Cardiology News is an independent news source that provides cardiologists with timely and relevant news and commentary about clinical developments and the impact of health care policy on cardiology and the cardiologist's practice. Cardiology News Digital Network is the online destination and multimedia properties of Cardiology News, the independent news publication for cardiologists. Cardiology news is the leading source of news and commentary about clinical developments in cardiology as well as health care policy and regulations that affect the cardiologist's practice. Cardiology News Digital Network is owned by Frontline Medical Communications.

Top Sections
Resources
Best Practices
card
Main menu
CARD Main Menu
Explore menu
CARD Explore Menu
Proclivity ID
18806001
Unpublish
Altmetric
Article Authors "autobrand" affiliation
Cardiology News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Medical Education Library
Education Center
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Non-Overridden Topics
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Mon, 04/29/2024 - 10:09
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
On
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Mon, 04/29/2024 - 10:09

Pancreatic Gene Therapy: A ‘One-and-Done’ GLP-1 Treatment?

Article Type
Changed
Wed, 06/26/2024 - 15:05

 

TOPLINE:

An experimental pancreatic gene therapy given to a mouse model of obesity as a one-time, single-dose treatment showed improvements in body composition and fasting glucose comparable with those achieved with the glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide, without the reversal of fat-loss and glycemia improvements that are a key concern with the withdrawal of GLP-1 receptor agonist drugs.

METHODOLOGY:

  • The adeno-associated virus–based GLP-1 pancreatic gene therapy is designed to induce durable islet production of GLP-1 peptides that could, in theory, negate the need for regular injections or dosing of conventional GLP-1 receptor agonist drugs.
  • With initial preclinical research showing benefits in Yucatan pigs, the authors tested the pancreatic gene therapy in mice representing a validated model of diet-induced obesity.
  • The mice were randomized to receive either a single-dose administration of the pancreatic gene therapy (n = 10), daily subcutaneous semaglutide injections (n = 10; 10 nmol/kg/d for 4 weeks), pancreatic gene therapy placebo (n = 8), or a semaglutide placebo (n = 8).
  • The gene therapy is designed to be delivered directly to the pancreas with a needle puncture, using a proprietary endoscopic delivery method that is similar to procedures commonly performed by gastrointestinal endoscopists, limiting systemic exposure.
  • At 4 weeks, semaglutide was discontinued, and 5 of the 10 mice in that group were randomized to the gene therapy, while the other 5 received placebo.

TAKEAWAY:

  • At week 4, the pancreatic gene therapy arm had a reduction in fat mass of 21%, compared with 16% with semaglutide (P < .05; both P < .0001 vs placebo)
  • The pancreatic gene therapy and semaglutide groups each preserved lean mass, with a loss of only 5% of body weight (both P < .0001 vs placebo).
  • At week 8, mice withdrawn from semaglutide had nearly a full reversal of the fat and lean mass losses observed at 4 weeks, returning to within 1% and 2% below baseline, respectively, while the semaglutide-withdrawn mice treated with gene therapy maintained a fat reduction of 17% (P < .01) and lean mass of 5% (P < .0001).
  • Significant improvements in fasting glucose were observed in the gene therapy and semaglutide-treated mice at week 4 (both 18%; P < .0001).
  • While semaglutide-withdrawal resulted in a rebound of fasting glucose to baseline at week 8, those who had initially received gene therapy or were switched over to the therapy maintained fasting glucose reductions of 21% and 22% at 8 weeks (P < .0001 and P < .001), respectively.
  • No indications of pancreatic inflammation or injury were observed in any of the groups.

IN PRACTICE:

The results suggest the therapy could represent “a reliable, ‘off ramp’ from chronic GLP-1 drugs that allows people to maintain the weight loss and blood sugar benefits, even as they stop taking these medicines,” said first author Harith Rajagopalan, MD, PhD, cofounder and chief executive officer of Fractyl Health, which is developing the gene therapy, in a press statement issued by the company.

The therapy is being developed as a candidate for the treatment of type 2 diabetes and plans are underway for the first in-human study in type 2 diabetes in 2025, Dr. Rajagopalan noted while presenting the results at the American Diabetes Association (ADA)’s 84th scientific sessions.
 

SOURCE:

The study was presented on June 23, 2024, at the annual meeting of the ADA’s 84th scientific sessions (Abstract #261-OR).

LIMITATIONS:

The pancreatic gene therapy is in early development and has not been assessed by any regulatory body for investigational or commercial use.

Asked by an audience member at the ADA presentation if the therapy would be reversible if complications were to arise, Dr. Rajagopalan responded that “there are ways to tune this effect in order to prevent complications from occurring, which we will discuss in due course.”

Also asked about the potential for a positive feedback loop with GLP-1 signaling and insulin signaling, Dr. Rajagopalan noted that “I don’t believe that we have seen any evidence of that risk so far. One could hypothesize, but we have not seen anything [in that regard] that would be a cause for concern.”
 

DISCLOSURES:

The study was funded by Fractyl Health, and Dr. Rajagopalan and the authors declared being employees and stockholders/shareholders of the company.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

An experimental pancreatic gene therapy given to a mouse model of obesity as a one-time, single-dose treatment showed improvements in body composition and fasting glucose comparable with those achieved with the glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide, without the reversal of fat-loss and glycemia improvements that are a key concern with the withdrawal of GLP-1 receptor agonist drugs.

METHODOLOGY:

  • The adeno-associated virus–based GLP-1 pancreatic gene therapy is designed to induce durable islet production of GLP-1 peptides that could, in theory, negate the need for regular injections or dosing of conventional GLP-1 receptor agonist drugs.
  • With initial preclinical research showing benefits in Yucatan pigs, the authors tested the pancreatic gene therapy in mice representing a validated model of diet-induced obesity.
  • The mice were randomized to receive either a single-dose administration of the pancreatic gene therapy (n = 10), daily subcutaneous semaglutide injections (n = 10; 10 nmol/kg/d for 4 weeks), pancreatic gene therapy placebo (n = 8), or a semaglutide placebo (n = 8).
  • The gene therapy is designed to be delivered directly to the pancreas with a needle puncture, using a proprietary endoscopic delivery method that is similar to procedures commonly performed by gastrointestinal endoscopists, limiting systemic exposure.
  • At 4 weeks, semaglutide was discontinued, and 5 of the 10 mice in that group were randomized to the gene therapy, while the other 5 received placebo.

TAKEAWAY:

  • At week 4, the pancreatic gene therapy arm had a reduction in fat mass of 21%, compared with 16% with semaglutide (P < .05; both P < .0001 vs placebo)
  • The pancreatic gene therapy and semaglutide groups each preserved lean mass, with a loss of only 5% of body weight (both P < .0001 vs placebo).
  • At week 8, mice withdrawn from semaglutide had nearly a full reversal of the fat and lean mass losses observed at 4 weeks, returning to within 1% and 2% below baseline, respectively, while the semaglutide-withdrawn mice treated with gene therapy maintained a fat reduction of 17% (P < .01) and lean mass of 5% (P < .0001).
  • Significant improvements in fasting glucose were observed in the gene therapy and semaglutide-treated mice at week 4 (both 18%; P < .0001).
  • While semaglutide-withdrawal resulted in a rebound of fasting glucose to baseline at week 8, those who had initially received gene therapy or were switched over to the therapy maintained fasting glucose reductions of 21% and 22% at 8 weeks (P < .0001 and P < .001), respectively.
  • No indications of pancreatic inflammation or injury were observed in any of the groups.

IN PRACTICE:

The results suggest the therapy could represent “a reliable, ‘off ramp’ from chronic GLP-1 drugs that allows people to maintain the weight loss and blood sugar benefits, even as they stop taking these medicines,” said first author Harith Rajagopalan, MD, PhD, cofounder and chief executive officer of Fractyl Health, which is developing the gene therapy, in a press statement issued by the company.

The therapy is being developed as a candidate for the treatment of type 2 diabetes and plans are underway for the first in-human study in type 2 diabetes in 2025, Dr. Rajagopalan noted while presenting the results at the American Diabetes Association (ADA)’s 84th scientific sessions.
 

SOURCE:

The study was presented on June 23, 2024, at the annual meeting of the ADA’s 84th scientific sessions (Abstract #261-OR).

LIMITATIONS:

The pancreatic gene therapy is in early development and has not been assessed by any regulatory body for investigational or commercial use.

Asked by an audience member at the ADA presentation if the therapy would be reversible if complications were to arise, Dr. Rajagopalan responded that “there are ways to tune this effect in order to prevent complications from occurring, which we will discuss in due course.”

Also asked about the potential for a positive feedback loop with GLP-1 signaling and insulin signaling, Dr. Rajagopalan noted that “I don’t believe that we have seen any evidence of that risk so far. One could hypothesize, but we have not seen anything [in that regard] that would be a cause for concern.”
 

DISCLOSURES:

The study was funded by Fractyl Health, and Dr. Rajagopalan and the authors declared being employees and stockholders/shareholders of the company.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

An experimental pancreatic gene therapy given to a mouse model of obesity as a one-time, single-dose treatment showed improvements in body composition and fasting glucose comparable with those achieved with the glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide, without the reversal of fat-loss and glycemia improvements that are a key concern with the withdrawal of GLP-1 receptor agonist drugs.

METHODOLOGY:

  • The adeno-associated virus–based GLP-1 pancreatic gene therapy is designed to induce durable islet production of GLP-1 peptides that could, in theory, negate the need for regular injections or dosing of conventional GLP-1 receptor agonist drugs.
  • With initial preclinical research showing benefits in Yucatan pigs, the authors tested the pancreatic gene therapy in mice representing a validated model of diet-induced obesity.
  • The mice were randomized to receive either a single-dose administration of the pancreatic gene therapy (n = 10), daily subcutaneous semaglutide injections (n = 10; 10 nmol/kg/d for 4 weeks), pancreatic gene therapy placebo (n = 8), or a semaglutide placebo (n = 8).
  • The gene therapy is designed to be delivered directly to the pancreas with a needle puncture, using a proprietary endoscopic delivery method that is similar to procedures commonly performed by gastrointestinal endoscopists, limiting systemic exposure.
  • At 4 weeks, semaglutide was discontinued, and 5 of the 10 mice in that group were randomized to the gene therapy, while the other 5 received placebo.

TAKEAWAY:

  • At week 4, the pancreatic gene therapy arm had a reduction in fat mass of 21%, compared with 16% with semaglutide (P < .05; both P < .0001 vs placebo)
  • The pancreatic gene therapy and semaglutide groups each preserved lean mass, with a loss of only 5% of body weight (both P < .0001 vs placebo).
  • At week 8, mice withdrawn from semaglutide had nearly a full reversal of the fat and lean mass losses observed at 4 weeks, returning to within 1% and 2% below baseline, respectively, while the semaglutide-withdrawn mice treated with gene therapy maintained a fat reduction of 17% (P < .01) and lean mass of 5% (P < .0001).
  • Significant improvements in fasting glucose were observed in the gene therapy and semaglutide-treated mice at week 4 (both 18%; P < .0001).
  • While semaglutide-withdrawal resulted in a rebound of fasting glucose to baseline at week 8, those who had initially received gene therapy or were switched over to the therapy maintained fasting glucose reductions of 21% and 22% at 8 weeks (P < .0001 and P < .001), respectively.
  • No indications of pancreatic inflammation or injury were observed in any of the groups.

IN PRACTICE:

The results suggest the therapy could represent “a reliable, ‘off ramp’ from chronic GLP-1 drugs that allows people to maintain the weight loss and blood sugar benefits, even as they stop taking these medicines,” said first author Harith Rajagopalan, MD, PhD, cofounder and chief executive officer of Fractyl Health, which is developing the gene therapy, in a press statement issued by the company.

The therapy is being developed as a candidate for the treatment of type 2 diabetes and plans are underway for the first in-human study in type 2 diabetes in 2025, Dr. Rajagopalan noted while presenting the results at the American Diabetes Association (ADA)’s 84th scientific sessions.
 

SOURCE:

The study was presented on June 23, 2024, at the annual meeting of the ADA’s 84th scientific sessions (Abstract #261-OR).

LIMITATIONS:

The pancreatic gene therapy is in early development and has not been assessed by any regulatory body for investigational or commercial use.

Asked by an audience member at the ADA presentation if the therapy would be reversible if complications were to arise, Dr. Rajagopalan responded that “there are ways to tune this effect in order to prevent complications from occurring, which we will discuss in due course.”

Also asked about the potential for a positive feedback loop with GLP-1 signaling and insulin signaling, Dr. Rajagopalan noted that “I don’t believe that we have seen any evidence of that risk so far. One could hypothesize, but we have not seen anything [in that regard] that would be a cause for concern.”
 

DISCLOSURES:

The study was funded by Fractyl Health, and Dr. Rajagopalan and the authors declared being employees and stockholders/shareholders of the company.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168555</fileName> <TBEID>0C050C47.SIG</TBEID> <TBUniqueIdentifier>MD_0C050C47</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240626T145334</QCDate> <firstPublished>20240626T150056</firstPublished> <LastPublished>20240626T150056</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240626T150056</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Nancy A. Melville</byline> <bylineText>NANCY A. MELVILLE</bylineText> <bylineFull>NANCY A. MELVILLE</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>The adeno-associated virus–based GLP-1 pancreatic gene therapy is designed to induce durable islet production of GLP-1 peptides that could, in theory, negate th</metaDescription> <articlePDF/> <teaserImage/> <teaser>A single-dose pancreatic gene therapy may compare with GLP-1 effect, a mouse model study finds.</teaser> <title>Pancreatic Gene Therapy: A ‘One-and-Done’ GLP-1 Treatment?</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">34</term> <term>5</term> <term>21</term> <term>15</term> </publications> <sections> <term canonical="true">39313</term> <term>27970</term> </sections> <topics> <term>205</term> <term canonical="true">261</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Pancreatic Gene Therapy: A ‘One-and-Done’ GLP-1 Treatment?</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p>An experimental pancreatic gene therapy given to a mouse model of obesity as a one-time, single-dose treatment showed improvements in body composition and fasting glucose comparable with those achieved with the glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide, without the reversal of fat-loss and glycemia improvements that are a key concern with the withdrawal of GLP-1 receptor agonist drugs.</p> <h2>METHODOLOGY:</h2> <ul class="body"> <li><span class="tag metaDescription">The adeno-associated virus–based GLP-1 pancreatic gene therapy is designed to induce durable islet production of GLP-1 peptides that could, in theory, negate the need for regular injections or dosing of conventional GLP-1 receptor agonist drugs.</span> </li> <li>With initial preclinical research showing benefits in Yucatan pigs, the authors tested the pancreatic gene therapy in mice representing a validated model of diet-induced obesity.</li> <li>The mice were randomized to receive either a single-dose administration of the pancreatic gene therapy (n = 10), daily subcutaneous semaglutide injections (n = 10; 10 nmol/kg/d for 4 weeks), pancreatic gene therapy placebo (n = 8), or a semaglutide placebo (n = 8).</li> <li>The gene therapy is designed to be delivered directly to the pancreas with a needle puncture, using a proprietary endoscopic delivery method that is similar to procedures commonly performed by gastrointestinal endoscopists, limiting systemic exposure.</li> <li>At 4 weeks, semaglutide was discontinued, and 5 of the 10 mice in that group were randomized to the gene therapy, while the other 5 received placebo.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>At week 4, the pancreatic gene therapy arm had a reduction in fat mass of 21%, compared with 16% with semaglutide (<em>P</em> &lt; .05; both <em>P</em> &lt; .0001 vs placebo)</li> <li>The pancreatic gene therapy and semaglutide groups each preserved lean mass, with a loss of only 5% of body weight (both <em>P</em> &lt; .0001 vs placebo).</li> <li>At week 8, mice withdrawn from semaglutide had nearly a full reversal of the fat and lean mass losses observed at 4 weeks, returning to within 1% and 2% below baseline, respectively, while the semaglutide-withdrawn mice treated with gene therapy maintained a fat reduction of 17% (<em>P</em> &lt; .01) and lean mass of 5% (<em>P</em> &lt; .0001).</li> <li>Significant improvements in fasting glucose were observed in the gene therapy and semaglutide-treated mice at week 4 (both 18%; <em>P</em> &lt; .0001).</li> <li>While semaglutide-withdrawal resulted in a rebound of fasting glucose to baseline at week 8, those who had initially received gene therapy or were switched over to the therapy maintained fasting glucose reductions of 21% and 22% at 8 weeks (<em>P</em> &lt; .0001 and <em>P</em> &lt; .001), respectively.</li> <li>No indications of pancreatic inflammation or injury were observed in any of the groups.</li> </ul> <h2>IN PRACTICE:</h2> <p>The results suggest the therapy could represent “a reliable, ‘off ramp’ from chronic GLP-1 drugs that allows people to maintain the weight loss and blood sugar benefits, even as they stop taking these medicines,” said first author Harith Rajagopalan, MD, PhD, cofounder and chief executive officer of Fractyl Health, which is developing the gene therapy, in a press statement issued by the company.</p> <p>The therapy is being developed as a candidate for the treatment of type 2 diabetes and plans are underway for the first in-human study in type 2 diabetes in 2025, Dr. Rajagopalan noted while presenting the results at the American Diabetes Association (ADA)’s 84th scientific sessions.<br/><br/></p> <h2>SOURCE:</h2> <p>The study was presented on June 23, 2024, at the annual meeting of the ADA’s 84th scientific sessions (Abstract #261-OR).</p> <h2>LIMITATIONS:</h2> <p>The pancreatic gene therapy is in early development and has not been assessed by any regulatory body for investigational or commercial use.</p> <p>Asked by an audience member at the ADA presentation if the therapy would be reversible if complications were to arise, Dr. Rajagopalan responded that “there are ways to tune this effect in order to prevent complications from occurring, which we will discuss in due course.”<br/><br/>Also asked about the potential for a positive feedback loop with GLP-1 signaling and insulin signaling, Dr. Rajagopalan noted that “I don’t believe that we have seen any evidence of that risk so far. One could hypothesize, but we have not seen anything [in that regard] that would be a cause for concern.”<br/><br/></p> <h2>DISCLOSURES:</h2> <p>The study was funded by Fractyl Health, and Dr. Rajagopalan and the authors declared being employees and stockholders/shareholders of the company.<span class="end"/></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/pancreatic-gene-therapy-one-and-done-glp-1-treatment-2024a1000brp">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Chronic Loneliness Tied to Increased Stroke Risk

Article Type
Changed
Wed, 06/26/2024 - 13:54

Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.

The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.

“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”

The findings were published online in eClinicalMedicine.
 

Significant, Chronic Health Consequences

Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A 2023 Surgeon General’s report highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.

Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.

Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.

Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:

  • Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).
  • Remitting (those who scored high at baseline and low at follow-up).
  • Recent onset (those who scored low at baseline and high at follow-up).
  • Consistently high (those who scored high at both baseline and follow-up).

Incident stroke was determined by participant report and medical record data.

Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.

Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).

Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).

The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.

Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.

“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.

She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”
 

 

 

Progressive Research

Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”

She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.

“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.

Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”

The study was funded by the National Institute on Aging. There were no conflicts of interest noted.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.

The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.

“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”

The findings were published online in eClinicalMedicine.
 

Significant, Chronic Health Consequences

Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A 2023 Surgeon General’s report highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.

Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.

Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.

Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:

  • Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).
  • Remitting (those who scored high at baseline and low at follow-up).
  • Recent onset (those who scored low at baseline and high at follow-up).
  • Consistently high (those who scored high at both baseline and follow-up).

Incident stroke was determined by participant report and medical record data.

Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.

Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).

Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).

The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.

Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.

“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.

She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”
 

 

 

Progressive Research

Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”

She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.

“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.

Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”

The study was funded by the National Institute on Aging. There were no conflicts of interest noted.

A version of this article first appeared on Medscape.com.

Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.

The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.

“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”

The findings were published online in eClinicalMedicine.
 

Significant, Chronic Health Consequences

Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A 2023 Surgeon General’s report highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.

Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.

Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.

Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:

  • Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).
  • Remitting (those who scored high at baseline and low at follow-up).
  • Recent onset (those who scored low at baseline and high at follow-up).
  • Consistently high (those who scored high at both baseline and follow-up).

Incident stroke was determined by participant report and medical record data.

Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.

Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).

Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).

The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.

Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.

“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.

She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”
 

 

 

Progressive Research

Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”

She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.

“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.

Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”

The study was funded by the National Institute on Aging. There were no conflicts of interest noted.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168547</fileName> <TBEID>0C050C26.SIG</TBEID> <TBUniqueIdentifier>MD_0C050C26</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240626T133706</QCDate> <firstPublished>20240626T135054</firstPublished> <LastPublished>20240626T135054</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240626T135054</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Eve Bender</byline> <bylineText>EVE BENDER</bylineText> <bylineFull>EVE BENDER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.</metaDescription> <articlePDF/> <teaserImage/> <teaser>Participants who reported having consistently high loneliness across both measured time points had a 56% increased risk for incident stroke. </teaser> <title>Chronic Loneliness Tied to Increased Stroke Risk</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>5</term> <term>9</term> <term>15</term> <term canonical="true">21</term> </publications> <sections> <term>27970</term> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">258</term> <term>248</term> <term>194</term> <term>202</term> <term>301</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Chronic Loneliness Tied to Increased Stroke Risk</title> <deck/> </itemMeta> <itemContent> <p>Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.</p> <p>The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.<br/><br/>“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”<br/><br/>The findings were <a href="https://doi.org/10.1016/j.eclinm.2024.102639">published online</a> in <em>eClinicalMedicine</em>.<br/><br/></p> <h2>Significant, Chronic Health Consequences</h2> <p>Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A <a href="https://www.hhs.gov/sites/default/files/surgeon-general-social-connection-advisory.pdf">2023 Surgeon General’s report</a> highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.</p> <p>Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.<br/><br/>Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.<br/><br/>Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:</p> <ul class="body"> <li>Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).</li> <li>Remitting (those who scored high at baseline and low at follow-up).</li> <li>Recent onset (those who scored low at baseline and high at follow-up).</li> <li>Consistently high (those who scored high at both baseline and follow-up).</li> </ul> <p>Incident stroke was determined by participant report and medical record data.<br/><br/>Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.<br/><br/>Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).<br/><br/>Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).<br/><br/>The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.<br/><br/>Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.<br/><br/>“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.<br/><br/>She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”<br/><br/></p> <h2>Progressive Research</h2> <p>Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”</p> <p>She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.<br/><br/>“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.<br/><br/>Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”<br/><br/>The study was funded by the National Institute on Aging. There were no conflicts of interest noted.<span class="end"/></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/chronic-loneliness-tied-increased-stroke-risk-2024a1000bsa">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How to Make Life Decisions

Article Type
Changed
Wed, 06/26/2024 - 13:34

Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.”

In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, is there a best way to go about making big life decisions?

The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem.

wrawecihokilospeslofriphohobuchibiletutawrospepehophastephechewrubrelopadrocosleswobislimimumesoclupiuiposwocihistithophabru
Dr. Jeffrey Benabio

The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly.

Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “Tales of the City” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady).

[embed:render:related:node:267456]

This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “Middlemarch is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible.

My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.

Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.

Publications
Topics
Sections

Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.”

In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, is there a best way to go about making big life decisions?

The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem.

wrawecihokilospeslofriphohobuchibiletutawrospepehophastephechewrubrelopadrocosleswobislimimumesoclupiuiposwocihistithophabru
Dr. Jeffrey Benabio

The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly.

Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “Tales of the City” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady).

[embed:render:related:node:267456]

This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “Middlemarch is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible.

My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.

Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.

Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.”

In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, is there a best way to go about making big life decisions?

The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem.

wrawecihokilospeslofriphohobuchibiletutawrospepehophastephechewrubrelopadrocosleswobislimimumesoclupiuiposwocihistithophabru
Dr. Jeffrey Benabio

The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly.

Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “Tales of the City” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady).

[embed:render:related:node:267456]

This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “Middlemarch is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible.

My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.

Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168545</fileName> <TBEID>0C050C24.SIG</TBEID> <TBUniqueIdentifier>MD_0C050C24</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>July The Optimized Doctor</storyname> <articleType>353</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240626T131743</QCDate> <firstPublished>20240626T133046</firstPublished> <LastPublished>20240626T133046</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240626T133046</CMSDate> <articleSource/> <facebookInfo>photo related</facebookInfo> <meetingNumber/> <byline>Jeffrey Benabio</byline> <bylineText>JEFFREY BENABIO, MD, MBA</bylineText> <bylineFull>JEFFREY BENABIO, MD, MBA</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>Column</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>is there a best way to go about making big life decisions?</metaDescription> <articlePDF/> <teaserImage>302028</teaserImage> <teaser>Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters.</teaser> <title>How to Make Life Decisions</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>rn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">13</term> <term>5</term> <term>34</term> <term>9</term> <term>21</term> <term>15</term> <term>22</term> <term>26</term> </publications> <sections> <term>52</term> <term canonical="true">140</term> </sections> <topics> <term canonical="true">38029</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/24012a6d.jpg</altRep> <description role="drol:caption">Dr. Jeffrey Benabio</description> <description role="drol:credit">Jeffrey Benabio, MD, MBA</description> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>How to Make Life Decisions</title> <deck/> </itemMeta> <itemContent> <p>Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.” </p> <p>In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, <span class="tag metaDescription">is there a best way to go about making big life decisions?</span> <br/><br/>The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem. <br/><br/>[[{"fid":"302028","view_mode":"medstat_image_flush_left","fields":{"format":"medstat_image_flush_left","field_file_image_alt_text[und][0][value]":"Jeffrey Benabio, MD, MBA","field_file_image_credit[und][0][value]":"Jeffrey Benabio, MD, MBA","field_file_image_caption[und][0][value]":"Dr. Jeffrey Benabio"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_left"}}]]The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly. <br/><br/>Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “<span class="Hyperlink"><a href="https://www.penguin.co.uk/series/TALECITY/tales-of-the-city">Tales of the City</a></span>” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady). <br/><br/>This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “<span class="Hyperlink"><a href="https://www.britannica.com/topic/Middlemarch">Middlemarch</a>”</span> is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible. <br/><br/>My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.<span class="end"/></p> <p> <em>Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

BP Disorder in Pregnancy Tied to Young-Onset Dementia Risk

Article Type
Changed
Wed, 06/26/2024 - 12:34

 

TOPLINE:

A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.

METHODOLOGY:

  • Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.
  • Mothers were followed for an average of 9 years.

TAKEAWAY:

  • Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.
  • Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.
  • The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).
  • Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.

IN PRACTICE:

“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, wrote in a related commentary about the findings.

“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”

SOURCE:

Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter was published online in JAMA Network Open.

LIMITATIONS:

The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.

DISCLOSURES:

The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.

METHODOLOGY:

  • Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.
  • Mothers were followed for an average of 9 years.

TAKEAWAY:

  • Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.
  • Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.
  • The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).
  • Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.

IN PRACTICE:

“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, wrote in a related commentary about the findings.

“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”

SOURCE:

Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter was published online in JAMA Network Open.

LIMITATIONS:

The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.

DISCLOSURES:

The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.

METHODOLOGY:

  • Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.
  • Mothers were followed for an average of 9 years.

TAKEAWAY:

  • Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.
  • Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.
  • The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).
  • Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.

IN PRACTICE:

“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, wrote in a related commentary about the findings.

“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”

SOURCE:

Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter was published online in JAMA Network Open.

LIMITATIONS:

The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.

DISCLOSURES:

The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168549</fileName> <TBEID>0C050C28.SIG</TBEID> <TBUniqueIdentifier>MD_0C050C28</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240626T120611</QCDate> <firstPublished>20240626T123102</firstPublished> <LastPublished>20240626T123102</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240626T123102</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Jake Remaly</byline> <bylineText>EDITED JAKE REMALY</bylineText> <bylineFull>EDITED JAKE REMALY</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType/> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.</metaDescription> <articlePDF/> <teaserImage/> <teaser>Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia. </teaser> <title>BP Disorder in Pregnancy Tied to Young-Onset Dementia Risk</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term>5</term> <term>15</term> <term canonical="true">23</term> <term>22</term> </publications> <sections> <term>27970</term> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">262</term> <term>180</term> <term>194</term> <term>258</term> <term>322</term> <term>229</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>BP Disorder in Pregnancy Tied to Young-Onset Dementia Risk</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p>A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.</p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.</li> <li>Mothers were followed for an average of 9 years.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.</li> <li>Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.</li> <li>The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).</li> <li>Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.</li> </ul> <h2>IN PRACTICE:</h2> <p>“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, <a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2819208">wrote in a related commentary</a> about the findings.</p> <p>“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”</p> <h2>SOURCE:</h2> <p>Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter <a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2819207">was published online</a> in <em>JAMA Network Open</em>.</p> <h2>LIMITATIONS:</h2> <p>The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.</p> <h2>DISCLOSURES:</h2> <p>The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.<span class="end"/></p> <p> <em>This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/bp-disorder-pregnancy-tied-young-onset-dementia-risk-2024a1000br4">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

CMS Announces End to Cyberattack Relief Program

Article Type
Changed
Tue, 06/25/2024 - 15:13

The Centers for Medicare & Medicaid Services (CMS) has announced the conclusion of a program that provided billions in early Medicare payments to those affected by the Change Healthcare/UnitedHealth Group cyberattack last winter. The Accelerated and Advance Payment program, which began in early March to assist hospitals and practices facing significant reimbursement delays, will stop accepting applications after July 12, 2024.

CMS reported that the program advanced more than $2.55 billion in Medicare payments to > 4200 Part A providers, including hospitals, and more than $717.18 million in payments to Part B suppliers such as physicians, nonphysician practitioners, and durable medical equipment suppliers.

According to CMS, the Medicare billing system is now functioning properly, and 96% of the early payments have been recovered. The advances were to represent ≤ 30 days of typical claims payments in a 3-month period of 2023, with full repayment expected within 90 days through “automatic recoupment from Medicare claims” — no extensions allowed.

The agency took a victory lap regarding its response. “In the face of one of the most widespread cyberattacks on the US health care industry, CMS promptly took action to get providers and suppliers access to the funds they needed to continue providing patients with vital care,” CMS Administrator Chiquita Brooks-LaSure said in a statement. “Our efforts helped minimize the disruptive fallout from this incident, and we will remain vigilant to be ready to address future events.”

Ongoing Concerns from Health Care Organizations

Ben Teicher, an American Hospital Association spokesman, said that the organization hopes that CMS will be responsive if there’s more need for action after the advance payment program expires. The organization represents about 5000 hospitals, health care systems, and other providers.

“Our members report that the aftereffects of this event will likely be felt throughout the remainder of the year,” he said. According to Teicher, hospitals remain concerned about their ability to process claims and appeal denials, the safety of reconnecting to cyber services, and access to information needed to bill patients and reconcile payments.

In addition, hospitals are concerned about “financial support to mitigate the considerable costs incurred as a result of the cyberattack,” he said.

Charlene MacDonald, executive vice-president of public affairs at the Federation of American Hospitals, which represents more than 1000 for-profit hospitals, sent a statement to this news organization that said some providers “are still feeling the effects of care denials and delays caused by insurer inaction.

“We appreciate that the Administration acted within its authority to support providers during this unprecedented crisis and blunt these devastating impacts, especially because a vast majority of managed care companies failed to step up to the plate,” she said. “It is now time to shift our focus to holding plans accountable for using tactics to delay and deny needed patient care.”

Cyberattack Impact and Response

The ransom-based cyberattack against Change Healthcare/UnitedHealth Group targeted an electronic data interchange clearing house processing payer reimbursement systems, disrupting cash flows at hospitals and medical practices, and affecting patient access to prescriptions and life-saving therapy.

Change Healthcare — part of the UnitedHealth Group subsidiary Optum — processes half of all medical claims, according to a Department of Justice lawsuit. The American Hospital Association described the cyberattack as “the most significant and consequential incident of its kind” in US history.

By late March, UnitedHealth Group said nearly all medical and pharmacy claims were processing properly, while a deputy secretary of the US Department of Health & Human Services told clinicians that officials were focusing on the last group of clinicians who were facing cash-flow problems.

Still, a senior advisor with CMS told providers at that time that “we have heard from so many providers over the last several weeks who are really struggling to make ends meet right now or who are worried that they will not be able to make payroll in the weeks to come.”

Randy Dotinga is a freelance health/medical reporter and board member of the Association of Health Care Journalists.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The Centers for Medicare & Medicaid Services (CMS) has announced the conclusion of a program that provided billions in early Medicare payments to those affected by the Change Healthcare/UnitedHealth Group cyberattack last winter. The Accelerated and Advance Payment program, which began in early March to assist hospitals and practices facing significant reimbursement delays, will stop accepting applications after July 12, 2024.

CMS reported that the program advanced more than $2.55 billion in Medicare payments to > 4200 Part A providers, including hospitals, and more than $717.18 million in payments to Part B suppliers such as physicians, nonphysician practitioners, and durable medical equipment suppliers.

According to CMS, the Medicare billing system is now functioning properly, and 96% of the early payments have been recovered. The advances were to represent ≤ 30 days of typical claims payments in a 3-month period of 2023, with full repayment expected within 90 days through “automatic recoupment from Medicare claims” — no extensions allowed.

The agency took a victory lap regarding its response. “In the face of one of the most widespread cyberattacks on the US health care industry, CMS promptly took action to get providers and suppliers access to the funds they needed to continue providing patients with vital care,” CMS Administrator Chiquita Brooks-LaSure said in a statement. “Our efforts helped minimize the disruptive fallout from this incident, and we will remain vigilant to be ready to address future events.”

Ongoing Concerns from Health Care Organizations

Ben Teicher, an American Hospital Association spokesman, said that the organization hopes that CMS will be responsive if there’s more need for action after the advance payment program expires. The organization represents about 5000 hospitals, health care systems, and other providers.

“Our members report that the aftereffects of this event will likely be felt throughout the remainder of the year,” he said. According to Teicher, hospitals remain concerned about their ability to process claims and appeal denials, the safety of reconnecting to cyber services, and access to information needed to bill patients and reconcile payments.

In addition, hospitals are concerned about “financial support to mitigate the considerable costs incurred as a result of the cyberattack,” he said.

Charlene MacDonald, executive vice-president of public affairs at the Federation of American Hospitals, which represents more than 1000 for-profit hospitals, sent a statement to this news organization that said some providers “are still feeling the effects of care denials and delays caused by insurer inaction.

“We appreciate that the Administration acted within its authority to support providers during this unprecedented crisis and blunt these devastating impacts, especially because a vast majority of managed care companies failed to step up to the plate,” she said. “It is now time to shift our focus to holding plans accountable for using tactics to delay and deny needed patient care.”

Cyberattack Impact and Response

The ransom-based cyberattack against Change Healthcare/UnitedHealth Group targeted an electronic data interchange clearing house processing payer reimbursement systems, disrupting cash flows at hospitals and medical practices, and affecting patient access to prescriptions and life-saving therapy.

Change Healthcare — part of the UnitedHealth Group subsidiary Optum — processes half of all medical claims, according to a Department of Justice lawsuit. The American Hospital Association described the cyberattack as “the most significant and consequential incident of its kind” in US history.

By late March, UnitedHealth Group said nearly all medical and pharmacy claims were processing properly, while a deputy secretary of the US Department of Health & Human Services told clinicians that officials were focusing on the last group of clinicians who were facing cash-flow problems.

Still, a senior advisor with CMS told providers at that time that “we have heard from so many providers over the last several weeks who are really struggling to make ends meet right now or who are worried that they will not be able to make payroll in the weeks to come.”

Randy Dotinga is a freelance health/medical reporter and board member of the Association of Health Care Journalists.

A version of this article appeared on Medscape.com.

The Centers for Medicare & Medicaid Services (CMS) has announced the conclusion of a program that provided billions in early Medicare payments to those affected by the Change Healthcare/UnitedHealth Group cyberattack last winter. The Accelerated and Advance Payment program, which began in early March to assist hospitals and practices facing significant reimbursement delays, will stop accepting applications after July 12, 2024.

CMS reported that the program advanced more than $2.55 billion in Medicare payments to > 4200 Part A providers, including hospitals, and more than $717.18 million in payments to Part B suppliers such as physicians, nonphysician practitioners, and durable medical equipment suppliers.

According to CMS, the Medicare billing system is now functioning properly, and 96% of the early payments have been recovered. The advances were to represent ≤ 30 days of typical claims payments in a 3-month period of 2023, with full repayment expected within 90 days through “automatic recoupment from Medicare claims” — no extensions allowed.

The agency took a victory lap regarding its response. “In the face of one of the most widespread cyberattacks on the US health care industry, CMS promptly took action to get providers and suppliers access to the funds they needed to continue providing patients with vital care,” CMS Administrator Chiquita Brooks-LaSure said in a statement. “Our efforts helped minimize the disruptive fallout from this incident, and we will remain vigilant to be ready to address future events.”

Ongoing Concerns from Health Care Organizations

Ben Teicher, an American Hospital Association spokesman, said that the organization hopes that CMS will be responsive if there’s more need for action after the advance payment program expires. The organization represents about 5000 hospitals, health care systems, and other providers.

“Our members report that the aftereffects of this event will likely be felt throughout the remainder of the year,” he said. According to Teicher, hospitals remain concerned about their ability to process claims and appeal denials, the safety of reconnecting to cyber services, and access to information needed to bill patients and reconcile payments.

In addition, hospitals are concerned about “financial support to mitigate the considerable costs incurred as a result of the cyberattack,” he said.

Charlene MacDonald, executive vice-president of public affairs at the Federation of American Hospitals, which represents more than 1000 for-profit hospitals, sent a statement to this news organization that said some providers “are still feeling the effects of care denials and delays caused by insurer inaction.

“We appreciate that the Administration acted within its authority to support providers during this unprecedented crisis and blunt these devastating impacts, especially because a vast majority of managed care companies failed to step up to the plate,” she said. “It is now time to shift our focus to holding plans accountable for using tactics to delay and deny needed patient care.”

Cyberattack Impact and Response

The ransom-based cyberattack against Change Healthcare/UnitedHealth Group targeted an electronic data interchange clearing house processing payer reimbursement systems, disrupting cash flows at hospitals and medical practices, and affecting patient access to prescriptions and life-saving therapy.

Change Healthcare — part of the UnitedHealth Group subsidiary Optum — processes half of all medical claims, according to a Department of Justice lawsuit. The American Hospital Association described the cyberattack as “the most significant and consequential incident of its kind” in US history.

By late March, UnitedHealth Group said nearly all medical and pharmacy claims were processing properly, while a deputy secretary of the US Department of Health & Human Services told clinicians that officials were focusing on the last group of clinicians who were facing cash-flow problems.

Still, a senior advisor with CMS told providers at that time that “we have heard from so many providers over the last several weeks who are really struggling to make ends meet right now or who are worried that they will not be able to make payroll in the weeks to come.”

Randy Dotinga is a freelance health/medical reporter and board member of the Association of Health Care Journalists.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168540</fileName> <TBEID>0C050BD9.SIG</TBEID> <TBUniqueIdentifier>MD_0C050BD9</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240625T145643</QCDate> <firstPublished>20240625T150958</firstPublished> <LastPublished>20240625T150958</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240625T150958</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Randy Dotinga</byline> <bylineText>RANDY DOTINGA</bylineText> <bylineFull>RANDY DOTINGA</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>The Accelerated and Advance Payment program, which began in early March to assist hospitals and practices facing significant reimbursement delays, will stop acc</metaDescription> <articlePDF/> <teaserImage/> <teaser>Payments from the Accelerated and Advance Payment program will close for application in July.</teaser> <title>CMS Announces End to Cyberattack Relief Program</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>hemn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>idprac</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdemed</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>rn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">21</term> <term>5</term> <term>6</term> <term>34</term> <term>9</term> <term>13</term> <term>15</term> <term>18</term> <term>20</term> <term>58877</term> <term>52226</term> <term>23</term> <term>31</term> <term>25</term> <term>26</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">38029</term> <term>278</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>CMS Announces End to Cyberattack Relief Program</title> <deck/> </itemMeta> <itemContent> <p>The Centers for Medicare &amp; Medicaid Services (CMS) has <a href="https://www.cms.gov/newsroom/press-releases/cms-preparing-close-program-addressed-medicare-funding-issues-resulting-change-healthcare-cyber">announced</a> the conclusion of a program that provided billions in early Medicare payments to those affected by the Change Healthcare/UnitedHealth Group cyberattack last winter. <span class="tag metaDescription">The Accelerated and Advance Payment program, which began in early March to assist hospitals and practices facing significant reimbursement delays, will stop accepting applications after July 12, 2024.</span></p> <p>CMS reported that the program advanced more than $2.55 billion in Medicare payments to &gt; 4200 Part A providers, including hospitals, and more than $717.18 million in payments to Part B suppliers such as physicians, nonphysician practitioners, and durable medical equipment suppliers.<br/><br/>According to CMS, the Medicare billing system is now functioning properly, and 96% of the early payments have been recovered. The advances were to represent <a href="https://www.cms.gov/newsroom/fact-sheets/change-healthcare/optum-payment-disruption-chopd-accelerated-payments-part-providers-and-advance">≤ 30 days of typical claims payments</a> in a 3-month period of 2023, with full repayment expected within 90 days through “automatic recoupment from Medicare claims” — no extensions allowed.<br/><br/>The agency took a victory lap regarding its response. “In the face of one of the most widespread cyberattacks on the US health care industry, CMS promptly took action to get providers and suppliers access to the funds they needed to continue providing patients with vital care,” CMS Administrator Chiquita Brooks-LaSure said in a statement. “Our efforts helped minimize the disruptive fallout from this incident, and we will remain vigilant to be ready to address future events.”</p> <h2>Ongoing Concerns from Health Care Organizations</h2> <p>Ben Teicher, an American Hospital Association spokesman, said that the organization hopes that CMS will be responsive if there’s more need for action after the advance payment program expires. The organization represents about 5000 hospitals, health care systems, and other providers.</p> <p>“Our members report that the aftereffects of this event will likely be felt throughout the remainder of the year,” he said. According to Teicher, hospitals remain concerned about their ability to process claims and appeal denials, the safety of reconnecting to cyber services, and access to information needed to bill patients and reconcile payments.<br/><br/>In addition, hospitals are concerned about “financial support to mitigate the considerable costs incurred as a result of the cyberattack,” he said.<br/><br/>Charlene MacDonald, executive vice-president of public affairs at the Federation of American Hospitals, which represents more than 1000 for-profit hospitals, sent a statement to this news organization that said some providers “are still feeling the effects of care denials and delays caused by insurer inaction.<br/><br/>“We appreciate that the Administration acted within its authority to support providers during this unprecedented crisis and blunt these devastating impacts, especially because a vast majority of managed care companies failed to step up to the plate,” she said. “It is now time to shift our focus to holding plans accountable for using tactics to delay and deny needed patient care.”</p> <h2>Cyberattack Impact and Response</h2> <p>The ransom-based cyberattack against Change Healthcare/UnitedHealth Group targeted an electronic data interchange clearing house processing payer reimbursement systems, disrupting cash flows at hospitals and medical practices, and affecting patient access to prescriptions and life-saving therapy.</p> <p>Change Healthcare — part of the UnitedHealth Group subsidiary Optum — processes half of all medical claims, according to a <a href="https://www.justice.gov/atr/case-document/file/1476901/download">Department of Justice lawsuit</a>. The American Hospital Association <a href="https://www.medscape.com/viewarticle/how-change-healthcare-cyberattack-affects-oncology-care-2024a10004ca">described </a>the cyberattack as “the most significant and consequential incident of its kind” in US history.<br/><br/>By late March, UnitedHealth Group <a href="https://www.medscape.com/viewarticle/clinicians-still-grappling-aftermath-change-healthcare-2024a10005ns">said</a> nearly all medical and pharmacy claims were processing properly, while a deputy secretary of the US Department of Health &amp; Human Services <a href="https://www.medscape.com/viewarticle/clinicians-still-grappling-aftermath-change-healthcare-2024a10005ns">told clinicians</a> that officials were focusing on the last group of clinicians who were facing cash-flow problems.<br/><br/>Still, a senior advisor with CMS told providers at that time that “we have heard from so many providers over the last several weeks who are really struggling to make ends meet right now or who are worried that they will not be able to make payroll in the weeks to come.”<br/><br/>Randy Dotinga is a freelance health/medical reporter and board member of the Association of Health Care Journalists.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/cms-announces-end-cyberattack-relief-program-2024a1000bqj">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Compounded Semaglutide: How to Better Ensure Its Safety

Article Type
Changed
Tue, 06/25/2024 - 14:46

 

Glucagon-like peptide 1 (GLP-1) receptor agonists such as semaglutide (marketed as Ozempic and Rybelsus for type 2 diabetes and as Wegovy for obesity) slow down digestion and curb hunger by working on the brain’s dopamine reward center. They are prescribed to promote weight loss, metabolic health in type 2 diabetes, and heart health in coronary artery disease.

Semaglutide can be prescribed in two forms: the brand-name version, which is approved and confirmed as safe and effective by the US Food and Drug Administration (FDA), and the versions that can be obtained from a compounding pharmacy. Compounding pharmacies are permitted by the FDA to produce what is “ essentially a copy” of approved medications when there’s an official shortage, which is currently the case with semaglutide and other GLP-1 receptor agonists.

Patients are often drawn to compounding pharmacies for pricing-related reasons. If semaglutide is prescribed for a clear indication like diabetes and is covered by insurance, the brand-name version is commonly dispensed. However, if it’s not covered, patients need to pay out of pocket for branded versions, which carry a monthly cost of $1000 or more. Alternatively, their doctors can prescribe compounded semaglutide, which some telehealth companies advertise at costs of approximately $150-$300 per month.
 

Potential Issues With Compounded Semaglutide 

Compounding pharmacies produce drugs from raw materials containing active pharmaceutical ingredients (APIs). Although compounders use many of the same ingredients found in brand-name medications, for drugs like semaglutide, they may opt for specific salts that are not identical to those involved in the production of the standard versions. These salts are typically reserved for research purposes and may not be suitable for general use.

In late 2023, the FDA issued a letter asking the public to exercise caution when using compounded products containing semaglutide or semaglutide salts. This was followed in January 2024 by an FDA communication citing adverse events reported with the use of compounded semaglutide and advising patients to avoid these versions if an approved form of the drug is available.
 

Compound Pharmacies: A Closer Look 

Compounding pharmacies have exploded in popularity in the past several decades. The compounding pharmacy market is expected to grow at 7.8% per year over the next decade. 

Historically, compounding pharmacies have filled a niche for specialty vitamins for intravenous administration as well as chemotherapy medications. They also offer controlled substances, such as ketamine lozenges and nasal sprays, which are unavailable or are in short supply from traditional manufacturers.

Compounding pharmacies fall into two categories. First are compounding pharmacies covered under Section 503A of the Federal Food, Drug and Cosmetic Act; these drugs are neither tested nor monitored. Such facilities do not have to report adverse events to the FDA. The second category is Section 503B outsourcing facilities. These pharmacies choose to be tested by, to be inspected by, and to report adverse events to the FDA. 
 

The FDA’s Latest Update on This Issue

This news organization contacted the FDA for an update on the adverse events reported about compounded semaglutide. From August 8, 2021, to March 31, 2024, they received more than 20,000 adverse events reports for FDA-approved semaglutide. Comparatively, there were 210 adverse events reported on compounded semaglutide products. 

 

 

The FDA went on to describe that many of the adverse events reported were consistent with known reactions in the labeling, like nausea, diarrhea, and headache. Yet, they added that, “the FDA is unable to determine how, or if, other factors may have contributed to these adverse events, such as differences in ingredients and formulation between FDA-approved and compounded semaglutide products.” They also noted there was variation in the data quality in the reports they have received, which came only from 503B compounding pharmacies.

In conclusion, given the concerns about compounded semaglutide, it is prudent for the prescribing physicians as well as the patients taking the medication to know that risks are “higher” according to the FDA. We eagerly await more specific information from the FDA to better understand reported adverse events. 
 

How to Help Patients Receive Safe Compounded Semaglutide 

For clinicians considering prescribing semaglutide from compounding pharmacies, there are several questions worth asking, according to the Alliance for Pharmacy Compounding. First, find out whether the pharmacy complies with United States Pharmacopeia compounding standards and whether they source their APIs from FDA-registered facilities, the latter being required by federal law. It’s also important to ensure that these facilities undergo periodic third-party testing to verify medication purity and dosing. 

Ask whether the pharmacy is accredited by the Pharmacy Compounding Accreditation Board (PCAB). Accreditation from the PCAB means that pharmacies have been assessed for processes related to continuous quality improvement. In addition, ask whether the pharmacy is designated as a 503B compounder and if not, why.

Finally, interviewing the pharmacist themselves can provide useful information about staffing, training, and their methods of preparing medications. For example, if they are preparing a sterile eye drop, it is important to ask about sterility testing.

Jesse M. Pines, MD, MBA, MSCE, is a clinical professor of emergency medicine at George Washington University in Washington, and a professor in the department of emergency medicine at Drexel University College of Medicine in Philadelphia, Pennsylvania. Dr. Pines is also the chief of clinical innovation at US Acute Care Solutions in Canton, Ohio. Robert D. Glatter, MD, is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. Dr. Pines reported conflicts of interest with CSL Behring and Abbott Point-of-Care. Dr. Glatter reported no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Glucagon-like peptide 1 (GLP-1) receptor agonists such as semaglutide (marketed as Ozempic and Rybelsus for type 2 diabetes and as Wegovy for obesity) slow down digestion and curb hunger by working on the brain’s dopamine reward center. They are prescribed to promote weight loss, metabolic health in type 2 diabetes, and heart health in coronary artery disease.

Semaglutide can be prescribed in two forms: the brand-name version, which is approved and confirmed as safe and effective by the US Food and Drug Administration (FDA), and the versions that can be obtained from a compounding pharmacy. Compounding pharmacies are permitted by the FDA to produce what is “ essentially a copy” of approved medications when there’s an official shortage, which is currently the case with semaglutide and other GLP-1 receptor agonists.

Patients are often drawn to compounding pharmacies for pricing-related reasons. If semaglutide is prescribed for a clear indication like diabetes and is covered by insurance, the brand-name version is commonly dispensed. However, if it’s not covered, patients need to pay out of pocket for branded versions, which carry a monthly cost of $1000 or more. Alternatively, their doctors can prescribe compounded semaglutide, which some telehealth companies advertise at costs of approximately $150-$300 per month.
 

Potential Issues With Compounded Semaglutide 

Compounding pharmacies produce drugs from raw materials containing active pharmaceutical ingredients (APIs). Although compounders use many of the same ingredients found in brand-name medications, for drugs like semaglutide, they may opt for specific salts that are not identical to those involved in the production of the standard versions. These salts are typically reserved for research purposes and may not be suitable for general use.

In late 2023, the FDA issued a letter asking the public to exercise caution when using compounded products containing semaglutide or semaglutide salts. This was followed in January 2024 by an FDA communication citing adverse events reported with the use of compounded semaglutide and advising patients to avoid these versions if an approved form of the drug is available.
 

Compound Pharmacies: A Closer Look 

Compounding pharmacies have exploded in popularity in the past several decades. The compounding pharmacy market is expected to grow at 7.8% per year over the next decade. 

Historically, compounding pharmacies have filled a niche for specialty vitamins for intravenous administration as well as chemotherapy medications. They also offer controlled substances, such as ketamine lozenges and nasal sprays, which are unavailable or are in short supply from traditional manufacturers.

Compounding pharmacies fall into two categories. First are compounding pharmacies covered under Section 503A of the Federal Food, Drug and Cosmetic Act; these drugs are neither tested nor monitored. Such facilities do not have to report adverse events to the FDA. The second category is Section 503B outsourcing facilities. These pharmacies choose to be tested by, to be inspected by, and to report adverse events to the FDA. 
 

The FDA’s Latest Update on This Issue

This news organization contacted the FDA for an update on the adverse events reported about compounded semaglutide. From August 8, 2021, to March 31, 2024, they received more than 20,000 adverse events reports for FDA-approved semaglutide. Comparatively, there were 210 adverse events reported on compounded semaglutide products. 

 

 

The FDA went on to describe that many of the adverse events reported were consistent with known reactions in the labeling, like nausea, diarrhea, and headache. Yet, they added that, “the FDA is unable to determine how, or if, other factors may have contributed to these adverse events, such as differences in ingredients and formulation between FDA-approved and compounded semaglutide products.” They also noted there was variation in the data quality in the reports they have received, which came only from 503B compounding pharmacies.

In conclusion, given the concerns about compounded semaglutide, it is prudent for the prescribing physicians as well as the patients taking the medication to know that risks are “higher” according to the FDA. We eagerly await more specific information from the FDA to better understand reported adverse events. 
 

How to Help Patients Receive Safe Compounded Semaglutide 

For clinicians considering prescribing semaglutide from compounding pharmacies, there are several questions worth asking, according to the Alliance for Pharmacy Compounding. First, find out whether the pharmacy complies with United States Pharmacopeia compounding standards and whether they source their APIs from FDA-registered facilities, the latter being required by federal law. It’s also important to ensure that these facilities undergo periodic third-party testing to verify medication purity and dosing. 

Ask whether the pharmacy is accredited by the Pharmacy Compounding Accreditation Board (PCAB). Accreditation from the PCAB means that pharmacies have been assessed for processes related to continuous quality improvement. In addition, ask whether the pharmacy is designated as a 503B compounder and if not, why.

Finally, interviewing the pharmacist themselves can provide useful information about staffing, training, and their methods of preparing medications. For example, if they are preparing a sterile eye drop, it is important to ask about sterility testing.

Jesse M. Pines, MD, MBA, MSCE, is a clinical professor of emergency medicine at George Washington University in Washington, and a professor in the department of emergency medicine at Drexel University College of Medicine in Philadelphia, Pennsylvania. Dr. Pines is also the chief of clinical innovation at US Acute Care Solutions in Canton, Ohio. Robert D. Glatter, MD, is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. Dr. Pines reported conflicts of interest with CSL Behring and Abbott Point-of-Care. Dr. Glatter reported no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

 

Glucagon-like peptide 1 (GLP-1) receptor agonists such as semaglutide (marketed as Ozempic and Rybelsus for type 2 diabetes and as Wegovy for obesity) slow down digestion and curb hunger by working on the brain’s dopamine reward center. They are prescribed to promote weight loss, metabolic health in type 2 diabetes, and heart health in coronary artery disease.

Semaglutide can be prescribed in two forms: the brand-name version, which is approved and confirmed as safe and effective by the US Food and Drug Administration (FDA), and the versions that can be obtained from a compounding pharmacy. Compounding pharmacies are permitted by the FDA to produce what is “ essentially a copy” of approved medications when there’s an official shortage, which is currently the case with semaglutide and other GLP-1 receptor agonists.

Patients are often drawn to compounding pharmacies for pricing-related reasons. If semaglutide is prescribed for a clear indication like diabetes and is covered by insurance, the brand-name version is commonly dispensed. However, if it’s not covered, patients need to pay out of pocket for branded versions, which carry a monthly cost of $1000 or more. Alternatively, their doctors can prescribe compounded semaglutide, which some telehealth companies advertise at costs of approximately $150-$300 per month.
 

Potential Issues With Compounded Semaglutide 

Compounding pharmacies produce drugs from raw materials containing active pharmaceutical ingredients (APIs). Although compounders use many of the same ingredients found in brand-name medications, for drugs like semaglutide, they may opt for specific salts that are not identical to those involved in the production of the standard versions. These salts are typically reserved for research purposes and may not be suitable for general use.

In late 2023, the FDA issued a letter asking the public to exercise caution when using compounded products containing semaglutide or semaglutide salts. This was followed in January 2024 by an FDA communication citing adverse events reported with the use of compounded semaglutide and advising patients to avoid these versions if an approved form of the drug is available.
 

Compound Pharmacies: A Closer Look 

Compounding pharmacies have exploded in popularity in the past several decades. The compounding pharmacy market is expected to grow at 7.8% per year over the next decade. 

Historically, compounding pharmacies have filled a niche for specialty vitamins for intravenous administration as well as chemotherapy medications. They also offer controlled substances, such as ketamine lozenges and nasal sprays, which are unavailable or are in short supply from traditional manufacturers.

Compounding pharmacies fall into two categories. First are compounding pharmacies covered under Section 503A of the Federal Food, Drug and Cosmetic Act; these drugs are neither tested nor monitored. Such facilities do not have to report adverse events to the FDA. The second category is Section 503B outsourcing facilities. These pharmacies choose to be tested by, to be inspected by, and to report adverse events to the FDA. 
 

The FDA’s Latest Update on This Issue

This news organization contacted the FDA for an update on the adverse events reported about compounded semaglutide. From August 8, 2021, to March 31, 2024, they received more than 20,000 adverse events reports for FDA-approved semaglutide. Comparatively, there were 210 adverse events reported on compounded semaglutide products. 

 

 

The FDA went on to describe that many of the adverse events reported were consistent with known reactions in the labeling, like nausea, diarrhea, and headache. Yet, they added that, “the FDA is unable to determine how, or if, other factors may have contributed to these adverse events, such as differences in ingredients and formulation between FDA-approved and compounded semaglutide products.” They also noted there was variation in the data quality in the reports they have received, which came only from 503B compounding pharmacies.

In conclusion, given the concerns about compounded semaglutide, it is prudent for the prescribing physicians as well as the patients taking the medication to know that risks are “higher” according to the FDA. We eagerly await more specific information from the FDA to better understand reported adverse events. 
 

How to Help Patients Receive Safe Compounded Semaglutide 

For clinicians considering prescribing semaglutide from compounding pharmacies, there are several questions worth asking, according to the Alliance for Pharmacy Compounding. First, find out whether the pharmacy complies with United States Pharmacopeia compounding standards and whether they source their APIs from FDA-registered facilities, the latter being required by federal law. It’s also important to ensure that these facilities undergo periodic third-party testing to verify medication purity and dosing. 

Ask whether the pharmacy is accredited by the Pharmacy Compounding Accreditation Board (PCAB). Accreditation from the PCAB means that pharmacies have been assessed for processes related to continuous quality improvement. In addition, ask whether the pharmacy is designated as a 503B compounder and if not, why.

Finally, interviewing the pharmacist themselves can provide useful information about staffing, training, and their methods of preparing medications. For example, if they are preparing a sterile eye drop, it is important to ask about sterility testing.

Jesse M. Pines, MD, MBA, MSCE, is a clinical professor of emergency medicine at George Washington University in Washington, and a professor in the department of emergency medicine at Drexel University College of Medicine in Philadelphia, Pennsylvania. Dr. Pines is also the chief of clinical innovation at US Acute Care Solutions in Canton, Ohio. Robert D. Glatter, MD, is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. Dr. Pines reported conflicts of interest with CSL Behring and Abbott Point-of-Care. Dr. Glatter reported no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168535</fileName> <TBEID>0C050BC0.SIG</TBEID> <TBUniqueIdentifier>MD_0C050BC0</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240625T140016</QCDate> <firstPublished>20240625T144341</firstPublished> <LastPublished>20240625T144341</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240625T144341</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Pines and Glatter</byline> <bylineText>JESSE M. PINES, MD, MBA, MSCE, AND ROBERT D. GLATTER, MD</bylineText> <bylineFull>JESSE M. PINES, MD, MBA, MSCE, AND ROBERT D. GLATTER, MD</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>Opinion</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Glucagon-like peptide 1 (GLP-1) receptor agonists such as semaglutide (marketed as Ozempic and Rybelsus for type 2 diabetes and as Wegovy for obesity) slow down</metaDescription> <articlePDF/> <teaserImage/> <teaser>Ask questions about the pharmacy and, if possible, interview the pharmacist about certifications and procedures.</teaser> <title>Compounded Semaglutide: How to Better Ensure Its Safety</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">34</term> <term>15</term> <term>21</term> <term>5</term> </publications> <sections> <term>27980</term> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">205</term> <term>193</term> <term>194</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Compounded Semaglutide: How to Better Ensure Its Safety</title> <deck/> </itemMeta> <itemContent> <p>Glucagon-like peptide 1 (GLP-1) receptor agonists such as semaglutide (marketed as Ozempic and Rybelsus for type 2 diabetes and as Wegovy for obesity) slow down digestion and curb hunger by working on the brain’s dopamine reward center. They are prescribed to promote weight loss, metabolic health in type 2 diabetes, and heart health in coronary artery disease.</p> <p>Semaglutide can be prescribed in two forms: the brand-name version, which is approved and confirmed as safe and effective by the US Food and Drug Administration (FDA), and the versions that can be obtained from a compounding pharmacy. Compounding pharmacies are permitted by the FDA to produce what is “ essentially a copy” of approved medications when there’s an official shortage, which is currently the case with semaglutide and other GLP-1 receptor agonists.<br/><br/>Patients are often drawn to compounding pharmacies for pricing-related reasons. If semaglutide is prescribed for a clear <a href="https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209637lbl.pdf">indication</a> like diabetes and is covered by insurance, the brand-name version is commonly dispensed. However, if it’s not covered, patients need to pay out of pocket for branded versions, which carry a monthly cost of $1000 or more. Alternatively, their doctors can prescribe compounded semaglutide, which some telehealth companies advertise at costs of approximately $150-$300 per month.<br/><br/></p> <h2>Potential Issues With Compounded Semaglutide </h2> <p>Compounding pharmacies produce drugs from raw materials containing active pharmaceutical ingredients (APIs). Although compounders use many of the same ingredients found in brand-name medications, for drugs like semaglutide, they may opt for specific salts that are not identical to those involved in the production of the standard versions. These salts are typically reserved for research purposes and may not be suitable for general use.</p> <p>In late 2023, the FDA issued a <a href="https://www.fda.gov/media/173456/download?attachment">letter</a> asking the public to exercise caution when using compounded products containing semaglutide or semaglutide salts. This was followed in January 2024 by an FDA <a href="https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/medications-containing-semaglutide-marketed-type-2-diabetes-or-weight-loss">communication</a> citing adverse events reported with the use of compounded semaglutide and advising patients to avoid these versions if an approved form of the drug is available.<br/><br/></p> <h2>Compound Pharmacies: A Closer Look </h2> <p>Compounding pharmacies have exploded in popularity in the past several decades. The compounding pharmacy market is expected to <a href="https://www.futuremarketinsights.com/reports/us-compounding-pharmacies-market">grow</a> at 7.8% per year over the next decade. </p> <p>Historically, compounding pharmacies have filled a niche for specialty vitamins for intravenous administration as well as chemotherapy medications. They also offer controlled substances, such as ketamine lozenges and nasal sprays, which are unavailable or are in short supply from traditional manufacturers.<br/><br/>Compounding pharmacies fall into two categories. First are compounding pharmacies covered under Section 503A of the Federal Food, Drug and Cosmetic Act; these drugs are neither tested nor monitored. Such facilities do not have to report adverse events to the FDA. The second category is Section 503B outsourcing facilities. These pharmacies choose to be tested by, to be inspected by, and to report adverse events to the FDA. <br/><br/></p> <h2>The FDA’s Latest Update on This Issue</h2> <p>This news organization contacted the FDA for an update on the adverse events reported about compounded semaglutide. From August 8, 2021, to March 31, 2024, they received more than 20,000 adverse events reports for FDA-approved semaglutide. Comparatively, there were 210 adverse events reported on compounded semaglutide products. </p> <p>The FDA went on to describe that many of the adverse events reported were consistent with known reactions in the labeling, like nausea, diarrhea, and headache. Yet, they added that, “the FDA is unable to determine how, or if, other factors may have contributed to these adverse events, such as differences in ingredients and formulation between FDA-approved and compounded semaglutide products.” They also noted there was variation in the data quality in the reports they have received, which came only from 503B compounding pharmacies.<br/><br/>In conclusion, given the concerns about compounded semaglutide, it is prudent for the prescribing physicians as well as the patients taking the medication to know that risks are “higher” according to the FDA. We eagerly await more specific information from the FDA to better understand reported adverse events. <br/><br/></p> <h2>How to Help Patients Receive Safe Compounded Semaglutide </h2> <p>For clinicians considering prescribing semaglutide from compounding pharmacies, there are several questions worth <a href="https://a4pc.org/find-a-compounder/">asking</a>, according to the Alliance for Pharmacy Compounding. First, find out whether the pharmacy complies with United States Pharmacopeia compounding standards and whether they source their APIs from FDA-registered facilities, the latter being required by federal law. It’s also important to ensure that these facilities undergo periodic third-party testing to verify medication purity and dosing. </p> <p>Ask whether the pharmacy is accredited by the Pharmacy Compounding Accreditation Board (PCAB). Accreditation from the PCAB means that pharmacies have been assessed for processes related to continuous quality improvement. In addition, ask whether the pharmacy is designated as a 503B compounder and if not, why.<br/><br/>Finally, interviewing the pharmacist themselves can provide useful information about staffing, training, and their methods of preparing medications. For example, if they are preparing a sterile eye drop, it is important to ask about sterility testing.<br/><br/>Jesse M. Pines, MD, MBA, MSCE, is a clinical professor of emergency medicine at George Washington University in Washington, and a professor in the department of emergency medicine at Drexel University College of Medicine in Philadelphia, Pennsylvania. Dr. Pines is also the chief of clinical innovation at US Acute Care Solutions in Canton, Ohio. Robert D. Glatter, MD, is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. Dr. Pines reported conflicts of interest with CSL Behring and Abbott Point-of-Care. Dr. Glatter reported no relevant conflicts of interest.<span class="end"><br/><br/></span></p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/compounded-semaglutide-how-better-ensure-its-safety-2024a1000bfq">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is This Journal Legit? Predatory Publishers

Article Type
Changed
Tue, 07/02/2024 - 13:33

 

This transcript has been edited for clarity

Andrew N. Wilner, MD: My guest today is Dr. Jose Merino, editor in chief of the Neurology family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.

Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. 

Jose G. Merino, MD, MPhil: Thank you for having me here. It’s a pleasure.
 

Open Access Defined

Dr. Wilner: I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? 

Dr. Merino: Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. 

The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.

This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. 

Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. 

Dr. Wilner: I remember that when a journal article was published, say, in Neurology, if you didn’t have a subscription to Neurology, you went to the library that hopefully had a subscription.

If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? 

Dr. Merino: It depends on how the paper is published. For example, in Neurology, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.

That’s the case for papers published in our wholly open-access journals in the Neurology family like Neurology Neuroimmunology & Neuroinflammation, Neurology Genetics, or Neurology Education

For other papers that are published in Neurology, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. 

In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.
 

 

 

Is Pay to Publish a Red Flag?

Dr. Wilner: I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, Neurology, you don’t get paid as an author for the publication. Your reward is the honor of it being published. 

Neurology supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. 

With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. 

Dr. Merino: This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. 

Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. 

That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. 

Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. 

Dr. Wilner: This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? 
 

Predatory Journals

Dr. Merino: That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. 

The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. 

Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. 

There are certain checklists. Dr. David Moher at the University of Toronto has produced some work trying to help us identify predatory journals

One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?

If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. 

I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. 

I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like BMC or PLOS, that are completely open-access and legitimate journals. 
 

 

 

Impact Factor

Dr. Wilner: What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. 

Dr. Merino: Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. 

It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. 

Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. 

This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. 

I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” 

There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. 

If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. 

I think it’s important to look more at the audience and the journal scope when you submit your papers. 

Dr. Wilner: One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? 

Dr. Merino: I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. 

That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.

Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. 

Dr. Wilner: I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. 

There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? 

Dr. Merino: Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. 

Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that we need less research, but we need better research. 

We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. 

Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. 

The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. 

Dr. Wilner: Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? 

Dr. Merino: I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in Neurology and most serious medical journals.
 

Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity

Andrew N. Wilner, MD: My guest today is Dr. Jose Merino, editor in chief of the Neurology family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.

Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. 

Jose G. Merino, MD, MPhil: Thank you for having me here. It’s a pleasure.
 

Open Access Defined

Dr. Wilner: I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? 

Dr. Merino: Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. 

The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.

This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. 

Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. 

Dr. Wilner: I remember that when a journal article was published, say, in Neurology, if you didn’t have a subscription to Neurology, you went to the library that hopefully had a subscription.

If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? 

Dr. Merino: It depends on how the paper is published. For example, in Neurology, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.

That’s the case for papers published in our wholly open-access journals in the Neurology family like Neurology Neuroimmunology & Neuroinflammation, Neurology Genetics, or Neurology Education

For other papers that are published in Neurology, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. 

In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.
 

 

 

Is Pay to Publish a Red Flag?

Dr. Wilner: I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, Neurology, you don’t get paid as an author for the publication. Your reward is the honor of it being published. 

Neurology supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. 

With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. 

Dr. Merino: This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. 

Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. 

That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. 

Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. 

Dr. Wilner: This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? 
 

Predatory Journals

Dr. Merino: That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. 

The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. 

Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. 

There are certain checklists. Dr. David Moher at the University of Toronto has produced some work trying to help us identify predatory journals

One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?

If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. 

I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. 

I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like BMC or PLOS, that are completely open-access and legitimate journals. 
 

 

 

Impact Factor

Dr. Wilner: What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. 

Dr. Merino: Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. 

It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. 

Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. 

This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. 

I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” 

There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. 

If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. 

I think it’s important to look more at the audience and the journal scope when you submit your papers. 

Dr. Wilner: One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? 

Dr. Merino: I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. 

That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.

Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. 

Dr. Wilner: I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. 

There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? 

Dr. Merino: Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. 

Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that we need less research, but we need better research. 

We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. 

Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. 

The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. 

Dr. Wilner: Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? 

Dr. Merino: I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in Neurology and most serious medical journals.
 

Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity

Andrew N. Wilner, MD: My guest today is Dr. Jose Merino, editor in chief of the Neurology family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.

Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. 

Jose G. Merino, MD, MPhil: Thank you for having me here. It’s a pleasure.
 

Open Access Defined

Dr. Wilner: I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? 

Dr. Merino: Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. 

The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.

This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. 

Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. 

Dr. Wilner: I remember that when a journal article was published, say, in Neurology, if you didn’t have a subscription to Neurology, you went to the library that hopefully had a subscription.

If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? 

Dr. Merino: It depends on how the paper is published. For example, in Neurology, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.

That’s the case for papers published in our wholly open-access journals in the Neurology family like Neurology Neuroimmunology & Neuroinflammation, Neurology Genetics, or Neurology Education

For other papers that are published in Neurology, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. 

In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.
 

 

 

Is Pay to Publish a Red Flag?

Dr. Wilner: I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, Neurology, you don’t get paid as an author for the publication. Your reward is the honor of it being published. 

Neurology supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. 

With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. 

Dr. Merino: This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. 

Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. 

That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. 

Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. 

Dr. Wilner: This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? 
 

Predatory Journals

Dr. Merino: That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. 

The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. 

Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. 

There are certain checklists. Dr. David Moher at the University of Toronto has produced some work trying to help us identify predatory journals

One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?

If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. 

I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. 

I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like BMC or PLOS, that are completely open-access and legitimate journals. 
 

 

 

Impact Factor

Dr. Wilner: What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. 

Dr. Merino: Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. 

It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. 

Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. 

This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. 

I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” 

There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. 

If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. 

I think it’s important to look more at the audience and the journal scope when you submit your papers. 

Dr. Wilner: One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? 

Dr. Merino: I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. 

That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.

Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. 

Dr. Wilner: I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. 

There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? 

Dr. Merino: Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. 

Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that we need less research, but we need better research. 

We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. 

Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. 

The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. 

Dr. Wilner: Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? 

Dr. Merino: I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in Neurology and most serious medical journals.
 

Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168533</fileName> <TBEID>0C050BBC.SIG</TBEID> <TBUniqueIdentifier>MD_0C050BBC</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240625T142624</QCDate> <firstPublished>20240625T142702</firstPublished> <LastPublished>20240625T142702</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240625T142702</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Wilner and Merino</byline> <bylineText>ANDREW N. WILNER, MD, AND JOSE G. MERINO, MD, MPHIL</bylineText> <bylineFull>ANDREW N. WILNER, MD, AND JOSE G. MERINO, MD, MPHIL</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>Opinion</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think</metaDescription> <articlePDF/> <teaserImage/> <teaser>Physicians discuss various publishing models, and what journal characteristics to look out for as predatory.</teaser> <title>Is This Journal Legit? Open Access and Predatory Publishers</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>cpn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>hemn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>idprac</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdemed</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>5</term> <term>6</term> <term>34</term> <term>9</term> <term>13</term> <term canonical="true">15</term> <term>18</term> <term>20</term> <term>21</term> <term>58877</term> <term>52226</term> <term>22</term> <term>23</term> <term>31</term> <term>25</term> </publications> <sections> <term>39313</term> <term canonical="true">52</term> </sections> <topics> <term canonical="true">38029</term> <term>278</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Is This Journal Legit? Open Access and Predatory Publishers</title> <deck/> </itemMeta> <itemContent> <p><em>This transcript has been edited for clarity</em>. <br/><br/><strong>Andrew N. Wilner, MD:</strong> My guest today is Dr. Jose Merino, editor in chief of the <em>Neurology</em> family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.</p> <p>Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. <br/><br/><strong>Jose G. Merino, MD, MPhil:</strong> Thank you for having me here. It’s a pleasure.<br/><br/></p> <h2>Open Access Defined</h2> <p><strong>Dr. Wilner:</strong> I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? </p> <p><strong>Dr. Merino:</strong> Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. <br/><br/>The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.<br/><br/>This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. <br/><br/><span class="tag metaDescription">Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. </span><br/><br/><strong>Dr. Wilner:</strong> I remember that when a journal article was published, say, in <em>Neurology</em>, if you didn’t have a subscription to <em>Neurology</em>, you went to the library that hopefully had a subscription.<br/><br/>If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? <br/><br/><strong>Dr. Merino:</strong> It depends on how the paper is published. For example, in <em>Neurology</em>, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.<br/><br/>That’s the case for papers published in our wholly open-access journals in the <em>Neurology</em> family like <em>Neurology Neuroimmunology &amp; Neuroinflammation</em>, <em>Neurology Genetics</em>, or <em>Neurology Education</em>. <br/><br/>For other papers that are published in <em>Neurology</em>, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. <br/><br/>In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.<br/><br/></p> <h2>Is Pay to Publish a Red Flag?</h2> <p><strong>Dr. Wilner:</strong> I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, <em>Neurology</em>, you don’t get paid as an author for the publication. Your reward is the honor of it being published. </p> <p><em>Neurology</em> supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. <br/><br/>With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. <br/><br/><strong>Dr. Merino:</strong> This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. <br/><br/>Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. <br/><br/>That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. <br/><br/>Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. <br/><br/><strong>Dr. Wilner:</strong> This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? <br/><br/></p> <h2>Predatory Journals</h2> <p><strong>Dr. Merino:</strong> That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. </p> <p>The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. <br/><br/>Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. <br/><br/>There are <a href="https://doi.org/10.1186/s12916-020-01566-1">certain checklists</a>. Dr. David Moher at the University of Toronto has <a href="https://doi.org/10.1136/bmjopen-2019-035561">produced some work</a> trying to help us <a href="https://onesearch.library.utoronto.ca/deceptive-publishing">identify predatory journals</a>. <br/><br/>One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?<br/><br/>If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. <br/><br/>I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. <br/><br/>I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like <em>BMC</em> or <em>PLOS</em>, that are completely open-access and legitimate journals. <br/><br/></p> <h2>Impact Factor</h2> <p><strong>Dr. Wilner:</strong> What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. </p> <p><strong>Dr. Merino:</strong> Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. <br/><br/>It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. <br/><br/>Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. <br/><br/>This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. <br/><br/>I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” <br/><br/>There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. <br/><br/>If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. <br/><br/>I think it’s important to look more at the audience and the journal scope when you submit your papers. <br/><br/><strong>Dr. Wilner:</strong> One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? <br/><br/><strong>Dr. Merino:</strong> I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. <br/><br/>That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.<br/><br/>Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. <br/><br/><strong>Dr. Wilner:</strong> I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. <br/><br/>There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? <br/><br/><strong>Dr. Merino:</strong> Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. <br/><br/>Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that <a href="https://doi.org/10.1136/bmj.308.6924.283">we need less research</a>, but we need better research. <br/><br/>We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. <br/><br/>Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. <br/><br/>The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. <br/><br/><strong>Dr. Wilner:</strong> Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? <br/><br/><strong>Dr. Merino:</strong> I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in <em>Neurology</em> and most serious medical journals.<br/><br/></p> <p> <em>Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.</em> </p> <p> <em>A version of this article first appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/this-journal-legit-open-access-and-predatory-publishers-2024a10009pv?ecd=wnl_tp10_daily_240624_MSCPEDIT_etid6620041&amp;uac=227153BR&amp;impID=6620041">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Akira Endo, the Father of Statins, Dies

Article Type
Changed
Mon, 06/24/2024 - 13:53

Akira Endo, PhD, the Japanese microbiologist and biochemist known as the father of statins, died at the age of 90 on June 5. His research led to the discovery and rise of a class of drugs that revolutionized the prevention and treatment of cardiovascular diseases. This scientific journey began over half a century ago.

Inspired by Alexander Fleming

Born into a family of farmers in northern Japan, Dr. Endo was fascinated by natural sciences from a young age and showed a particular interest in fungi and molds. At the age of 10, he already knew he wanted to become a scientist.

He studied in Japan and the United States, conducting research at the Albert Einstein College of Medicine in New York City. He was struck by the high number of elderly and overweight individuals in the United States and realized the importance of developing a drug to combat cholesterol. It was upon his return to Japan, when he joined the Sankyo laboratory, that the development of statins began.

Inspired by Alexander Fleming, who discovered penicillin in the mold Penicillium, he hypothesized that fungi could produce antibiotics inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme that produces cholesterol precursors.

After a year of research on nearly 3800 strains, his team found a known substance, citrinin, that strongly inhibited HMG-CoA reductase and lowered serum cholesterol levels in rats. The research was halted because of its toxicity to the rodents’ kidneys. “Nevertheless, the experience with citrinin gave us hope and courage to quickly discover much more effective active substances,” said Dr. Endo in an article dedicated to the discovery of statins.
 

First Statin Discovered

In the summer of 1972, researchers discovered a second active culture broth, Penicillium citrinum Pen-51, which was isolated from a sample of rice collected in a grain store in Kyoto.

In July 1973, they isolated three active metabolites from this mold, one of which was compactin, which had structural similarities to HMG-CoA, the substrate of the HMG-CoA reductase reaction.

In 1976, they published two articles reporting the discovery and characterization of compactin (mevastatin), the first statin.
 

Several Setbacks

Unfortunately, when Sankyo biologists assessed the effectiveness of compactin by giving rats a diet supplemented with compactin for 7 days, no reduction in serum cholesterol was observed.

Only later did an unpublished study show that the statin significantly decreased plasma cholesterol after a month of treatment in laying hens. The hypocholesterolemic effects of compactin were then demonstrated in dogs and monkeys.

However, researchers faced a second challenge in April 1977. Microcrystalline structures were detected in the liver cells of rats that had been fed extremely high amounts of compactin (over 500 mg/kg per day for 5 weeks). Initially deemed toxic, the structures were ultimately found to be nontoxic.

A phase 2 trial began in the summer of 1979 with very encouraging preliminary results, but in August 1980, clinical development of compactin was halted, as the drug was suspected of causing lymphomas in dogs given very high doses: 100 or 200 mg/kg per day for 2 years.

This suspicion also led to the termination of trials on another statin, the closely related lovastatin, which was discovered simultaneously from different fungi by the Merck laboratory and Dr. Endo in February 1979.
 

 

 

First Statin Marketed

Subsequently, dramatic reductions in cholesterol levels observed in patients prompted Merck to conduct large-scale clinical trials of lovastatin in high-risk patients and long-term toxicity studies in dogs in 1984.

It was confirmed that the drug significantly reduced cholesterol levels and was well tolerated. No tumors were detected.

Lovastatin received approval from the Food and Drug Administration to become the first marketed statin in September 1987.

Dr. Endo received numerous awards for his work, including the Albert Lasker Award for Clinical Medical Research in 2008 and the Outstanding Achievement Award from the International Atherosclerosis Society in 2009.

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Akira Endo, PhD, the Japanese microbiologist and biochemist known as the father of statins, died at the age of 90 on June 5. His research led to the discovery and rise of a class of drugs that revolutionized the prevention and treatment of cardiovascular diseases. This scientific journey began over half a century ago.

Inspired by Alexander Fleming

Born into a family of farmers in northern Japan, Dr. Endo was fascinated by natural sciences from a young age and showed a particular interest in fungi and molds. At the age of 10, he already knew he wanted to become a scientist.

He studied in Japan and the United States, conducting research at the Albert Einstein College of Medicine in New York City. He was struck by the high number of elderly and overweight individuals in the United States and realized the importance of developing a drug to combat cholesterol. It was upon his return to Japan, when he joined the Sankyo laboratory, that the development of statins began.

Inspired by Alexander Fleming, who discovered penicillin in the mold Penicillium, he hypothesized that fungi could produce antibiotics inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme that produces cholesterol precursors.

After a year of research on nearly 3800 strains, his team found a known substance, citrinin, that strongly inhibited HMG-CoA reductase and lowered serum cholesterol levels in rats. The research was halted because of its toxicity to the rodents’ kidneys. “Nevertheless, the experience with citrinin gave us hope and courage to quickly discover much more effective active substances,” said Dr. Endo in an article dedicated to the discovery of statins.
 

First Statin Discovered

In the summer of 1972, researchers discovered a second active culture broth, Penicillium citrinum Pen-51, which was isolated from a sample of rice collected in a grain store in Kyoto.

In July 1973, they isolated three active metabolites from this mold, one of which was compactin, which had structural similarities to HMG-CoA, the substrate of the HMG-CoA reductase reaction.

In 1976, they published two articles reporting the discovery and characterization of compactin (mevastatin), the first statin.
 

Several Setbacks

Unfortunately, when Sankyo biologists assessed the effectiveness of compactin by giving rats a diet supplemented with compactin for 7 days, no reduction in serum cholesterol was observed.

Only later did an unpublished study show that the statin significantly decreased plasma cholesterol after a month of treatment in laying hens. The hypocholesterolemic effects of compactin were then demonstrated in dogs and monkeys.

However, researchers faced a second challenge in April 1977. Microcrystalline structures were detected in the liver cells of rats that had been fed extremely high amounts of compactin (over 500 mg/kg per day for 5 weeks). Initially deemed toxic, the structures were ultimately found to be nontoxic.

A phase 2 trial began in the summer of 1979 with very encouraging preliminary results, but in August 1980, clinical development of compactin was halted, as the drug was suspected of causing lymphomas in dogs given very high doses: 100 or 200 mg/kg per day for 2 years.

This suspicion also led to the termination of trials on another statin, the closely related lovastatin, which was discovered simultaneously from different fungi by the Merck laboratory and Dr. Endo in February 1979.
 

 

 

First Statin Marketed

Subsequently, dramatic reductions in cholesterol levels observed in patients prompted Merck to conduct large-scale clinical trials of lovastatin in high-risk patients and long-term toxicity studies in dogs in 1984.

It was confirmed that the drug significantly reduced cholesterol levels and was well tolerated. No tumors were detected.

Lovastatin received approval from the Food and Drug Administration to become the first marketed statin in September 1987.

Dr. Endo received numerous awards for his work, including the Albert Lasker Award for Clinical Medical Research in 2008 and the Outstanding Achievement Award from the International Atherosclerosis Society in 2009.

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Akira Endo, PhD, the Japanese microbiologist and biochemist known as the father of statins, died at the age of 90 on June 5. His research led to the discovery and rise of a class of drugs that revolutionized the prevention and treatment of cardiovascular diseases. This scientific journey began over half a century ago.

Inspired by Alexander Fleming

Born into a family of farmers in northern Japan, Dr. Endo was fascinated by natural sciences from a young age and showed a particular interest in fungi and molds. At the age of 10, he already knew he wanted to become a scientist.

He studied in Japan and the United States, conducting research at the Albert Einstein College of Medicine in New York City. He was struck by the high number of elderly and overweight individuals in the United States and realized the importance of developing a drug to combat cholesterol. It was upon his return to Japan, when he joined the Sankyo laboratory, that the development of statins began.

Inspired by Alexander Fleming, who discovered penicillin in the mold Penicillium, he hypothesized that fungi could produce antibiotics inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme that produces cholesterol precursors.

After a year of research on nearly 3800 strains, his team found a known substance, citrinin, that strongly inhibited HMG-CoA reductase and lowered serum cholesterol levels in rats. The research was halted because of its toxicity to the rodents’ kidneys. “Nevertheless, the experience with citrinin gave us hope and courage to quickly discover much more effective active substances,” said Dr. Endo in an article dedicated to the discovery of statins.
 

First Statin Discovered

In the summer of 1972, researchers discovered a second active culture broth, Penicillium citrinum Pen-51, which was isolated from a sample of rice collected in a grain store in Kyoto.

In July 1973, they isolated three active metabolites from this mold, one of which was compactin, which had structural similarities to HMG-CoA, the substrate of the HMG-CoA reductase reaction.

In 1976, they published two articles reporting the discovery and characterization of compactin (mevastatin), the first statin.
 

Several Setbacks

Unfortunately, when Sankyo biologists assessed the effectiveness of compactin by giving rats a diet supplemented with compactin for 7 days, no reduction in serum cholesterol was observed.

Only later did an unpublished study show that the statin significantly decreased plasma cholesterol after a month of treatment in laying hens. The hypocholesterolemic effects of compactin were then demonstrated in dogs and monkeys.

However, researchers faced a second challenge in April 1977. Microcrystalline structures were detected in the liver cells of rats that had been fed extremely high amounts of compactin (over 500 mg/kg per day for 5 weeks). Initially deemed toxic, the structures were ultimately found to be nontoxic.

A phase 2 trial began in the summer of 1979 with very encouraging preliminary results, but in August 1980, clinical development of compactin was halted, as the drug was suspected of causing lymphomas in dogs given very high doses: 100 or 200 mg/kg per day for 2 years.

This suspicion also led to the termination of trials on another statin, the closely related lovastatin, which was discovered simultaneously from different fungi by the Merck laboratory and Dr. Endo in February 1979.
 

 

 

First Statin Marketed

Subsequently, dramatic reductions in cholesterol levels observed in patients prompted Merck to conduct large-scale clinical trials of lovastatin in high-risk patients and long-term toxicity studies in dogs in 1984.

It was confirmed that the drug significantly reduced cholesterol levels and was well tolerated. No tumors were detected.

Lovastatin received approval from the Food and Drug Administration to become the first marketed statin in September 1987.

Dr. Endo received numerous awards for his work, including the Albert Lasker Award for Clinical Medical Research in 2008 and the Outstanding Achievement Award from the International Atherosclerosis Society in 2009.

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168524</fileName> <TBEID>0C050B55.SIG</TBEID> <TBUniqueIdentifier>MD_0C050B55</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240624T134327</QCDate> <firstPublished>20240624T135052</firstPublished> <LastPublished>20240624T135052</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240624T135052</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Aude Lecrubier</byline> <bylineText>AUDE LECRUBIER</bylineText> <bylineFull>AUDE LECRUBIER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Subsequently, dramatic reductions in cholesterol levels observed in patients prompted Merck to conduct large-scale clinical trials of lovastatin in high-risk pa</metaDescription> <articlePDF/> <teaserImage/> <teaser>Japanese microbiologist and biochemist discovered statins, inspired by the discovery of penicillin.</teaser> <title>Akira Endo, the Father of Statins, Dies</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">5</term> <term>6</term> <term>15</term> <term>21</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">239</term> <term>194</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Akira Endo, the Father of Statins, Dies</title> <deck/> </itemMeta> <itemContent> <p>Akira Endo, PhD, the Japanese microbiologist and biochemist known as the father of statins, died at the age of 90 on June 5. His research led to the discovery and rise of a class of drugs that revolutionized the prevention and treatment of cardiovascular diseases. This scientific journey began over half a century ago.</p> <h2>Inspired by Alexander Fleming</h2> <p>Born into a family of farmers in northern Japan, Dr. Endo was fascinated by natural sciences from a young age and showed a particular interest in fungi and molds. At the age of 10, he already knew he wanted to become a scientist.</p> <p>He studied in Japan and the United States, conducting research at the Albert Einstein College of Medicine in New York City. He was struck by the high number of elderly and overweight individuals in the United States and realized the importance of developing a drug to combat cholesterol. It was upon his return to Japan, when he joined the Sankyo laboratory, that the development of statins began.<br/><br/>Inspired by Alexander Fleming, who discovered penicillin in the mold <em>Penicillium</em>, he hypothesized that fungi could produce antibiotics inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme that produces cholesterol precursors.<br/><br/>After a year of research on nearly 3800 strains, his team found a known substance, citrinin, that strongly inhibited HMG-CoA reductase and lowered serum cholesterol levels in rats. The research was halted because of its toxicity to the rodents’ kidneys. “Nevertheless, the experience with citrinin gave us hope and courage to quickly discover much more effective active substances,” said Dr. Endo in <a href="https://www.jstage.jst.go.jp/article/pjab/86/5/86_5_484/_article">an article</a> dedicated to the discovery of statins.<br/><br/></p> <h2>First Statin Discovered</h2> <p>In the summer of 1972, researchers discovered a second active culture broth, <em>Penicillium citrinum</em> Pen-51, which was isolated from a sample of rice collected in a grain store in Kyoto.</p> <p>In July 1973, they isolated three active metabolites from this mold, one of which was compactin, which had structural similarities to HMG-CoA, the substrate of the HMG-CoA reductase reaction.<br/><br/>In 1976, they published two articles reporting the discovery and characterization of compactin (mevastatin), the first statin.<br/><br/></p> <h2>Several Setbacks</h2> <p>Unfortunately, when Sankyo biologists assessed the effectiveness of compactin by giving rats a diet supplemented with compactin for 7 days, no reduction in serum cholesterol was observed.</p> <p>Only later did an unpublished study show that the statin significantly decreased plasma cholesterol after a month of treatment in laying hens. The hypocholesterolemic effects of compactin were then demonstrated in dogs and monkeys.<br/><br/>However, researchers faced a second challenge in April 1977. Microcrystalline structures were detected in the liver cells of rats that had been fed extremely high amounts of compactin (over 500 mg/kg per day for 5 weeks). Initially deemed toxic, the structures were ultimately found to be nontoxic.<br/><br/>A phase 2 trial began in the summer of 1979 with very encouraging preliminary results, but in August 1980, clinical development of compactin was halted, as the drug was suspected of causing lymphomas in dogs given very high doses: 100 or 200 mg/kg per day for 2 years.<br/><br/>This suspicion also led to the termination of trials on another statin, the closely related lovastatin, which was discovered simultaneously from different fungi by the Merck laboratory and Dr. Endo in February 1979.<br/><br/></p> <h2>First Statin Marketed</h2> <p><span class="tag metaDescription">Subsequently, dramatic reductions in cholesterol levels observed in patients prompted Merck to conduct large-scale clinical trials of lovastatin in high-risk patients and long-term toxicity studies in dogs in 1984.</span> </p> <p>It was confirmed that the drug significantly reduced cholesterol levels and was well tolerated. No tumors were detected.<br/><br/>Lovastatin received approval from the Food and Drug Administration to become the first marketed statin in September 1987.<br/><br/>Dr. Endo received numerous awards for his work, including the Albert Lasker Award for Clinical Medical Research in 2008 and the Outstanding Achievement Award from the International Atherosclerosis Society in 2009.<span class="end"/></p> <p> <em>This story was translated from the <a href="https://francais.medscape.com/voirarticle/3611558">Medscape French edition</a> using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.<br/><br/>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/akira-endo-father-statins-dies-2024a1000bmg">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Ghrelin Paradox: Unlocking New Avenues in Obesity Management

Article Type
Changed
Mon, 06/24/2024 - 13:28

Despite their best efforts, 80% of people who lose weight regain it and many end up heavier within 5 years. Why? Our bodies fight back, revving up hunger while slowing metabolism after weight loss. In ongoing obesity discussions, ghrelin is in the spotlight as the “hunger hormone” playing a crucial role in driving appetite and facilitating weight gain. 

Weight loss interventions, such as diet or gastric bypass surgery, may trigger an increase in ghrelin levels, potentially fueling long-term weight gain. Consequently, ghrelin remains a focal point of research into innovative antiobesity treatments. 

Ghrelin, a hormone produced in the stomach, is often called the “hunger hormone.” Ghrelin is a circulating orexigenic gut hormone with growth hormone–releasing activity. In the intricate balance of energy, central and peripheral peptides such as ghrelin, leptin, adiponectin, and insulin play crucial roles. They regulate hunger, fullness, and metabolic rates, shaping our body weight outcomes. 

Since the discovery of ghrelin, in 1999, research in mice and people has focused on its effect on regulating appetite and implications for long-term weight control. When hunger strikes, ghrelin levels surge, sending signals to the brain that ramp up the appetite. Following a meal, ghrelin decreases, indicating fullness. 

Studies have found that people who were injected with subcutaneous ghrelin experienced a 46% increase in hunger and ate 28% more at their next meal than those who didn’t receive a ghrelin injection.

We might expect high levels of ghrelin in individuals with obesity, but this is not the case. In fact, ghrelin levels are typically lower in individuals with obesity than in leaner individuals. This finding might seem to contradict the idea that obesity is due to high levels of the hunger hormone

Excess weight could increase sensitivity to ghrelin, where more receptors lead to higher hunger stimulation with less ghrelin. Beyond hunger, ghrelin can also lead us to eat for comfort, as when stressed or anxious. Ghrelin and synthetic ghrelin mimetics increase body weight and fat mass by activating receptors in the arcuate nucleus of the hypothalamus (Müller et al.Bany Bakar et al.). There, it also activates the brain’s reward pathways, making us crave food even when we are not hungry. This connection between ghrelin and emotional eating can contribute to stress-induced obesity. 

In my clinical practice, I have seen individuals gain maximum weight when they are under more stress and are sleep-deprived. This is because ghrelin levels increased in these scenarios. This elevation of ghrelin in high-stress, low-sleep situations affects weight gain in women during the postpartum period and menopause

Evidence also suggests that certain foods affect ghrelin levels. After a person eats carbohydrates, their ghrelin levels initially decrease quickly, but this is followed by a rise in ghrelin, leading them to become hungry again. In contrast, protein intake helps suppress ghrelin levels for longer. Hence, we advise patients to increase protein intake while reducing their carb intake, or to always eat protein along with carbs.

It makes sense that when individuals with obesity lose weight by fasting or caloric restriction and try to maintain that weight loss, their bodies tend to produce more ghrelin. This effect might explain why people who lose weight often find it hard to keep it off: Rising ghrelin levels after weight loss might drive them to eat more and regain weight. 

Two prominent weight loss surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), have opposite effects on ghrelin levels, reflecting their distinct mechanisms for weight loss. SG involves removal of the gastric fundus, where ghrelin is produced, resulting in a significant decrease in ghrelin levels; RYGB operates through malabsorption without directly affecting ghrelin production. Despite these differing approaches, both techniques demonstrate remarkable weight loss efficacy. Research comparing the two procedures reveals that SG leads to decreased fasting plasma ghrelin levels, whereas RYGB prompts an increase, highlighting the additional appetite-reducing mechanism of SG through ghrelin suppression. This contrast underscores the intricate role of ghrelin in appetite regulation and suggests that its manipulation can significantly influence weight loss outcomes.

With the effect of ghrelin in stimulating appetite being established, other studies have explored the relationship between ghrelin and insulin resistance. A meta-analysis by researchers at Qingdao University, Qingdao, China, found that circulating ghrelin levels were negatively correlated with insulin resistance in individuals with obesity and normal fasting glucose levels. The findings suggest that the role of ghrelin in obesity might extend beyond appetite regulation to influence metabolic pathways and that ghrelin may be a marker for predicting obesity.

Researchers are exploring potential therapeutic targets focusing on ghrelin modulation. Although selective neutralization of ghrelin has not yielded consistent results in rodent models, the interplay between ghrelin and LEAP2— a hormone that attaches to the same brain receptors — could be an area of interest for future obesity treatments.

Could ghrelin be the key to tackling obesity? Blocking ghrelin pharmacologically might be a strategy to keep weight off after weight loss, and it could help prevent the typical rebound effect seen with diets and withdrawal of medications. Considering the high rates of weight regain after diet-induced weight loss and withdrawal of weight loss medications, targeting ghrelin might be the missing link in long-term obesity treatment. It could be a valuable approach to improving long-term outcomes for obesity. However, these blockers might have significant side effects, given that ghrelin affects not only hunger but also the brain’s reward and pleasure centers. Therefore, caution will be needed in developing such medications owing to their potential impact on mood and mental health.

With ghrelin playing roles in hunger, reward pathways, and energy regulation, understanding this hormone is crucial in the fight against obesity. Stay tuned for future research that could shed light on the underlying mechanisms at play and hopefully results in clinical action steps.

Dimpi Desai, MD, is a professor in the Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, California, and has disclosed no relevant financial relationships. Ashni Dharia, MD, is a resident in the Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Despite their best efforts, 80% of people who lose weight regain it and many end up heavier within 5 years. Why? Our bodies fight back, revving up hunger while slowing metabolism after weight loss. In ongoing obesity discussions, ghrelin is in the spotlight as the “hunger hormone” playing a crucial role in driving appetite and facilitating weight gain. 

Weight loss interventions, such as diet or gastric bypass surgery, may trigger an increase in ghrelin levels, potentially fueling long-term weight gain. Consequently, ghrelin remains a focal point of research into innovative antiobesity treatments. 

Ghrelin, a hormone produced in the stomach, is often called the “hunger hormone.” Ghrelin is a circulating orexigenic gut hormone with growth hormone–releasing activity. In the intricate balance of energy, central and peripheral peptides such as ghrelin, leptin, adiponectin, and insulin play crucial roles. They regulate hunger, fullness, and metabolic rates, shaping our body weight outcomes. 

Since the discovery of ghrelin, in 1999, research in mice and people has focused on its effect on regulating appetite and implications for long-term weight control. When hunger strikes, ghrelin levels surge, sending signals to the brain that ramp up the appetite. Following a meal, ghrelin decreases, indicating fullness. 

Studies have found that people who were injected with subcutaneous ghrelin experienced a 46% increase in hunger and ate 28% more at their next meal than those who didn’t receive a ghrelin injection.

We might expect high levels of ghrelin in individuals with obesity, but this is not the case. In fact, ghrelin levels are typically lower in individuals with obesity than in leaner individuals. This finding might seem to contradict the idea that obesity is due to high levels of the hunger hormone

Excess weight could increase sensitivity to ghrelin, where more receptors lead to higher hunger stimulation with less ghrelin. Beyond hunger, ghrelin can also lead us to eat for comfort, as when stressed or anxious. Ghrelin and synthetic ghrelin mimetics increase body weight and fat mass by activating receptors in the arcuate nucleus of the hypothalamus (Müller et al.Bany Bakar et al.). There, it also activates the brain’s reward pathways, making us crave food even when we are not hungry. This connection between ghrelin and emotional eating can contribute to stress-induced obesity. 

In my clinical practice, I have seen individuals gain maximum weight when they are under more stress and are sleep-deprived. This is because ghrelin levels increased in these scenarios. This elevation of ghrelin in high-stress, low-sleep situations affects weight gain in women during the postpartum period and menopause

Evidence also suggests that certain foods affect ghrelin levels. After a person eats carbohydrates, their ghrelin levels initially decrease quickly, but this is followed by a rise in ghrelin, leading them to become hungry again. In contrast, protein intake helps suppress ghrelin levels for longer. Hence, we advise patients to increase protein intake while reducing their carb intake, or to always eat protein along with carbs.

It makes sense that when individuals with obesity lose weight by fasting or caloric restriction and try to maintain that weight loss, their bodies tend to produce more ghrelin. This effect might explain why people who lose weight often find it hard to keep it off: Rising ghrelin levels after weight loss might drive them to eat more and regain weight. 

Two prominent weight loss surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), have opposite effects on ghrelin levels, reflecting their distinct mechanisms for weight loss. SG involves removal of the gastric fundus, where ghrelin is produced, resulting in a significant decrease in ghrelin levels; RYGB operates through malabsorption without directly affecting ghrelin production. Despite these differing approaches, both techniques demonstrate remarkable weight loss efficacy. Research comparing the two procedures reveals that SG leads to decreased fasting plasma ghrelin levels, whereas RYGB prompts an increase, highlighting the additional appetite-reducing mechanism of SG through ghrelin suppression. This contrast underscores the intricate role of ghrelin in appetite regulation and suggests that its manipulation can significantly influence weight loss outcomes.

With the effect of ghrelin in stimulating appetite being established, other studies have explored the relationship between ghrelin and insulin resistance. A meta-analysis by researchers at Qingdao University, Qingdao, China, found that circulating ghrelin levels were negatively correlated with insulin resistance in individuals with obesity and normal fasting glucose levels. The findings suggest that the role of ghrelin in obesity might extend beyond appetite regulation to influence metabolic pathways and that ghrelin may be a marker for predicting obesity.

Researchers are exploring potential therapeutic targets focusing on ghrelin modulation. Although selective neutralization of ghrelin has not yielded consistent results in rodent models, the interplay between ghrelin and LEAP2— a hormone that attaches to the same brain receptors — could be an area of interest for future obesity treatments.

Could ghrelin be the key to tackling obesity? Blocking ghrelin pharmacologically might be a strategy to keep weight off after weight loss, and it could help prevent the typical rebound effect seen with diets and withdrawal of medications. Considering the high rates of weight regain after diet-induced weight loss and withdrawal of weight loss medications, targeting ghrelin might be the missing link in long-term obesity treatment. It could be a valuable approach to improving long-term outcomes for obesity. However, these blockers might have significant side effects, given that ghrelin affects not only hunger but also the brain’s reward and pleasure centers. Therefore, caution will be needed in developing such medications owing to their potential impact on mood and mental health.

With ghrelin playing roles in hunger, reward pathways, and energy regulation, understanding this hormone is crucial in the fight against obesity. Stay tuned for future research that could shed light on the underlying mechanisms at play and hopefully results in clinical action steps.

Dimpi Desai, MD, is a professor in the Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, California, and has disclosed no relevant financial relationships. Ashni Dharia, MD, is a resident in the Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania.

A version of this article appeared on Medscape.com.

Despite their best efforts, 80% of people who lose weight regain it and many end up heavier within 5 years. Why? Our bodies fight back, revving up hunger while slowing metabolism after weight loss. In ongoing obesity discussions, ghrelin is in the spotlight as the “hunger hormone” playing a crucial role in driving appetite and facilitating weight gain. 

Weight loss interventions, such as diet or gastric bypass surgery, may trigger an increase in ghrelin levels, potentially fueling long-term weight gain. Consequently, ghrelin remains a focal point of research into innovative antiobesity treatments. 

Ghrelin, a hormone produced in the stomach, is often called the “hunger hormone.” Ghrelin is a circulating orexigenic gut hormone with growth hormone–releasing activity. In the intricate balance of energy, central and peripheral peptides such as ghrelin, leptin, adiponectin, and insulin play crucial roles. They regulate hunger, fullness, and metabolic rates, shaping our body weight outcomes. 

Since the discovery of ghrelin, in 1999, research in mice and people has focused on its effect on regulating appetite and implications for long-term weight control. When hunger strikes, ghrelin levels surge, sending signals to the brain that ramp up the appetite. Following a meal, ghrelin decreases, indicating fullness. 

Studies have found that people who were injected with subcutaneous ghrelin experienced a 46% increase in hunger and ate 28% more at their next meal than those who didn’t receive a ghrelin injection.

We might expect high levels of ghrelin in individuals with obesity, but this is not the case. In fact, ghrelin levels are typically lower in individuals with obesity than in leaner individuals. This finding might seem to contradict the idea that obesity is due to high levels of the hunger hormone

Excess weight could increase sensitivity to ghrelin, where more receptors lead to higher hunger stimulation with less ghrelin. Beyond hunger, ghrelin can also lead us to eat for comfort, as when stressed or anxious. Ghrelin and synthetic ghrelin mimetics increase body weight and fat mass by activating receptors in the arcuate nucleus of the hypothalamus (Müller et al.Bany Bakar et al.). There, it also activates the brain’s reward pathways, making us crave food even when we are not hungry. This connection between ghrelin and emotional eating can contribute to stress-induced obesity. 

In my clinical practice, I have seen individuals gain maximum weight when they are under more stress and are sleep-deprived. This is because ghrelin levels increased in these scenarios. This elevation of ghrelin in high-stress, low-sleep situations affects weight gain in women during the postpartum period and menopause

Evidence also suggests that certain foods affect ghrelin levels. After a person eats carbohydrates, their ghrelin levels initially decrease quickly, but this is followed by a rise in ghrelin, leading them to become hungry again. In contrast, protein intake helps suppress ghrelin levels for longer. Hence, we advise patients to increase protein intake while reducing their carb intake, or to always eat protein along with carbs.

It makes sense that when individuals with obesity lose weight by fasting or caloric restriction and try to maintain that weight loss, their bodies tend to produce more ghrelin. This effect might explain why people who lose weight often find it hard to keep it off: Rising ghrelin levels after weight loss might drive them to eat more and regain weight. 

Two prominent weight loss surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), have opposite effects on ghrelin levels, reflecting their distinct mechanisms for weight loss. SG involves removal of the gastric fundus, where ghrelin is produced, resulting in a significant decrease in ghrelin levels; RYGB operates through malabsorption without directly affecting ghrelin production. Despite these differing approaches, both techniques demonstrate remarkable weight loss efficacy. Research comparing the two procedures reveals that SG leads to decreased fasting plasma ghrelin levels, whereas RYGB prompts an increase, highlighting the additional appetite-reducing mechanism of SG through ghrelin suppression. This contrast underscores the intricate role of ghrelin in appetite regulation and suggests that its manipulation can significantly influence weight loss outcomes.

With the effect of ghrelin in stimulating appetite being established, other studies have explored the relationship between ghrelin and insulin resistance. A meta-analysis by researchers at Qingdao University, Qingdao, China, found that circulating ghrelin levels were negatively correlated with insulin resistance in individuals with obesity and normal fasting glucose levels. The findings suggest that the role of ghrelin in obesity might extend beyond appetite regulation to influence metabolic pathways and that ghrelin may be a marker for predicting obesity.

Researchers are exploring potential therapeutic targets focusing on ghrelin modulation. Although selective neutralization of ghrelin has not yielded consistent results in rodent models, the interplay between ghrelin and LEAP2— a hormone that attaches to the same brain receptors — could be an area of interest for future obesity treatments.

Could ghrelin be the key to tackling obesity? Blocking ghrelin pharmacologically might be a strategy to keep weight off after weight loss, and it could help prevent the typical rebound effect seen with diets and withdrawal of medications. Considering the high rates of weight regain after diet-induced weight loss and withdrawal of weight loss medications, targeting ghrelin might be the missing link in long-term obesity treatment. It could be a valuable approach to improving long-term outcomes for obesity. However, these blockers might have significant side effects, given that ghrelin affects not only hunger but also the brain’s reward and pleasure centers. Therefore, caution will be needed in developing such medications owing to their potential impact on mood and mental health.

With ghrelin playing roles in hunger, reward pathways, and energy regulation, understanding this hormone is crucial in the fight against obesity. Stay tuned for future research that could shed light on the underlying mechanisms at play and hopefully results in clinical action steps.

Dimpi Desai, MD, is a professor in the Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, California, and has disclosed no relevant financial relationships. Ashni Dharia, MD, is a resident in the Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168526</fileName> <TBEID>0C050B57.SIG</TBEID> <TBUniqueIdentifier>MD_0C050B57</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240624T131405</QCDate> <firstPublished>20240624T132546</firstPublished> <LastPublished>20240624T132546</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240624T132546</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Dimpi Desai, MD</byline> <bylineText>DIMPI DESAI, MD; ASHNI DHARIA, MD</bylineText> <bylineFull>DIMPI DESAI, MD; ASHNI DHARIA, MD</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>In the intricate balance of energy, central and peripheral peptides such as ghrelin, leptin, adiponectin, and insulin play crucial roles. They regulate hunger, </metaDescription> <articlePDF/> <teaserImage/> <teaser>The hunger hormone’s role in appetite and weight gain may be an option for weight management as researchers look to therapeutic modulation. </teaser> <title>Ghrelin Paradox: Unlocking New Avenues in Obesity Management</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>5</term> <term canonical="true">34</term> <term>6</term> <term>21</term> <term>15</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">261</term> <term>205</term> <term>296</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Ghrelin Paradox: Unlocking New Avenues in Obesity Management</title> <deck/> </itemMeta> <itemContent> <p>Despite their best efforts, 80% of people who <span class="Hyperlink"><a href="https://www.sciencedirect.com/science/article/abs/pii/S0025712517301360?via%3Dihub">lose weight</a></span> regain it and many end up heavier within 5 years. Why? Our bodies fight back, revving up hunger while slowing metabolism after weight loss. In ongoing <span class="Hyperlink">obesity</span> discussions, ghrelin is in the spotlight as the “hunger hormone” playing a crucial role in driving appetite and facilitating weight gain. </p> <p>Weight loss interventions, such as diet or <span class="Hyperlink">gastric bypass</span> surgery, may trigger an increase in ghrelin levels, potentially fueling long-term weight gain. Consequently, ghrelin remains a focal point of research into innovative antiobesity treatments. <br/><br/>Ghrelin, a hormone produced in the stomach, is often called the “hunger hormone.” Ghrelin is a circulating orexigenic gut hormone with growth hormone–releasing activity. <span class="tag metaDescription">In the intricate balance of energy, central and peripheral peptides such as ghrelin, leptin, adiponectin, and insulin play crucial roles. They regulate hunger, fullness, and metabolic rates, shaping our body weight outcomes.</span> <br/><br/>Since the discovery of ghrelin, in 1999, research in mice and people has focused on its effect on regulating appetite and implications for long-term weight control. When hunger strikes, ghrelin levels surge, sending signals to the brain that ramp up the appetite. Following a meal, <span class="Hyperlink"><a href="https://www.mdpi.com/2072-6643/11/3/493">ghrelin decreases</a></span>, indicating fullness. <br/><br/>Studies have found that people who were injected with <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/12686525/">subcutaneous ghrelin</a></span> experienced a 46% increase in hunger and ate 28% more at their next meal than those who didn’t receive a ghrelin injection.<br/><br/>We might expect high levels of ghrelin in individuals with obesity, but this is not the case. In fact, ghrelin levels are typically lower in individuals with obesity than in leaner individuals. This finding might seem to contradict the idea that obesity is due to high levels of the <span class="Hyperlink"><a href="https://academic.oup.com/jcem/article/89/2/936/2840818?login=false">hunger hormone</a></span>. <br/><br/>Excess weight could increase sensitivity to ghrelin, where more receptors lead to higher hunger stimulation with less ghrelin. Beyond hunger, ghrelin can also lead us to eat for comfort, as when stressed or anxious. Ghrelin and synthetic ghrelin mimetics increase body weight and fat mass by activating receptors in the arcuate nucleus of the hypothalamus (<span class="Hyperlink"><a href="https://www.sciencedirect.com/science/article/pii/S2212877815000605?via%3Dihub">Müller et al.</a></span>; <span class="Hyperlink"><a href="https://www.nature.com/articles/s41575-023-00830-y">Bany Bakar et al.</a></span>). There, it also activates the brain’s <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/23652396/">reward pathways</a></span>, making us crave food even when we are not hungry. This connection between ghrelin and emotional eating can contribute to stress-induced obesity. <br/><br/>In my clinical practice, I have seen individuals gain maximum weight when they are under more stress and are sleep-deprived. This is because ghrelin levels increased in these scenarios. This elevation of ghrelin in high-stress, low-sleep situations affects weight gain in women during the postpartum period and <span class="Hyperlink">menopause</span>. <br/><br/>Evidence also suggests that certain foods affect ghrelin levels. After a person eats carbohydrates, their ghrelin levels initially decrease quickly, but this is followed by a rise in ghrelin, leading them to become hungry again. In contrast, <span class="Hyperlink"><a href="https://onlinelibrary.wiley.com/doi/10.1155/2010/710852">protein intake</a></span> helps suppress ghrelin levels for longer. Hence, we advise patients to increase protein intake while reducing their carb intake, or to always eat protein along with carbs.<br/><br/>It makes sense that when individuals with obesity lose weight by fasting or caloric restriction and try to maintain that weight loss, their bodies tend to produce more ghrelin. This effect might explain why people who lose weight often find it hard to keep it off: Rising ghrelin levels after weight loss might drive them to eat more and regain weight. <br/><br/>Two prominent weight loss surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), have opposite effects on ghrelin levels, reflecting their distinct mechanisms for weight loss. SG involves removal of the gastric fundus, where ghrelin is produced, resulting in a significant decrease in ghrelin levels; RYGB operates through <span class="Hyperlink">malabsorption</span> without directly affecting ghrelin production. Despite these differing approaches, both techniques demonstrate remarkable weight loss efficacy. Research comparing the two procedures reveals that SG leads to decreased fasting plasma ghrelin levels, whereas RYGB prompts an increase, highlighting the additional appetite-reducing mechanism of SG through ghrelin suppression. This contrast underscores the intricate role of ghrelin in appetite regulation and suggests that its manipulation can significantly influence <span class="Hyperlink"><a href="https://link.springer.com/article/10.1007/s40618-018-0892-2">weight loss outcomes</a></span>.<br/><br/>With the effect of ghrelin in stimulating appetite being established, other studies have explored the relationship between ghrelin and <span class="Hyperlink">insulin resistance</span>. A meta-analysis by researchers at Qingdao University, Qingdao, China, found that <span class="Hyperlink"><a href="https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.01308/full">circulating ghrelin</a></span> levels were negatively correlated with insulin resistance in individuals with obesity and normal fasting glucose levels. The findings suggest that the role of ghrelin in obesity might extend beyond appetite regulation to influence metabolic pathways and that ghrelin may be a marker for predicting obesity.<br/><br/>Researchers are exploring potential therapeutic targets focusing on ghrelin modulation. Although selective neutralization of ghrelin has not yielded consistent results in rodent models, the interplay between <span class="Hyperlink"><a href="https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2021.717544/full">ghrelin and LEAP2</a></span>— a hormone that attaches to the same brain receptors — could be an area of interest for future obesity treatments.<br/><br/>Could ghrelin be the key to tackling obesity? Blocking ghrelin pharmacologically might be a strategy to keep weight off after weight loss, and it could help prevent the typical rebound effect seen with diets and withdrawal of medications. Considering the high rates of weight regain after diet-induced weight loss and withdrawal of weight loss medications, targeting ghrelin might be the missing link in long-term obesity treatment. It could be a valuable approach to improving long-term outcomes for obesity. However, these blockers might have significant side effects, given that ghrelin affects not only hunger but also the brain’s reward and pleasure centers. Therefore, caution will be needed in developing such medications owing to their potential impact on mood and mental health.<br/><br/>With ghrelin playing roles in hunger, reward pathways, and energy regulation, understanding this hormone is crucial in the fight against obesity. Stay tuned for future research that could shed light on the underlying mechanisms at play and hopefully results in clinical action steps.<br/><br/>Dimpi Desai, MD, is a professor in the Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, California, and has disclosed no relevant financial relationships. Ashni Dharia, MD, is a resident in the Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/ghrelin-paradox-unlocking-new-avenues-obesity-management-2024a1000bco">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Tirzepatide Reduces Sleep Interruptions, Halting Almost Half of CPAP Use

Article Type
Changed
Thu, 06/27/2024 - 15:26

— The diabetes and weight loss drug tirzepatide (Mounjaro for type 2 diabetes; Zepbound for obesity) was so effective at reducing sleep disruptions in patients with obesity and obstructive sleep apnea (OSA) that 40%-50% no longer needed to use a continuous positive airway pressure (CPAP) device, according to two new studies.

Tirzepatide, a long-acting glucose-dependent insulinotropic polypeptide (GIP) receptor agonist and glucagon-like peptide 1 (GLP-1) receptor agonist, also lowered C-reactive protein levels and systolic blood pressure. And patients taking the medication lost 18%-20% of their body weight. 

The SURMOUNT-OSA studies “mark a significant milestone in the treatment of OSA, offering a promising new therapeutic option that addresses both respiratory and metabolic complications,” said lead author Atul Malhotra, MD, professor of medicine at the University of California, San Diego, and director of sleep medicine at UC San Diego Health. 

The two double-blind, randomized, controlled trials in patients with obesity and moderate to severe OSA were conducted at 60 sites in nine countries. The results were presented at the American Diabetes Association (ADA) 84th Scientific Sessions and simultaneously published online in the New England Journal of Medicine.

OSA affects 1 billion people worldwide and 30 million American adults, many of whom are undiagnosed. Obesity is a common risk factor. According to the ADA, 40% of those with obesity have OSA and 70% of those with OSA have obesity. 

CPAP is an effective and the most-used intervention for OSA, but many patients refuse to use the device, stop using it, or cannot use it. Should tirzepatide eventually gain Food and Drug Administration approval for OSA, it would be the first drug approved for the condition.

“This new drug treatment offers a more accessible alternative for individuals who cannot tolerate or adhere to existing therapies,” said Dr. Malhotra.
 

Huge Reduction in Episodes, Severity

For the two studies, patients were enrolled who had moderate to severe OSA, defined as more than 15 events per hour (using the apnea-hypopnea index [AHI]) and a body mass index of 30 kg/m2 or greater. Those not using a CPAP device were enrolled in study 1, and those using a CPAP device were enrolled in study 2. 

Participants received either the maximum tolerated dose of tirzepatide (10 or 15 mg by once-weekly injection) or placebo for 1 year. In study 1, 114 individuals received tirzepatide and 120 received placebo. For study 2, 119 patients received tirzepatide and 114 received placebo. All participants received regular lifestyle counseling sessions about nutrition and were instructed to reduce food intake by 500 kcal/day and to engage in at least 150 min/week of physical activity.

Enrollment was limited to 70% men to ensure adequate representation of women.

At baseline, 65%-70% of participants had severe OSA, with more than 30 events/hour on the AHI scale and a mean of 51.5 events/hour.

By 1 year, patients taking tirzepatide had 27-30 fewer events/hour, compared with 4-6 fewer events/hour for those taking placebo.

Up to half of those who received tirzepatide in both trials had less than 5 events/hour or 5-14 AHI events/hour and an Epworth Sleepiness Scale score of 10 or less. Those thresholds “represent a level at which CPAP therapy may not be recommended,” wrote the authors.

Patients in the tirzepatide group also had a decrease in systolic blood pressure from baseline of 9.7 mm Hg in study 1 and 7.6 mm Hg in study 2 at week 48.

The most common adverse events were diarrhea, nausea, and vomiting, which occurred in approximately a quarter of patients taking tirzepatide. There were two adjudicated-confirmed cases of acute pancreatitis in those taking tirzepatide in study 2. 

Patients who received tirzepatide also reported fewer daytime and nighttime disturbances, as measured using the Patient-Reported Outcomes Measurement Information System Short Form scale for Sleep-Related Impairment and Sleep Disturbance.
 

 

 

Tirzepatide Plus CPAP Are Best

Writing in an accompanying editorial, Sanjay R. Patel, MD, noted that, although clinical guidelines have recommended that weight loss strategies be incorporated as part of OSA treatment, “the integration of obesity management into the approaches to care for obstructive sleep apnea has lagged.”

As many as half of patients abandon CPAP therapy within 3 years, wrote Dr. Patel, who is professor of medicine and epidemiology at the University of Pittsburgh, Pittsburgh, Pennsylvania, and medical director of the UPMC Comprehensive Sleep Disorders program. “An effective medication to treat obesity is thus an obvious avenue to pursue.”

Dr. Patel noted the large reductions in the number of events on the AHI scale. He wrote that the improvement in systolic blood pressure “was substantially larger than effects seen with CPAP therapy alone and indicate that tirzepatide may be an attractive option for those patients who seek to reduce their cardiovascular risk.”

Dr. Patel raised concerns about whether patients outside of a trial would stick with therapy, noting studies have shown high rates of discontinuation of GLP-1 receptor agonists.

And, he wrote, “racial disparities in the use of GLP-1 receptor agonists among patients with diabetes arouse concern that the addition of tirzepatide as a treatment option for obstructive sleep apnea without directly addressing policies relative to coverage of care will only further exacerbate already pervasive disparities in clinical care for obstructive sleep apnea.”

Commenting on the study during the presentation of the results, Louis Aronne, MD, said he believes the trials demonstrate “the treatment of obesity with tirzepatide plus CPAP is really the optimal treatment for obstructive sleep apnea and obesity-related cardiometabolic risks.” Dr. Aronne is the Sanford I. Weill professor of metabolic research at Weill Cornell Medical College, New York City.

Dr. Aronne added there is still much to learn. It is still not clear whether tirzepatide had an independent effect in the OSA trial — as has been seen in other studies where the drug clearly reduced cardiovascular risk — or whether the positive results were primarily caused by weight loss.

“I believe that over time we’ll see that this particular effect in sleep apnea is related to weight,” he said. 

The study was supported by Eli Lilly. Dr. Malhotra has reported being a paid consultant for Lilly and ZOLL Medical and a cofounder of Healcisio. 

A version of this article appeared on Medscape.com.
 

Publications
Topics
Sections

— The diabetes and weight loss drug tirzepatide (Mounjaro for type 2 diabetes; Zepbound for obesity) was so effective at reducing sleep disruptions in patients with obesity and obstructive sleep apnea (OSA) that 40%-50% no longer needed to use a continuous positive airway pressure (CPAP) device, according to two new studies.

Tirzepatide, a long-acting glucose-dependent insulinotropic polypeptide (GIP) receptor agonist and glucagon-like peptide 1 (GLP-1) receptor agonist, also lowered C-reactive protein levels and systolic blood pressure. And patients taking the medication lost 18%-20% of their body weight. 

The SURMOUNT-OSA studies “mark a significant milestone in the treatment of OSA, offering a promising new therapeutic option that addresses both respiratory and metabolic complications,” said lead author Atul Malhotra, MD, professor of medicine at the University of California, San Diego, and director of sleep medicine at UC San Diego Health. 

The two double-blind, randomized, controlled trials in patients with obesity and moderate to severe OSA were conducted at 60 sites in nine countries. The results were presented at the American Diabetes Association (ADA) 84th Scientific Sessions and simultaneously published online in the New England Journal of Medicine.

OSA affects 1 billion people worldwide and 30 million American adults, many of whom are undiagnosed. Obesity is a common risk factor. According to the ADA, 40% of those with obesity have OSA and 70% of those with OSA have obesity. 

CPAP is an effective and the most-used intervention for OSA, but many patients refuse to use the device, stop using it, or cannot use it. Should tirzepatide eventually gain Food and Drug Administration approval for OSA, it would be the first drug approved for the condition.

“This new drug treatment offers a more accessible alternative for individuals who cannot tolerate or adhere to existing therapies,” said Dr. Malhotra.
 

Huge Reduction in Episodes, Severity

For the two studies, patients were enrolled who had moderate to severe OSA, defined as more than 15 events per hour (using the apnea-hypopnea index [AHI]) and a body mass index of 30 kg/m2 or greater. Those not using a CPAP device were enrolled in study 1, and those using a CPAP device were enrolled in study 2. 

Participants received either the maximum tolerated dose of tirzepatide (10 or 15 mg by once-weekly injection) or placebo for 1 year. In study 1, 114 individuals received tirzepatide and 120 received placebo. For study 2, 119 patients received tirzepatide and 114 received placebo. All participants received regular lifestyle counseling sessions about nutrition and were instructed to reduce food intake by 500 kcal/day and to engage in at least 150 min/week of physical activity.

Enrollment was limited to 70% men to ensure adequate representation of women.

At baseline, 65%-70% of participants had severe OSA, with more than 30 events/hour on the AHI scale and a mean of 51.5 events/hour.

By 1 year, patients taking tirzepatide had 27-30 fewer events/hour, compared with 4-6 fewer events/hour for those taking placebo.

Up to half of those who received tirzepatide in both trials had less than 5 events/hour or 5-14 AHI events/hour and an Epworth Sleepiness Scale score of 10 or less. Those thresholds “represent a level at which CPAP therapy may not be recommended,” wrote the authors.

Patients in the tirzepatide group also had a decrease in systolic blood pressure from baseline of 9.7 mm Hg in study 1 and 7.6 mm Hg in study 2 at week 48.

The most common adverse events were diarrhea, nausea, and vomiting, which occurred in approximately a quarter of patients taking tirzepatide. There were two adjudicated-confirmed cases of acute pancreatitis in those taking tirzepatide in study 2. 

Patients who received tirzepatide also reported fewer daytime and nighttime disturbances, as measured using the Patient-Reported Outcomes Measurement Information System Short Form scale for Sleep-Related Impairment and Sleep Disturbance.
 

 

 

Tirzepatide Plus CPAP Are Best

Writing in an accompanying editorial, Sanjay R. Patel, MD, noted that, although clinical guidelines have recommended that weight loss strategies be incorporated as part of OSA treatment, “the integration of obesity management into the approaches to care for obstructive sleep apnea has lagged.”

As many as half of patients abandon CPAP therapy within 3 years, wrote Dr. Patel, who is professor of medicine and epidemiology at the University of Pittsburgh, Pittsburgh, Pennsylvania, and medical director of the UPMC Comprehensive Sleep Disorders program. “An effective medication to treat obesity is thus an obvious avenue to pursue.”

Dr. Patel noted the large reductions in the number of events on the AHI scale. He wrote that the improvement in systolic blood pressure “was substantially larger than effects seen with CPAP therapy alone and indicate that tirzepatide may be an attractive option for those patients who seek to reduce their cardiovascular risk.”

Dr. Patel raised concerns about whether patients outside of a trial would stick with therapy, noting studies have shown high rates of discontinuation of GLP-1 receptor agonists.

And, he wrote, “racial disparities in the use of GLP-1 receptor agonists among patients with diabetes arouse concern that the addition of tirzepatide as a treatment option for obstructive sleep apnea without directly addressing policies relative to coverage of care will only further exacerbate already pervasive disparities in clinical care for obstructive sleep apnea.”

Commenting on the study during the presentation of the results, Louis Aronne, MD, said he believes the trials demonstrate “the treatment of obesity with tirzepatide plus CPAP is really the optimal treatment for obstructive sleep apnea and obesity-related cardiometabolic risks.” Dr. Aronne is the Sanford I. Weill professor of metabolic research at Weill Cornell Medical College, New York City.

Dr. Aronne added there is still much to learn. It is still not clear whether tirzepatide had an independent effect in the OSA trial — as has been seen in other studies where the drug clearly reduced cardiovascular risk — or whether the positive results were primarily caused by weight loss.

“I believe that over time we’ll see that this particular effect in sleep apnea is related to weight,” he said. 

The study was supported by Eli Lilly. Dr. Malhotra has reported being a paid consultant for Lilly and ZOLL Medical and a cofounder of Healcisio. 

A version of this article appeared on Medscape.com.
 

— The diabetes and weight loss drug tirzepatide (Mounjaro for type 2 diabetes; Zepbound for obesity) was so effective at reducing sleep disruptions in patients with obesity and obstructive sleep apnea (OSA) that 40%-50% no longer needed to use a continuous positive airway pressure (CPAP) device, according to two new studies.

Tirzepatide, a long-acting glucose-dependent insulinotropic polypeptide (GIP) receptor agonist and glucagon-like peptide 1 (GLP-1) receptor agonist, also lowered C-reactive protein levels and systolic blood pressure. And patients taking the medication lost 18%-20% of their body weight. 

The SURMOUNT-OSA studies “mark a significant milestone in the treatment of OSA, offering a promising new therapeutic option that addresses both respiratory and metabolic complications,” said lead author Atul Malhotra, MD, professor of medicine at the University of California, San Diego, and director of sleep medicine at UC San Diego Health. 

The two double-blind, randomized, controlled trials in patients with obesity and moderate to severe OSA were conducted at 60 sites in nine countries. The results were presented at the American Diabetes Association (ADA) 84th Scientific Sessions and simultaneously published online in the New England Journal of Medicine.

OSA affects 1 billion people worldwide and 30 million American adults, many of whom are undiagnosed. Obesity is a common risk factor. According to the ADA, 40% of those with obesity have OSA and 70% of those with OSA have obesity. 

CPAP is an effective and the most-used intervention for OSA, but many patients refuse to use the device, stop using it, or cannot use it. Should tirzepatide eventually gain Food and Drug Administration approval for OSA, it would be the first drug approved for the condition.

“This new drug treatment offers a more accessible alternative for individuals who cannot tolerate or adhere to existing therapies,” said Dr. Malhotra.
 

Huge Reduction in Episodes, Severity

For the two studies, patients were enrolled who had moderate to severe OSA, defined as more than 15 events per hour (using the apnea-hypopnea index [AHI]) and a body mass index of 30 kg/m2 or greater. Those not using a CPAP device were enrolled in study 1, and those using a CPAP device were enrolled in study 2. 

Participants received either the maximum tolerated dose of tirzepatide (10 or 15 mg by once-weekly injection) or placebo for 1 year. In study 1, 114 individuals received tirzepatide and 120 received placebo. For study 2, 119 patients received tirzepatide and 114 received placebo. All participants received regular lifestyle counseling sessions about nutrition and were instructed to reduce food intake by 500 kcal/day and to engage in at least 150 min/week of physical activity.

Enrollment was limited to 70% men to ensure adequate representation of women.

At baseline, 65%-70% of participants had severe OSA, with more than 30 events/hour on the AHI scale and a mean of 51.5 events/hour.

By 1 year, patients taking tirzepatide had 27-30 fewer events/hour, compared with 4-6 fewer events/hour for those taking placebo.

Up to half of those who received tirzepatide in both trials had less than 5 events/hour or 5-14 AHI events/hour and an Epworth Sleepiness Scale score of 10 or less. Those thresholds “represent a level at which CPAP therapy may not be recommended,” wrote the authors.

Patients in the tirzepatide group also had a decrease in systolic blood pressure from baseline of 9.7 mm Hg in study 1 and 7.6 mm Hg in study 2 at week 48.

The most common adverse events were diarrhea, nausea, and vomiting, which occurred in approximately a quarter of patients taking tirzepatide. There were two adjudicated-confirmed cases of acute pancreatitis in those taking tirzepatide in study 2. 

Patients who received tirzepatide also reported fewer daytime and nighttime disturbances, as measured using the Patient-Reported Outcomes Measurement Information System Short Form scale for Sleep-Related Impairment and Sleep Disturbance.
 

 

 

Tirzepatide Plus CPAP Are Best

Writing in an accompanying editorial, Sanjay R. Patel, MD, noted that, although clinical guidelines have recommended that weight loss strategies be incorporated as part of OSA treatment, “the integration of obesity management into the approaches to care for obstructive sleep apnea has lagged.”

As many as half of patients abandon CPAP therapy within 3 years, wrote Dr. Patel, who is professor of medicine and epidemiology at the University of Pittsburgh, Pittsburgh, Pennsylvania, and medical director of the UPMC Comprehensive Sleep Disorders program. “An effective medication to treat obesity is thus an obvious avenue to pursue.”

Dr. Patel noted the large reductions in the number of events on the AHI scale. He wrote that the improvement in systolic blood pressure “was substantially larger than effects seen with CPAP therapy alone and indicate that tirzepatide may be an attractive option for those patients who seek to reduce their cardiovascular risk.”

Dr. Patel raised concerns about whether patients outside of a trial would stick with therapy, noting studies have shown high rates of discontinuation of GLP-1 receptor agonists.

And, he wrote, “racial disparities in the use of GLP-1 receptor agonists among patients with diabetes arouse concern that the addition of tirzepatide as a treatment option for obstructive sleep apnea without directly addressing policies relative to coverage of care will only further exacerbate already pervasive disparities in clinical care for obstructive sleep apnea.”

Commenting on the study during the presentation of the results, Louis Aronne, MD, said he believes the trials demonstrate “the treatment of obesity with tirzepatide plus CPAP is really the optimal treatment for obstructive sleep apnea and obesity-related cardiometabolic risks.” Dr. Aronne is the Sanford I. Weill professor of metabolic research at Weill Cornell Medical College, New York City.

Dr. Aronne added there is still much to learn. It is still not clear whether tirzepatide had an independent effect in the OSA trial — as has been seen in other studies where the drug clearly reduced cardiovascular risk — or whether the positive results were primarily caused by weight loss.

“I believe that over time we’ll see that this particular effect in sleep apnea is related to weight,” he said. 

The study was supported by Eli Lilly. Dr. Malhotra has reported being a paid consultant for Lilly and ZOLL Medical and a cofounder of Healcisio. 

A version of this article appeared on Medscape.com.
 

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>168525</fileName> <TBEID>0C050B56.SIG</TBEID> <TBUniqueIdentifier>MD_0C050B56</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240624T124438</QCDate> <firstPublished>20240624T124735</firstPublished> <LastPublished>20240624T124735</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240624T124735</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Alicia Ault</byline> <bylineText>ALICIA AULT</bylineText> <bylineFull>ALICIA AULT</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>The SURMOUNT-OSA studies “mark a significant milestone in the treatment of OSA, offering a promising new therapeutic option that addresses both respiratory and </metaDescription> <articlePDF/> <teaserImage/> <teaser>Similar to other GLP-1s, tirzepatide, has been found to reduce sleep interruptions in patients with OSA and obesity.</teaser> <title>Tirzepatide Reduces Sleep Interruptions, Almost Half Halting CPAP Use</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>card</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>endo</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>6</term> <term>5</term> <term canonical="true">34</term> <term>21</term> <term>15</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">261</term> <term>205</term> <term>296</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Tirzepatide Reduces Sleep Interruptions, Almost Half Halting CPAP Use</title> <deck/> </itemMeta> <itemContent> <p>FROM ADA 2024</p> <p><span class="dateline">ORLANDO, FLA.</span> — The diabetes and weight loss drug tirzepatide (Mounjaro for type 2 diabetes; Zepbound for obesity) was so effective at reducing sleep disruptions in patients with obesity and obstructive sleep apnea (OSA) that 40%-50% no longer needed to use a continuous positive airway pressure (CPAP) device, according to two new studies.</p> <p>Tirzepatide, a long-acting glucose-dependent insulinotropic polypeptide (GIP) receptor agonist and glucagon-like peptide 1 (GLP-1) receptor agonist, also lowered C-reactive protein levels and systolic blood pressure. And patients taking the medication lost 18%-20% of their body weight. <br/><br/><span class="tag metaDescription">The SURMOUNT-OSA studies “mark a significant milestone in the treatment of OSA, offering a promising new therapeutic option that addresses both respiratory and metabolic complications,”</span> said lead author Atul Malhotra, MD, professor of medicine at the University of California, San Diego, and director of sleep medicine at UC San Diego Health. <br/><br/>The two double-blind, randomized, controlled trials in patients with obesity and moderate to severe OSA were conducted at 60 sites in nine countries. The results were presented at the American Diabetes Association (ADA) 84th Scientific Sessions and simultaneously <a href="https://www.nejm.org/doi/full/10.1056/NEJMoa2404881">published online</a> in the New England Journal of Medicine.<br/><br/>OSA affects 1 billion people worldwide and 30 million American adults, many of whom are undiagnosed. Obesity is a common risk factor. According to the ADA, 40% of those with obesity have OSA and 70% of those with OSA have obesity. <br/><br/>CPAP is an effective and the most-used intervention for OSA, but many patients refuse to use the device, stop using it, or cannot use it. Should tirzepatide eventually gain Food and Drug Administration approval for OSA, it would be the first drug approved for the condition.<br/><br/>“This new drug treatment offers a more accessible alternative for individuals who cannot tolerate or adhere to existing therapies,” said Dr. Malhotra.<br/><br/></p> <h2>Huge Reduction in Episodes, Severity</h2> <p>For the two studies, patients were enrolled who had moderate to severe OSA, defined as more than 15 events per hour (using the apnea-hypopnea index [AHI]) and a body mass index of 30 kg/m<sup>2</sup> or greater. Those not using a CPAP device were enrolled in study 1, and those using a CPAP device were enrolled in study 2. </p> <p>Participants received either the maximum tolerated dose of tirzepatide (10 or 15 mg by once-weekly injection) or placebo for 1 year. In study 1, 114 individuals received tirzepatide and 120 received placebo. For study 2, 119 patients received tirzepatide and 114 received placebo. All participants received regular lifestyle counseling sessions about nutrition and were instructed to reduce food intake by 500 kcal/day and to engage in at least 150 min/week of physical activity.<br/><br/>Enrollment was limited to 70% men to ensure adequate representation of women.<br/><br/>At baseline, 65%-70% of participants had severe OSA, with more than 30 events/hour on the AHI scale and a mean of 51.5 events/hour.<br/><br/>By 1 year, patients taking tirzepatide had 27-30 fewer events/hour, compared with 4-6 fewer events/hour for those taking placebo.<br/><br/>Up to half of those who received tirzepatide in both trials had less than 5 events/hour or 5-14 AHI events/hour and an Epworth Sleepiness Scale score of 10 or less. Those thresholds “represent a level at which CPAP therapy may not be recommended,” wrote the authors.<br/><br/>Patients in the tirzepatide group also had a decrease in systolic blood pressure from baseline of 9.7 mm Hg in study 1 and 7.6 mm Hg in study 2 at week 48.<br/><br/>The most common adverse events were diarrhea, nausea, and vomiting, which occurred in approximately a quarter of patients taking tirzepatide. There were two adjudicated-confirmed cases of acute pancreatitis in those taking tirzepatide in study 2. <br/><br/>Patients who received tirzepatide also reported fewer daytime and nighttime disturbances, as measured using the Patient-Reported Outcomes Measurement Information System Short Form scale for Sleep-Related Impairment and Sleep Disturbance.<br/><br/></p> <h2>Tirzepatide Plus CPAP Are Best</h2> <p>Writing in an <a href="https://www.nejm.org/doi/full/10.1056/NEJMe2407117">accompanying editorial</a>, Sanjay R. Patel, MD, noted that, although clinical guidelines have recommended that weight loss strategies be incorporated as part of OSA treatment, “the integration of obesity management into the approaches to care for obstructive sleep apnea has lagged.”</p> <p>As many as half of patients abandon CPAP therapy within 3 years, wrote Dr. Patel, who is professor of medicine and epidemiology at the University of Pittsburgh, Pittsburgh, Pennsylvania, and medical director of the UPMC Comprehensive Sleep Disorders program. “An effective medication to treat obesity is thus an obvious avenue to pursue.” <br/><br/>Dr. Patel noted the large reductions in the number of events on the AHI scale. He wrote that the improvement in systolic blood pressure “was substantially larger than effects seen with CPAP therapy alone and indicate that tirzepatide may be an attractive option for those patients who seek to reduce their cardiovascular risk.”<br/><br/>Dr. Patel raised concerns about whether patients outside of a trial would stick with therapy, noting studies have shown high rates of discontinuation of GLP-1 receptor agonists.<br/><br/>And, he wrote, “racial disparities in the use of GLP-1 receptor agonists among patients with diabetes arouse concern that the addition of tirzepatide as a treatment option for obstructive sleep apnea without directly addressing policies relative to coverage of care will only further exacerbate already pervasive disparities in clinical care for obstructive sleep apnea.”<br/><br/>Commenting on the study during the presentation of the results, Louis Aronne, MD, said he believes the trials demonstrate “the treatment of obesity with tirzepatide plus CPAP is really the optimal treatment for obstructive sleep apnea and obesity-related cardiometabolic risks.” Dr. Aronne is the Sanford I. Weill professor of metabolic research at Weill Cornell Medical College, New York City.<br/><br/>Dr. Aronne added there is still much to learn. It is still not clear whether tirzepatide had an independent effect in the OSA trial — as has been seen in other studies where the drug clearly reduced cardiovascular risk — or whether the positive results were primarily caused by weight loss.<br/><br/>“I believe that over time we’ll see that this particular effect in sleep apnea is related to weight,” he said. <br/><br/>The study was supported by Eli Lilly. Dr. Malhotra has reported being a paid consultant for Lilly and ZOLL Medical and a cofounder of Healcisio.<span class="end"/> </p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/tirzepatide-significantly-reduces-sleep-disruptions-2024a1000bm1">Medscape.com</a></span>.<br/><br/></em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM ADA 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article