Calgary, Canada. 

Both Dr. Kim and I attended ADA 2024. We went over all our learnings and decided that there was a whole heap of clinical pearls that we learned from the conference. We thought it would be awesome if we could share our learnings with all of you, both from a primary care lens and from an endocrinology perspective.

One study Dr. Kim and I learned about, and we think has some definite nuances in management of people living with diabetes, regards inhaled insulin. When we have patients in our clinic who have perhaps failed multiple oral agents or have very high blood sugars, we obviously want to consider starting them on insulin for type 2 diabetes.

Sometimes there is a significant barrier, which is related to the needles. There’s an actual term for this: trypanophobia — a fear of needles. For the longest time, people have not wanted to take insulin or injectables because there’s only one way of administering it, which is subcutaneous.

Enter now inhaled insulin. We saw studies at the ADA 2024 conference that looked at a new inhaled insulin called Afrezza. Afrezza essentially is a short-acting insulin, so it’s kind of like a prandial insulin derivative, where it can be inhaled by an individual and it will work for mealtime control of blood sugars.

Dr. Kim, in your practice, how often do you see people not wanting to take shots, and has this been a big barrier for you in starting insulin? 

James W. Kim, MBBCh, PgDip, MScCH: Thank you for having me. To answer your question, absolutely I encounter this on a weekly basis — and I’m not even an endocrinologist. I just have an interest in diabetes. There are a number of patients that I think will benefit massively with insulin but they’re needle-phobic. You taught me that word, but I can never pronounce it, so my apologies for not remembering that phobia. I’m just going to call it needle phobia because I’m a simple-minded person.

The needle phobia is massive. I think there’s a definite fear of the needle, but there’s also a fear of failure. As soon as an injection is mentioned, many patients feel they failed miserably. There’s an emotional roller coaster that happens.

I’m sure, Dr. Jain, you have seen many patients, especially from Asia, who would say: “Oh, my auntie got on insulin and 3 months later, she got a kidney transplant.” “My uncle started on insulin and he unfortunately passed away a couple of months later.” Unfortunately, they’re blaming many of those things on insulin.

I also have a number of patients who said they were on insulin before many years ago, and they experienced some severe hypoglycemic events, and they don’t want to get on the insulin ever again. This is unfortunate because you know that if those patients, those aunties and uncles, were on insulin long before, maybe we could have saved their legs and kidneys, and potentially death.

Now we have advanced so much with insulin that hypoglycemia does occur, but much less than before. We still have many barriers when it comes to insulin initiations. Therefore, having this idea of inhaled insulin is fantastic, and I think we can get many more patients on insulin — the medication they actually need.

 

 

Dr. Jain: Absolutely. From the studies on inhaled insulin at ADA 2024, the key thing I found very interesting, regarding the pharmacokinetics of the insulin, was that it’s working very quickly. It starts working within minutes of administering it.

Additionally, it lasts in the body only for a shorter duration of time, compared with other injectable short-acting insulins, so it lasts in the body. The active insulin time is roughly about 2 hours or so, based on the studies, which in my mind opens up a whole world of possibilities because it means that people can take another correctional insulin if the blood sugars are still high after taking their first inhaled dose. You can take another dose subsequently without worrying about stacking of insulin. 

Many of us are familiar with this term, which is if you take two shots of short-acting insulin too close to each other, the insulin doses might add up and there can be a big drop in the blood sugars; it’s called stacking of insulin. This can be potentially avoided. 

Similarly, if you take your dinnertime inhaled insulin and the sugars are still high around bedtime, you could take a smaller dose of the inhaled insulin and not worry about middle-of-the-night hypoglycemia because the effect of the insulin would be only for a little while.

That’s one key learning that I found very helpful. The other important thing that I found was that this is not for everyone, so there are some restrictions. Essentially, the contraindication is that people who have asthma or COPD cannot be prescribed an inhaled insulin.

What are your thoughts, Dr. Kim, based on this for your practice in primary care? 

Dr. Kim: It is very fascinating, for sure. I cannot wait to get hold of this insulin. I can already think of some patients who may benefit. You’ve mentioned the asthma and COPD patients, and that makes more sense because there is an actual airway problem.

I also wonder what will happen to patients who have restrictive airway disease, where asthma and COPD fall under obstructive airway disease. What if they have obesity, where it’s really pressing into the diaphragm, and where they may not be able to take the deep breath in? How will they react?

What about someone who’s got a cold, someone who has postnasal drip, or someone who tends to cough frequently? What about egg allergies? There are many question marks around this insulin before initiating these medications. There is excitement, but there are also many questions at the same time.

Dr. Jain: I think these are very important, practical considerations that we’ll uncover as we start using more of this in clinical practice. The other important thing to note is that the presenters told us it’s important to monitor pulmonary function tests. It’s important to get a baseline pulmonary function test, and then we have to do another one in 6 months, followed by annually thereafter.

If, at any point of time, the FEV1 drops by 20% or more, then that would be an indication for discontinuation of the inhaled insulin. The pulmonary function test does not need to be one of those fancier ones. The study group would just do office spirometries. I’m wondering, Dr. Kim, in primary care, do you think this could potentially be a rate-limiting factor?

 

 

Dr. Kim: In Alberta, where I reside, no. Spirometry is very easily accessible in the province. For example, in Calgary alone, we have a population of about 1.3 million people. We have over 13 or 15 companies that can do this spirometry. We can get these things done literally within a week or 2.

However, I am aware that, in other provinces in Canada, it can definitely be a huge rate-limiting factor. Not everyone has the office-based spirometry, and definitely not within the primary care office. It has to be referred out to these private companies, most likely, and some of the rural areas will have to rely on the provincial hospitals, where the access can be even more challenging. 

On the day of the actual spirometry, if the person has a cough or is not feeling well, it’s going to be a problem because you don’t want the spirometry to be infected with a whole bunch of viruses. You’ll have to cancel that and it can be a bit of an issue.

Dr. Jain: Many of our viewers are from the United States and other parts of the world, and spirometry is quite easily accessible in most places. As an endocrinologist, I must confess that it’s been a long time since I’ve even ordered a spirometry or any clinical form of pulmonary function test. Once I start using the inhaled insulin, I’ll need to start brushing up on my pulmonary function test knowledge. 

I think these are exciting times. At least we’ve got something to offer to people who would have otherwise not taken any insulin at all. There’s certainly that hope that now there’s a different way to administer this, and hopefully it can only get better from here on.
 

Dr. Jain is a clinical instructor, Department of Endocrinology, University of British Columbia, Vancouver. Dr. Kim is a clinical assistant professor, Department of Family Medicine, University of Calgary in Alberta. Both disclosed conflicts of interest with numerous pharmaceutical companies.



A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity. 

Akshay B. Jain, MD: I’m Dr. Akshay Jain, an endocrinologist from Vancouver, and I’m joined by Dr. James Kim, a primary care physician from Calgary, Canada. 

Both Dr. Kim and I attended ADA 2024. We went over all our learnings and decided that there was a whole heap of clinical pearls that we learned from the conference. We thought it would be awesome if we could share our learnings with all of you, both from a primary care lens and from an endocrinology perspective.

One study Dr. Kim and I learned about, and we think has some definite nuances in management of people living with diabetes, regards inhaled insulin. When we have patients in our clinic who have perhaps failed multiple oral agents or have very high blood sugars, we obviously want to consider starting them on insulin for type 2 diabetes.

Sometimes there is a significant barrier, which is related to the needles. There’s an actual term for this: trypanophobia — a fear of needles. For the longest time, people have not wanted to take insulin or injectables because there’s only one way of administering it, which is subcutaneous.

Enter now inhaled insulin. We saw studies at the ADA 2024 conference that looked at a new inhaled insulin called Afrezza. Afrezza essentially is a short-acting insulin, so it’s kind of like a prandial insulin derivative, where it can be inhaled by an individual and it will work for mealtime control of blood sugars.

Dr. Kim, in your practice, how often do you see people not wanting to take shots, and has this been a big barrier for you in starting insulin? 

James W. Kim, MBBCh, PgDip, MScCH: Thank you for having me. To answer your question, absolutely I encounter this on a weekly basis — and I’m not even an endocrinologist. I just have an interest in diabetes. There are a number of patients that I think will benefit massively with insulin but they’re needle-phobic. You taught me that word, but I can never pronounce it, so my apologies for not remembering that phobia. I’m just going to call it needle phobia because I’m a simple-minded person.

The needle phobia is massive. I think there’s a definite fear of the needle, but there’s also a fear of failure. As soon as an injection is mentioned, many patients feel they failed miserably. There’s an emotional roller coaster that happens.

I’m sure, Dr. Jain, you have seen many patients, especially from Asia, who would say: “Oh, my auntie got on insulin and 3 months later, she got a kidney transplant.” “My uncle started on insulin and he unfortunately passed away a couple of months later.” Unfortunately, they’re blaming many of those things on insulin.

I also have a number of patients who said they were on insulin before many years ago, and they experienced some severe hypoglycemic events, and they don’t want to get on the insulin ever again. This is unfortunate because you know that if those patients, those aunties and uncles, were on insulin long before, maybe we could have saved their legs and kidneys, and potentially death.

Now we have advanced so much with insulin that hypoglycemia does occur, but much less than before. We still have many barriers when it comes to insulin initiations. Therefore, having this idea of inhaled insulin is fantastic, and I think we can get many more patients on insulin — the medication they actually need.

 

 

Dr. Jain: Absolutely. From the studies on inhaled insulin at ADA 2024, the key thing I found very interesting, regarding the pharmacokinetics of the insulin, was that it’s working very quickly. It starts working within minutes of administering it.

Additionally, it lasts in the body only for a shorter duration of time, compared with other injectable short-acting insulins, so it lasts in the body. The active insulin time is roughly about 2 hours or so, based on the studies, which in my mind opens up a whole world of possibilities because it means that people can take another correctional insulin if the blood sugars are still high after taking their first inhaled dose. You can take another dose subsequently without worrying about stacking of insulin. 

Many of us are familiar with this term, which is if you take two shots of short-acting insulin too close to each other, the insulin doses might add up and there can be a big drop in the blood sugars; it’s called stacking of insulin. This can be potentially avoided. 

Similarly, if you take your dinnertime inhaled insulin and the sugars are still high around bedtime, you could take a smaller dose of the inhaled insulin and not worry about middle-of-the-night hypoglycemia because the effect of the insulin would be only for a little while.

That’s one key learning that I found very helpful. The other important thing that I found was that this is not for everyone, so there are some restrictions. Essentially, the contraindication is that people who have asthma or COPD cannot be prescribed an inhaled insulin.

What are your thoughts, Dr. Kim, based on this for your practice in primary care? 

Dr. Kim: It is very fascinating, for sure. I cannot wait to get hold of this insulin. I can already think of some patients who may benefit. You’ve mentioned the asthma and COPD patients, and that makes more sense because there is an actual airway problem.

I also wonder what will happen to patients who have restrictive airway disease, where asthma and COPD fall under obstructive airway disease. What if they have obesity, where it’s really pressing into the diaphragm, and where they may not be able to take the deep breath in? How will they react?

What about someone who’s got a cold, someone who has postnasal drip, or someone who tends to cough frequently? What about egg allergies? There are many question marks around this insulin before initiating these medications. There is excitement, but there are also many questions at the same time.

Dr. Jain: I think these are very important, practical considerations that we’ll uncover as we start using more of this in clinical practice. The other important thing to note is that the presenters told us it’s important to monitor pulmonary function tests. It’s important to get a baseline pulmonary function test, and then we have to do another one in 6 months, followed by annually thereafter.

If, at any point of time, the FEV1 drops by 20% or more, then that would be an indication for discontinuation of the inhaled insulin. The pulmonary function test does not need to be one of those fancier ones. The study group would just do office spirometries. I’m wondering, Dr. Kim, in primary care, do you think this could potentially be a rate-limiting factor?

 

 

Dr. Kim: In Alberta, where I reside, no. Spirometry is very easily accessible in the province. For example, in Calgary alone, we have a population of about 1.3 million people. We have over 13 or 15 companies that can do this spirometry. We can get these things done literally within a week or 2.

However, I am aware that, in other provinces in Canada, it can definitely be a huge rate-limiting factor. Not everyone has the office-based spirometry, and definitely not within the primary care office. It has to be referred out to these private companies, most likely, and some of the rural areas will have to rely on the provincial hospitals, where the access can be even more challenging. 

On the day of the actual spirometry, if the person has a cough or is not feeling well, it’s going to be a problem because you don’t want the spirometry to be infected with a whole bunch of viruses. You’ll have to cancel that and it can be a bit of an issue.

Dr. Jain: Many of our viewers are from the United States and other parts of the world, and spirometry is quite easily accessible in most places. As an endocrinologist, I must confess that it’s been a long time since I’ve even ordered a spirometry or any clinical form of pulmonary function test. Once I start using the inhaled insulin, I’ll need to start brushing up on my pulmonary function test knowledge. 

I think these are exciting times. At least we’ve got something to offer to people who would have otherwise not taken any insulin at all. There’s certainly that hope that now there’s a different way to administer this, and hopefully it can only get better from here on.
 

Dr. Jain is a clinical instructor, Department of Endocrinology, University of British Columbia, Vancouver. Dr. Kim is a clinical assistant professor, Department of Family Medicine, University of Calgary in Alberta. Both disclosed conflicts of interest with numerous pharmaceutical companies.



A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity. 

Akshay B. Jain, MD: I’m Dr. Akshay Jain, an endocrinologist from Vancouver, and I’m joined by Dr. James Kim, a primary care physician from Calgary, Canada. 

Both Dr. Kim and I attended ADA 2024. We went over all our learnings and decided that there was a whole heap of clinical pearls that we learned from the conference. We thought it would be awesome if we could share our learnings with all of you, both from a primary care lens and from an endocrinology perspective.

One study Dr. Kim and I learned about, and we think has some definite nuances in management of people living with diabetes, regards inhaled insulin. When we have patients in our clinic who have perhaps failed multiple oral agents or have very high blood sugars, we obviously want to consider starting them on insulin for type 2 diabetes.

Sometimes there is a significant barrier, which is related to the needles. There’s an actual term for this: trypanophobia — a fear of needles. For the longest time, people have not wanted to take insulin or injectables because there’s only one way of administering it, which is subcutaneous.

Enter now inhaled insulin. We saw studies at the ADA 2024 conference that looked at a new inhaled insulin called Afrezza. Afrezza essentially is a short-acting insulin, so it’s kind of like a prandial insulin derivative, where it can be inhaled by an individual and it will work for mealtime control of blood sugars.

Dr. Kim, in your practice, how often do you see people not wanting to take shots, and has this been a big barrier for you in starting insulin? 

James W. Kim, MBBCh, PgDip, MScCH: Thank you for having me. To answer your question, absolutely I encounter this on a weekly basis — and I’m not even an endocrinologist. I just have an interest in diabetes. There are a number of patients that I think will benefit massively with insulin but they’re needle-phobic. You taught me that word, but I can never pronounce it, so my apologies for not remembering that phobia. I’m just going to call it needle phobia because I’m a simple-minded person.

The needle phobia is massive. I think there’s a definite fear of the needle, but there’s also a fear of failure. As soon as an injection is mentioned, many patients feel they failed miserably. There’s an emotional roller coaster that happens.

I’m sure, Dr. Jain, you have seen many patients, especially from Asia, who would say: “Oh, my auntie got on insulin and 3 months later, she got a kidney transplant.” “My uncle started on insulin and he unfortunately passed away a couple of months later.” Unfortunately, they’re blaming many of those things on insulin.

I also have a number of patients who said they were on insulin before many years ago, and they experienced some severe hypoglycemic events, and they don’t want to get on the insulin ever again. This is unfortunate because you know that if those patients, those aunties and uncles, were on insulin long before, maybe we could have saved their legs and kidneys, and potentially death.

Now we have advanced so much with insulin that hypoglycemia does occur, but much less than before. We still have many barriers when it comes to insulin initiations. Therefore, having this idea of inhaled insulin is fantastic, and I think we can get many more patients on insulin — the medication they actually need.

 

 

Dr. Jain: Absolutely. From the studies on inhaled insulin at ADA 2024, the key thing I found very interesting, regarding the pharmacokinetics of the insulin, was that it’s working very quickly. It starts working within minutes of administering it.

Additionally, it lasts in the body only for a shorter duration of time, compared with other injectable short-acting insulins, so it lasts in the body. The active insulin time is roughly about 2 hours or so, based on the studies, which in my mind opens up a whole world of possibilities because it means that people can take another correctional insulin if the blood sugars are still high after taking their first inhaled dose. You can take another dose subsequently without worrying about stacking of insulin. 

Many of us are familiar with this term, which is if you take two shots of short-acting insulin too close to each other, the insulin doses might add up and there can be a big drop in the blood sugars; it’s called stacking of insulin. This can be potentially avoided. 

Similarly, if you take your dinnertime inhaled insulin and the sugars are still high around bedtime, you could take a smaller dose of the inhaled insulin and not worry about middle-of-the-night hypoglycemia because the effect of the insulin would be only for a little while.

That’s one key learning that I found very helpful. The other important thing that I found was that this is not for everyone, so there are some restrictions. Essentially, the contraindication is that people who have asthma or COPD cannot be prescribed an inhaled insulin.

What are your thoughts, Dr. Kim, based on this for your practice in primary care? 

Dr. Kim: It is very fascinating, for sure. I cannot wait to get hold of this insulin. I can already think of some patients who may benefit. You’ve mentioned the asthma and COPD patients, and that makes more sense because there is an actual airway problem.

I also wonder what will happen to patients who have restrictive airway disease, where asthma and COPD fall under obstructive airway disease. What if they have obesity, where it’s really pressing into the diaphragm, and where they may not be able to take the deep breath in? How will they react?

What about someone who’s got a cold, someone who has postnasal drip, or someone who tends to cough frequently? What about egg allergies? There are many question marks around this insulin before initiating these medications. There is excitement, but there are also many questions at the same time.

Dr. Jain: I think these are very important, practical considerations that we’ll uncover as we start using more of this in clinical practice. The other important thing to note is that the presenters told us it’s important to monitor pulmonary function tests. It’s important to get a baseline pulmonary function test, and then we have to do another one in 6 months, followed by annually thereafter.

If, at any point of time, the FEV1 drops by 20% or more, then that would be an indication for discontinuation of the inhaled insulin. The pulmonary function test does not need to be one of those fancier ones. The study group would just do office spirometries. I’m wondering, Dr. Kim, in primary care, do you think this could potentially be a rate-limiting factor?

 

 

Dr. Kim: In Alberta, where I reside, no. Spirometry is very easily accessible in the province. For example, in Calgary alone, we have a population of about 1.3 million people. We have over 13 or 15 companies that can do this spirometry. We can get these things done literally within a week or 2.

However, I am aware that, in other provinces in Canada, it can definitely be a huge rate-limiting factor. Not everyone has the office-based spirometry, and definitely not within the primary care office. It has to be referred out to these private companies, most likely, and some of the rural areas will have to rely on the provincial hospitals, where the access can be even more challenging. 

On the day of the actual spirometry, if the person has a cough or is not feeling well, it’s going to be a problem because you don’t want the spirometry to be infected with a whole bunch of viruses. You’ll have to cancel that and it can be a bit of an issue.

Dr. Jain: Many of our viewers are from the United States and other parts of the world, and spirometry is quite easily accessible in most places. As an endocrinologist, I must confess that it’s been a long time since I’ve even ordered a spirometry or any clinical form of pulmonary function test. Once I start using the inhaled insulin, I’ll need to start brushing up on my pulmonary function test knowledge. 

I think these are exciting times. At least we’ve got something to offer to people who would have otherwise not taken any insulin at all. There’s certainly that hope that now there’s a different way to administer this, and hopefully it can only get better from here on.
 

Dr. Jain is a clinical instructor, Department of Endocrinology, University of British Columbia, Vancouver. Dr. Kim is a clinical assistant professor, Department of Family Medicine, University of Calgary in Alberta. Both disclosed conflicts of interest with numerous pharmaceutical companies.



A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ADA 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What Are the Best Supplements for Patients With Kidney Disease? A Few Stand Out

Article Type
Changed
Tue, 09/03/2024 - 13:42

The global dietary supplement industry generates more than $400 billion a year. Supplements are alleged to treat many health concerns, from immune conditions and cognition to sexual dysfunction and premature wrinkles. Although some supplements have been proven to be helpful, others have no scientific basis.

I can preach all day that a healthy diet rarely needs supplementation. But even as a dietitian, I find it difficult to consistently eat a diet that is both sufficiently varied and adequate to provide for all my nutrition needs. Our patients with kidney disease, surely, are not immune to this plight. They may even be more inclined to nutrient deficiencies, as poor diet is linked to increased incidence and progression of chronic kidney disease (CKD).

I find that patients with kidney disease often have an interest in dietary supplementation, even those with a well-rounded diet. Though we can discourage the use of supplements, or at the very least encourage patient transparency regarding supplement use, many will continue dietary supplementation at the suggestion of their friends, family, or even their preferred daytime talk show host. 

What these patients truly require is education on using supplements that are most beneficial to them. By recommending supplements that address patients’ pain points like inflammation, dyslipidemia, cardiovascular health, and reduced progression to end-stage renal disease (ESRD), we can improve patient health and, hopefully, decrease use of questionable supplements.
 

Probiotics

Although probiotics have been used in the treatment of digestive issues for many years, the gut-kidney axis is only recently being explored. Studies show that the microbiota of patients with CKD is altered, even in the early stages of disease, producing additional inflammation and metabolic dysfunction. This can be remedied, or at least alleviated, by introducing a probiotic supplement.

Some probiotics have been shown to decrease inflammation, decrease fasting blood glucose, decrease low-density lipoprotein cholesterol, triglycerides, and total cholesterol, increase estimated glomerular filtration rate (eGFR), decrease blood urea nitrogen and urea, and decrease uric acid

Probiotic-rich foods like kimchi or fermented pickles may not be appropriate because of excessive sodium content or simply because of patient preference — kombucha isn’t for everyone. However, adding a probiotic supplement can improve gut microbiota without undermining dietary concerns. 

When recommending probiotics, patients should be educated to ensure that their probiotic has strains that have been proven to be beneficial for kidney health. Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium species, and Streptococcus thermophilus have been shown to have a positive effect on kidney health and decreasing progression of CKD at a dosage of 109 colony-forming units per day.
 

Fish Oil

Though nephrology and cardiology are separate fields, it cannot be overstated that kidney patients are also heart patients. 

Patients with CKD and an eGFR < 60 mL/min per 1.73 m2are most likely to die from cardiovascular causes, and this likelihood increases as eGFR decreases. CKD-associated dyslipidemia results in elevated triglycerides and reduced high-density lipoprotein cholesterol often accompanied by proteinuria, and has been linked to an increase in atherosclerosis.

A simple fish oil supplement can work to decrease oxidative stress, relieve inflammation, and improve serum lipids, leading to improved kidney and cardiovascular health. One meta-analysis found that high-dose fish oil supplementation, though it had no effect on serum creatinine or eGFR, was associated with a lower risk for proteinuria and progression to ESRD. 

Fish oil’s popularity in recent years bodes well for the kidney patient. It is now easily obtained over the counter in high doses to meet the recommended adequate intake of omega-3s, which is 1100 mg/d for women and 1600 mg/d for men. There are also more burpless varieties of these supplements to increase compliance. 
 

 

 

Vitamin D

Patients with renal disease are prone to vitamin D deficiency through inadequate intake and limited sunlight, which is exacerbated by the diseased kidney’s inability to effectively convert calcidiol to calcitriol. Vitamin D deficiency is linked to poor bone health, fatigue, muscle pain, impaired wound healing, and depression. Low vitamin D status has also been linked to poor outcomes in cancer, multiple sclerosis, cardiovascular disease, type 2 diabetes, and weight loss.

A meta-analysis of over 6000 patients with CKD found that high levels of 25-hydroxy vitamin D (25[OH]D) are associated with significantly improved survival rates regardless of CKD or ESRD status. 

Kidney Disease: Improving Global Outcomes guidelines recommend supplementing with ergocalciferol or cholecalciferol to correct (OH)D deficiency. This ensures adequate supply for conversion to calcitriol, but it cannot affect bone and mineral metabolism without further intervention in the form of calcitriol supplementation. By supplementing with ergocalciferol or cholecalciferol to meet the recommended daily allowance of 15 µg (600 IU) for adults under 70 years and 20 µg (800 IU) for adults over 70 years, the primary care team can ensure that the body has all the building blocks required for the nephrology team to then address mineral and bone disorder in CKD without the fear of promoting hypercalcemia
 

Safe Purchasing Practices

Patients should be reminded to purchase dietary supplements from reputable dealers, especially when purchasing online. Retailers like Amazon are increasing the barriers required to sell supplements to improve the quality of products sold on the site. But other online retailers may sell products from outside of the United States that fall outside of the Food and Drug Administration’s jurisdiction. 

Patients should also be reminded that “more is not always better” and counseled on appropriate dosages for individual needs. 
 

In Summary

Patients will probably continue to lean on dietary supplements, regardless of our approval. Transparency and education are important when working with patients with CKD, especially in regard to dietary supplements. 

When recommended appropriately, however, the supplements discussed can lead to better outcomes with improvements in kidney health by addressing inflammation, serum lipids, glycemic control, and cardiovascular health.

Ms. Winfree Root is a renal dietitian in private practice in Mary Esther, Florida. She disclosed no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The global dietary supplement industry generates more than $400 billion a year. Supplements are alleged to treat many health concerns, from immune conditions and cognition to sexual dysfunction and premature wrinkles. Although some supplements have been proven to be helpful, others have no scientific basis.

I can preach all day that a healthy diet rarely needs supplementation. But even as a dietitian, I find it difficult to consistently eat a diet that is both sufficiently varied and adequate to provide for all my nutrition needs. Our patients with kidney disease, surely, are not immune to this plight. They may even be more inclined to nutrient deficiencies, as poor diet is linked to increased incidence and progression of chronic kidney disease (CKD).

I find that patients with kidney disease often have an interest in dietary supplementation, even those with a well-rounded diet. Though we can discourage the use of supplements, or at the very least encourage patient transparency regarding supplement use, many will continue dietary supplementation at the suggestion of their friends, family, or even their preferred daytime talk show host. 

What these patients truly require is education on using supplements that are most beneficial to them. By recommending supplements that address patients’ pain points like inflammation, dyslipidemia, cardiovascular health, and reduced progression to end-stage renal disease (ESRD), we can improve patient health and, hopefully, decrease use of questionable supplements.
 

Probiotics

Although probiotics have been used in the treatment of digestive issues for many years, the gut-kidney axis is only recently being explored. Studies show that the microbiota of patients with CKD is altered, even in the early stages of disease, producing additional inflammation and metabolic dysfunction. This can be remedied, or at least alleviated, by introducing a probiotic supplement.

Some probiotics have been shown to decrease inflammation, decrease fasting blood glucose, decrease low-density lipoprotein cholesterol, triglycerides, and total cholesterol, increase estimated glomerular filtration rate (eGFR), decrease blood urea nitrogen and urea, and decrease uric acid

Probiotic-rich foods like kimchi or fermented pickles may not be appropriate because of excessive sodium content or simply because of patient preference — kombucha isn’t for everyone. However, adding a probiotic supplement can improve gut microbiota without undermining dietary concerns. 

When recommending probiotics, patients should be educated to ensure that their probiotic has strains that have been proven to be beneficial for kidney health. Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium species, and Streptococcus thermophilus have been shown to have a positive effect on kidney health and decreasing progression of CKD at a dosage of 109 colony-forming units per day.
 

Fish Oil

Though nephrology and cardiology are separate fields, it cannot be overstated that kidney patients are also heart patients. 

Patients with CKD and an eGFR < 60 mL/min per 1.73 m2are most likely to die from cardiovascular causes, and this likelihood increases as eGFR decreases. CKD-associated dyslipidemia results in elevated triglycerides and reduced high-density lipoprotein cholesterol often accompanied by proteinuria, and has been linked to an increase in atherosclerosis.

A simple fish oil supplement can work to decrease oxidative stress, relieve inflammation, and improve serum lipids, leading to improved kidney and cardiovascular health. One meta-analysis found that high-dose fish oil supplementation, though it had no effect on serum creatinine or eGFR, was associated with a lower risk for proteinuria and progression to ESRD. 

Fish oil’s popularity in recent years bodes well for the kidney patient. It is now easily obtained over the counter in high doses to meet the recommended adequate intake of omega-3s, which is 1100 mg/d for women and 1600 mg/d for men. There are also more burpless varieties of these supplements to increase compliance. 
 

 

 

Vitamin D

Patients with renal disease are prone to vitamin D deficiency through inadequate intake and limited sunlight, which is exacerbated by the diseased kidney’s inability to effectively convert calcidiol to calcitriol. Vitamin D deficiency is linked to poor bone health, fatigue, muscle pain, impaired wound healing, and depression. Low vitamin D status has also been linked to poor outcomes in cancer, multiple sclerosis, cardiovascular disease, type 2 diabetes, and weight loss.

A meta-analysis of over 6000 patients with CKD found that high levels of 25-hydroxy vitamin D (25[OH]D) are associated with significantly improved survival rates regardless of CKD or ESRD status. 

Kidney Disease: Improving Global Outcomes guidelines recommend supplementing with ergocalciferol or cholecalciferol to correct (OH)D deficiency. This ensures adequate supply for conversion to calcitriol, but it cannot affect bone and mineral metabolism without further intervention in the form of calcitriol supplementation. By supplementing with ergocalciferol or cholecalciferol to meet the recommended daily allowance of 15 µg (600 IU) for adults under 70 years and 20 µg (800 IU) for adults over 70 years, the primary care team can ensure that the body has all the building blocks required for the nephrology team to then address mineral and bone disorder in CKD without the fear of promoting hypercalcemia
 

Safe Purchasing Practices

Patients should be reminded to purchase dietary supplements from reputable dealers, especially when purchasing online. Retailers like Amazon are increasing the barriers required to sell supplements to improve the quality of products sold on the site. But other online retailers may sell products from outside of the United States that fall outside of the Food and Drug Administration’s jurisdiction. 

Patients should also be reminded that “more is not always better” and counseled on appropriate dosages for individual needs. 
 

In Summary

Patients will probably continue to lean on dietary supplements, regardless of our approval. Transparency and education are important when working with patients with CKD, especially in regard to dietary supplements. 

When recommended appropriately, however, the supplements discussed can lead to better outcomes with improvements in kidney health by addressing inflammation, serum lipids, glycemic control, and cardiovascular health.

Ms. Winfree Root is a renal dietitian in private practice in Mary Esther, Florida. She disclosed no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

The global dietary supplement industry generates more than $400 billion a year. Supplements are alleged to treat many health concerns, from immune conditions and cognition to sexual dysfunction and premature wrinkles. Although some supplements have been proven to be helpful, others have no scientific basis.

I can preach all day that a healthy diet rarely needs supplementation. But even as a dietitian, I find it difficult to consistently eat a diet that is both sufficiently varied and adequate to provide for all my nutrition needs. Our patients with kidney disease, surely, are not immune to this plight. They may even be more inclined to nutrient deficiencies, as poor diet is linked to increased incidence and progression of chronic kidney disease (CKD).

I find that patients with kidney disease often have an interest in dietary supplementation, even those with a well-rounded diet. Though we can discourage the use of supplements, or at the very least encourage patient transparency regarding supplement use, many will continue dietary supplementation at the suggestion of their friends, family, or even their preferred daytime talk show host. 

What these patients truly require is education on using supplements that are most beneficial to them. By recommending supplements that address patients’ pain points like inflammation, dyslipidemia, cardiovascular health, and reduced progression to end-stage renal disease (ESRD), we can improve patient health and, hopefully, decrease use of questionable supplements.
 

Probiotics

Although probiotics have been used in the treatment of digestive issues for many years, the gut-kidney axis is only recently being explored. Studies show that the microbiota of patients with CKD is altered, even in the early stages of disease, producing additional inflammation and metabolic dysfunction. This can be remedied, or at least alleviated, by introducing a probiotic supplement.

Some probiotics have been shown to decrease inflammation, decrease fasting blood glucose, decrease low-density lipoprotein cholesterol, triglycerides, and total cholesterol, increase estimated glomerular filtration rate (eGFR), decrease blood urea nitrogen and urea, and decrease uric acid

Probiotic-rich foods like kimchi or fermented pickles may not be appropriate because of excessive sodium content or simply because of patient preference — kombucha isn’t for everyone. However, adding a probiotic supplement can improve gut microbiota without undermining dietary concerns. 

When recommending probiotics, patients should be educated to ensure that their probiotic has strains that have been proven to be beneficial for kidney health. Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium species, and Streptococcus thermophilus have been shown to have a positive effect on kidney health and decreasing progression of CKD at a dosage of 109 colony-forming units per day.
 

Fish Oil

Though nephrology and cardiology are separate fields, it cannot be overstated that kidney patients are also heart patients. 

Patients with CKD and an eGFR < 60 mL/min per 1.73 m2are most likely to die from cardiovascular causes, and this likelihood increases as eGFR decreases. CKD-associated dyslipidemia results in elevated triglycerides and reduced high-density lipoprotein cholesterol often accompanied by proteinuria, and has been linked to an increase in atherosclerosis.

A simple fish oil supplement can work to decrease oxidative stress, relieve inflammation, and improve serum lipids, leading to improved kidney and cardiovascular health. One meta-analysis found that high-dose fish oil supplementation, though it had no effect on serum creatinine or eGFR, was associated with a lower risk for proteinuria and progression to ESRD. 

Fish oil’s popularity in recent years bodes well for the kidney patient. It is now easily obtained over the counter in high doses to meet the recommended adequate intake of omega-3s, which is 1100 mg/d for women and 1600 mg/d for men. There are also more burpless varieties of these supplements to increase compliance. 
 

 

 

Vitamin D

Patients with renal disease are prone to vitamin D deficiency through inadequate intake and limited sunlight, which is exacerbated by the diseased kidney’s inability to effectively convert calcidiol to calcitriol. Vitamin D deficiency is linked to poor bone health, fatigue, muscle pain, impaired wound healing, and depression. Low vitamin D status has also been linked to poor outcomes in cancer, multiple sclerosis, cardiovascular disease, type 2 diabetes, and weight loss.

A meta-analysis of over 6000 patients with CKD found that high levels of 25-hydroxy vitamin D (25[OH]D) are associated with significantly improved survival rates regardless of CKD or ESRD status. 

Kidney Disease: Improving Global Outcomes guidelines recommend supplementing with ergocalciferol or cholecalciferol to correct (OH)D deficiency. This ensures adequate supply for conversion to calcitriol, but it cannot affect bone and mineral metabolism without further intervention in the form of calcitriol supplementation. By supplementing with ergocalciferol or cholecalciferol to meet the recommended daily allowance of 15 µg (600 IU) for adults under 70 years and 20 µg (800 IU) for adults over 70 years, the primary care team can ensure that the body has all the building blocks required for the nephrology team to then address mineral and bone disorder in CKD without the fear of promoting hypercalcemia
 

Safe Purchasing Practices

Patients should be reminded to purchase dietary supplements from reputable dealers, especially when purchasing online. Retailers like Amazon are increasing the barriers required to sell supplements to improve the quality of products sold on the site. But other online retailers may sell products from outside of the United States that fall outside of the Food and Drug Administration’s jurisdiction. 

Patients should also be reminded that “more is not always better” and counseled on appropriate dosages for individual needs. 
 

In Summary

Patients will probably continue to lean on dietary supplements, regardless of our approval. Transparency and education are important when working with patients with CKD, especially in regard to dietary supplements. 

When recommended appropriately, however, the supplements discussed can lead to better outcomes with improvements in kidney health by addressing inflammation, serum lipids, glycemic control, and cardiovascular health.

Ms. Winfree Root is a renal dietitian in private practice in Mary Esther, Florida. She disclosed no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Part of Taking a Good (Human) Patient History Includes Asking About Pet Vaccinations

Article Type
Changed
Tue, 09/03/2024 - 05:08

 

This transcript has been edited for clarity.

In my job, I spend 99% of my time thinking about ethical issues that arise in the care of human beings. That is the focus of our medical school, and that’s what we do. 

However, there are behaviors that are emerging with respect to pets that bear on human health and require the attention of doctors and nurses who deal with people who are pet owners.

Recently, there has been a great increase in the number of pet owners who are saying, “I’m not going to vaccinate my pets.” As horrible as this sounds, what’s happening is vaccine hesitancy about vaccines used in humans is extending through some people to their pets. 

The number of people who say they don’t trust things like rabies vaccine to be effective or safe for their pet animals is 40%, at least in surveys, and the American Veterinary Medical Association reports that 15%-18% of pet owners are not, in fact, vaccinating their pets against rabies.

Rabies, as I hope everybody knows, is one horrible disease. Even the treatment of it, should you get bitten by a rabid animal, is no fun, expensive, and hopefully something that can be administered quickly. It’s not always the case. Worldwide, at least 70,000 people die from rabies every year.

Obviously, there are many countries that are so terrified of rabies, they won’t let you bring pets in without quarantining them, say, England, for at least 6 months to a year, I believe, because they don’t want rabies getting into their country. They’re very strict about the movement of pets.

It is inexcusable for people, first, not to give their pets vaccines that prevent them getting distemper, parvovirus, or many other diseases that harm the pet. It’s also inexcusable to shorten your pet’s life or ask your patients to care for pets who get sick from many of these diseases that are vaccine preventable.

Worst of all, it’s inexcusable for any pet owner not to give a rabies vaccine to their pets. Were it up to me, I’d say you have to license your pet, and as part of that, you must mandate rabies vaccines for your dogs, cats, and other pets. 

We know what happens when people encounter wild animals like raccoons and rabbits. It is not a good situation. Your pets can easily encounter a rabid animal and then put themselves in a position where they can harm their human owners. 

We have an efficacious, safe treatment. If you’re dealing with someone, it might make sense to ask them, “Do you own a pet? Are you vaccinating?” It may not be something you’d ever thought about, but what we don’t need is rabies back in a bigger way in the United States than it’s been in the past.

I think, as a matter of prudence and public health, maybe firing up that question, “Got a pet in the house and are you vaccinating,” could be part of taking a good history.

 

Dr. Caplan is director of the division of medical ethics at New York University Langone Medical Center, New York City. He disclosed conflicts of interest with Johnson & Johnson and Medscape.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

In my job, I spend 99% of my time thinking about ethical issues that arise in the care of human beings. That is the focus of our medical school, and that’s what we do. 

However, there are behaviors that are emerging with respect to pets that bear on human health and require the attention of doctors and nurses who deal with people who are pet owners.

Recently, there has been a great increase in the number of pet owners who are saying, “I’m not going to vaccinate my pets.” As horrible as this sounds, what’s happening is vaccine hesitancy about vaccines used in humans is extending through some people to their pets. 

The number of people who say they don’t trust things like rabies vaccine to be effective or safe for their pet animals is 40%, at least in surveys, and the American Veterinary Medical Association reports that 15%-18% of pet owners are not, in fact, vaccinating their pets against rabies.

Rabies, as I hope everybody knows, is one horrible disease. Even the treatment of it, should you get bitten by a rabid animal, is no fun, expensive, and hopefully something that can be administered quickly. It’s not always the case. Worldwide, at least 70,000 people die from rabies every year.

Obviously, there are many countries that are so terrified of rabies, they won’t let you bring pets in without quarantining them, say, England, for at least 6 months to a year, I believe, because they don’t want rabies getting into their country. They’re very strict about the movement of pets.

It is inexcusable for people, first, not to give their pets vaccines that prevent them getting distemper, parvovirus, or many other diseases that harm the pet. It’s also inexcusable to shorten your pet’s life or ask your patients to care for pets who get sick from many of these diseases that are vaccine preventable.

Worst of all, it’s inexcusable for any pet owner not to give a rabies vaccine to their pets. Were it up to me, I’d say you have to license your pet, and as part of that, you must mandate rabies vaccines for your dogs, cats, and other pets. 

We know what happens when people encounter wild animals like raccoons and rabbits. It is not a good situation. Your pets can easily encounter a rabid animal and then put themselves in a position where they can harm their human owners. 

We have an efficacious, safe treatment. If you’re dealing with someone, it might make sense to ask them, “Do you own a pet? Are you vaccinating?” It may not be something you’d ever thought about, but what we don’t need is rabies back in a bigger way in the United States than it’s been in the past.

I think, as a matter of prudence and public health, maybe firing up that question, “Got a pet in the house and are you vaccinating,” could be part of taking a good history.

 

Dr. Caplan is director of the division of medical ethics at New York University Langone Medical Center, New York City. He disclosed conflicts of interest with Johnson & Johnson and Medscape.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity.

In my job, I spend 99% of my time thinking about ethical issues that arise in the care of human beings. That is the focus of our medical school, and that’s what we do. 

However, there are behaviors that are emerging with respect to pets that bear on human health and require the attention of doctors and nurses who deal with people who are pet owners.

Recently, there has been a great increase in the number of pet owners who are saying, “I’m not going to vaccinate my pets.” As horrible as this sounds, what’s happening is vaccine hesitancy about vaccines used in humans is extending through some people to their pets. 

The number of people who say they don’t trust things like rabies vaccine to be effective or safe for their pet animals is 40%, at least in surveys, and the American Veterinary Medical Association reports that 15%-18% of pet owners are not, in fact, vaccinating their pets against rabies.

Rabies, as I hope everybody knows, is one horrible disease. Even the treatment of it, should you get bitten by a rabid animal, is no fun, expensive, and hopefully something that can be administered quickly. It’s not always the case. Worldwide, at least 70,000 people die from rabies every year.

Obviously, there are many countries that are so terrified of rabies, they won’t let you bring pets in without quarantining them, say, England, for at least 6 months to a year, I believe, because they don’t want rabies getting into their country. They’re very strict about the movement of pets.

It is inexcusable for people, first, not to give their pets vaccines that prevent them getting distemper, parvovirus, or many other diseases that harm the pet. It’s also inexcusable to shorten your pet’s life or ask your patients to care for pets who get sick from many of these diseases that are vaccine preventable.

Worst of all, it’s inexcusable for any pet owner not to give a rabies vaccine to their pets. Were it up to me, I’d say you have to license your pet, and as part of that, you must mandate rabies vaccines for your dogs, cats, and other pets. 

We know what happens when people encounter wild animals like raccoons and rabbits. It is not a good situation. Your pets can easily encounter a rabid animal and then put themselves in a position where they can harm their human owners. 

We have an efficacious, safe treatment. If you’re dealing with someone, it might make sense to ask them, “Do you own a pet? Are you vaccinating?” It may not be something you’d ever thought about, but what we don’t need is rabies back in a bigger way in the United States than it’s been in the past.

I think, as a matter of prudence and public health, maybe firing up that question, “Got a pet in the house and are you vaccinating,” could be part of taking a good history.

 

Dr. Caplan is director of the division of medical ethics at New York University Langone Medical Center, New York City. He disclosed conflicts of interest with Johnson & Johnson and Medscape.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Men, Women, & Exercise: How Metabolism Differs

Article Type
Changed
Fri, 08/30/2024 - 09:50

 

TOPLINE:

When starting a regular exercise program, the skeletal muscle of sedentary men and women with overweight and obesity differs in burning sugar and fatty acids, but regular training can lessen these differences and promote similar positive metabolic changes in both biological sexes.

METHODOLOGY:

  • By stimulating skeletal muscle, exercise can help prevent muscle loss associated with weight loss and improve insulin sensitivity and glucose control in type 2 diabetes, but biological sex-based differences have been reported for many measures.
  • This study of sedentary men and women evaluated the molecular differences in skeletal muscle in response to a training program.
  • Researchers collected muscle biopsies from 16 women and nine men with overweight or obesity (average age, 30 years) at three time points — baseline, after the first exercise session, and after the last session at the end of training.
  • Training involved 1 hour of moderate to intense endurance exercise under supervision (30 minutes cycling on an ergometer and 30 minutes walking on a treadmill) thrice a week for 8 weeks.
  • The biopsies were profiled for patterns of three sets of omics data — DNA methylation for insight into genes switched on and off (epigenomics), RNA molecules transcribed from genes (transcriptomics), and proteins (proteomics).

TAKEAWAY:

  • At baseline, sex-specific differences were observed most tellingly in 120 proteins and also in DNA methylation sites of 16,012 genes and in 1366 RNA transcripts.
  • Men displayed a higher abundance of glycolysis-related proteins and other fast-twitch fiber–type proteins, which are involved in the processing of glucose, while women showed more proteins responsible for regulating fatty acid metabolism.
  • The response to the first exercise session differed between men and women, with the cellular stress response upregulated predominantly in men.
  • The 8-week exercise training mitigated these sex-specific differences in the skeletal muscle, leading to an upregulation of mitochondrial proteins responsible for substrate oxidation and ATP generation in both men and women.

IN PRACTICE:

“This is important because the increased capacity after exercise to use glucose and lipids for energy production is generally regarded as key to prevent type 2 diabetes,” study leader Professor Cora Weigert from the University of Tübingen, Germany, said in a news release from the meeting organizers. “While initial response of skeletal muscles to exercise differs between females and males, repeated exercise appears to cancel out these differences and trigger beneficial metabolic changes in both sexes,” she added.

SOURCE:

The study was led by Simon I. Dreher, PhD, Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Tübingen, Germany. It was published on August 15, 2024, as an early release from the annual meeting of the European Association for the Study of Diabetes 2024, Madrid, September 9-13.

LIMITATIONS:

This abstract did not discuss any limitations.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no relevant conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

When starting a regular exercise program, the skeletal muscle of sedentary men and women with overweight and obesity differs in burning sugar and fatty acids, but regular training can lessen these differences and promote similar positive metabolic changes in both biological sexes.

METHODOLOGY:

  • By stimulating skeletal muscle, exercise can help prevent muscle loss associated with weight loss and improve insulin sensitivity and glucose control in type 2 diabetes, but biological sex-based differences have been reported for many measures.
  • This study of sedentary men and women evaluated the molecular differences in skeletal muscle in response to a training program.
  • Researchers collected muscle biopsies from 16 women and nine men with overweight or obesity (average age, 30 years) at three time points — baseline, after the first exercise session, and after the last session at the end of training.
  • Training involved 1 hour of moderate to intense endurance exercise under supervision (30 minutes cycling on an ergometer and 30 minutes walking on a treadmill) thrice a week for 8 weeks.
  • The biopsies were profiled for patterns of three sets of omics data — DNA methylation for insight into genes switched on and off (epigenomics), RNA molecules transcribed from genes (transcriptomics), and proteins (proteomics).

TAKEAWAY:

  • At baseline, sex-specific differences were observed most tellingly in 120 proteins and also in DNA methylation sites of 16,012 genes and in 1366 RNA transcripts.
  • Men displayed a higher abundance of glycolysis-related proteins and other fast-twitch fiber–type proteins, which are involved in the processing of glucose, while women showed more proteins responsible for regulating fatty acid metabolism.
  • The response to the first exercise session differed between men and women, with the cellular stress response upregulated predominantly in men.
  • The 8-week exercise training mitigated these sex-specific differences in the skeletal muscle, leading to an upregulation of mitochondrial proteins responsible for substrate oxidation and ATP generation in both men and women.

IN PRACTICE:

“This is important because the increased capacity after exercise to use glucose and lipids for energy production is generally regarded as key to prevent type 2 diabetes,” study leader Professor Cora Weigert from the University of Tübingen, Germany, said in a news release from the meeting organizers. “While initial response of skeletal muscles to exercise differs between females and males, repeated exercise appears to cancel out these differences and trigger beneficial metabolic changes in both sexes,” she added.

SOURCE:

The study was led by Simon I. Dreher, PhD, Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Tübingen, Germany. It was published on August 15, 2024, as an early release from the annual meeting of the European Association for the Study of Diabetes 2024, Madrid, September 9-13.

LIMITATIONS:

This abstract did not discuss any limitations.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no relevant conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

When starting a regular exercise program, the skeletal muscle of sedentary men and women with overweight and obesity differs in burning sugar and fatty acids, but regular training can lessen these differences and promote similar positive metabolic changes in both biological sexes.

METHODOLOGY:

  • By stimulating skeletal muscle, exercise can help prevent muscle loss associated with weight loss and improve insulin sensitivity and glucose control in type 2 diabetes, but biological sex-based differences have been reported for many measures.
  • This study of sedentary men and women evaluated the molecular differences in skeletal muscle in response to a training program.
  • Researchers collected muscle biopsies from 16 women and nine men with overweight or obesity (average age, 30 years) at three time points — baseline, after the first exercise session, and after the last session at the end of training.
  • Training involved 1 hour of moderate to intense endurance exercise under supervision (30 minutes cycling on an ergometer and 30 minutes walking on a treadmill) thrice a week for 8 weeks.
  • The biopsies were profiled for patterns of three sets of omics data — DNA methylation for insight into genes switched on and off (epigenomics), RNA molecules transcribed from genes (transcriptomics), and proteins (proteomics).

TAKEAWAY:

  • At baseline, sex-specific differences were observed most tellingly in 120 proteins and also in DNA methylation sites of 16,012 genes and in 1366 RNA transcripts.
  • Men displayed a higher abundance of glycolysis-related proteins and other fast-twitch fiber–type proteins, which are involved in the processing of glucose, while women showed more proteins responsible for regulating fatty acid metabolism.
  • The response to the first exercise session differed between men and women, with the cellular stress response upregulated predominantly in men.
  • The 8-week exercise training mitigated these sex-specific differences in the skeletal muscle, leading to an upregulation of mitochondrial proteins responsible for substrate oxidation and ATP generation in both men and women.

IN PRACTICE:

“This is important because the increased capacity after exercise to use glucose and lipids for energy production is generally regarded as key to prevent type 2 diabetes,” study leader Professor Cora Weigert from the University of Tübingen, Germany, said in a news release from the meeting organizers. “While initial response of skeletal muscles to exercise differs between females and males, repeated exercise appears to cancel out these differences and trigger beneficial metabolic changes in both sexes,” she added.

SOURCE:

The study was led by Simon I. Dreher, PhD, Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Tübingen, Germany. It was published on August 15, 2024, as an early release from the annual meeting of the European Association for the Study of Diabetes 2024, Madrid, September 9-13.

LIMITATIONS:

This abstract did not discuss any limitations.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no relevant conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

High-Dose Psilocybin Shows Promising Results for Depression

Article Type
Changed
Tue, 09/03/2024 - 10:31

 

TOPLINE:

High-dose psilocybin is associated with greater relief from depressive symptoms than placebo or escitalopram, with no increased risk for severe adverse events, a new meta-analysis suggests.
 

METHODOLOGY:

  • Researchers conducted a network meta-analysis to evaluate the comparative effectiveness of oral monotherapy with psychedelics versus escitalopram in patients with clinically diagnosed depression.
  • The meta-analysis included 811 participants (mean age, 42.49 years; 54.2% women) with clinically diagnosed depression across 15 psychedelic trials and 1968 participants (mean age, 39.35 years; 62.5% women) across five escitalopram trials.
  • Trials evaluated oral monotherapy with psychedelics (psilocybin, lysergic acid diethylamide, 3,4-methylenedioxymethamphetamine [MDMA], and ayahuasca), fixed-dose escitalopram (up to 20 mg/d) versus placebo, and psychedelic versus escitalopram monotherapy.
  • The primary outcome was a change in depressive symptoms from baseline.

TAKEAWAY:

  • Placebo responses in antidepressant trials (mean difference, 3.79; 95% CI, 0.77-6.80) and extremely low-dose psilocybin (mean difference, 3.96; 95% CI, 0.61-7.17) were better than those in psychedelic trials.
  • High-dose psilocybin (20 mg or more) performed better than placebo in the antidepressant trials (mean difference, > 3). However, when comparing high-dose psilocybin with the placebo used in antidepressant trials, the effect size was smaller. The standardized mean difference dropped from 0.88 to 0.31, indicating that the effect of high-dose psilocybin was similar to that of current antidepressants.
  • High-dose psilocybin was associated with a greater response than escitalopram at 10 mg (4.66; 95% CI, 1.36-7.74) and 20 mg (4.69; 95% CI, 1.64-7.54).
  • No interventions were associated with an increased risk for all-cause discontinuation or severe adverse events.

IN PRACTICE:

“Taken together, our study findings suggest that among psychedelic treatments, high-dose psilocybin is more likely to reach the minimal important difference for depressive symptoms in studies with adequate blinding design, while the effect size of psilocybin was similar to that of current antidepressant drugs, showing a mean standardized mean difference of 0.3,” the authors wrote.

SOURCE:

The study was led by Tien-Wei Hsu, MD, I-Shou University and Kaohsiung Medical University, Kaohsiung City, Taiwan. It was published online in The BMJ

LIMITATIONS:

The study did not assess long-term effects of the interventions. Participants in the MDMA trials were primarily diagnosed with posttraumatic stress disorder, which may not be representative of the general population with depressive symptoms. Moreover, the sample size of the psychedelic trials was small. Using extremely low-dose psychedelics as a reference group may have eliminated some pharmacologic effects as these doses cannot be considered a placebo.

DISCLOSURES:

The study was supported by grants from the National Science and Technology Council. The authors declared no financial relationships with any organizations outside the submitted work in the past 3 years. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

High-dose psilocybin is associated with greater relief from depressive symptoms than placebo or escitalopram, with no increased risk for severe adverse events, a new meta-analysis suggests.
 

METHODOLOGY:

  • Researchers conducted a network meta-analysis to evaluate the comparative effectiveness of oral monotherapy with psychedelics versus escitalopram in patients with clinically diagnosed depression.
  • The meta-analysis included 811 participants (mean age, 42.49 years; 54.2% women) with clinically diagnosed depression across 15 psychedelic trials and 1968 participants (mean age, 39.35 years; 62.5% women) across five escitalopram trials.
  • Trials evaluated oral monotherapy with psychedelics (psilocybin, lysergic acid diethylamide, 3,4-methylenedioxymethamphetamine [MDMA], and ayahuasca), fixed-dose escitalopram (up to 20 mg/d) versus placebo, and psychedelic versus escitalopram monotherapy.
  • The primary outcome was a change in depressive symptoms from baseline.

TAKEAWAY:

  • Placebo responses in antidepressant trials (mean difference, 3.79; 95% CI, 0.77-6.80) and extremely low-dose psilocybin (mean difference, 3.96; 95% CI, 0.61-7.17) were better than those in psychedelic trials.
  • High-dose psilocybin (20 mg or more) performed better than placebo in the antidepressant trials (mean difference, > 3). However, when comparing high-dose psilocybin with the placebo used in antidepressant trials, the effect size was smaller. The standardized mean difference dropped from 0.88 to 0.31, indicating that the effect of high-dose psilocybin was similar to that of current antidepressants.
  • High-dose psilocybin was associated with a greater response than escitalopram at 10 mg (4.66; 95% CI, 1.36-7.74) and 20 mg (4.69; 95% CI, 1.64-7.54).
  • No interventions were associated with an increased risk for all-cause discontinuation or severe adverse events.

IN PRACTICE:

“Taken together, our study findings suggest that among psychedelic treatments, high-dose psilocybin is more likely to reach the minimal important difference for depressive symptoms in studies with adequate blinding design, while the effect size of psilocybin was similar to that of current antidepressant drugs, showing a mean standardized mean difference of 0.3,” the authors wrote.

SOURCE:

The study was led by Tien-Wei Hsu, MD, I-Shou University and Kaohsiung Medical University, Kaohsiung City, Taiwan. It was published online in The BMJ

LIMITATIONS:

The study did not assess long-term effects of the interventions. Participants in the MDMA trials were primarily diagnosed with posttraumatic stress disorder, which may not be representative of the general population with depressive symptoms. Moreover, the sample size of the psychedelic trials was small. Using extremely low-dose psychedelics as a reference group may have eliminated some pharmacologic effects as these doses cannot be considered a placebo.

DISCLOSURES:

The study was supported by grants from the National Science and Technology Council. The authors declared no financial relationships with any organizations outside the submitted work in the past 3 years. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

High-dose psilocybin is associated with greater relief from depressive symptoms than placebo or escitalopram, with no increased risk for severe adverse events, a new meta-analysis suggests.
 

METHODOLOGY:

  • Researchers conducted a network meta-analysis to evaluate the comparative effectiveness of oral monotherapy with psychedelics versus escitalopram in patients with clinically diagnosed depression.
  • The meta-analysis included 811 participants (mean age, 42.49 years; 54.2% women) with clinically diagnosed depression across 15 psychedelic trials and 1968 participants (mean age, 39.35 years; 62.5% women) across five escitalopram trials.
  • Trials evaluated oral monotherapy with psychedelics (psilocybin, lysergic acid diethylamide, 3,4-methylenedioxymethamphetamine [MDMA], and ayahuasca), fixed-dose escitalopram (up to 20 mg/d) versus placebo, and psychedelic versus escitalopram monotherapy.
  • The primary outcome was a change in depressive symptoms from baseline.

TAKEAWAY:

  • Placebo responses in antidepressant trials (mean difference, 3.79; 95% CI, 0.77-6.80) and extremely low-dose psilocybin (mean difference, 3.96; 95% CI, 0.61-7.17) were better than those in psychedelic trials.
  • High-dose psilocybin (20 mg or more) performed better than placebo in the antidepressant trials (mean difference, > 3). However, when comparing high-dose psilocybin with the placebo used in antidepressant trials, the effect size was smaller. The standardized mean difference dropped from 0.88 to 0.31, indicating that the effect of high-dose psilocybin was similar to that of current antidepressants.
  • High-dose psilocybin was associated with a greater response than escitalopram at 10 mg (4.66; 95% CI, 1.36-7.74) and 20 mg (4.69; 95% CI, 1.64-7.54).
  • No interventions were associated with an increased risk for all-cause discontinuation or severe adverse events.

IN PRACTICE:

“Taken together, our study findings suggest that among psychedelic treatments, high-dose psilocybin is more likely to reach the minimal important difference for depressive symptoms in studies with adequate blinding design, while the effect size of psilocybin was similar to that of current antidepressant drugs, showing a mean standardized mean difference of 0.3,” the authors wrote.

SOURCE:

The study was led by Tien-Wei Hsu, MD, I-Shou University and Kaohsiung Medical University, Kaohsiung City, Taiwan. It was published online in The BMJ

LIMITATIONS:

The study did not assess long-term effects of the interventions. Participants in the MDMA trials were primarily diagnosed with posttraumatic stress disorder, which may not be representative of the general population with depressive symptoms. Moreover, the sample size of the psychedelic trials was small. Using extremely low-dose psychedelics as a reference group may have eliminated some pharmacologic effects as these doses cannot be considered a placebo.

DISCLOSURES:

The study was supported by grants from the National Science and Technology Council. The authors declared no financial relationships with any organizations outside the submitted work in the past 3 years. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Associations Identified Between IBD and Extraintestinal Manifestations

Article Type
Changed
Thu, 08/29/2024 - 13:07

Certain extraintestinal manifestations (EIMs) in inflammatory bowel disease (IBD) have distinct clinical, serologic, and genetic associations that reveal underlying mechanisms and indicate targets for new or existing drugs, according to a recent study.

For instance, antinuclear cytoplastic antibody is associated with primary sclerosing cholangitis (PSC) in Crohn’s disease, and CPEB4 genetic variation is associated with skin manifestations.

“Up to 40% of people with IBD suffer with symptoms from inflammation that occurs outside the gut, particularly affecting the liver, skin, and joints. These symptoms can often have a bigger impact on quality of life than the gut inflammation itself and can actually be life-threatening,” said senior author Dermot McGovern, MD, PhD, AGAF, director of translational medicine at the F. Widjaja Foundation Inflammatory Bowel Disease and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles.

Dr. Dermot McGovern, director of translational medicine at the F. Widjaja Foundation Inflammatory Bowel Disease and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles
Cedars-Sinai Medical Center
Dr. Dermot McGovern

“With the advances in therapies for IBD, including availability of gut-selective agents, treatment choices often incorporate whether a patient has one of these manifestations or not,” he said. “We need to understand who is at increased risk of these and why.”

The study was published in Gastroenterology .
 

Analyzing Associations

Dr. McGovern and colleagues analyzed data for 12,083 unrelated European ancestry IBD cases with presence or absence of EIMs across four cohorts in the Cedars-Sinai Medical Center IBD Research Repository, National Institute for Diabetes and Digestive and Kidney Diseases IBD Genetics Consortium, Sinai Helmsley Alliance for Research Excellence Consortium, and Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid Disease Progression in Children with Crohn’s Disease.

In particular, the researchers looked at EIM phenotypes such as ankylosing spondylitis and sacroiliitis, PSC, peripheral arthritis, and skin and ocular manifestations. They analyzed clinical and serologic parameters through regression analyses using a mixed-effects model, as well as within-case logistic regression for genetic associations.

Overall, 14% of patients had at least one EIM. Contrary to previous reports, only 2% had multiple EIMs, and most co-occurrences were negatively correlated. Nearly all EIMs were more common in Crohn’s disease, except for PSC, which was more common in ulcerative colitis.

In general, EIMs occurred more often in women, particularly with Crohn’s disease and colonic disease location, and in patients who required surgery. Jewish ancestry was associated with psoriasis and overall skin manifestations.

Smoking increased the risk for multiple EIMs, except for PSC, where there appeared to be a “protective” effect. Older age at diagnosis and a family history of IBD were associated with increased risk for certain EIMs as well.

In addition, the research team noted multiple serologic associations, such as immunoglobulin (Ig) G and IgA, perinuclear antinuclear cytoplastic antibodies, and anti–Pseudomonas fluorescens–associated sequences with any EIM, as well as particular associations with PSC, such as anti-Saccharomyces cerevisiae antibodies and anti-flagellin.

There were also genome-wide significant associations within the major histocompatibility complex and CPEB4. Genetic associations implicated tumor necrosis factor, Janus kinase-signal transducer and activator of transcription, and interleukin 6 as potential targets for EIMs.

“We are working with colleagues across the world to increase the sample size, as we believe there is more to find,” Dr. McGovern said. “Importantly, this includes non-European ancestry subjects, as there is an urgent need to increase the diversity of populations we study so advances in clinical care are available to all communities.”
 

 

 

Considering Target Therapies

As medicine becomes more specialized, physicians should remember to consider the whole patient while choosing treatment strategies.

“Sometimes doctors wear blinders to the whole person, and it’s important to be aware of a holistic approach, where a gastroenterologist also asks about potential joint inflammation or a rheumatologist asks about bowel inflammation,” said David Rubin, MD, AGAF, chief of the Section of Gastroenterology, Hepatology and Nutrition at the University of Chicago Medicine, Chicago.

Dr. Rubin, who wasn’t involved with this study, has researched and published on EIMs in IBD. He and colleagues analyzed the prevalence, pathophysiology, and clinical presentation of EIMs to better understand possibilities for disease management.

Dr. David T. Rubin, University of Chicago
Dr. David T. Rubin


“As we’ve gotten a better understanding of the immune system, we’ve learned that an EIM can sometimes provide a clue to the treatment we might use,” he said. “Given a similar amount of bowel inflammation, if one patient also has joint pain and another doesn’t, we might choose different treatments based on the immune pathway that might be involved.”

In future studies, researchers may consider whether these genetic or serologic markers could predict EIM manifestation before it occurs clinically, Dr. Rubin said. He and colleagues are also studying the links between IBD and mental health associations.

“So far, we don’t have a blood test or biopsy test that tells you which treatment is more or less likely to work, so we need to think carefully as clinicians and look to other organ systems for clues,” he said. “It’s not only more efficient to pick a single therapy to treat both the skin and bowel, but it may actually be more effective if both have a particular dominant pathway.”

The study was supported by internal funds from the F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute. Several authors reported consultant roles or other associations with pharmaceutical companies. Dr. Rubin reported no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Certain extraintestinal manifestations (EIMs) in inflammatory bowel disease (IBD) have distinct clinical, serologic, and genetic associations that reveal underlying mechanisms and indicate targets for new or existing drugs, according to a recent study.

For instance, antinuclear cytoplastic antibody is associated with primary sclerosing cholangitis (PSC) in Crohn’s disease, and CPEB4 genetic variation is associated with skin manifestations.

“Up to 40% of people with IBD suffer with symptoms from inflammation that occurs outside the gut, particularly affecting the liver, skin, and joints. These symptoms can often have a bigger impact on quality of life than the gut inflammation itself and can actually be life-threatening,” said senior author Dermot McGovern, MD, PhD, AGAF, director of translational medicine at the F. Widjaja Foundation Inflammatory Bowel Disease and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles.

Dr. Dermot McGovern, director of translational medicine at the F. Widjaja Foundation Inflammatory Bowel Disease and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles
Cedars-Sinai Medical Center
Dr. Dermot McGovern

“With the advances in therapies for IBD, including availability of gut-selective agents, treatment choices often incorporate whether a patient has one of these manifestations or not,” he said. “We need to understand who is at increased risk of these and why.”

The study was published in Gastroenterology .
 

Analyzing Associations

Dr. McGovern and colleagues analyzed data for 12,083 unrelated European ancestry IBD cases with presence or absence of EIMs across four cohorts in the Cedars-Sinai Medical Center IBD Research Repository, National Institute for Diabetes and Digestive and Kidney Diseases IBD Genetics Consortium, Sinai Helmsley Alliance for Research Excellence Consortium, and Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid Disease Progression in Children with Crohn’s Disease.

In particular, the researchers looked at EIM phenotypes such as ankylosing spondylitis and sacroiliitis, PSC, peripheral arthritis, and skin and ocular manifestations. They analyzed clinical and serologic parameters through regression analyses using a mixed-effects model, as well as within-case logistic regression for genetic associations.

Overall, 14% of patients had at least one EIM. Contrary to previous reports, only 2% had multiple EIMs, and most co-occurrences were negatively correlated. Nearly all EIMs were more common in Crohn’s disease, except for PSC, which was more common in ulcerative colitis.

In general, EIMs occurred more often in women, particularly with Crohn’s disease and colonic disease location, and in patients who required surgery. Jewish ancestry was associated with psoriasis and overall skin manifestations.

Smoking increased the risk for multiple EIMs, except for PSC, where there appeared to be a “protective” effect. Older age at diagnosis and a family history of IBD were associated with increased risk for certain EIMs as well.

In addition, the research team noted multiple serologic associations, such as immunoglobulin (Ig) G and IgA, perinuclear antinuclear cytoplastic antibodies, and anti–Pseudomonas fluorescens–associated sequences with any EIM, as well as particular associations with PSC, such as anti-Saccharomyces cerevisiae antibodies and anti-flagellin.

There were also genome-wide significant associations within the major histocompatibility complex and CPEB4. Genetic associations implicated tumor necrosis factor, Janus kinase-signal transducer and activator of transcription, and interleukin 6 as potential targets for EIMs.

“We are working with colleagues across the world to increase the sample size, as we believe there is more to find,” Dr. McGovern said. “Importantly, this includes non-European ancestry subjects, as there is an urgent need to increase the diversity of populations we study so advances in clinical care are available to all communities.”
 

 

 

Considering Target Therapies

As medicine becomes more specialized, physicians should remember to consider the whole patient while choosing treatment strategies.

“Sometimes doctors wear blinders to the whole person, and it’s important to be aware of a holistic approach, where a gastroenterologist also asks about potential joint inflammation or a rheumatologist asks about bowel inflammation,” said David Rubin, MD, AGAF, chief of the Section of Gastroenterology, Hepatology and Nutrition at the University of Chicago Medicine, Chicago.

Dr. Rubin, who wasn’t involved with this study, has researched and published on EIMs in IBD. He and colleagues analyzed the prevalence, pathophysiology, and clinical presentation of EIMs to better understand possibilities for disease management.

Dr. David T. Rubin, University of Chicago
Dr. David T. Rubin


“As we’ve gotten a better understanding of the immune system, we’ve learned that an EIM can sometimes provide a clue to the treatment we might use,” he said. “Given a similar amount of bowel inflammation, if one patient also has joint pain and another doesn’t, we might choose different treatments based on the immune pathway that might be involved.”

In future studies, researchers may consider whether these genetic or serologic markers could predict EIM manifestation before it occurs clinically, Dr. Rubin said. He and colleagues are also studying the links between IBD and mental health associations.

“So far, we don’t have a blood test or biopsy test that tells you which treatment is more or less likely to work, so we need to think carefully as clinicians and look to other organ systems for clues,” he said. “It’s not only more efficient to pick a single therapy to treat both the skin and bowel, but it may actually be more effective if both have a particular dominant pathway.”

The study was supported by internal funds from the F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute. Several authors reported consultant roles or other associations with pharmaceutical companies. Dr. Rubin reported no relevant disclosures.

A version of this article appeared on Medscape.com.

Certain extraintestinal manifestations (EIMs) in inflammatory bowel disease (IBD) have distinct clinical, serologic, and genetic associations that reveal underlying mechanisms and indicate targets for new or existing drugs, according to a recent study.

For instance, antinuclear cytoplastic antibody is associated with primary sclerosing cholangitis (PSC) in Crohn’s disease, and CPEB4 genetic variation is associated with skin manifestations.

“Up to 40% of people with IBD suffer with symptoms from inflammation that occurs outside the gut, particularly affecting the liver, skin, and joints. These symptoms can often have a bigger impact on quality of life than the gut inflammation itself and can actually be life-threatening,” said senior author Dermot McGovern, MD, PhD, AGAF, director of translational medicine at the F. Widjaja Foundation Inflammatory Bowel Disease and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles.

Dr. Dermot McGovern, director of translational medicine at the F. Widjaja Foundation Inflammatory Bowel Disease and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles
Cedars-Sinai Medical Center
Dr. Dermot McGovern

“With the advances in therapies for IBD, including availability of gut-selective agents, treatment choices often incorporate whether a patient has one of these manifestations or not,” he said. “We need to understand who is at increased risk of these and why.”

The study was published in Gastroenterology .
 

Analyzing Associations

Dr. McGovern and colleagues analyzed data for 12,083 unrelated European ancestry IBD cases with presence or absence of EIMs across four cohorts in the Cedars-Sinai Medical Center IBD Research Repository, National Institute for Diabetes and Digestive and Kidney Diseases IBD Genetics Consortium, Sinai Helmsley Alliance for Research Excellence Consortium, and Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid Disease Progression in Children with Crohn’s Disease.

In particular, the researchers looked at EIM phenotypes such as ankylosing spondylitis and sacroiliitis, PSC, peripheral arthritis, and skin and ocular manifestations. They analyzed clinical and serologic parameters through regression analyses using a mixed-effects model, as well as within-case logistic regression for genetic associations.

Overall, 14% of patients had at least one EIM. Contrary to previous reports, only 2% had multiple EIMs, and most co-occurrences were negatively correlated. Nearly all EIMs were more common in Crohn’s disease, except for PSC, which was more common in ulcerative colitis.

In general, EIMs occurred more often in women, particularly with Crohn’s disease and colonic disease location, and in patients who required surgery. Jewish ancestry was associated with psoriasis and overall skin manifestations.

Smoking increased the risk for multiple EIMs, except for PSC, where there appeared to be a “protective” effect. Older age at diagnosis and a family history of IBD were associated with increased risk for certain EIMs as well.

In addition, the research team noted multiple serologic associations, such as immunoglobulin (Ig) G and IgA, perinuclear antinuclear cytoplastic antibodies, and anti–Pseudomonas fluorescens–associated sequences with any EIM, as well as particular associations with PSC, such as anti-Saccharomyces cerevisiae antibodies and anti-flagellin.

There were also genome-wide significant associations within the major histocompatibility complex and CPEB4. Genetic associations implicated tumor necrosis factor, Janus kinase-signal transducer and activator of transcription, and interleukin 6 as potential targets for EIMs.

“We are working with colleagues across the world to increase the sample size, as we believe there is more to find,” Dr. McGovern said. “Importantly, this includes non-European ancestry subjects, as there is an urgent need to increase the diversity of populations we study so advances in clinical care are available to all communities.”
 

 

 

Considering Target Therapies

As medicine becomes more specialized, physicians should remember to consider the whole patient while choosing treatment strategies.

“Sometimes doctors wear blinders to the whole person, and it’s important to be aware of a holistic approach, where a gastroenterologist also asks about potential joint inflammation or a rheumatologist asks about bowel inflammation,” said David Rubin, MD, AGAF, chief of the Section of Gastroenterology, Hepatology and Nutrition at the University of Chicago Medicine, Chicago.

Dr. Rubin, who wasn’t involved with this study, has researched and published on EIMs in IBD. He and colleagues analyzed the prevalence, pathophysiology, and clinical presentation of EIMs to better understand possibilities for disease management.

Dr. David T. Rubin, University of Chicago
Dr. David T. Rubin


“As we’ve gotten a better understanding of the immune system, we’ve learned that an EIM can sometimes provide a clue to the treatment we might use,” he said. “Given a similar amount of bowel inflammation, if one patient also has joint pain and another doesn’t, we might choose different treatments based on the immune pathway that might be involved.”

In future studies, researchers may consider whether these genetic or serologic markers could predict EIM manifestation before it occurs clinically, Dr. Rubin said. He and colleagues are also studying the links between IBD and mental health associations.

“So far, we don’t have a blood test or biopsy test that tells you which treatment is more or less likely to work, so we need to think carefully as clinicians and look to other organ systems for clues,” he said. “It’s not only more efficient to pick a single therapy to treat both the skin and bowel, but it may actually be more effective if both have a particular dominant pathway.”

The study was supported by internal funds from the F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute. Several authors reported consultant roles or other associations with pharmaceutical companies. Dr. Rubin reported no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

From Scrubs to Social Media: How Some Med Students Become Influencers

Article Type
Changed
Wed, 08/28/2024 - 15:59

A medical student’s life is an endless cycle of classes, exams, clinical rotations, and residency preparation. While students typically have little free time, some still manage to build a mega social media presence. On TikTok and Instagram, among other sites, they share medical school experiences and lessons learned in the classroom and advocate for causes such as increased diversity and gender rights in the medical field.

This news organization caught up with a few social media influencers with a large online following to learn how medical students can effectively use social media to build a professional brand and network. Most of the students interviewed said that their social media platforms offered an opportunity to educate others about significant medical developments, feel part of a community with a like-minded audience, and network with doctors who may lead them to a future residency or career path.

Many med students said that they built their large audiences by creating a platform for people of their ethnic background, nationality, race, gender, or simply what others weren’t already talking about. They said they saw a niche in social media that was missing or others hadn’t tackled in the same way.

When Joel Bervell began med school in 2020, he questioned some of the lessons he learned about how race is used in medical practice, which didn’t make sense to him. So, he began his own research. He had about 2000 followers on Instagram at the time.

Mr. Bervell read a new study about pulse oximeters and how they often produce misleading readings on patients with dark skin.

He wondered why he hadn’t learned this in medical school, so he posted it on TikTok. Within 24 hours, about 500,000 people viewed it. Most of the comments were from doctors, nurses, and physician assistants who said they weren’t aware of the disparity.

While his initial posts detailed his journey to medical school and a day-in-the-life of a medical student, he transitioned to posts primarily about race, health equity, and what he perceives as racial bias in medicine.

Now, the fourth-year Ghanaian-American student at the Elson S. Floyd College of Medicine at Washington State University Spokane has close to 1.2 million followers on Instagram and TikTok combined. He frequently visits the White House to advise on social media’s influence on healthcare and has appeared on the Kelly Clarkson Show, Good Morning America, CNN, and ABC, among others.

He said he also uses social media to translate complex medical information for a general audience, many of whom access health information online so they can manage their own healthcare. He sees his social media work as an extension of his medical education, allowing him to delve deeper into subjects and report on them as if he were publishing research in a medical journal.

“When I came to medical school, yes, I wanted to be a doctor. But I also wanted to impact people.” Social media allows him to educate many more people than individual patients, the 29-year-old told this news organization.
 

Inspiring Minorities

Tabhata Paulet, 27, started her TikTok presence as a premed student in 2021. She aimed to provide free resources to help low-income, first-generation Latinx students like herself study for standardized exams.

“I always looked online for guidance and resources, and the medical influencers did not share a similar background. So, I shared my story and what I had to do as a first-generation and first person in my family to become a physician. I did not have access to the same resources as my peers,” said Ms. Paulet, who was born in Peru and came to New Jersey as a child.

Students who are Hispanic, Latinx, or of Spanish origin made up 6.8% of total medical school enrollment in 2023-2024, up slightly from 6.7% in 2022-2023, according to the Association of American Medical Colleges (AAMC).

Ms. Paulet’s online presence grew when she began documenting her experiences as a first-year medical student, bridging the language barrier for Spanish-speaking patients so they could understand their diagnosis and treatment. She often posts about health disparity and barriers to care for underserved communities.

Most of her nearly 22,000 followers are Hispanic, said the now fourth-year student at Rutgers New Jersey Medical School in Newark, New Jersey. “I talk a lot about my interesting Spanish-speaking patients ... and how sometimes speaking their native language truly makes a difference in their care.”

She believes that she serves an important role in social media. “It can be very inspirational for those who come after you [in med school] to see someone from a similar culture and upbringing.”
 

Creating a Community

It was during a therapy session 4 years ago that Jeremy “JP” Scott decided to share Instagram posts about his experiences as a nontraditional medical student. The 37-year-old was studying at Ross University School of Medicine in Barbados and was feeling lonely as an international medical student training to be a doctor as a second career.

Before starting med school, Mr. Scott was an adjunct professor and lab supervisor at the University of Hartford Biology Department, West Hartford, Connecticut, and then a research assistant and lab manager at the Wistar Institute in Philadelphia.

Although he wanted to follow his mother’s path to becoming a doctor, it was more difficult than he envisioned, said the fourth-year student who completed clinical rotations in the United States and is now applying for residencies.

“I talked about how medical school is not what it appears to be ... There are a lot of challenges we are going through,” especially as people of color, he said.

Mr. Scott believes social media helps people feel included and less alone. He said many of his followers are med students and physicians.

His posts often focus on LGBTQIA+ pride and being a minority as a Black man in medicine.

“The pandemic spurred a lot of us. We had a racial reckoning in our country at the time. It inspired us to talk as Black creators and Black medical students.”

Black or African American medical students made up 8.5% of total med school enrollment in 2023-2024, a slight increase from 2022 to 2023, according to AAMC figures. Black men represented 7% of total enrollment in 2023-2024, while Black women represented 9.8%.

After only a handful of online posts in which Mr. Scott candidly discussed his mental health struggles and relationships, he attracted the attention of several medical apparel companies, including the popular FIGS scrubs. He’s now an ambassador for the company, which supports him and his content.

“My association with FIGS has helped attract a wider online audience, increasing my presence.” Today, he has 14,000 Instagram followers. “It opened up so many opportunities,” Mr. Scott said. One example is working with the national LGBTQIA+ community.

“The goal was never to be a social media influencer, to gain sponsorships or photo opportunities,” he said.

“My job, first, is as a medical student. Everything else is second. I am not trying to be a professional social media personality. I’m trying to be an actual physician.” He also tries to separate JP “social media” from Jeremy, the medical student.

“On Instagram, anyone can pull it up and see what you’re doing. The last thing I want is for them to think that I’m not serious about what I’m doing, that I’m not here to learn and become a doctor.”
 

 

 

Benefits and Drawbacks

Ms. Paulet said her social media following helped her connect with leaders in the Latinx medical community, including an obstetrics anesthesiologist, her intended specialty. “I don’t think I’d be able to do that without a social media platform.”

Her online activity also propelled her from regional to national leadership in the Latino Medical Student Association (LMSA). She now also runs their Instagram page, which has 14,000 followers.

Mr. Bervell believes social media is a great way to network. He’s connected with people he wouldn’t have met otherwise, including physicians. “I think it will help me get into a residency,” he said. “It allows people to know who you are ... They will be able to tell in a few videos the type of doctor I want to be.”

On the other hand, Mr. Bervell is aware of the negative impacts of social media on mental health. “You can get lost in social media.” For that reason, he often tries to disconnect. “I can go days without my phone.”

Posting on social media can be time-consuming, Mr. Bervell admitted. He said he spent about 2 hours a day researching, editing, and posting on TikTok when he first started building his following. Now, he spends about 2-3 hours a week creating videos. “I don’t post every day anymore. I don’t have the time.”

When she started building her TikTok presence, Ms. Paulet said she devoted 15 hours a week to the endeavor, but now she spends 10-12 hours a week posting online, including on LMSA’s Instagram page. “Whenever you are done with an exam or have a study break, this is something fun to do.” She also says you never know who you’re going to inspire when you put yourself out there.

“Talk about your journey, rotations, or your experience in your first or second year of medical school. Talk about milestones like board exams.”
 

Word to the Wise

Some students may be concerned that their posts might affect a potential residency program. But the medical students interviewed say they want to find programs that align with their values and accept them for who they are.

Mr. Scott said he’s not worried about someone not liking him because of who he is. “I am Black and openly gay. If it’s a problem, I don’t need to work with you or your institution.”

Mr. Bervell stressed that medical students should stay professional online. “I reach 5-10 million people a month, and I have to think: Would I want them to see this? You have to know at all times that someone is watching. I’m very careful about how I post. I script out every video.”

Mr. Scott agreed. He advises those interested in becoming medical influencers to know what they can’t post online. For example, to ensure safety and privacy, Mr. Scott doesn’t take photos in the hospital, show his medical badge, or post patient information. “You want to be respectful of your future medical profession,” he said.

“If it’s something my mother would be ashamed of, I don’t need to post about it.”
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

A medical student’s life is an endless cycle of classes, exams, clinical rotations, and residency preparation. While students typically have little free time, some still manage to build a mega social media presence. On TikTok and Instagram, among other sites, they share medical school experiences and lessons learned in the classroom and advocate for causes such as increased diversity and gender rights in the medical field.

This news organization caught up with a few social media influencers with a large online following to learn how medical students can effectively use social media to build a professional brand and network. Most of the students interviewed said that their social media platforms offered an opportunity to educate others about significant medical developments, feel part of a community with a like-minded audience, and network with doctors who may lead them to a future residency or career path.

Many med students said that they built their large audiences by creating a platform for people of their ethnic background, nationality, race, gender, or simply what others weren’t already talking about. They said they saw a niche in social media that was missing or others hadn’t tackled in the same way.

When Joel Bervell began med school in 2020, he questioned some of the lessons he learned about how race is used in medical practice, which didn’t make sense to him. So, he began his own research. He had about 2000 followers on Instagram at the time.

Mr. Bervell read a new study about pulse oximeters and how they often produce misleading readings on patients with dark skin.

He wondered why he hadn’t learned this in medical school, so he posted it on TikTok. Within 24 hours, about 500,000 people viewed it. Most of the comments were from doctors, nurses, and physician assistants who said they weren’t aware of the disparity.

While his initial posts detailed his journey to medical school and a day-in-the-life of a medical student, he transitioned to posts primarily about race, health equity, and what he perceives as racial bias in medicine.

Now, the fourth-year Ghanaian-American student at the Elson S. Floyd College of Medicine at Washington State University Spokane has close to 1.2 million followers on Instagram and TikTok combined. He frequently visits the White House to advise on social media’s influence on healthcare and has appeared on the Kelly Clarkson Show, Good Morning America, CNN, and ABC, among others.

He said he also uses social media to translate complex medical information for a general audience, many of whom access health information online so they can manage their own healthcare. He sees his social media work as an extension of his medical education, allowing him to delve deeper into subjects and report on them as if he were publishing research in a medical journal.

“When I came to medical school, yes, I wanted to be a doctor. But I also wanted to impact people.” Social media allows him to educate many more people than individual patients, the 29-year-old told this news organization.
 

Inspiring Minorities

Tabhata Paulet, 27, started her TikTok presence as a premed student in 2021. She aimed to provide free resources to help low-income, first-generation Latinx students like herself study for standardized exams.

“I always looked online for guidance and resources, and the medical influencers did not share a similar background. So, I shared my story and what I had to do as a first-generation and first person in my family to become a physician. I did not have access to the same resources as my peers,” said Ms. Paulet, who was born in Peru and came to New Jersey as a child.

Students who are Hispanic, Latinx, or of Spanish origin made up 6.8% of total medical school enrollment in 2023-2024, up slightly from 6.7% in 2022-2023, according to the Association of American Medical Colleges (AAMC).

Ms. Paulet’s online presence grew when she began documenting her experiences as a first-year medical student, bridging the language barrier for Spanish-speaking patients so they could understand their diagnosis and treatment. She often posts about health disparity and barriers to care for underserved communities.

Most of her nearly 22,000 followers are Hispanic, said the now fourth-year student at Rutgers New Jersey Medical School in Newark, New Jersey. “I talk a lot about my interesting Spanish-speaking patients ... and how sometimes speaking their native language truly makes a difference in their care.”

She believes that she serves an important role in social media. “It can be very inspirational for those who come after you [in med school] to see someone from a similar culture and upbringing.”
 

Creating a Community

It was during a therapy session 4 years ago that Jeremy “JP” Scott decided to share Instagram posts about his experiences as a nontraditional medical student. The 37-year-old was studying at Ross University School of Medicine in Barbados and was feeling lonely as an international medical student training to be a doctor as a second career.

Before starting med school, Mr. Scott was an adjunct professor and lab supervisor at the University of Hartford Biology Department, West Hartford, Connecticut, and then a research assistant and lab manager at the Wistar Institute in Philadelphia.

Although he wanted to follow his mother’s path to becoming a doctor, it was more difficult than he envisioned, said the fourth-year student who completed clinical rotations in the United States and is now applying for residencies.

“I talked about how medical school is not what it appears to be ... There are a lot of challenges we are going through,” especially as people of color, he said.

Mr. Scott believes social media helps people feel included and less alone. He said many of his followers are med students and physicians.

His posts often focus on LGBTQIA+ pride and being a minority as a Black man in medicine.

“The pandemic spurred a lot of us. We had a racial reckoning in our country at the time. It inspired us to talk as Black creators and Black medical students.”

Black or African American medical students made up 8.5% of total med school enrollment in 2023-2024, a slight increase from 2022 to 2023, according to AAMC figures. Black men represented 7% of total enrollment in 2023-2024, while Black women represented 9.8%.

After only a handful of online posts in which Mr. Scott candidly discussed his mental health struggles and relationships, he attracted the attention of several medical apparel companies, including the popular FIGS scrubs. He’s now an ambassador for the company, which supports him and his content.

“My association with FIGS has helped attract a wider online audience, increasing my presence.” Today, he has 14,000 Instagram followers. “It opened up so many opportunities,” Mr. Scott said. One example is working with the national LGBTQIA+ community.

“The goal was never to be a social media influencer, to gain sponsorships or photo opportunities,” he said.

“My job, first, is as a medical student. Everything else is second. I am not trying to be a professional social media personality. I’m trying to be an actual physician.” He also tries to separate JP “social media” from Jeremy, the medical student.

“On Instagram, anyone can pull it up and see what you’re doing. The last thing I want is for them to think that I’m not serious about what I’m doing, that I’m not here to learn and become a doctor.”
 

 

 

Benefits and Drawbacks

Ms. Paulet said her social media following helped her connect with leaders in the Latinx medical community, including an obstetrics anesthesiologist, her intended specialty. “I don’t think I’d be able to do that without a social media platform.”

Her online activity also propelled her from regional to national leadership in the Latino Medical Student Association (LMSA). She now also runs their Instagram page, which has 14,000 followers.

Mr. Bervell believes social media is a great way to network. He’s connected with people he wouldn’t have met otherwise, including physicians. “I think it will help me get into a residency,” he said. “It allows people to know who you are ... They will be able to tell in a few videos the type of doctor I want to be.”

On the other hand, Mr. Bervell is aware of the negative impacts of social media on mental health. “You can get lost in social media.” For that reason, he often tries to disconnect. “I can go days without my phone.”

Posting on social media can be time-consuming, Mr. Bervell admitted. He said he spent about 2 hours a day researching, editing, and posting on TikTok when he first started building his following. Now, he spends about 2-3 hours a week creating videos. “I don’t post every day anymore. I don’t have the time.”

When she started building her TikTok presence, Ms. Paulet said she devoted 15 hours a week to the endeavor, but now she spends 10-12 hours a week posting online, including on LMSA’s Instagram page. “Whenever you are done with an exam or have a study break, this is something fun to do.” She also says you never know who you’re going to inspire when you put yourself out there.

“Talk about your journey, rotations, or your experience in your first or second year of medical school. Talk about milestones like board exams.”
 

Word to the Wise

Some students may be concerned that their posts might affect a potential residency program. But the medical students interviewed say they want to find programs that align with their values and accept them for who they are.

Mr. Scott said he’s not worried about someone not liking him because of who he is. “I am Black and openly gay. If it’s a problem, I don’t need to work with you or your institution.”

Mr. Bervell stressed that medical students should stay professional online. “I reach 5-10 million people a month, and I have to think: Would I want them to see this? You have to know at all times that someone is watching. I’m very careful about how I post. I script out every video.”

Mr. Scott agreed. He advises those interested in becoming medical influencers to know what they can’t post online. For example, to ensure safety and privacy, Mr. Scott doesn’t take photos in the hospital, show his medical badge, or post patient information. “You want to be respectful of your future medical profession,” he said.

“If it’s something my mother would be ashamed of, I don’t need to post about it.”
 

A version of this article first appeared on Medscape.com.

A medical student’s life is an endless cycle of classes, exams, clinical rotations, and residency preparation. While students typically have little free time, some still manage to build a mega social media presence. On TikTok and Instagram, among other sites, they share medical school experiences and lessons learned in the classroom and advocate for causes such as increased diversity and gender rights in the medical field.

This news organization caught up with a few social media influencers with a large online following to learn how medical students can effectively use social media to build a professional brand and network. Most of the students interviewed said that their social media platforms offered an opportunity to educate others about significant medical developments, feel part of a community with a like-minded audience, and network with doctors who may lead them to a future residency or career path.

Many med students said that they built their large audiences by creating a platform for people of their ethnic background, nationality, race, gender, or simply what others weren’t already talking about. They said they saw a niche in social media that was missing or others hadn’t tackled in the same way.

When Joel Bervell began med school in 2020, he questioned some of the lessons he learned about how race is used in medical practice, which didn’t make sense to him. So, he began his own research. He had about 2000 followers on Instagram at the time.

Mr. Bervell read a new study about pulse oximeters and how they often produce misleading readings on patients with dark skin.

He wondered why he hadn’t learned this in medical school, so he posted it on TikTok. Within 24 hours, about 500,000 people viewed it. Most of the comments were from doctors, nurses, and physician assistants who said they weren’t aware of the disparity.

While his initial posts detailed his journey to medical school and a day-in-the-life of a medical student, he transitioned to posts primarily about race, health equity, and what he perceives as racial bias in medicine.

Now, the fourth-year Ghanaian-American student at the Elson S. Floyd College of Medicine at Washington State University Spokane has close to 1.2 million followers on Instagram and TikTok combined. He frequently visits the White House to advise on social media’s influence on healthcare and has appeared on the Kelly Clarkson Show, Good Morning America, CNN, and ABC, among others.

He said he also uses social media to translate complex medical information for a general audience, many of whom access health information online so they can manage their own healthcare. He sees his social media work as an extension of his medical education, allowing him to delve deeper into subjects and report on them as if he were publishing research in a medical journal.

“When I came to medical school, yes, I wanted to be a doctor. But I also wanted to impact people.” Social media allows him to educate many more people than individual patients, the 29-year-old told this news organization.
 

Inspiring Minorities

Tabhata Paulet, 27, started her TikTok presence as a premed student in 2021. She aimed to provide free resources to help low-income, first-generation Latinx students like herself study for standardized exams.

“I always looked online for guidance and resources, and the medical influencers did not share a similar background. So, I shared my story and what I had to do as a first-generation and first person in my family to become a physician. I did not have access to the same resources as my peers,” said Ms. Paulet, who was born in Peru and came to New Jersey as a child.

Students who are Hispanic, Latinx, or of Spanish origin made up 6.8% of total medical school enrollment in 2023-2024, up slightly from 6.7% in 2022-2023, according to the Association of American Medical Colleges (AAMC).

Ms. Paulet’s online presence grew when she began documenting her experiences as a first-year medical student, bridging the language barrier for Spanish-speaking patients so they could understand their diagnosis and treatment. She often posts about health disparity and barriers to care for underserved communities.

Most of her nearly 22,000 followers are Hispanic, said the now fourth-year student at Rutgers New Jersey Medical School in Newark, New Jersey. “I talk a lot about my interesting Spanish-speaking patients ... and how sometimes speaking their native language truly makes a difference in their care.”

She believes that she serves an important role in social media. “It can be very inspirational for those who come after you [in med school] to see someone from a similar culture and upbringing.”
 

Creating a Community

It was during a therapy session 4 years ago that Jeremy “JP” Scott decided to share Instagram posts about his experiences as a nontraditional medical student. The 37-year-old was studying at Ross University School of Medicine in Barbados and was feeling lonely as an international medical student training to be a doctor as a second career.

Before starting med school, Mr. Scott was an adjunct professor and lab supervisor at the University of Hartford Biology Department, West Hartford, Connecticut, and then a research assistant and lab manager at the Wistar Institute in Philadelphia.

Although he wanted to follow his mother’s path to becoming a doctor, it was more difficult than he envisioned, said the fourth-year student who completed clinical rotations in the United States and is now applying for residencies.

“I talked about how medical school is not what it appears to be ... There are a lot of challenges we are going through,” especially as people of color, he said.

Mr. Scott believes social media helps people feel included and less alone. He said many of his followers are med students and physicians.

His posts often focus on LGBTQIA+ pride and being a minority as a Black man in medicine.

“The pandemic spurred a lot of us. We had a racial reckoning in our country at the time. It inspired us to talk as Black creators and Black medical students.”

Black or African American medical students made up 8.5% of total med school enrollment in 2023-2024, a slight increase from 2022 to 2023, according to AAMC figures. Black men represented 7% of total enrollment in 2023-2024, while Black women represented 9.8%.

After only a handful of online posts in which Mr. Scott candidly discussed his mental health struggles and relationships, he attracted the attention of several medical apparel companies, including the popular FIGS scrubs. He’s now an ambassador for the company, which supports him and his content.

“My association with FIGS has helped attract a wider online audience, increasing my presence.” Today, he has 14,000 Instagram followers. “It opened up so many opportunities,” Mr. Scott said. One example is working with the national LGBTQIA+ community.

“The goal was never to be a social media influencer, to gain sponsorships or photo opportunities,” he said.

“My job, first, is as a medical student. Everything else is second. I am not trying to be a professional social media personality. I’m trying to be an actual physician.” He also tries to separate JP “social media” from Jeremy, the medical student.

“On Instagram, anyone can pull it up and see what you’re doing. The last thing I want is for them to think that I’m not serious about what I’m doing, that I’m not here to learn and become a doctor.”
 

 

 

Benefits and Drawbacks

Ms. Paulet said her social media following helped her connect with leaders in the Latinx medical community, including an obstetrics anesthesiologist, her intended specialty. “I don’t think I’d be able to do that without a social media platform.”

Her online activity also propelled her from regional to national leadership in the Latino Medical Student Association (LMSA). She now also runs their Instagram page, which has 14,000 followers.

Mr. Bervell believes social media is a great way to network. He’s connected with people he wouldn’t have met otherwise, including physicians. “I think it will help me get into a residency,” he said. “It allows people to know who you are ... They will be able to tell in a few videos the type of doctor I want to be.”

On the other hand, Mr. Bervell is aware of the negative impacts of social media on mental health. “You can get lost in social media.” For that reason, he often tries to disconnect. “I can go days without my phone.”

Posting on social media can be time-consuming, Mr. Bervell admitted. He said he spent about 2 hours a day researching, editing, and posting on TikTok when he first started building his following. Now, he spends about 2-3 hours a week creating videos. “I don’t post every day anymore. I don’t have the time.”

When she started building her TikTok presence, Ms. Paulet said she devoted 15 hours a week to the endeavor, but now she spends 10-12 hours a week posting online, including on LMSA’s Instagram page. “Whenever you are done with an exam or have a study break, this is something fun to do.” She also says you never know who you’re going to inspire when you put yourself out there.

“Talk about your journey, rotations, or your experience in your first or second year of medical school. Talk about milestones like board exams.”
 

Word to the Wise

Some students may be concerned that their posts might affect a potential residency program. But the medical students interviewed say they want to find programs that align with their values and accept them for who they are.

Mr. Scott said he’s not worried about someone not liking him because of who he is. “I am Black and openly gay. If it’s a problem, I don’t need to work with you or your institution.”

Mr. Bervell stressed that medical students should stay professional online. “I reach 5-10 million people a month, and I have to think: Would I want them to see this? You have to know at all times that someone is watching. I’m very careful about how I post. I script out every video.”

Mr. Scott agreed. He advises those interested in becoming medical influencers to know what they can’t post online. For example, to ensure safety and privacy, Mr. Scott doesn’t take photos in the hospital, show his medical badge, or post patient information. “You want to be respectful of your future medical profession,” he said.

“If it’s something my mother would be ashamed of, I don’t need to post about it.”
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article