Top Sections
The Optimized Doctor
ACO Insider
Managing Your Practice
im
Main menu
IMN Main Menu
Explore menu
IMN Explore Menu
Proclivity ID
18818001
Unpublish
Specialty Focus
Mental Health
Vaccines
Addiction Medicine
Geriatrics
Negative Keywords
gaming
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
effective for the treatment of a baby
effective for the treatment of a boy
effective for the treatment of a child
effective for the treatment of a female
effective for the treatment of a girl
effective for the treatment of a kid
effective for the treatment of a minor
effective for the treatment of a newborn
effective for the treatment of a teen
effective for the treatment of a teenager
effective for the treatment of a toddler
effective for the treatment of a woman
effective for the treatment of adolescents
effective for the treatment of an adolescent
effective for the treatment of an infant
effective for the treatment of babies
effective for the treatment of baby
effective for the treatment of body building
effective for the treatment of boys
effective for the treatment of breast feeding
effective for the treatment of children
effective for the treatment of females
effective for the treatment of fetus
effective for the treatment of girls
effective for the treatment of infants
effective for the treatment of kids
effective for the treatment of minors
effective for the treatment of newborn
effective for the treatment of pediatric
effective for the treatment of pregnancy
effective for the treatment of pregnant
effective for the treatment of teenagers
effective for the treatment of teens
effective for the treatment of toddlers
effective for the treatment of women
effective for the treatment of youths
for the relief of a baby
for the relief of a boy
for the relief of a child
for the relief of a female
for the relief of a girl
for the relief of a kid
for the relief of a minor
for the relief of a newborn
for the relief of a teen
for the relief of a teenager
for the relief of a toddler
for the relief of a woman
for the relief of adolescents
for the relief of an adolescent
for the relief of an infant
for the relief of babies
for the relief of baby
for the relief of body building
for the relief of boys
for the relief of breast feeding
for the relief of children
for the relief of females
for the relief of fetus
for the relief of girls
for the relief of infants
for the relief of kids
for the relief of minors
for the relief of newborn
for the relief of pediatric
for the relief of pregnancy
for the relief of pregnant
for the relief of teenagers
for the relief of teens
for the relief of toddlers
for the relief of women
for the relief of youths
medicating a baby
medicating a boy
medicating a child
medicating a female
medicating a girl
medicating a kid
medicating a minor
medicating a newborn
medicating a teen
medicating a teenager
medicating a toddler
medicating a woman
medicating adolescents
medicating an adolescent
medicating an infant
medicating babies
medicating baby
medicating body building
medicating boys
medicating breast feeding
medicating children
medicating females
medicating fetus
medicating girls
medicating infants
medicating kids
medicating minors
medicating newborn
medicating pediatric
medicating pregnancy
medicating pregnant
medicating teenagers
medicating teens
medicating toddlers
medicating women
medicating youths
at risk for a baby
at risk for a boy
at risk for a child
at risk for a female
at risk for a girl
at risk for a kid
at risk for a minor
at risk for a newborn
at risk for a teen
at risk for a teenager
at risk for a toddler
at risk for a woman
at risk for adolescents
at risk for an adolescent
at risk for an infant
at risk for babies
at risk for baby
at risk for body building
at risk for boys
at risk for breast feeding
at risk for children
at risk for females
at risk for fetus
at risk for girls
at risk for infants
at risk for kids
at risk for minors
at risk for newborn
at risk for pediatric
at risk for pregnancy
at risk for pregnant
at risk for teenagers
at risk for teens
at risk for toddlers
at risk for women
at risk for youths
treating a baby
treating a boy
treating a child
treating a female
treating a girl
treating a kid
treating a minor
treating a newborn
treating a teen
treating a teenager
treating a toddler
treating a woman
treating adolescents
treating an adolescent
treating an infant
treating babies
treating baby
treating body building
treating boys
treating breast feeding
treating children
treating females
treating fetus
treating girls
treating infants
treating kids
treating minors
treating newborn
treating pediatric
treating pregnancy
treating pregnant
treating teenagers
treating teens
treating toddlers
treating women
treating youths
treatment for a baby
treatment for a boy
treatment for a child
treatment for a female
treatment for a girl
treatment for a kid
treatment for a minor
treatment for a newborn
treatment for a teen
treatment for a teenager
treatment for a toddler
treatment for a woman
treatment for adolescents
treatment for an adolescent
treatment for an infant
treatment for babies
treatment for baby
treatment for body building
treatment for boys
treatment for breast feeding
treatment for children
treatment for females
treatment for fetus
treatment for girls
treatment for infants
treatment for kids
treatment for minors
treatment for newborn
treatment for pediatric
treatment for pregnancy
treatment for pregnant
treatment for teenagers
treatment for teens
treatment for toddlers
treatment for women
treatment for youths
treatments for a baby
treatments for a boy
treatments for a child
treatments for a female
treatments for a girl
treatments for a kid
treatments for a minor
treatments for a newborn
treatments for a teen
treatments for a teenager
treatments for a toddler
treatments for a woman
treatments for adolescents
treatments for an adolescent
treatments for an infant
treatments for babies
treatments for baby
treatments for body building
treatments for boys
treatments for breast feeding
treatments for children
treatments for females
treatments for fetus
treatments for girls
treatments for infants
treatments for kids
treatments for minors
treatments for newborn
treatments for pediatric
treatments for pregnancy
treatments for pregnant
treatments for teenagers
treatments for teens
treatments for toddlers
treatments for women
treatments for youths
diagnosing a baby
diagnosing a boy
diagnosing a child
diagnosing a female
diagnosing a girl
diagnosing a kid
diagnosing a minor
diagnosing a newborn
diagnosing a teen
diagnosing a teenager
diagnosing a toddler
diagnosing a woman
diagnosing adolescents
diagnosing an adolescent
diagnosing an infant
diagnosing babies
diagnosing baby
diagnosing body building
diagnosing boys
diagnosing breast feeding
diagnosing children
diagnosing females
diagnosing fetus
diagnosing girls
diagnosing infants
diagnosing kids
diagnosing minors
diagnosing newborn
diagnosing pediatric
diagnosing pregnancy
diagnosing pregnant
diagnosing teenagers
diagnosing teens
diagnosing toddlers
diagnosing women
diagnosing youths
indicated for a baby
indicated for a boy
indicated for a child
indicated for a female
indicated for a girl
indicated for a kid
indicated for a minor
indicated for a newborn
indicated for a teen
indicated for a teenager
indicated for a toddler
indicated for a woman
indicated for adolescents
indicated for an adolescent
indicated for an infant
indicated for babies
indicated for baby
indicated for body building
indicated for boys
indicated for breast feeding
indicated for children
indicated for females
indicated for fetus
indicated for girls
indicated for infants
indicated for kids
indicated for minors
indicated for newborn
indicated for pediatric
indicated for pregnancy
indicated for pregnant
indicated for teenagers
indicated for teens
indicated for toddlers
indicated for women
indicated for youths
useful for a baby
useful for a boy
useful for a child
useful for a female
useful for a girl
useful for a kid
useful for a minor
useful for a newborn
useful for a teen
useful for a teenager
useful for a toddler
useful for a woman
useful for adolescents
useful for an adolescent
useful for an infant
useful for babies
useful for baby
useful for body building
useful for boys
useful for breast feeding
useful for children
useful for females
useful for fetus
useful for girls
useful for infants
useful for kids
useful for minors
useful for newborn
useful for pediatric
useful for pregnancy
useful for pregnant
useful for teenagers
useful for teens
useful for toddlers
useful for women
useful for youths
effective for a baby
effective for a boy
effective for a child
effective for a female
effective for a girl
effective for a kid
effective for a minor
effective for a newborn
effective for a teen
effective for a teenager
effective for a toddler
effective for a woman
effective for adolescents
effective for an adolescent
effective for an infant
effective for babies
effective for baby
effective for body building
effective for boys
effective for breast feeding
effective for children
effective for females
effective for fetus
effective for girls
effective for infants
effective for kids
effective for minors
effective for newborn
effective for pediatric
effective for pregnancy
effective for pregnant
effective for teenagers
effective for teens
effective for toddlers
effective for women
effective for youths
cures for a baby
cures for a boy
cures for a child
cures for a female
cures for a girl
cures for a kid
cures for a minor
cures for a newborn
cures for a teen
cures for a teenager
cures for a toddler
cures for a woman
cures for adolescents
cures for an adolescent
cures for an infant
cures for babies
cures for baby
cures for body building
cures for boys
cures for breast feeding
cures for children
cures for females
cures for fetus
cures for girls
cures for infants
cures for kids
cures for minors
cures for newborn
cures for pediatric
cures for pregnancy
cures for pregnant
cures for teenagers
cures for teens
cures for toddlers
cures for women
cures for youths
use in a baby
use in a boy
use in a child
use in a female
use in a girl
use in a kid
use in a minor
use in a newborn
use in a teen
use in a teenager
use in a toddler
use in a woman
use in adolescents
use in an adolescent
use in an infant
use in babies
use in baby
use in body building
use in boys
use in breast feeding
use in children
use in females
use in fetus
use in girls
use in infants
use in kids
use in minors
use in newborn
use in pediatric
use in pregnancy
use in pregnant
use in teenagers
use in teens
use in toddlers
use in women
use in youths
use in patients with a baby
use in patients with a boy
use in patients with a child
use in patients with a female
use in patients with a girl
use in patients with a kid
use in patients with a minor
use in patients with a newborn
use in patients with a teen
use in patients with a teenager
use in patients with a toddler
use in patients with a woman
use in patients with adolescents
use in patients with an adolescent
use in patients with an infant
use in patients with babies
use in patients with baby
use in patients with body building
use in patients with boys
use in patients with breast feeding
use in patients with children
use in patients with females
use in patients with fetus
use in patients with girls
use in patients with infants
use in patients with kids
use in patients with minors
use in patients with newborn
use in patients with pediatric
use in patients with pregnancy
use in patients with pregnant
use in patients with teenagers
use in patients with teens
use in patients with toddlers
use in patients with women
use in patients with youths
a baby diagnosis
a boy diagnosis
a child diagnosis
a female diagnosis
a girl diagnosis
a kid diagnosis
a minor diagnosis
a newborn diagnosis
a teen diagnosis
a teenager diagnosis
a toddler diagnosis
a woman diagnosis
adolescents diagnosis
an adolescent diagnosis
an infant diagnosis
babies diagnosis
baby diagnosis
body building diagnosis
boys diagnosis
breast feeding diagnosis
children diagnosis
females diagnosis
fetus diagnosis
girls diagnosis
infants diagnosis
kids diagnosis
minors diagnosis
newborn diagnosis
pediatric diagnosis
pregnancy diagnosis
pregnant diagnosis
teenagers diagnosis
teens diagnosis
toddlers diagnosis
women diagnosis
youths diagnosis
a baby medication
a boy medication
a child medication
a female medication
a girl medication
a kid medication
a minor medication
a newborn medication
a teen medication
a teenager medication
a toddler medication
a woman medication
adolescents medication
an adolescent medication
an infant medication
babies medication
baby medication
body building medication
boys medication
breast feeding medication
children medication
females medication
fetus medication
girls medication
infants medication
kids medication
minors medication
newborn medication
pediatric medication
pregnancy medication
pregnant medication
teenagers medication
teens medication
toddlers medication
women medication
youths medication
a baby therapy
a boy therapy
a child therapy
a female therapy
a girl therapy
a kid therapy
a minor therapy
a newborn therapy
a teen therapy
a teenager therapy
a toddler therapy
a woman therapy
adolescents therapy
an adolescent therapy
an infant therapy
babies therapy
baby therapy
body building therapy
boys therapy
breast feeding therapy
children therapy
females therapy
fetus therapy
girls therapy
infants therapy
kids therapy
minors therapy
newborn therapy
pediatric therapy
pregnancy therapy
pregnant therapy
teenagers therapy
teens therapy
toddlers therapy
women therapy
youths therapy
a baby treatment
a boy treatment
a child treatment
a female treatment
a girl treatment
a kid treatment
a minor treatment
a newborn treatment
a teen treatment
a teenager treatment
a toddler treatment
a woman treatment
adolescents treatment
an adolescent treatment
an infant treatment
babies treatment
baby treatment
body building treatment
boys treatment
breast feeding treatment
children treatment
females treatment
fetus treatment
girls treatment
infants treatment
kids treatment
minors treatment
newborn treatment
pediatric treatment
pregnancy treatment
pregnant treatment
teenagers treatment
teens treatment
toddlers treatment
women treatment
youths treatment
a baby cure
a boy cure
a child cure
a female cure
a girl cure
a kid cure
a minor cure
a newborn cure
a teen cure
a teenager cure
a toddler cure
a woman cure
adolescents cure
an adolescent cure
an infant cure
babies cure
baby cure
body building cure
boys cure
breast feeding cure
children cure
females cure
fetus cure
girls cure
infants cure
kids cure
minors cure
newborn cure
pediatric cure
pregnancy cure
pregnant cure
teenagers cure
teens cure
toddlers cure
women cure
youths cure
a baby symptoms
a boy symptoms
a child symptoms
a female symptoms
a girl symptoms
a kid symptoms
a minor symptoms
a newborn symptoms
a teen symptoms
a teenager symptoms
a toddler symptoms
a woman symptoms
adolescents symptoms
an adolescent symptoms
an infant symptoms
babies symptoms
baby symptoms
body building symptoms
boys symptoms
breast feeding symptoms
children symptoms
females symptoms
fetus symptoms
girls symptoms
infants symptoms
kids symptoms
minors symptoms
newborn symptoms
pediatric symptoms
pregnancy symptoms
pregnant symptoms
teenagers symptoms
teens symptoms
toddlers symptoms
women symptoms
youths symptoms
a baby medicine
a boy medicine
a child medicine
a female medicine
a girl medicine
a kid medicine
a minor medicine
a newborn medicine
a teen medicine
a teenager medicine
a toddler medicine
a woman medicine
adolescents medicine
an adolescent medicine
an infant medicine
babies medicine
baby medicine
body building medicine
boys medicine
breast feeding medicine
children medicine
females medicine
fetus medicine
girls medicine
infants medicine
kids medicine
minors medicine
newborn medicine
pediatric medicine
pregnancy medicine
pregnant medicine
teenagers medicine
teens medicine
toddlers medicine
women medicine
youths medicine
a baby usage
a boy usage
a child usage
a female usage
a girl usage
a kid usage
a minor usage
a newborn usage
a teen usage
a teenager usage
a toddler usage
a woman usage
adolescents usage
an adolescent usage
an infant usage
babies usage
baby usage
body building usage
boys usage
breast feeding usage
children usage
females usage
fetus usage
girls usage
infants usage
kids usage
minors usage
newborn usage
pediatric usage
pregnancy usage
pregnant usage
teenagers usage
teens usage
toddlers usage
women usage
youths usage
a baby remedy
a boy remedy
a child remedy
a female remedy
a girl remedy
a kid remedy
a minor remedy
a newborn remedy
a teen remedy
a teenager remedy
a toddler remedy
a woman remedy
adolescents remedy
an adolescent remedy
an infant remedy
babies remedy
baby remedy
body building remedy
boys remedy
breast feeding remedy
children remedy
females remedy
fetus remedy
girls remedy
infants remedy
kids remedy
minors remedy
newborn remedy
pediatric remedy
pregnancy remedy
pregnant remedy
teenagers remedy
teens remedy
toddlers remedy
women remedy
youths remedy
a baby prescription
a boy prescription
a child prescription
a female prescription
a girl prescription
a kid prescription
a minor prescription
a newborn prescription
a teen prescription
a teenager prescription
a toddler prescription
a woman prescription
adolescents prescription
an adolescent prescription
an infant prescription
babies prescription
baby prescription
body building prescription
boys prescription
breast feeding prescription
children prescription
females prescription
fetus prescription
girls prescription
infants prescription
kids prescription
minors prescription
newborn prescription
pediatric prescription
pregnancy prescription
pregnant prescription
teenagers prescription
teens prescription
toddlers prescription
women prescription
youths prescription
a baby pill
a boy pill
a child pill
a female pill
a girl pill
a kid pill
a minor pill
a newborn pill
a teen pill
a teenager pill
a toddler pill
a woman pill
adolescents pill
an adolescent pill
an infant pill
babies pill
baby pill
body building pill
boys pill
breast feeding pill
children pill
females pill
fetus pill
girls pill
infants pill
kids pill
minors pill
newborn pill
pediatric pill
pregnancy pill
pregnant pill
teenagers pill
teens pill
toddlers pill
women pill
youths pill
a baby drug
a boy drug
a child drug
a female drug
a girl drug
a kid drug
a minor drug
a newborn drug
a teen drug
a teenager drug
a toddler drug
a woman drug
adolescents drug
an adolescent drug
an infant drug
babies drug
baby drug
body building drug
boys drug
breast feeding drug
children drug
females drug
fetus drug
girls drug
infants drug
kids drug
minors drug
newborn drug
pediatric drug
pregnancy drug
pregnant drug
teenagers drug
teens drug
toddlers drug
women drug
youths drug
a baby tablet
a boy tablet
a child tablet
a female tablet
a girl tablet
a kid tablet
a minor tablet
a newborn tablet
a teen tablet
a teenager tablet
a toddler tablet
a woman tablet
adolescents tablet
an adolescent tablet
an infant tablet
babies tablet
baby tablet
body building tablet
boys tablet
breast feeding tablet
children tablet
females tablet
fetus tablet
girls tablet
infants tablet
kids tablet
minors tablet
newborn tablet
pediatric tablet
pregnancy tablet
pregnant tablet
teenagers tablet
teens tablet
toddlers tablet
women tablet
youths tablet
a baby management
a boy management
a child management
a female management
a girl management
a kid management
a minor management
a newborn management
a teen management
a teenager management
a toddler management
a woman management
adolescents management
an adolescent management
an infant management
babies management
baby management
body building management
boys management
breast feeding management
children management
females management
fetus management
girls management
infants management
kids management
minors management
newborn management
pediatric management
pregnancy management
pregnant management
teenagers management
teens management
toddlers management
women management
youths management
a baby indication
a boy indication
a child indication
a female indication
a girl indication
a kid indication
a minor indication
a newborn indication
a teen indication
a teenager indication
a toddler indication
a woman indication
adolescents indication
an adolescent indication
an infant indication
babies indication
baby indication
body building indication
boys indication
breast feeding indication
children indication
females indication
fetus indication
girls indication
infants indication
kids indication
minors indication
newborn indication
pediatric indication
pregnancy indication
pregnant indication
teenagers indication
teens indication
toddlers indication
women indication
youths indication
breast cancer a baby
breast cancer a boy
breast cancer a child
breast cancer a female
breast cancer a girl
breast cancer a kid
breast cancer a minor
breast cancer a newborn
breast cancer a teen
breast cancer a teenager
breast cancer a toddler
breast cancer a woman
breast cancer adolescents
breast cancer an adolescent
breast cancer an infant
breast cancer babies
breast cancer baby
breast cancer body building
breast cancer boys
breast cancer breast feeding
breast cancer children
breast cancer females
breast cancer fetus
breast cancer girls
breast cancer infants
breast cancer kids
breast cancer minors
breast cancer newborn
breast cancer pediatric
breast cancer pregnancy
breast cancer pregnant
breast cancer teenagers
breast cancer teens
breast cancer toddlers
breast cancer women
breast cancer youths
prostate cancer a baby
prostate cancer a boy
prostate cancer a child
prostate cancer a female
prostate cancer a girl
prostate cancer a kid
prostate cancer a minor
prostate cancer a newborn
prostate cancer a teen
prostate cancer a teenager
prostate cancer a toddler
prostate cancer a woman
prostate cancer adolescents
prostate cancer an adolescent
prostate cancer an infant
prostate cancer babies
prostate cancer baby
prostate cancer body building
prostate cancer boys
prostate cancer breast feeding
prostate cancer children
prostate cancer females
prostate cancer fetus
prostate cancer girls
prostate cancer infants
prostate cancer kids
prostate cancer minors
prostate cancer newborn
prostate cancer pediatric
prostate cancer pregnancy
prostate cancer pregnant
prostate cancer teenagers
prostate cancer teens
prostate cancer toddlers
prostate cancer women
prostate cancer youths
steroid a baby
steroid a boy
steroid a child
steroid a female
steroid a girl
steroid a kid
steroid a minor
steroid a newborn
steroid a teen
steroid a teenager
steroid a toddler
steroid a woman
steroid adolescents
steroid an adolescent
steroid an infant
steroid babies
steroid baby
steroid body building
steroid boys
steroid breast feeding
steroid children
steroid females
steroid fetus
steroid girls
steroid infants
steroid kids
steroid minors
steroid newborn
steroid pediatric
steroid pregnancy
steroid pregnant
steroid teenagers
steroid teens
steroid toddlers
steroid women
steroid youths
steroids a baby
steroids a boy
steroids a child
steroids a female
steroids a girl
steroids a kid
steroids a minor
steroids a newborn
steroids a teen
steroids a teenager
steroids a toddler
steroids a woman
steroids adolescents
steroids an adolescent
steroids an infant
steroids babies
steroids baby
steroids body building
steroids boys
steroids breast feeding
steroids children
steroids females
steroids fetus
steroids girls
steroids infants
steroids kids
steroids minors
steroids newborn
steroids pediatric
steroids pregnancy
steroids pregnant
steroids teenagers
steroids teens
steroids toddlers
steroids women
steroids youths
abbvie
AbbVie
acid
addicted
addiction
adolescent
adult sites
Advocacy
advocacy
agitated states
AJO, postsurgical analgesic, knee, replacement, surgery
alcohol
amphetamine
androgen
antibody
apple cider vinegar
assistance
Assistance
association
at home
attorney
audit
ayurvedic
baby
ban
baricitinib
bed bugs
best
bible
bisexual
black
bleach
blog
bulimia nervosa
buy
cannabis
certificate
certification
certified
cervical cancer, concurrent chemoradiotherapy, intravoxel incoherent motion magnetic resonance imaging, MRI, IVIM, diffusion-weighted MRI, DWI
charlie sheen
cheap
cheapest
child
childhood
childlike
children
chronic fatigue syndrome
Cladribine Tablets
cocaine
cock
combination therapies, synergistic antitumor efficacy, pertuzumab, trastuzumab, ipilimumab, nivolumab, palbociclib, letrozole, lapatinib, docetaxel, trametinib, dabrafenib, carflzomib, lenalidomide
contagious
Cortical Lesions
cream
creams
crime
criminal
cure
dangerous
dangers
dasabuvir
Dasabuvir
dead
deadly
death
dementia
dependence
dependent
depression
dermatillomania
die
diet
Disability
Discount
discount
dog
drink
drug abuse
drug-induced
dying
eastern medicine
eat
ect
eczema
electroconvulsive therapy
electromagnetic therapy
electrotherapy
epa
epilepsy
erectile dysfunction
explosive disorder
fake
Fake-ovir
fatal
fatalities
fatality
fibromyalgia
financial
Financial
fish oil
food
foods
foundation
free
Gabriel Pardo
gaston
general hospital
genetic
geriatric
Giancarlo Comi
gilead
Gilead
glaucoma
Glenn S. Williams
Glenn Williams
Gloria Dalla Costa
gonorrhea
Greedy
greedy
guns
hallucinations
harvoni
Harvoni
herbal
herbs
heroin
herpes
Hidradenitis Suppurativa
holistic
home
home remedies
home remedy
homeopathic
homeopathy
hydrocortisone
ice
image
images
job
kid
kids
kill
killer
laser
lawsuit
lawyer
ledipasvir
Ledipasvir
lesbian
lesions
lights
liver
lupus
marijuana
melancholic
memory loss
menopausal
mental retardation
military
milk
moisturizers
monoamine oxidase inhibitor drugs
MRI
MS
murder
national
natural
natural cure
natural cures
natural medications
natural medicine
natural medicines
natural remedies
natural remedy
natural treatment
natural treatments
naturally
Needy
needy
Neurology Reviews
neuropathic
nightclub massacre
nightclub shooting
nude
nudity
nutraceuticals
OASIS
oasis
off label
ombitasvir
Ombitasvir
ombitasvir/paritaprevir/ritonavir with dasabuvir
orlando shooting
overactive thyroid gland
overdose
overdosed
Paolo Preziosa
paritaprevir
Paritaprevir
pediatric
pedophile
photo
photos
picture
post partum
postnatal
pregnancy
pregnant
prenatal
prepartum
prison
program
Program
Protest
protest
psychedelics
pulse nightclub
puppy
purchase
purchasing
rape
recall
recreational drug
Rehabilitation
Retinal Measurements
retrograde ejaculation
risperdal
ritonavir
Ritonavir
ritonavir with dasabuvir
robin williams
sales
sasquatch
schizophrenia
seizure
seizures
sex
sexual
sexy
shock treatment
silver
sleep disorders
smoking
sociopath
sofosbuvir
Sofosbuvir
sovaldi
ssri
store
sue
suicidal
suicide
supplements
support
Support
Support Path
teen
teenage
teenagers
Telerehabilitation
testosterone
Th17
Th17:FoxP3+Treg cell ratio
Th22
toxic
toxin
tragedy
treatment resistant
V Pak
vagina
velpatasvir
Viekira Pa
Viekira Pak
viekira pak
violence
virgin
vitamin
VPak
weight loss
withdrawal
wrinkles
xxx
young adult
young adults
zoloft
financial
sofosbuvir
ritonavir with dasabuvir
discount
support path
program
ritonavir
greedy
ledipasvir
assistance
viekira pak
vpak
advocacy
needy
protest
abbvie
paritaprevir
ombitasvir
direct-acting antivirals
dasabuvir
gilead
fake-ovir
support
v pak
oasis
harvoni
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-imn')]
div[contains(@class, 'pane-pub-home-imn')]
div[contains(@class, 'pane-pub-topic-imn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Internal Medicine News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 09:05
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 09:05

Eating the Right Fats May Help Patients Live Longer

Article Type
Changed
Wed, 09/11/2024 - 13:58

 

A diet in which the primary source of fat is plant sources is associated with decreased mortality. Animal fat, on the other hand, is associated with an increased risk for death. These are the results of a study published in JAMA Internal Medicine that followed more than 600,000 participants over 2 decades.

Bin Zhao, PhD, of the National Clinical Research Center for Metabolic Diseases at the Key Laboratory of Diabetes Immunology in Changsha, China, and colleagues concluded from these data that consuming plant-based fats instead of animal fats could be beneficial for health and improve survival.

It may not be so simple, however. “We are one step ahead of the publication: We no longer just distinguish between animal and plant fats but mainly consider the composition,” said Stefan Lorkowski, PhD, chair of biochemistry and physiology of nutrition at the Institute of Nutritional Sciences at the University of Jena in Germany, in response to inquiries from this news organization.
 

What’s in a Fat?

Although Dr. Zhao and colleagues studied the effect of different plant and animal fat sources (eg, grains, nuts, legumes, plant oils, red and white meat, dairy, eggs, and fish), they did not consider the composition of the fatty acids that they contained. “It matters which dairy products, which plant oils, and which fish are consumed,” said Dr. Lorkowski.

The data analyzed in the Chinese study come from a prospective cohort study (NIH-AARP Diet and Health Study) conducted in the United States from 1995 to 2019. At the beginning, the 407,531 study participants (average age, 61 years) filled out dietary questionnaires once. They were then followed for up to 24 years for total and cardiovascular mortality.

During this period, 185,111 study participants died, including 58,526 from cardiovascular diseases. Participants who consumed the most plant-based fats, according to the dietary questionnaires filled out in 1995, had a lower risk for death than those who consumed the least plant-based fats. Their overall mortality risk was 9% lower, and their cardiovascular mortality risk was 14% lower. This finding was especially noticeable when it came to plant fats from grains or plant oils.
 

Animal Fat and Mortality

In contrast, a higher intake of animal fat was associated with both a higher overall mortality risk (16%) and a higher cardiovascular mortality risk (14%). This was especially true for fat from dairy products and eggs.

A trend towards a reduced overall and cardiovascular mortality risk was observed for fat from fish. “The fact that only a trend towards fish consumption was observed may be due to the study having many more meat eaters than fish eaters,” said Dr. Lorkowski.

Another imbalance limits the significance of the study, he added. The two groups, those who primarily consumed plant fats and those who primarily consumed animal fats, were already distinct at the beginning of the study. Those who consumed more plant fats were more likely to have diabetes, a higher body mass index (BMI), higher energy intake, and higher alcohol consumption but consumed more fiber, fruits, and vegetables and were more physically active. “They may have been trying to live healthier because they were sicker,” said Dr. Lorkowski.
 

Potential Confounding

Dr. Zhao and his team adjusted the results for various potential confounding factors, including age, gender, BMI, ethnicity, smoking, physical activity, education, marital status, diabetes, health status, vitamin intake, protein, carbohydrates, fiber, trans fats, cholesterol intake, and alcohol consumption. However, according to Dr. Lorkowski, “statistical adjustment is always incomplete, and confounding cannot be completely ruled out.”

Nevertheless, these results provide relevant insights for dietary recommendations that could help improve health and related outcomes, according to the authors. “Replacement of 5% energy from animal fat with 5% energy from plant fat, particularly fat from grains or vegetable oils, was associated with a lower risk for mortality: 4%-24% reduction in overall mortality and 5%-30% reduction in cardiovascular disease mortality.”
 

Fat Composition Matters

Animal fat, however, should not simply be replaced with plant fat, said Dr. Lorkowski. “Cold-water fish, which provides important long-chain omega-3 fatty acids, is also considered animal fat. And palm and coconut fat, while plant-based, contain unhealthy long-chain saturated fats. And the type of plant oils also makes a difference, whether one uses corn germ or sunflower oil rich in omega-6 fatty acids or flaxseed or rapeseed oil rich in omega-3 fatty acids.

“A diet rich in unsaturated fats, with sufficient and balanced intake of omega-3 and omega-6 fatty acids, that is also abundant in fiber-rich carbohydrate sources and plant-based protein, is always better than too much fat from animal sources.”

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

A diet in which the primary source of fat is plant sources is associated with decreased mortality. Animal fat, on the other hand, is associated with an increased risk for death. These are the results of a study published in JAMA Internal Medicine that followed more than 600,000 participants over 2 decades.

Bin Zhao, PhD, of the National Clinical Research Center for Metabolic Diseases at the Key Laboratory of Diabetes Immunology in Changsha, China, and colleagues concluded from these data that consuming plant-based fats instead of animal fats could be beneficial for health and improve survival.

It may not be so simple, however. “We are one step ahead of the publication: We no longer just distinguish between animal and plant fats but mainly consider the composition,” said Stefan Lorkowski, PhD, chair of biochemistry and physiology of nutrition at the Institute of Nutritional Sciences at the University of Jena in Germany, in response to inquiries from this news organization.
 

What’s in a Fat?

Although Dr. Zhao and colleagues studied the effect of different plant and animal fat sources (eg, grains, nuts, legumes, plant oils, red and white meat, dairy, eggs, and fish), they did not consider the composition of the fatty acids that they contained. “It matters which dairy products, which plant oils, and which fish are consumed,” said Dr. Lorkowski.

The data analyzed in the Chinese study come from a prospective cohort study (NIH-AARP Diet and Health Study) conducted in the United States from 1995 to 2019. At the beginning, the 407,531 study participants (average age, 61 years) filled out dietary questionnaires once. They were then followed for up to 24 years for total and cardiovascular mortality.

During this period, 185,111 study participants died, including 58,526 from cardiovascular diseases. Participants who consumed the most plant-based fats, according to the dietary questionnaires filled out in 1995, had a lower risk for death than those who consumed the least plant-based fats. Their overall mortality risk was 9% lower, and their cardiovascular mortality risk was 14% lower. This finding was especially noticeable when it came to plant fats from grains or plant oils.
 

Animal Fat and Mortality

In contrast, a higher intake of animal fat was associated with both a higher overall mortality risk (16%) and a higher cardiovascular mortality risk (14%). This was especially true for fat from dairy products and eggs.

A trend towards a reduced overall and cardiovascular mortality risk was observed for fat from fish. “The fact that only a trend towards fish consumption was observed may be due to the study having many more meat eaters than fish eaters,” said Dr. Lorkowski.

Another imbalance limits the significance of the study, he added. The two groups, those who primarily consumed plant fats and those who primarily consumed animal fats, were already distinct at the beginning of the study. Those who consumed more plant fats were more likely to have diabetes, a higher body mass index (BMI), higher energy intake, and higher alcohol consumption but consumed more fiber, fruits, and vegetables and were more physically active. “They may have been trying to live healthier because they were sicker,” said Dr. Lorkowski.
 

Potential Confounding

Dr. Zhao and his team adjusted the results for various potential confounding factors, including age, gender, BMI, ethnicity, smoking, physical activity, education, marital status, diabetes, health status, vitamin intake, protein, carbohydrates, fiber, trans fats, cholesterol intake, and alcohol consumption. However, according to Dr. Lorkowski, “statistical adjustment is always incomplete, and confounding cannot be completely ruled out.”

Nevertheless, these results provide relevant insights for dietary recommendations that could help improve health and related outcomes, according to the authors. “Replacement of 5% energy from animal fat with 5% energy from plant fat, particularly fat from grains or vegetable oils, was associated with a lower risk for mortality: 4%-24% reduction in overall mortality and 5%-30% reduction in cardiovascular disease mortality.”
 

Fat Composition Matters

Animal fat, however, should not simply be replaced with plant fat, said Dr. Lorkowski. “Cold-water fish, which provides important long-chain omega-3 fatty acids, is also considered animal fat. And palm and coconut fat, while plant-based, contain unhealthy long-chain saturated fats. And the type of plant oils also makes a difference, whether one uses corn germ or sunflower oil rich in omega-6 fatty acids or flaxseed or rapeseed oil rich in omega-3 fatty acids.

“A diet rich in unsaturated fats, with sufficient and balanced intake of omega-3 and omega-6 fatty acids, that is also abundant in fiber-rich carbohydrate sources and plant-based protein, is always better than too much fat from animal sources.”

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

A diet in which the primary source of fat is plant sources is associated with decreased mortality. Animal fat, on the other hand, is associated with an increased risk for death. These are the results of a study published in JAMA Internal Medicine that followed more than 600,000 participants over 2 decades.

Bin Zhao, PhD, of the National Clinical Research Center for Metabolic Diseases at the Key Laboratory of Diabetes Immunology in Changsha, China, and colleagues concluded from these data that consuming plant-based fats instead of animal fats could be beneficial for health and improve survival.

It may not be so simple, however. “We are one step ahead of the publication: We no longer just distinguish between animal and plant fats but mainly consider the composition,” said Stefan Lorkowski, PhD, chair of biochemistry and physiology of nutrition at the Institute of Nutritional Sciences at the University of Jena in Germany, in response to inquiries from this news organization.
 

What’s in a Fat?

Although Dr. Zhao and colleagues studied the effect of different plant and animal fat sources (eg, grains, nuts, legumes, plant oils, red and white meat, dairy, eggs, and fish), they did not consider the composition of the fatty acids that they contained. “It matters which dairy products, which plant oils, and which fish are consumed,” said Dr. Lorkowski.

The data analyzed in the Chinese study come from a prospective cohort study (NIH-AARP Diet and Health Study) conducted in the United States from 1995 to 2019. At the beginning, the 407,531 study participants (average age, 61 years) filled out dietary questionnaires once. They were then followed for up to 24 years for total and cardiovascular mortality.

During this period, 185,111 study participants died, including 58,526 from cardiovascular diseases. Participants who consumed the most plant-based fats, according to the dietary questionnaires filled out in 1995, had a lower risk for death than those who consumed the least plant-based fats. Their overall mortality risk was 9% lower, and their cardiovascular mortality risk was 14% lower. This finding was especially noticeable when it came to plant fats from grains or plant oils.
 

Animal Fat and Mortality

In contrast, a higher intake of animal fat was associated with both a higher overall mortality risk (16%) and a higher cardiovascular mortality risk (14%). This was especially true for fat from dairy products and eggs.

A trend towards a reduced overall and cardiovascular mortality risk was observed for fat from fish. “The fact that only a trend towards fish consumption was observed may be due to the study having many more meat eaters than fish eaters,” said Dr. Lorkowski.

Another imbalance limits the significance of the study, he added. The two groups, those who primarily consumed plant fats and those who primarily consumed animal fats, were already distinct at the beginning of the study. Those who consumed more plant fats were more likely to have diabetes, a higher body mass index (BMI), higher energy intake, and higher alcohol consumption but consumed more fiber, fruits, and vegetables and were more physically active. “They may have been trying to live healthier because they were sicker,” said Dr. Lorkowski.
 

Potential Confounding

Dr. Zhao and his team adjusted the results for various potential confounding factors, including age, gender, BMI, ethnicity, smoking, physical activity, education, marital status, diabetes, health status, vitamin intake, protein, carbohydrates, fiber, trans fats, cholesterol intake, and alcohol consumption. However, according to Dr. Lorkowski, “statistical adjustment is always incomplete, and confounding cannot be completely ruled out.”

Nevertheless, these results provide relevant insights for dietary recommendations that could help improve health and related outcomes, according to the authors. “Replacement of 5% energy from animal fat with 5% energy from plant fat, particularly fat from grains or vegetable oils, was associated with a lower risk for mortality: 4%-24% reduction in overall mortality and 5%-30% reduction in cardiovascular disease mortality.”
 

Fat Composition Matters

Animal fat, however, should not simply be replaced with plant fat, said Dr. Lorkowski. “Cold-water fish, which provides important long-chain omega-3 fatty acids, is also considered animal fat. And palm and coconut fat, while plant-based, contain unhealthy long-chain saturated fats. And the type of plant oils also makes a difference, whether one uses corn germ or sunflower oil rich in omega-6 fatty acids or flaxseed or rapeseed oil rich in omega-3 fatty acids.

“A diet rich in unsaturated fats, with sufficient and balanced intake of omega-3 and omega-6 fatty acids, that is also abundant in fiber-rich carbohydrate sources and plant-based protein, is always better than too much fat from animal sources.”

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA INTERNAL MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

A Simple Blood Test May Predict Cancer Risk in T2D

Article Type
Changed
Wed, 09/11/2024 - 13:30

 

TOPLINE:

— Elevated interleukin (IL) 6 levels are associated with an increased risk for obesity-related cancers in patients newly diagnosed with type 2 diabetes (T2D), potentially enabling the identification of higher-risk individuals through a simple blood test.

METHODOLOGY:

  • T2D is associated with an increased risk for obesity-related cancers, including breast, renal, uterine, thyroid, ovarian, and gastrointestinal cancers, as well as multiple myeloma, possibly because of chronic low-grade inflammation.
  • Researchers explored whether the markers of inflammation IL-6, tumor necrosis factor alpha (TNF-alpha), and high-sensitivity C-reactive protein (hsCRP) can serve as predictive biomarkers for obesity-related cancers in patients recently diagnosed with T2D.
  • They identified patients with recent-onset T2D and no prior history of cancer participating in the ongoing Danish Centre for Strategic Research in Type 2 Diabetes cohort study.
  • At study initiation, plasma levels of IL-6 and TNF-alpha were measured using Meso Scale Discovery assays, and serum levels of hsCRP were measured using immunofluorometric assays.

TAKEAWAY:

  • Among 6,466 eligible patients (40.5% women; median age, 60.9 years), 327 developed obesity-related cancers over a median follow-up of 8.8 years.
  • Each SD increase in log-transformed IL-6 levels increased the risk for obesity-related cancers by 19%.
  • The researchers did not find a strong association between TNF-alpha or hsCRP and obesity-related cancers.
  • The addition of baseline IL-6 levels to other well-known risk factors for obesity-related cancers improved the performance of a cancer prediction model from 0.685 to 0.693, translating to a small but important increase in the ability to predict whether an individual would develop one of these cancers.

IN PRACTICE:

“In future, a simple blood test could identify those at higher risk of the cancers,” said the study’s lead author in an accompanying press release.

SOURCE:

The study was led by Mathilde D. Bennetsen, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark, and published online on August 27 as an early release from the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

LIMITATIONS:

No limitations were discussed in this abstract. However, the reliance on registry data may have introduced potential biases related to data accuracy and completeness.

DISCLOSURES:

The Danish Centre for Strategic Research in Type 2 Diabetes was supported by grants from the Danish Agency for Science and the Novo Nordisk Foundation. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

— Elevated interleukin (IL) 6 levels are associated with an increased risk for obesity-related cancers in patients newly diagnosed with type 2 diabetes (T2D), potentially enabling the identification of higher-risk individuals through a simple blood test.

METHODOLOGY:

  • T2D is associated with an increased risk for obesity-related cancers, including breast, renal, uterine, thyroid, ovarian, and gastrointestinal cancers, as well as multiple myeloma, possibly because of chronic low-grade inflammation.
  • Researchers explored whether the markers of inflammation IL-6, tumor necrosis factor alpha (TNF-alpha), and high-sensitivity C-reactive protein (hsCRP) can serve as predictive biomarkers for obesity-related cancers in patients recently diagnosed with T2D.
  • They identified patients with recent-onset T2D and no prior history of cancer participating in the ongoing Danish Centre for Strategic Research in Type 2 Diabetes cohort study.
  • At study initiation, plasma levels of IL-6 and TNF-alpha were measured using Meso Scale Discovery assays, and serum levels of hsCRP were measured using immunofluorometric assays.

TAKEAWAY:

  • Among 6,466 eligible patients (40.5% women; median age, 60.9 years), 327 developed obesity-related cancers over a median follow-up of 8.8 years.
  • Each SD increase in log-transformed IL-6 levels increased the risk for obesity-related cancers by 19%.
  • The researchers did not find a strong association between TNF-alpha or hsCRP and obesity-related cancers.
  • The addition of baseline IL-6 levels to other well-known risk factors for obesity-related cancers improved the performance of a cancer prediction model from 0.685 to 0.693, translating to a small but important increase in the ability to predict whether an individual would develop one of these cancers.

IN PRACTICE:

“In future, a simple blood test could identify those at higher risk of the cancers,” said the study’s lead author in an accompanying press release.

SOURCE:

The study was led by Mathilde D. Bennetsen, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark, and published online on August 27 as an early release from the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

LIMITATIONS:

No limitations were discussed in this abstract. However, the reliance on registry data may have introduced potential biases related to data accuracy and completeness.

DISCLOSURES:

The Danish Centre for Strategic Research in Type 2 Diabetes was supported by grants from the Danish Agency for Science and the Novo Nordisk Foundation. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

— Elevated interleukin (IL) 6 levels are associated with an increased risk for obesity-related cancers in patients newly diagnosed with type 2 diabetes (T2D), potentially enabling the identification of higher-risk individuals through a simple blood test.

METHODOLOGY:

  • T2D is associated with an increased risk for obesity-related cancers, including breast, renal, uterine, thyroid, ovarian, and gastrointestinal cancers, as well as multiple myeloma, possibly because of chronic low-grade inflammation.
  • Researchers explored whether the markers of inflammation IL-6, tumor necrosis factor alpha (TNF-alpha), and high-sensitivity C-reactive protein (hsCRP) can serve as predictive biomarkers for obesity-related cancers in patients recently diagnosed with T2D.
  • They identified patients with recent-onset T2D and no prior history of cancer participating in the ongoing Danish Centre for Strategic Research in Type 2 Diabetes cohort study.
  • At study initiation, plasma levels of IL-6 and TNF-alpha were measured using Meso Scale Discovery assays, and serum levels of hsCRP were measured using immunofluorometric assays.

TAKEAWAY:

  • Among 6,466 eligible patients (40.5% women; median age, 60.9 years), 327 developed obesity-related cancers over a median follow-up of 8.8 years.
  • Each SD increase in log-transformed IL-6 levels increased the risk for obesity-related cancers by 19%.
  • The researchers did not find a strong association between TNF-alpha or hsCRP and obesity-related cancers.
  • The addition of baseline IL-6 levels to other well-known risk factors for obesity-related cancers improved the performance of a cancer prediction model from 0.685 to 0.693, translating to a small but important increase in the ability to predict whether an individual would develop one of these cancers.

IN PRACTICE:

“In future, a simple blood test could identify those at higher risk of the cancers,” said the study’s lead author in an accompanying press release.

SOURCE:

The study was led by Mathilde D. Bennetsen, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark, and published online on August 27 as an early release from the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting.

LIMITATIONS:

No limitations were discussed in this abstract. However, the reliance on registry data may have introduced potential biases related to data accuracy and completeness.

DISCLOSURES:

The Danish Centre for Strategic Research in Type 2 Diabetes was supported by grants from the Danish Agency for Science and the Novo Nordisk Foundation. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

GLP-1 RA Therapy for Alcohol Use Disorder?

Article Type
Changed
Tue, 09/17/2024 - 19:46

 

This transcript has been edited for clarity. 

Akshay B. Jain, MD: Today we are very excited to have Dr. Leggio join us all the way from the National Institutes of Health (NIH). He is an addiction physician scientist in the intramural research program at NIH. Welcome, Dr. Leggio. Thanks for joining us. 

Lorenzo Leggio, MD, PhD: Thank you so much. 

Dr. Jain: We’ll get right into this. Your session was, in my mind, extremely informative. The session looked at glucagon-like peptide 1 receptor agonist (GLP-1 RA) therapy and its potential effects on mitigating alcohol misuse syndrome, so, reduction of alcohol addiction potentially. 

We’ve seen in some previous clinical trials, including many from your group, that alcohol use is known to be reduced — the overall risk of incidence, as well as recurrence of alcohol use — in individuals who are on GLP-1 RA therapy.

Can you share more insights about the data already out there? 

Dr. Leggio: At the preclinical level, we have a very robust line of studies, experiments, and publications looking at the effect of GLP-1 RAs, starting from exenatide up to, more recently, semaglutide. They show that these GLP-1 RAs do reduce alcohol drinking. They used different animal models of excessive alcohol drinking, using different species — for example, mice, rats, nonhuman primates — models that reflect the excessive alcohol drinking behavior that we see in patients, like physical alcohol dependence or binge-like alcohol drinking, and other behaviors in animal models that reflect the human condition.

In addition to that, we recently have seen an increase in human evidence that GLP-1 RAs may reduce alcohol drinking. For example, there is some anecdotal evidence and some analyses using social media showing that people on GLP-1 RAs report drinking less alcohol. 

There are also some pharmacoepidemiology studies which are very intriguing and quite promising. In this case, people have been looking at electronic medical records; they have used the pharmacoepidemiology approaches to match patients on GLP-1 RAs because of diabetes or obesity, and have compared and matched to patients on different drugs as the controls.

A study was recently published Nature Communications by a group in Cleveland in collaboration with Dr. Nora Volkow from the National Institute on Drug Abuse. This study shows the association between being on a GLP-1 RA and the lower incidence of alcohol use disorder and lower drinking.

There is also some promise from prospective randomized clinical trials. In particular, there was one clinical trial from Denmark, a well-known and -conducted clinical trial where they looked at exenatide, and they didn’t see an effect of exenatide compared with placebo in the main analysis. But in a subanalysis, they did see that exenatide reduced alcohol drinking, but only in patients with alcohol use disorder and obesity.

This suggests that these medications may work for some patients and not for other patients. That’s fine, because just like in any other field in medicine, including diabetes, obesity, hypertension, Parkinson’s, and depression, not all medications work for everybody. If these medications will work for alcohol addiction, we do not expect that they will work for everybody.

One ongoing question in the field is to try to identify the phenotypes or the subgroup of people who may be more responsive to these medications. 

Dr. Jain: This is such a fascinating field, and all these studies are coming out. In your review of all the literature so far, do you think this is dose dependent? Also, we see that, for instance, with certain individuals, when they take GLP-1 RA therapy, they might have a lot of gastrointestinal (GI) side effects. Recent studies have shown that the rate of these GI side effects does not necessarily correlate with the amount of weight loss. In the alcohol addiction field, do you think that the GI side effects, things like nausea, could also have a potential role in mitigating the alcohol addiction?

Dr. Leggio: This is a great question. They may play a role; they may contribute, too, but we don’t think that they are the driving mechanism of why people drink less, for at least a couple of reasons. 

One is that, similar to the obesity field, the data we have so far don’t necessarily show a relationship between the GI side effects and the reduction in drinking. Plus, the reduction in drinking is likely to happen later when many GI side effects are gone or attenuated. 

The second reason is from the neuroscience field. We are starting to better understand the mechanism at the brain level as to how these medications work. We don’t see that the nausea or, more generally, not feeling well — malaise, etc. — are driving mechanisms for how these medications work.

Again, it’s not to discount completely that the GI side effects may play a role, but I would say that, if anything, they may be more contributing to. And if they do, that will not be unique to this class of medication. For example, we have three medications approved by the US Food and Drug Administration (FDA) for alcohol use disorder.

One challenge we have in the addiction field is that many people don’t know that these medications exist — many primary care providers don’t know — and they are completely underutilized. Everybody here who is listening to us knows that roughly 85% of people with diabetes receive a medication for diabetes. For alcohol use disorder, the number is 2%. These are medications approved by the FDA. 

One of them is naltrexone, which does give GI symptoms — in particular, nausea and vomiting. The other medication is acamprosate, which does give diarrhea.

You have medications approved for alcohol disorder where you do have some GI symptoms, but they are not the mechanism either for how these medications help people to curb craving and reduce alcohol drinking.

Dr. Jain: What about the dose-dependent action? Do you think that GLP-1 RAs, at a lower dose, may not have an effect on alcohol use disorder vs at a higher dose, or is everyone a little different? 

Dr. Leggio: That’s a wonderful question. The short answer is, we don’t know, to be honest. Now, in some of the animal studies — my team has been in collaboration with other scientists in the NIH intramural research program, and also with scientists in academia, for example, at Scripps, UCLA — we see a dose response where the higher the dose, the higher the effect of the drug. In this case, semaglutide reduced binge drinking in a rat model of a physical alcohol dependence.

That said, I would be very cautious about claiming, based on the rodent data, that humans will have a dose response. It’s an open question. We really don’t know. Some of the pharmacoepidemiology data suggested that even lower doses — for example, using semaglutide for diabetes without going up to the obesity dose — may be just as effective as a higher dose in reducing the incidence of alcohol use disorder. 

It’s important also to keep in mind that the pharmacoepidemiology data are always an association. Reduction in alcohol disorder is associated with the prescription GLP-1 RA, but they don’t really replace the more gold-standard, double-blind, placebo-controlled randomized clinical trial. Nonetheless, with the pharmacoepidemiology data, I think there is an argument to at least hypothesize that people may respond well, even to lower doses. 

This also may be important from a safety standpoint. 

Basically, we need to wait for results in the next years to come from randomized clinical trials to better unfold the question about doses. For example, just anecdotally, I will tell you that in the clinical trial we are conducting right now at the NIH Intramural Research Program, for which I’m the principal investigator (PI), we are going up to 2.4 mg — the highest dose of semaglutide.

We are collaborating with Kyle Simmons, PhD, from Oklahoma State University. Our two studies are not like a two-site clinical trial, but they are harmonized. In Dr. Simmons’ clinical trial, they’re going up to 1.0 mg. We are excited about this team approach because the trials are slightly different, but they’re harmonized to the point that, once the studies are done, we’ll be able to combine and compare data to better answer the question about dosing, and many other questions.

Dr. Jain: From a clinical perspective, we see that many people who are battling alcohol use disorder may not have obesity. They might actually be on the leaner side, and hence, we may not want to use a high dose of GLP-1 RA therapy. It’ll be very exciting to see when these results come out.

This brings me to the next question. I think everyone would love to know why this happens. Why is GLP-1 RA having this effect on alcohol use disorder? I know that your group has done many animal studies, as you pointed out, and one of the postulated theories was the effect on the GABA neurotransmission pathway.

Can you tell us more about what you feel is the underlying mechanism of action here?

Dr. Leggio: I will start by saying that we don’t fully know. There are many open questions. If I can sidetrack for one second: We come up with the idea that, first of all, alcohol use disorder and substance use disorder are addictive behaviors, addictive disorders. We define addiction as a brain disease. 

Granted that addiction is a brain disease, it doesn’t mean that addiction works just in the brain in isolation. As we all know, the brain works in concert with the rest of the body. One specific approach my team has been taking is working on the analogy and the similarities between obesity and addiction to try to understand how the body-brain connection, such as the gut-brain-neuroendocrine pathway, may play a role in patients with addiction.

 

 

With that in mind, a large amount of work in my lab in the past 20 years — since I’ve been a PI — has been focused on studying this neuroendocrine pathways related to the gut-brain axis. For example, we have done work on insulin and leptin, primarily; we had done work on ghrelin, and since 2015 on the GLP-1 RAs.

With that in mind, the framework we are working on, which is also substantiated by many studies done by our team and other teams in the neuroscience field, kind of supports the idea that, similar to what we see in obesity, these medications may work by affecting what we call reward processing, or the seeking for addictive drugs, such as alcohol, and also the drugs such as the stimulants, opioids, nicotine, and so on.

The idea is that the mechanism is driven by the ability of the medication — semaglutide and all the GLP-1 RAs — to reduce the rewarding properties of alcohol and drugs. To maybe make the example more pragmatic, what does that mean? It means, for example, that a patient who typically has 10 drinks per day in the afternoon and night, while they are on the medication they may feel the lack of need to drink up to 10 to feel the same reward. 

They may be able to stop after two or three drinks, which means a significant harm reduction and a beneficial outcome. This also brings us to another mechanism, which may be related to society. We don’t fully understand how much the society mechanism, including society mechanism related to GI motility, may also play a role.

With that said, we don’t think that the effect of the GLP-1 RAs is merely due to alcohol being a calorie-based nutrient because, in fact, we see alcohol as an addictive drug, not as a nutrient. Also, the GLP-1 RAs, at least in animal models, seem to work on other addictive drugs that don’t have calories, such as nicotine, and possibly with cannabis, opioids, and stimulants.

Then on the molecular level, our team recently showed, in collaboration with Dr. Marisa Roberto from Scripps in La Jolla, California, that semaglutide may in fact change the GABA transmission at the level of some brain regions, such as the amygdala and the prefrontal cortex. These are brain regions that are well-established hubs that play a role in the mechanism underlying addiction. 

There are also some very exciting recent data showing how these medications may work not just on GABA or just on dopamine, which is the canonical way we conceive of reward processing, but by working on both by modulating GABA transmission — for example, at the ventral tegmental area and dopamine transmission at the nucleus accumbens.

Bottom line, if I summarize all of this, is that the mechanism is not fully understood, but there is definitely a contribution of this medication to effect and reward processing, possibly by altering the balance between GABA and dopamine. There are still some unknown questions, such as, are these mechanisms all brain driven or are they signaling from the periphery to the brain, or maybe both?

Also, as we all know, there are many differences across all these GLP-1 analogs in brain penetrance. Whether the drug needs to go to the brain to have an effect on alcohol drinking, cocaine seeking, or smoking is really an open question.

Dr. Jain: This is so thought-provoking. I guess the more we uncover, the more mesmerized we get with all the potential crosstalk. There is a large amount of overlap in the brain with each of these different things and how it all interplays with each other. 

Speaking of interplay, I’m thinking about how many people prone to having alcohol use disorder can potentially develop complications, one of these being chronic pancreatitis. This is a well-known complication that can occur in people having alcohol addiction. Along that same line, we know that previous history of pancreatitis is considered a use-with-caution, or we don’t want to use GLP-1 RA therapy in people who have had pancreatitis. 

Now it becomes this quagmire where people may have chronic pancreatitis, but we may want to consider GLP-1 RA therapy for management of alcohol use disorder. What are your thoughts about this, and the safety, potentially, in using it in these patients? 

Dr. Leggio: This is another wonderful question. That’s definitely a top priority in our mind, to address these kinds of questions. For example, our RCT does have, as core primary outcomes, not only the efficacy defined as a reduction in alcohol drinking, but also safety.

The reason is exactly what you just explained. There are many unanswered questions, including whether giving a GLP-1 RA and alcohol together may have synergistic effects and increase the likelihood of having pancreatitis. 

The good news is that, so far, based on the published literature, including the RCT done with exenatide in Denmark and published in 2022 and also the ongoing clinical trials — including my own clinical trial, but of course we are blind — pancreatitis has not been coming out as an adverse event.

However, it’s also true that it often happens in clinical medication development. Of course, we screen and select our population well. For example, we do exclude people who have a history of pancreatitis. We exclude people with high lipase or with any of the clinical symptomatology that makes us concerned about these people having pancreatitis. 

As often happens when you move a medication from clinical trials to clinical practice, we still need to understand whether this medication works in patients. I’m just speculating, but even if the clinical trials do not raise red flags in terms of increased risk for some side effects such as pancreatitis, I think it will be very important for practitioners to keep a close eye on the death risk regardless. 

It’s very interesting that it’s similar to alcohol liver disease. With pancreatitis, not every single patient with alcohol addiction has pancreatitis. We don’t really fully understand why some people develop pancreatitis and some people do not. The point being that there are many patients with alcohol addiction who don’t have pancreatitis and may benefit from these medications if they work. Again, we have to prove that in patients.

On the other side, as we all know, pancreatitis is a potentially life-threatening condition for those people who either have it or are at risk for it. I think we have to be very careful before we consider giving them a GLP-1 RA.

One could argue that alcohol is the leading cause of mortality and morbidity in the world. For example, right now, alcohol is the leading cause of liver disease. It’s the main reason for liver transplantation in our country. Alcohol is affecting thousands of people in terms of death and emergency room visits.

You could argue that the downside is not treating these people and they die because of alcohol addiction. A GLP-1 RA is not going to be for everybody. I will remind everybody that (1) we do have FDA-approved medications for alcohol addiction; and (2) there are also other medications not approved by the FDA, but with a proven efficacy in some clinical trials — for example, topiramate and gabapentin — and they’ve been endorsed by the American Psychiatric Association. 

There is also some evidence for another medication, baclofen, which has been endorsed by the American College of Gastroenterology for patients with alcohol addiction and liver disease.

The point I’m making is that it’s not that either we use the GLP-1 RAs or we have no other tools. We have other tools. I think we have to personalize the treatment based on the patient’s profile from a safety standpoint and from a phenotypic standpoint. 

Dr. Jain: I love that thought. I think individualization is the key here.

We know that people with diabetes have a higher risk for pancreatitis by virtue of having diabetes. People with obesity also have a higher risk for pancreatitis by virtue of having obesity. These are the two conditions where we are using a large amount of GLP-1 RA therapy. Again, the idea is looking at the person in front of us and then deciding, based on their past medical history and their current risk, whether or not a medication is a right fit for them.

I think more individualization here will come as we start using these medications that might be having potential effects on different organ systems. You mentioned a little bit about the liver, so a thought came in my mind. We know that people with diabetes who have alcohol use disorder are at a higher risk for potential hypoglycemia. If they have events when they have increased consumption of alcohol, there can be more hypoglycemia.

We now could potentially be using semaglutide or other GLP-1 RA therapy for management of alcohol use disorder. In your own experience in the studies that you’ve done or the literature that’s out there, has that been associated with an even higher risk for hypoglycemia? 

Dr. Leggio: It’s a wonderful question. I’m not aware of any formal and published report of that association. That said, your thinking from a physiopathologist standpoint makes total sense. I could not agree more. The fact that nothing has been published, at least to my knowledge, doesn’t mean that the death risk doesn’t exist. In fact, I agree with you that it does exist. 

Alcohol use disorder is interesting and tricky clinically because chronically, alcohol addiction or alcohol use disorder is associated with an increased risk for diabetes. Acutely, as you point out; and this could be with or without alcohol use disorder. An episode of a high volume of binge drinking may lead to hypoglycemia.

This is one of the reasons why people may show up to the emergency room with intoxication, and one of the symptoms detected at the emergency room is that they also have hypoglycemia in addition to vomiting, nausea, and everything else that we see in patients with acute intoxication.

Similar to the discussion about pancreatitis, as we work on understanding the possible role of GLP-1 RA in patients with alcohol use disorder, we do have to keep a close eye on the risk for hypoglycemia. The short answer is that this is not well established, but based on the simple concept of “first, do no harm,” I think we need to track that very carefully. 

In the ongoing clinical trial we’re doing in Maryland in my program at the NIH, we do just that. We are tracking glucose levels. Of course, patients come to clinic weekly, so unless they have symptoms, typically we don’t see anything at the time.

 

 

More important, we educate our patients when they go through the consent process. We tell them that this medication per se does not give hypoglycemia. In fact, we’re including people with diabetes, so for people on other medications like metformin, we explain to them that technically such a risk should not exist, but because you’re drinking alcohol in excessive amounts, you do have a potential higher risk. We just don’t know how significant that risk could be. 

We do a large amount of education at baseline when they enroll in our study. We also educate our patients on how to recognize early on the potential risk for hypoglycemia, exactly for the reasons you said. We explain to them the unknown potential that the GLP-1 RAs and alcohol together may synergize and give hypoglycemia.

Dr. Jain: I don’t know if you got this feeling at the ADA conference, but I felt, when attending all these sessions, that it seems like GLP-1 RA is the gift that keeps giving. We see the effect on diabetes, obesity, metabolic-associated steatotic liver disease, possibly with Alzheimer’s, chronic obstructive pulmonary disease, and so many things.

Now, of course, there’s potential use in alcohol use disorder. Do you think that using GLP-1 RA therapy is ready for prime time? Do you think we are now ready to prescribe this in people with alcohol use disorder?

Dr. Leggio: I would say we’re not there yet. As I mentioned at the beginning, the evidence keeps on growing. It’s getting stronger and stronger because the positive data keep on coming up. We have data from animal models, including the different species, ranging from rodents to nonhuman primates. We have anecdotal evidence and machine-learning approaches using, for example, big data and social media data. Now we have pharmacoepidemiology data and some small, initial, but still good randomized clinical trials.

What we are missing is the final step of having a substantial number of prospective, double-blind, placebo-controlled clinical trials to really prove or disprove whether these medications work, and to also better understand which patients may respond to these medications.

The good news is that there are many ongoing clinical trials. We are conducting a clinical trial in Maryland at the NIH. Dr. Simmons is doing a clinical trial at Oklahoma State University. Dr. Christian Hendershot at UNC is conducting a study at Chapel Hill. Dr. Josh Gowin is doing a study in Colorado. Dr. Anders Fink-Jensen is doing a study in Denmark. The momentum is very high. 

I’m only mentioning those people who are doing alcohol-semaglutide clinical trials. There are also people doing clinical trials on smoking, stimulants, and opioids. There are actually some very fresh, still unpublished data from Penn State that were presented publicly at conferences, showing how these drugs may reduce opioid craving, which is, of course, critically important, given that we’re in the middle of a fentanyl pandemic that is killing one person every 7 minutes, for example, in Baltimore. It’s very alarming and we need more treatments.

The bottom line is that it’s very promising, but we need to wait for these clinical trials to have a definitive answer. I would say that if you have a patient with diabetes, obesity, and also alcohol addiction, and they are on semaglutide or any other GLP-1 RA, and in addition to using the medication for diabetes and obesity, they also have a beneficial effect on their alcohol drinking, then that’s fantastic. At the end of the day, that’s the mission we all share: helping people. 

If it’s someone without obesity and diabetes, personally, at this stage, I will go with other medications that either have FDA approval or at least very solid evidence of efficacy from RCTs rather than going with the GLP-1 RA, at least until I see more definitive data from randomized clinical trials. 

There is a large amount of hope. We are hoping that these clinical trials will be positive. We are very enthusiastic and we’re also very thrilled to see that Novo Nordisk recently launched a gigantic multisite clinical trial with — I forgot how many sites, but it’s very large across Europe, America, and maybe other continents as well.

Their primary outcome is improvement in alcohol-related liver disease, but they’re also looking at alcohol drinking as a secondary outcome. That’s very important because, unlike in the diabetes field, in the addiction field, we do struggle to build partnership with the private sector because sometimes the addiction field is not seen as an appetitive field from pharma. 

We all know that the best success in any medication development story is when you put academia, the government, and pharma together. Think about the COVID-19 vaccine development. That’s unfortunately the exception rather than rule in the addiction field. 

With the company doing a large clinical trial in the alcohol field, although they focus more on the liver but they also looked at drinking, I really hope we’ll see more and more companies in the private sector take more and more interest in addiction. Also, I hope to see more and more partnership between the private sector, the government, and academia. 

Dr. Jain: Such exciting times, indeed. We can’t wait enough for the results of these and many other trials to come out. Dr. Leggio, it was an absolute delight chatting with you today. Thank you so much for joining us from ADA 2024.

Akshay B. Jain, MD, Clinical Instructor, Department of Endocrinology, University of British Columbia; Endocrinologist, TLC Diabetes and Endocrinology, Vancouver, British Columbia, Canada, has disclosed the following relevant financial relationships: Serve(d) as a speaker or a member of a speakers bureau for: Abbott; Acerus; AstraZeneca; Amgen; Bausch Healthcare; Bayer; Boehringer Ingelheim; Care to Know; CCRN; Connected in Motion; CPD Network; Dexcom; Diabetes Canada; Eli Lilly; GSK; HLS Therapeutics; Janssen; Master Clinician Alliance; MDBriefcase; Merck; Medtronic; Moderna; Novartis; Novo Nordisk; Partners in Progressive Medical Education; Pfizer; Sanofi Aventis; Timed Right; WebMD. Received research grants/research support from: Abbott; Amgen; Novo Nordisk. Received consulting fees from: Abbott; Acerus; AstraZeneca; Amgen; Bausch Healthcare; Bayer; Boehringer Ingelheim; Dexcom; Eli Lilly; Gilead Sciences; GSK; HLS Therapeutics; Insulet; Janssen; Medtronic; Novo Nordisk; Partners in Progressive Medical Education; PocketPills; Roche; Sanofi Aventis; Takeda. Lorenzo Leggio, MD, PhD, Clinical Director, Deputy Scientific Director, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, has disclosed the following relevant financial relationships: Serve(d) as a US federal employee for: National Institutes of Health. He had received income in an amount equal to or greater than $250 from: UK Medical Council on Alcohol for his service as editor-in-chief for Alcohol and Alcoholism and received royalties from Rutledge as an editor for a textbook.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity. 

Akshay B. Jain, MD: Today we are very excited to have Dr. Leggio join us all the way from the National Institutes of Health (NIH). He is an addiction physician scientist in the intramural research program at NIH. Welcome, Dr. Leggio. Thanks for joining us. 

Lorenzo Leggio, MD, PhD: Thank you so much. 

Dr. Jain: We’ll get right into this. Your session was, in my mind, extremely informative. The session looked at glucagon-like peptide 1 receptor agonist (GLP-1 RA) therapy and its potential effects on mitigating alcohol misuse syndrome, so, reduction of alcohol addiction potentially. 

We’ve seen in some previous clinical trials, including many from your group, that alcohol use is known to be reduced — the overall risk of incidence, as well as recurrence of alcohol use — in individuals who are on GLP-1 RA therapy.

Can you share more insights about the data already out there? 

Dr. Leggio: At the preclinical level, we have a very robust line of studies, experiments, and publications looking at the effect of GLP-1 RAs, starting from exenatide up to, more recently, semaglutide. They show that these GLP-1 RAs do reduce alcohol drinking. They used different animal models of excessive alcohol drinking, using different species — for example, mice, rats, nonhuman primates — models that reflect the excessive alcohol drinking behavior that we see in patients, like physical alcohol dependence or binge-like alcohol drinking, and other behaviors in animal models that reflect the human condition.

In addition to that, we recently have seen an increase in human evidence that GLP-1 RAs may reduce alcohol drinking. For example, there is some anecdotal evidence and some analyses using social media showing that people on GLP-1 RAs report drinking less alcohol. 

There are also some pharmacoepidemiology studies which are very intriguing and quite promising. In this case, people have been looking at electronic medical records; they have used the pharmacoepidemiology approaches to match patients on GLP-1 RAs because of diabetes or obesity, and have compared and matched to patients on different drugs as the controls.

A study was recently published Nature Communications by a group in Cleveland in collaboration with Dr. Nora Volkow from the National Institute on Drug Abuse. This study shows the association between being on a GLP-1 RA and the lower incidence of alcohol use disorder and lower drinking.

There is also some promise from prospective randomized clinical trials. In particular, there was one clinical trial from Denmark, a well-known and -conducted clinical trial where they looked at exenatide, and they didn’t see an effect of exenatide compared with placebo in the main analysis. But in a subanalysis, they did see that exenatide reduced alcohol drinking, but only in patients with alcohol use disorder and obesity.

This suggests that these medications may work for some patients and not for other patients. That’s fine, because just like in any other field in medicine, including diabetes, obesity, hypertension, Parkinson’s, and depression, not all medications work for everybody. If these medications will work for alcohol addiction, we do not expect that they will work for everybody.

One ongoing question in the field is to try to identify the phenotypes or the subgroup of people who may be more responsive to these medications. 

Dr. Jain: This is such a fascinating field, and all these studies are coming out. In your review of all the literature so far, do you think this is dose dependent? Also, we see that, for instance, with certain individuals, when they take GLP-1 RA therapy, they might have a lot of gastrointestinal (GI) side effects. Recent studies have shown that the rate of these GI side effects does not necessarily correlate with the amount of weight loss. In the alcohol addiction field, do you think that the GI side effects, things like nausea, could also have a potential role in mitigating the alcohol addiction?

Dr. Leggio: This is a great question. They may play a role; they may contribute, too, but we don’t think that they are the driving mechanism of why people drink less, for at least a couple of reasons. 

One is that, similar to the obesity field, the data we have so far don’t necessarily show a relationship between the GI side effects and the reduction in drinking. Plus, the reduction in drinking is likely to happen later when many GI side effects are gone or attenuated. 

The second reason is from the neuroscience field. We are starting to better understand the mechanism at the brain level as to how these medications work. We don’t see that the nausea or, more generally, not feeling well — malaise, etc. — are driving mechanisms for how these medications work.

Again, it’s not to discount completely that the GI side effects may play a role, but I would say that, if anything, they may be more contributing to. And if they do, that will not be unique to this class of medication. For example, we have three medications approved by the US Food and Drug Administration (FDA) for alcohol use disorder.

One challenge we have in the addiction field is that many people don’t know that these medications exist — many primary care providers don’t know — and they are completely underutilized. Everybody here who is listening to us knows that roughly 85% of people with diabetes receive a medication for diabetes. For alcohol use disorder, the number is 2%. These are medications approved by the FDA. 

One of them is naltrexone, which does give GI symptoms — in particular, nausea and vomiting. The other medication is acamprosate, which does give diarrhea.

You have medications approved for alcohol disorder where you do have some GI symptoms, but they are not the mechanism either for how these medications help people to curb craving and reduce alcohol drinking.

Dr. Jain: What about the dose-dependent action? Do you think that GLP-1 RAs, at a lower dose, may not have an effect on alcohol use disorder vs at a higher dose, or is everyone a little different? 

Dr. Leggio: That’s a wonderful question. The short answer is, we don’t know, to be honest. Now, in some of the animal studies — my team has been in collaboration with other scientists in the NIH intramural research program, and also with scientists in academia, for example, at Scripps, UCLA — we see a dose response where the higher the dose, the higher the effect of the drug. In this case, semaglutide reduced binge drinking in a rat model of a physical alcohol dependence.

That said, I would be very cautious about claiming, based on the rodent data, that humans will have a dose response. It’s an open question. We really don’t know. Some of the pharmacoepidemiology data suggested that even lower doses — for example, using semaglutide for diabetes without going up to the obesity dose — may be just as effective as a higher dose in reducing the incidence of alcohol use disorder. 

It’s important also to keep in mind that the pharmacoepidemiology data are always an association. Reduction in alcohol disorder is associated with the prescription GLP-1 RA, but they don’t really replace the more gold-standard, double-blind, placebo-controlled randomized clinical trial. Nonetheless, with the pharmacoepidemiology data, I think there is an argument to at least hypothesize that people may respond well, even to lower doses. 

This also may be important from a safety standpoint. 

Basically, we need to wait for results in the next years to come from randomized clinical trials to better unfold the question about doses. For example, just anecdotally, I will tell you that in the clinical trial we are conducting right now at the NIH Intramural Research Program, for which I’m the principal investigator (PI), we are going up to 2.4 mg — the highest dose of semaglutide.

We are collaborating with Kyle Simmons, PhD, from Oklahoma State University. Our two studies are not like a two-site clinical trial, but they are harmonized. In Dr. Simmons’ clinical trial, they’re going up to 1.0 mg. We are excited about this team approach because the trials are slightly different, but they’re harmonized to the point that, once the studies are done, we’ll be able to combine and compare data to better answer the question about dosing, and many other questions.

Dr. Jain: From a clinical perspective, we see that many people who are battling alcohol use disorder may not have obesity. They might actually be on the leaner side, and hence, we may not want to use a high dose of GLP-1 RA therapy. It’ll be very exciting to see when these results come out.

This brings me to the next question. I think everyone would love to know why this happens. Why is GLP-1 RA having this effect on alcohol use disorder? I know that your group has done many animal studies, as you pointed out, and one of the postulated theories was the effect on the GABA neurotransmission pathway.

Can you tell us more about what you feel is the underlying mechanism of action here?

Dr. Leggio: I will start by saying that we don’t fully know. There are many open questions. If I can sidetrack for one second: We come up with the idea that, first of all, alcohol use disorder and substance use disorder are addictive behaviors, addictive disorders. We define addiction as a brain disease. 

Granted that addiction is a brain disease, it doesn’t mean that addiction works just in the brain in isolation. As we all know, the brain works in concert with the rest of the body. One specific approach my team has been taking is working on the analogy and the similarities between obesity and addiction to try to understand how the body-brain connection, such as the gut-brain-neuroendocrine pathway, may play a role in patients with addiction.

 

 

With that in mind, a large amount of work in my lab in the past 20 years — since I’ve been a PI — has been focused on studying this neuroendocrine pathways related to the gut-brain axis. For example, we have done work on insulin and leptin, primarily; we had done work on ghrelin, and since 2015 on the GLP-1 RAs.

With that in mind, the framework we are working on, which is also substantiated by many studies done by our team and other teams in the neuroscience field, kind of supports the idea that, similar to what we see in obesity, these medications may work by affecting what we call reward processing, or the seeking for addictive drugs, such as alcohol, and also the drugs such as the stimulants, opioids, nicotine, and so on.

The idea is that the mechanism is driven by the ability of the medication — semaglutide and all the GLP-1 RAs — to reduce the rewarding properties of alcohol and drugs. To maybe make the example more pragmatic, what does that mean? It means, for example, that a patient who typically has 10 drinks per day in the afternoon and night, while they are on the medication they may feel the lack of need to drink up to 10 to feel the same reward. 

They may be able to stop after two or three drinks, which means a significant harm reduction and a beneficial outcome. This also brings us to another mechanism, which may be related to society. We don’t fully understand how much the society mechanism, including society mechanism related to GI motility, may also play a role.

With that said, we don’t think that the effect of the GLP-1 RAs is merely due to alcohol being a calorie-based nutrient because, in fact, we see alcohol as an addictive drug, not as a nutrient. Also, the GLP-1 RAs, at least in animal models, seem to work on other addictive drugs that don’t have calories, such as nicotine, and possibly with cannabis, opioids, and stimulants.

Then on the molecular level, our team recently showed, in collaboration with Dr. Marisa Roberto from Scripps in La Jolla, California, that semaglutide may in fact change the GABA transmission at the level of some brain regions, such as the amygdala and the prefrontal cortex. These are brain regions that are well-established hubs that play a role in the mechanism underlying addiction. 

There are also some very exciting recent data showing how these medications may work not just on GABA or just on dopamine, which is the canonical way we conceive of reward processing, but by working on both by modulating GABA transmission — for example, at the ventral tegmental area and dopamine transmission at the nucleus accumbens.

Bottom line, if I summarize all of this, is that the mechanism is not fully understood, but there is definitely a contribution of this medication to effect and reward processing, possibly by altering the balance between GABA and dopamine. There are still some unknown questions, such as, are these mechanisms all brain driven or are they signaling from the periphery to the brain, or maybe both?

Also, as we all know, there are many differences across all these GLP-1 analogs in brain penetrance. Whether the drug needs to go to the brain to have an effect on alcohol drinking, cocaine seeking, or smoking is really an open question.

Dr. Jain: This is so thought-provoking. I guess the more we uncover, the more mesmerized we get with all the potential crosstalk. There is a large amount of overlap in the brain with each of these different things and how it all interplays with each other. 

Speaking of interplay, I’m thinking about how many people prone to having alcohol use disorder can potentially develop complications, one of these being chronic pancreatitis. This is a well-known complication that can occur in people having alcohol addiction. Along that same line, we know that previous history of pancreatitis is considered a use-with-caution, or we don’t want to use GLP-1 RA therapy in people who have had pancreatitis. 

Now it becomes this quagmire where people may have chronic pancreatitis, but we may want to consider GLP-1 RA therapy for management of alcohol use disorder. What are your thoughts about this, and the safety, potentially, in using it in these patients? 

Dr. Leggio: This is another wonderful question. That’s definitely a top priority in our mind, to address these kinds of questions. For example, our RCT does have, as core primary outcomes, not only the efficacy defined as a reduction in alcohol drinking, but also safety.

The reason is exactly what you just explained. There are many unanswered questions, including whether giving a GLP-1 RA and alcohol together may have synergistic effects and increase the likelihood of having pancreatitis. 

The good news is that, so far, based on the published literature, including the RCT done with exenatide in Denmark and published in 2022 and also the ongoing clinical trials — including my own clinical trial, but of course we are blind — pancreatitis has not been coming out as an adverse event.

However, it’s also true that it often happens in clinical medication development. Of course, we screen and select our population well. For example, we do exclude people who have a history of pancreatitis. We exclude people with high lipase or with any of the clinical symptomatology that makes us concerned about these people having pancreatitis. 

As often happens when you move a medication from clinical trials to clinical practice, we still need to understand whether this medication works in patients. I’m just speculating, but even if the clinical trials do not raise red flags in terms of increased risk for some side effects such as pancreatitis, I think it will be very important for practitioners to keep a close eye on the death risk regardless. 

It’s very interesting that it’s similar to alcohol liver disease. With pancreatitis, not every single patient with alcohol addiction has pancreatitis. We don’t really fully understand why some people develop pancreatitis and some people do not. The point being that there are many patients with alcohol addiction who don’t have pancreatitis and may benefit from these medications if they work. Again, we have to prove that in patients.

On the other side, as we all know, pancreatitis is a potentially life-threatening condition for those people who either have it or are at risk for it. I think we have to be very careful before we consider giving them a GLP-1 RA.

One could argue that alcohol is the leading cause of mortality and morbidity in the world. For example, right now, alcohol is the leading cause of liver disease. It’s the main reason for liver transplantation in our country. Alcohol is affecting thousands of people in terms of death and emergency room visits.

You could argue that the downside is not treating these people and they die because of alcohol addiction. A GLP-1 RA is not going to be for everybody. I will remind everybody that (1) we do have FDA-approved medications for alcohol addiction; and (2) there are also other medications not approved by the FDA, but with a proven efficacy in some clinical trials — for example, topiramate and gabapentin — and they’ve been endorsed by the American Psychiatric Association. 

There is also some evidence for another medication, baclofen, which has been endorsed by the American College of Gastroenterology for patients with alcohol addiction and liver disease.

The point I’m making is that it’s not that either we use the GLP-1 RAs or we have no other tools. We have other tools. I think we have to personalize the treatment based on the patient’s profile from a safety standpoint and from a phenotypic standpoint. 

Dr. Jain: I love that thought. I think individualization is the key here.

We know that people with diabetes have a higher risk for pancreatitis by virtue of having diabetes. People with obesity also have a higher risk for pancreatitis by virtue of having obesity. These are the two conditions where we are using a large amount of GLP-1 RA therapy. Again, the idea is looking at the person in front of us and then deciding, based on their past medical history and their current risk, whether or not a medication is a right fit for them.

I think more individualization here will come as we start using these medications that might be having potential effects on different organ systems. You mentioned a little bit about the liver, so a thought came in my mind. We know that people with diabetes who have alcohol use disorder are at a higher risk for potential hypoglycemia. If they have events when they have increased consumption of alcohol, there can be more hypoglycemia.

We now could potentially be using semaglutide or other GLP-1 RA therapy for management of alcohol use disorder. In your own experience in the studies that you’ve done or the literature that’s out there, has that been associated with an even higher risk for hypoglycemia? 

Dr. Leggio: It’s a wonderful question. I’m not aware of any formal and published report of that association. That said, your thinking from a physiopathologist standpoint makes total sense. I could not agree more. The fact that nothing has been published, at least to my knowledge, doesn’t mean that the death risk doesn’t exist. In fact, I agree with you that it does exist. 

Alcohol use disorder is interesting and tricky clinically because chronically, alcohol addiction or alcohol use disorder is associated with an increased risk for diabetes. Acutely, as you point out; and this could be with or without alcohol use disorder. An episode of a high volume of binge drinking may lead to hypoglycemia.

This is one of the reasons why people may show up to the emergency room with intoxication, and one of the symptoms detected at the emergency room is that they also have hypoglycemia in addition to vomiting, nausea, and everything else that we see in patients with acute intoxication.

Similar to the discussion about pancreatitis, as we work on understanding the possible role of GLP-1 RA in patients with alcohol use disorder, we do have to keep a close eye on the risk for hypoglycemia. The short answer is that this is not well established, but based on the simple concept of “first, do no harm,” I think we need to track that very carefully. 

In the ongoing clinical trial we’re doing in Maryland in my program at the NIH, we do just that. We are tracking glucose levels. Of course, patients come to clinic weekly, so unless they have symptoms, typically we don’t see anything at the time.

 

 

More important, we educate our patients when they go through the consent process. We tell them that this medication per se does not give hypoglycemia. In fact, we’re including people with diabetes, so for people on other medications like metformin, we explain to them that technically such a risk should not exist, but because you’re drinking alcohol in excessive amounts, you do have a potential higher risk. We just don’t know how significant that risk could be. 

We do a large amount of education at baseline when they enroll in our study. We also educate our patients on how to recognize early on the potential risk for hypoglycemia, exactly for the reasons you said. We explain to them the unknown potential that the GLP-1 RAs and alcohol together may synergize and give hypoglycemia.

Dr. Jain: I don’t know if you got this feeling at the ADA conference, but I felt, when attending all these sessions, that it seems like GLP-1 RA is the gift that keeps giving. We see the effect on diabetes, obesity, metabolic-associated steatotic liver disease, possibly with Alzheimer’s, chronic obstructive pulmonary disease, and so many things.

Now, of course, there’s potential use in alcohol use disorder. Do you think that using GLP-1 RA therapy is ready for prime time? Do you think we are now ready to prescribe this in people with alcohol use disorder?

Dr. Leggio: I would say we’re not there yet. As I mentioned at the beginning, the evidence keeps on growing. It’s getting stronger and stronger because the positive data keep on coming up. We have data from animal models, including the different species, ranging from rodents to nonhuman primates. We have anecdotal evidence and machine-learning approaches using, for example, big data and social media data. Now we have pharmacoepidemiology data and some small, initial, but still good randomized clinical trials.

What we are missing is the final step of having a substantial number of prospective, double-blind, placebo-controlled clinical trials to really prove or disprove whether these medications work, and to also better understand which patients may respond to these medications.

The good news is that there are many ongoing clinical trials. We are conducting a clinical trial in Maryland at the NIH. Dr. Simmons is doing a clinical trial at Oklahoma State University. Dr. Christian Hendershot at UNC is conducting a study at Chapel Hill. Dr. Josh Gowin is doing a study in Colorado. Dr. Anders Fink-Jensen is doing a study in Denmark. The momentum is very high. 

I’m only mentioning those people who are doing alcohol-semaglutide clinical trials. There are also people doing clinical trials on smoking, stimulants, and opioids. There are actually some very fresh, still unpublished data from Penn State that were presented publicly at conferences, showing how these drugs may reduce opioid craving, which is, of course, critically important, given that we’re in the middle of a fentanyl pandemic that is killing one person every 7 minutes, for example, in Baltimore. It’s very alarming and we need more treatments.

The bottom line is that it’s very promising, but we need to wait for these clinical trials to have a definitive answer. I would say that if you have a patient with diabetes, obesity, and also alcohol addiction, and they are on semaglutide or any other GLP-1 RA, and in addition to using the medication for diabetes and obesity, they also have a beneficial effect on their alcohol drinking, then that’s fantastic. At the end of the day, that’s the mission we all share: helping people. 

If it’s someone without obesity and diabetes, personally, at this stage, I will go with other medications that either have FDA approval or at least very solid evidence of efficacy from RCTs rather than going with the GLP-1 RA, at least until I see more definitive data from randomized clinical trials. 

There is a large amount of hope. We are hoping that these clinical trials will be positive. We are very enthusiastic and we’re also very thrilled to see that Novo Nordisk recently launched a gigantic multisite clinical trial with — I forgot how many sites, but it’s very large across Europe, America, and maybe other continents as well.

Their primary outcome is improvement in alcohol-related liver disease, but they’re also looking at alcohol drinking as a secondary outcome. That’s very important because, unlike in the diabetes field, in the addiction field, we do struggle to build partnership with the private sector because sometimes the addiction field is not seen as an appetitive field from pharma. 

We all know that the best success in any medication development story is when you put academia, the government, and pharma together. Think about the COVID-19 vaccine development. That’s unfortunately the exception rather than rule in the addiction field. 

With the company doing a large clinical trial in the alcohol field, although they focus more on the liver but they also looked at drinking, I really hope we’ll see more and more companies in the private sector take more and more interest in addiction. Also, I hope to see more and more partnership between the private sector, the government, and academia. 

Dr. Jain: Such exciting times, indeed. We can’t wait enough for the results of these and many other trials to come out. Dr. Leggio, it was an absolute delight chatting with you today. Thank you so much for joining us from ADA 2024.

Akshay B. Jain, MD, Clinical Instructor, Department of Endocrinology, University of British Columbia; Endocrinologist, TLC Diabetes and Endocrinology, Vancouver, British Columbia, Canada, has disclosed the following relevant financial relationships: Serve(d) as a speaker or a member of a speakers bureau for: Abbott; Acerus; AstraZeneca; Amgen; Bausch Healthcare; Bayer; Boehringer Ingelheim; Care to Know; CCRN; Connected in Motion; CPD Network; Dexcom; Diabetes Canada; Eli Lilly; GSK; HLS Therapeutics; Janssen; Master Clinician Alliance; MDBriefcase; Merck; Medtronic; Moderna; Novartis; Novo Nordisk; Partners in Progressive Medical Education; Pfizer; Sanofi Aventis; Timed Right; WebMD. Received research grants/research support from: Abbott; Amgen; Novo Nordisk. Received consulting fees from: Abbott; Acerus; AstraZeneca; Amgen; Bausch Healthcare; Bayer; Boehringer Ingelheim; Dexcom; Eli Lilly; Gilead Sciences; GSK; HLS Therapeutics; Insulet; Janssen; Medtronic; Novo Nordisk; Partners in Progressive Medical Education; PocketPills; Roche; Sanofi Aventis; Takeda. Lorenzo Leggio, MD, PhD, Clinical Director, Deputy Scientific Director, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, has disclosed the following relevant financial relationships: Serve(d) as a US federal employee for: National Institutes of Health. He had received income in an amount equal to or greater than $250 from: UK Medical Council on Alcohol for his service as editor-in-chief for Alcohol and Alcoholism and received royalties from Rutledge as an editor for a textbook.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity. 

Akshay B. Jain, MD: Today we are very excited to have Dr. Leggio join us all the way from the National Institutes of Health (NIH). He is an addiction physician scientist in the intramural research program at NIH. Welcome, Dr. Leggio. Thanks for joining us. 

Lorenzo Leggio, MD, PhD: Thank you so much. 

Dr. Jain: We’ll get right into this. Your session was, in my mind, extremely informative. The session looked at glucagon-like peptide 1 receptor agonist (GLP-1 RA) therapy and its potential effects on mitigating alcohol misuse syndrome, so, reduction of alcohol addiction potentially. 

We’ve seen in some previous clinical trials, including many from your group, that alcohol use is known to be reduced — the overall risk of incidence, as well as recurrence of alcohol use — in individuals who are on GLP-1 RA therapy.

Can you share more insights about the data already out there? 

Dr. Leggio: At the preclinical level, we have a very robust line of studies, experiments, and publications looking at the effect of GLP-1 RAs, starting from exenatide up to, more recently, semaglutide. They show that these GLP-1 RAs do reduce alcohol drinking. They used different animal models of excessive alcohol drinking, using different species — for example, mice, rats, nonhuman primates — models that reflect the excessive alcohol drinking behavior that we see in patients, like physical alcohol dependence or binge-like alcohol drinking, and other behaviors in animal models that reflect the human condition.

In addition to that, we recently have seen an increase in human evidence that GLP-1 RAs may reduce alcohol drinking. For example, there is some anecdotal evidence and some analyses using social media showing that people on GLP-1 RAs report drinking less alcohol. 

There are also some pharmacoepidemiology studies which are very intriguing and quite promising. In this case, people have been looking at electronic medical records; they have used the pharmacoepidemiology approaches to match patients on GLP-1 RAs because of diabetes or obesity, and have compared and matched to patients on different drugs as the controls.

A study was recently published Nature Communications by a group in Cleveland in collaboration with Dr. Nora Volkow from the National Institute on Drug Abuse. This study shows the association between being on a GLP-1 RA and the lower incidence of alcohol use disorder and lower drinking.

There is also some promise from prospective randomized clinical trials. In particular, there was one clinical trial from Denmark, a well-known and -conducted clinical trial where they looked at exenatide, and they didn’t see an effect of exenatide compared with placebo in the main analysis. But in a subanalysis, they did see that exenatide reduced alcohol drinking, but only in patients with alcohol use disorder and obesity.

This suggests that these medications may work for some patients and not for other patients. That’s fine, because just like in any other field in medicine, including diabetes, obesity, hypertension, Parkinson’s, and depression, not all medications work for everybody. If these medications will work for alcohol addiction, we do not expect that they will work for everybody.

One ongoing question in the field is to try to identify the phenotypes or the subgroup of people who may be more responsive to these medications. 

Dr. Jain: This is such a fascinating field, and all these studies are coming out. In your review of all the literature so far, do you think this is dose dependent? Also, we see that, for instance, with certain individuals, when they take GLP-1 RA therapy, they might have a lot of gastrointestinal (GI) side effects. Recent studies have shown that the rate of these GI side effects does not necessarily correlate with the amount of weight loss. In the alcohol addiction field, do you think that the GI side effects, things like nausea, could also have a potential role in mitigating the alcohol addiction?

Dr. Leggio: This is a great question. They may play a role; they may contribute, too, but we don’t think that they are the driving mechanism of why people drink less, for at least a couple of reasons. 

One is that, similar to the obesity field, the data we have so far don’t necessarily show a relationship between the GI side effects and the reduction in drinking. Plus, the reduction in drinking is likely to happen later when many GI side effects are gone or attenuated. 

The second reason is from the neuroscience field. We are starting to better understand the mechanism at the brain level as to how these medications work. We don’t see that the nausea or, more generally, not feeling well — malaise, etc. — are driving mechanisms for how these medications work.

Again, it’s not to discount completely that the GI side effects may play a role, but I would say that, if anything, they may be more contributing to. And if they do, that will not be unique to this class of medication. For example, we have three medications approved by the US Food and Drug Administration (FDA) for alcohol use disorder.

One challenge we have in the addiction field is that many people don’t know that these medications exist — many primary care providers don’t know — and they are completely underutilized. Everybody here who is listening to us knows that roughly 85% of people with diabetes receive a medication for diabetes. For alcohol use disorder, the number is 2%. These are medications approved by the FDA. 

One of them is naltrexone, which does give GI symptoms — in particular, nausea and vomiting. The other medication is acamprosate, which does give diarrhea.

You have medications approved for alcohol disorder where you do have some GI symptoms, but they are not the mechanism either for how these medications help people to curb craving and reduce alcohol drinking.

Dr. Jain: What about the dose-dependent action? Do you think that GLP-1 RAs, at a lower dose, may not have an effect on alcohol use disorder vs at a higher dose, or is everyone a little different? 

Dr. Leggio: That’s a wonderful question. The short answer is, we don’t know, to be honest. Now, in some of the animal studies — my team has been in collaboration with other scientists in the NIH intramural research program, and also with scientists in academia, for example, at Scripps, UCLA — we see a dose response where the higher the dose, the higher the effect of the drug. In this case, semaglutide reduced binge drinking in a rat model of a physical alcohol dependence.

That said, I would be very cautious about claiming, based on the rodent data, that humans will have a dose response. It’s an open question. We really don’t know. Some of the pharmacoepidemiology data suggested that even lower doses — for example, using semaglutide for diabetes without going up to the obesity dose — may be just as effective as a higher dose in reducing the incidence of alcohol use disorder. 

It’s important also to keep in mind that the pharmacoepidemiology data are always an association. Reduction in alcohol disorder is associated with the prescription GLP-1 RA, but they don’t really replace the more gold-standard, double-blind, placebo-controlled randomized clinical trial. Nonetheless, with the pharmacoepidemiology data, I think there is an argument to at least hypothesize that people may respond well, even to lower doses. 

This also may be important from a safety standpoint. 

Basically, we need to wait for results in the next years to come from randomized clinical trials to better unfold the question about doses. For example, just anecdotally, I will tell you that in the clinical trial we are conducting right now at the NIH Intramural Research Program, for which I’m the principal investigator (PI), we are going up to 2.4 mg — the highest dose of semaglutide.

We are collaborating with Kyle Simmons, PhD, from Oklahoma State University. Our two studies are not like a two-site clinical trial, but they are harmonized. In Dr. Simmons’ clinical trial, they’re going up to 1.0 mg. We are excited about this team approach because the trials are slightly different, but they’re harmonized to the point that, once the studies are done, we’ll be able to combine and compare data to better answer the question about dosing, and many other questions.

Dr. Jain: From a clinical perspective, we see that many people who are battling alcohol use disorder may not have obesity. They might actually be on the leaner side, and hence, we may not want to use a high dose of GLP-1 RA therapy. It’ll be very exciting to see when these results come out.

This brings me to the next question. I think everyone would love to know why this happens. Why is GLP-1 RA having this effect on alcohol use disorder? I know that your group has done many animal studies, as you pointed out, and one of the postulated theories was the effect on the GABA neurotransmission pathway.

Can you tell us more about what you feel is the underlying mechanism of action here?

Dr. Leggio: I will start by saying that we don’t fully know. There are many open questions. If I can sidetrack for one second: We come up with the idea that, first of all, alcohol use disorder and substance use disorder are addictive behaviors, addictive disorders. We define addiction as a brain disease. 

Granted that addiction is a brain disease, it doesn’t mean that addiction works just in the brain in isolation. As we all know, the brain works in concert with the rest of the body. One specific approach my team has been taking is working on the analogy and the similarities between obesity and addiction to try to understand how the body-brain connection, such as the gut-brain-neuroendocrine pathway, may play a role in patients with addiction.

 

 

With that in mind, a large amount of work in my lab in the past 20 years — since I’ve been a PI — has been focused on studying this neuroendocrine pathways related to the gut-brain axis. For example, we have done work on insulin and leptin, primarily; we had done work on ghrelin, and since 2015 on the GLP-1 RAs.

With that in mind, the framework we are working on, which is also substantiated by many studies done by our team and other teams in the neuroscience field, kind of supports the idea that, similar to what we see in obesity, these medications may work by affecting what we call reward processing, or the seeking for addictive drugs, such as alcohol, and also the drugs such as the stimulants, opioids, nicotine, and so on.

The idea is that the mechanism is driven by the ability of the medication — semaglutide and all the GLP-1 RAs — to reduce the rewarding properties of alcohol and drugs. To maybe make the example more pragmatic, what does that mean? It means, for example, that a patient who typically has 10 drinks per day in the afternoon and night, while they are on the medication they may feel the lack of need to drink up to 10 to feel the same reward. 

They may be able to stop after two or three drinks, which means a significant harm reduction and a beneficial outcome. This also brings us to another mechanism, which may be related to society. We don’t fully understand how much the society mechanism, including society mechanism related to GI motility, may also play a role.

With that said, we don’t think that the effect of the GLP-1 RAs is merely due to alcohol being a calorie-based nutrient because, in fact, we see alcohol as an addictive drug, not as a nutrient. Also, the GLP-1 RAs, at least in animal models, seem to work on other addictive drugs that don’t have calories, such as nicotine, and possibly with cannabis, opioids, and stimulants.

Then on the molecular level, our team recently showed, in collaboration with Dr. Marisa Roberto from Scripps in La Jolla, California, that semaglutide may in fact change the GABA transmission at the level of some brain regions, such as the amygdala and the prefrontal cortex. These are brain regions that are well-established hubs that play a role in the mechanism underlying addiction. 

There are also some very exciting recent data showing how these medications may work not just on GABA or just on dopamine, which is the canonical way we conceive of reward processing, but by working on both by modulating GABA transmission — for example, at the ventral tegmental area and dopamine transmission at the nucleus accumbens.

Bottom line, if I summarize all of this, is that the mechanism is not fully understood, but there is definitely a contribution of this medication to effect and reward processing, possibly by altering the balance between GABA and dopamine. There are still some unknown questions, such as, are these mechanisms all brain driven or are they signaling from the periphery to the brain, or maybe both?

Also, as we all know, there are many differences across all these GLP-1 analogs in brain penetrance. Whether the drug needs to go to the brain to have an effect on alcohol drinking, cocaine seeking, or smoking is really an open question.

Dr. Jain: This is so thought-provoking. I guess the more we uncover, the more mesmerized we get with all the potential crosstalk. There is a large amount of overlap in the brain with each of these different things and how it all interplays with each other. 

Speaking of interplay, I’m thinking about how many people prone to having alcohol use disorder can potentially develop complications, one of these being chronic pancreatitis. This is a well-known complication that can occur in people having alcohol addiction. Along that same line, we know that previous history of pancreatitis is considered a use-with-caution, or we don’t want to use GLP-1 RA therapy in people who have had pancreatitis. 

Now it becomes this quagmire where people may have chronic pancreatitis, but we may want to consider GLP-1 RA therapy for management of alcohol use disorder. What are your thoughts about this, and the safety, potentially, in using it in these patients? 

Dr. Leggio: This is another wonderful question. That’s definitely a top priority in our mind, to address these kinds of questions. For example, our RCT does have, as core primary outcomes, not only the efficacy defined as a reduction in alcohol drinking, but also safety.

The reason is exactly what you just explained. There are many unanswered questions, including whether giving a GLP-1 RA and alcohol together may have synergistic effects and increase the likelihood of having pancreatitis. 

The good news is that, so far, based on the published literature, including the RCT done with exenatide in Denmark and published in 2022 and also the ongoing clinical trials — including my own clinical trial, but of course we are blind — pancreatitis has not been coming out as an adverse event.

However, it’s also true that it often happens in clinical medication development. Of course, we screen and select our population well. For example, we do exclude people who have a history of pancreatitis. We exclude people with high lipase or with any of the clinical symptomatology that makes us concerned about these people having pancreatitis. 

As often happens when you move a medication from clinical trials to clinical practice, we still need to understand whether this medication works in patients. I’m just speculating, but even if the clinical trials do not raise red flags in terms of increased risk for some side effects such as pancreatitis, I think it will be very important for practitioners to keep a close eye on the death risk regardless. 

It’s very interesting that it’s similar to alcohol liver disease. With pancreatitis, not every single patient with alcohol addiction has pancreatitis. We don’t really fully understand why some people develop pancreatitis and some people do not. The point being that there are many patients with alcohol addiction who don’t have pancreatitis and may benefit from these medications if they work. Again, we have to prove that in patients.

On the other side, as we all know, pancreatitis is a potentially life-threatening condition for those people who either have it or are at risk for it. I think we have to be very careful before we consider giving them a GLP-1 RA.

One could argue that alcohol is the leading cause of mortality and morbidity in the world. For example, right now, alcohol is the leading cause of liver disease. It’s the main reason for liver transplantation in our country. Alcohol is affecting thousands of people in terms of death and emergency room visits.

You could argue that the downside is not treating these people and they die because of alcohol addiction. A GLP-1 RA is not going to be for everybody. I will remind everybody that (1) we do have FDA-approved medications for alcohol addiction; and (2) there are also other medications not approved by the FDA, but with a proven efficacy in some clinical trials — for example, topiramate and gabapentin — and they’ve been endorsed by the American Psychiatric Association. 

There is also some evidence for another medication, baclofen, which has been endorsed by the American College of Gastroenterology for patients with alcohol addiction and liver disease.

The point I’m making is that it’s not that either we use the GLP-1 RAs or we have no other tools. We have other tools. I think we have to personalize the treatment based on the patient’s profile from a safety standpoint and from a phenotypic standpoint. 

Dr. Jain: I love that thought. I think individualization is the key here.

We know that people with diabetes have a higher risk for pancreatitis by virtue of having diabetes. People with obesity also have a higher risk for pancreatitis by virtue of having obesity. These are the two conditions where we are using a large amount of GLP-1 RA therapy. Again, the idea is looking at the person in front of us and then deciding, based on their past medical history and their current risk, whether or not a medication is a right fit for them.

I think more individualization here will come as we start using these medications that might be having potential effects on different organ systems. You mentioned a little bit about the liver, so a thought came in my mind. We know that people with diabetes who have alcohol use disorder are at a higher risk for potential hypoglycemia. If they have events when they have increased consumption of alcohol, there can be more hypoglycemia.

We now could potentially be using semaglutide or other GLP-1 RA therapy for management of alcohol use disorder. In your own experience in the studies that you’ve done or the literature that’s out there, has that been associated with an even higher risk for hypoglycemia? 

Dr. Leggio: It’s a wonderful question. I’m not aware of any formal and published report of that association. That said, your thinking from a physiopathologist standpoint makes total sense. I could not agree more. The fact that nothing has been published, at least to my knowledge, doesn’t mean that the death risk doesn’t exist. In fact, I agree with you that it does exist. 

Alcohol use disorder is interesting and tricky clinically because chronically, alcohol addiction or alcohol use disorder is associated with an increased risk for diabetes. Acutely, as you point out; and this could be with or without alcohol use disorder. An episode of a high volume of binge drinking may lead to hypoglycemia.

This is one of the reasons why people may show up to the emergency room with intoxication, and one of the symptoms detected at the emergency room is that they also have hypoglycemia in addition to vomiting, nausea, and everything else that we see in patients with acute intoxication.

Similar to the discussion about pancreatitis, as we work on understanding the possible role of GLP-1 RA in patients with alcohol use disorder, we do have to keep a close eye on the risk for hypoglycemia. The short answer is that this is not well established, but based on the simple concept of “first, do no harm,” I think we need to track that very carefully. 

In the ongoing clinical trial we’re doing in Maryland in my program at the NIH, we do just that. We are tracking glucose levels. Of course, patients come to clinic weekly, so unless they have symptoms, typically we don’t see anything at the time.

 

 

More important, we educate our patients when they go through the consent process. We tell them that this medication per se does not give hypoglycemia. In fact, we’re including people with diabetes, so for people on other medications like metformin, we explain to them that technically such a risk should not exist, but because you’re drinking alcohol in excessive amounts, you do have a potential higher risk. We just don’t know how significant that risk could be. 

We do a large amount of education at baseline when they enroll in our study. We also educate our patients on how to recognize early on the potential risk for hypoglycemia, exactly for the reasons you said. We explain to them the unknown potential that the GLP-1 RAs and alcohol together may synergize and give hypoglycemia.

Dr. Jain: I don’t know if you got this feeling at the ADA conference, but I felt, when attending all these sessions, that it seems like GLP-1 RA is the gift that keeps giving. We see the effect on diabetes, obesity, metabolic-associated steatotic liver disease, possibly with Alzheimer’s, chronic obstructive pulmonary disease, and so many things.

Now, of course, there’s potential use in alcohol use disorder. Do you think that using GLP-1 RA therapy is ready for prime time? Do you think we are now ready to prescribe this in people with alcohol use disorder?

Dr. Leggio: I would say we’re not there yet. As I mentioned at the beginning, the evidence keeps on growing. It’s getting stronger and stronger because the positive data keep on coming up. We have data from animal models, including the different species, ranging from rodents to nonhuman primates. We have anecdotal evidence and machine-learning approaches using, for example, big data and social media data. Now we have pharmacoepidemiology data and some small, initial, but still good randomized clinical trials.

What we are missing is the final step of having a substantial number of prospective, double-blind, placebo-controlled clinical trials to really prove or disprove whether these medications work, and to also better understand which patients may respond to these medications.

The good news is that there are many ongoing clinical trials. We are conducting a clinical trial in Maryland at the NIH. Dr. Simmons is doing a clinical trial at Oklahoma State University. Dr. Christian Hendershot at UNC is conducting a study at Chapel Hill. Dr. Josh Gowin is doing a study in Colorado. Dr. Anders Fink-Jensen is doing a study in Denmark. The momentum is very high. 

I’m only mentioning those people who are doing alcohol-semaglutide clinical trials. There are also people doing clinical trials on smoking, stimulants, and opioids. There are actually some very fresh, still unpublished data from Penn State that were presented publicly at conferences, showing how these drugs may reduce opioid craving, which is, of course, critically important, given that we’re in the middle of a fentanyl pandemic that is killing one person every 7 minutes, for example, in Baltimore. It’s very alarming and we need more treatments.

The bottom line is that it’s very promising, but we need to wait for these clinical trials to have a definitive answer. I would say that if you have a patient with diabetes, obesity, and also alcohol addiction, and they are on semaglutide or any other GLP-1 RA, and in addition to using the medication for diabetes and obesity, they also have a beneficial effect on their alcohol drinking, then that’s fantastic. At the end of the day, that’s the mission we all share: helping people. 

If it’s someone without obesity and diabetes, personally, at this stage, I will go with other medications that either have FDA approval or at least very solid evidence of efficacy from RCTs rather than going with the GLP-1 RA, at least until I see more definitive data from randomized clinical trials. 

There is a large amount of hope. We are hoping that these clinical trials will be positive. We are very enthusiastic and we’re also very thrilled to see that Novo Nordisk recently launched a gigantic multisite clinical trial with — I forgot how many sites, but it’s very large across Europe, America, and maybe other continents as well.

Their primary outcome is improvement in alcohol-related liver disease, but they’re also looking at alcohol drinking as a secondary outcome. That’s very important because, unlike in the diabetes field, in the addiction field, we do struggle to build partnership with the private sector because sometimes the addiction field is not seen as an appetitive field from pharma. 

We all know that the best success in any medication development story is when you put academia, the government, and pharma together. Think about the COVID-19 vaccine development. That’s unfortunately the exception rather than rule in the addiction field. 

With the company doing a large clinical trial in the alcohol field, although they focus more on the liver but they also looked at drinking, I really hope we’ll see more and more companies in the private sector take more and more interest in addiction. Also, I hope to see more and more partnership between the private sector, the government, and academia. 

Dr. Jain: Such exciting times, indeed. We can’t wait enough for the results of these and many other trials to come out. Dr. Leggio, it was an absolute delight chatting with you today. Thank you so much for joining us from ADA 2024.

Akshay B. Jain, MD, Clinical Instructor, Department of Endocrinology, University of British Columbia; Endocrinologist, TLC Diabetes and Endocrinology, Vancouver, British Columbia, Canada, has disclosed the following relevant financial relationships: Serve(d) as a speaker or a member of a speakers bureau for: Abbott; Acerus; AstraZeneca; Amgen; Bausch Healthcare; Bayer; Boehringer Ingelheim; Care to Know; CCRN; Connected in Motion; CPD Network; Dexcom; Diabetes Canada; Eli Lilly; GSK; HLS Therapeutics; Janssen; Master Clinician Alliance; MDBriefcase; Merck; Medtronic; Moderna; Novartis; Novo Nordisk; Partners in Progressive Medical Education; Pfizer; Sanofi Aventis; Timed Right; WebMD. Received research grants/research support from: Abbott; Amgen; Novo Nordisk. Received consulting fees from: Abbott; Acerus; AstraZeneca; Amgen; Bausch Healthcare; Bayer; Boehringer Ingelheim; Dexcom; Eli Lilly; Gilead Sciences; GSK; HLS Therapeutics; Insulet; Janssen; Medtronic; Novo Nordisk; Partners in Progressive Medical Education; PocketPills; Roche; Sanofi Aventis; Takeda. Lorenzo Leggio, MD, PhD, Clinical Director, Deputy Scientific Director, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, has disclosed the following relevant financial relationships: Serve(d) as a US federal employee for: National Institutes of Health. He had received income in an amount equal to or greater than $250 from: UK Medical Council on Alcohol for his service as editor-in-chief for Alcohol and Alcoholism and received royalties from Rutledge as an editor for a textbook.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ADA 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 09/17/2024 - 19:46
Un-Gate On Date
Tue, 09/17/2024 - 19:46
Use ProPublica
CFC Schedule Remove Status
Tue, 09/17/2024 - 19:46
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 09/17/2024 - 19:46

MRI-Derived Abdominal Adipose Tissue Linked to Chronic Musculoskeletal Pain

Article Type
Changed
Wed, 09/11/2024 - 12:28

 

TOPLINE:

MRI-derived abdominal adipose tissue is linked to chronic musculoskeletal pain in multiple sites. The association is stronger in women, suggesting sex differences in fat distribution and hormones.

METHODOLOGY:

  • Researchers used data from the UK Biobank, a large population-based cohort study, to investigate the associations between MRI-measured abdominal adipose tissue and chronic musculoskeletal pain.
  • A total of 32,409 participants (50.8% women; mean age, 55.0 ± 7.4 years) were included in the analysis, with abdominal MRI scans performed at two imaging visits.
  • Pain in the neck/shoulder, back, hip, knee, or “all over the body” was assessed, and participants were categorized based on the number of chronic pain sites.
  • Mixed-effects ordinal, multinomial, and logistic regression models were used to analyze the associations between visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and their ratio with chronic pain.

TAKEAWAY:

  • According to the authors, there was a dose-response association between VAT, SAT, and their ratio with the number of chronic pain sites in both women and men.
  • Higher levels of abdominal adipose tissue were associated with greater odds of reporting chronic pain in both sexes, with effect estimates being relatively larger in women.
  • The researchers found that the VAT/SAT ratio was associated with the number of chronic pain sites and chronic pain in both sexes, reflecting differences in fat distribution and hormones.
  • The study suggested that excessive abdominal adipose tissue may be involved in the pathogenesis of multisite and widespread chronic musculoskeletal pain.

IN PRACTICE:

“Abdominal adipose tissue was associated with chronic musculoskeletal pain, suggesting that excessive and ectopic fat depositions may be involved in the pathogenesis of multisite and widespread chronic musculoskeletal pain,” wrote the authors of the study.

SOURCE:

This study was led by Zemene Demelash Kifle, University of Tasmania Menzies Institute for Medical Research in Hobart, Australia. It was published online in Regional Anesthesia & Pain Medicine.

LIMITATIONS: 

The study’s limitations included the use of a pain questionnaire that did not assess pain severity, which limited the ability to examine the relationship between fat measures and pain severity. Additionally, MRI was conducted on only two occasions, which may have not captured patterns and fluctuations in chronic pain sites. The relatively small size of the imaging sample, compared with the original baseline sample limited the generalizability of the findings. The predominant White ethnicity of participants also limited the generalizability to diverse populations.

DISCLOSURES:

The study was supported by grants from the Australian National Health and Medical Research Council (NHMRC). Mr. Kifle disclosed receiving grants from the Australian NHMRC. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

MRI-derived abdominal adipose tissue is linked to chronic musculoskeletal pain in multiple sites. The association is stronger in women, suggesting sex differences in fat distribution and hormones.

METHODOLOGY:

  • Researchers used data from the UK Biobank, a large population-based cohort study, to investigate the associations between MRI-measured abdominal adipose tissue and chronic musculoskeletal pain.
  • A total of 32,409 participants (50.8% women; mean age, 55.0 ± 7.4 years) were included in the analysis, with abdominal MRI scans performed at two imaging visits.
  • Pain in the neck/shoulder, back, hip, knee, or “all over the body” was assessed, and participants were categorized based on the number of chronic pain sites.
  • Mixed-effects ordinal, multinomial, and logistic regression models were used to analyze the associations between visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and their ratio with chronic pain.

TAKEAWAY:

  • According to the authors, there was a dose-response association between VAT, SAT, and their ratio with the number of chronic pain sites in both women and men.
  • Higher levels of abdominal adipose tissue were associated with greater odds of reporting chronic pain in both sexes, with effect estimates being relatively larger in women.
  • The researchers found that the VAT/SAT ratio was associated with the number of chronic pain sites and chronic pain in both sexes, reflecting differences in fat distribution and hormones.
  • The study suggested that excessive abdominal adipose tissue may be involved in the pathogenesis of multisite and widespread chronic musculoskeletal pain.

IN PRACTICE:

“Abdominal adipose tissue was associated with chronic musculoskeletal pain, suggesting that excessive and ectopic fat depositions may be involved in the pathogenesis of multisite and widespread chronic musculoskeletal pain,” wrote the authors of the study.

SOURCE:

This study was led by Zemene Demelash Kifle, University of Tasmania Menzies Institute for Medical Research in Hobart, Australia. It was published online in Regional Anesthesia & Pain Medicine.

LIMITATIONS: 

The study’s limitations included the use of a pain questionnaire that did not assess pain severity, which limited the ability to examine the relationship between fat measures and pain severity. Additionally, MRI was conducted on only two occasions, which may have not captured patterns and fluctuations in chronic pain sites. The relatively small size of the imaging sample, compared with the original baseline sample limited the generalizability of the findings. The predominant White ethnicity of participants also limited the generalizability to diverse populations.

DISCLOSURES:

The study was supported by grants from the Australian National Health and Medical Research Council (NHMRC). Mr. Kifle disclosed receiving grants from the Australian NHMRC. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

MRI-derived abdominal adipose tissue is linked to chronic musculoskeletal pain in multiple sites. The association is stronger in women, suggesting sex differences in fat distribution and hormones.

METHODOLOGY:

  • Researchers used data from the UK Biobank, a large population-based cohort study, to investigate the associations between MRI-measured abdominal adipose tissue and chronic musculoskeletal pain.
  • A total of 32,409 participants (50.8% women; mean age, 55.0 ± 7.4 years) were included in the analysis, with abdominal MRI scans performed at two imaging visits.
  • Pain in the neck/shoulder, back, hip, knee, or “all over the body” was assessed, and participants were categorized based on the number of chronic pain sites.
  • Mixed-effects ordinal, multinomial, and logistic regression models were used to analyze the associations between visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and their ratio with chronic pain.

TAKEAWAY:

  • According to the authors, there was a dose-response association between VAT, SAT, and their ratio with the number of chronic pain sites in both women and men.
  • Higher levels of abdominal adipose tissue were associated with greater odds of reporting chronic pain in both sexes, with effect estimates being relatively larger in women.
  • The researchers found that the VAT/SAT ratio was associated with the number of chronic pain sites and chronic pain in both sexes, reflecting differences in fat distribution and hormones.
  • The study suggested that excessive abdominal adipose tissue may be involved in the pathogenesis of multisite and widespread chronic musculoskeletal pain.

IN PRACTICE:

“Abdominal adipose tissue was associated with chronic musculoskeletal pain, suggesting that excessive and ectopic fat depositions may be involved in the pathogenesis of multisite and widespread chronic musculoskeletal pain,” wrote the authors of the study.

SOURCE:

This study was led by Zemene Demelash Kifle, University of Tasmania Menzies Institute for Medical Research in Hobart, Australia. It was published online in Regional Anesthesia & Pain Medicine.

LIMITATIONS: 

The study’s limitations included the use of a pain questionnaire that did not assess pain severity, which limited the ability to examine the relationship between fat measures and pain severity. Additionally, MRI was conducted on only two occasions, which may have not captured patterns and fluctuations in chronic pain sites. The relatively small size of the imaging sample, compared with the original baseline sample limited the generalizability of the findings. The predominant White ethnicity of participants also limited the generalizability to diverse populations.

DISCLOSURES:

The study was supported by grants from the Australian National Health and Medical Research Council (NHMRC). Mr. Kifle disclosed receiving grants from the Australian NHMRC. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Wide Regional Variation in Dementia Risk Across the United States

Article Type
Changed
Wed, 09/11/2024 - 12:10

 

TOPLINE:

The likelihood of receiving a dementia diagnosis in older adults varies significantly by region across the United States, a new study suggests. Rates ranged from 1.7% to 5.4%, with variations more pronounced in those aged 66-74 years and Black or Hispanic individuals.

METHODOLOGY:

  • Researchers analyzed newly diagnosed cases of Alzheimer’s disease and related dementias (ADRD) using the 2018-2019 Medicare claims data for 4.8 million older adults across 306 hospital referral regions (HRRs).
  • Participants were categorized by age and race or ethnicity to examine variations in diagnosis rates.
  • Regional characteristics such as education level and prevalence of obesity, smoking, and diabetes were included to adjust for population risk factors.
  • ADRD-specific diagnostic intensity was calculated as the ratio of the observed-to-expected new cases of ADRD in each HRR.

TAKEAWAY:

  • Unadjusted analysis for that overall, 3% of older adults received a new ADRD diagnosis in 2019, with rates ranging from 1.7 to 5.4 per 100 individuals across HRRs and varied by age category.
  • Regions in the South had the highest unadjusted ADRD case concentration, and the areas in the West/Northwest had the lowest.
  • The ADRD-specific diagnosis intensity was 0.69-1.47 and varied the most in Black and Hispanic individuals and those aged 66-74 years.
  • Regional differences in ADRD diagnosis rates are not fully explained by population risk factors, indicating potential health system-level differences.

IN PRACTICE:

“From place to place, the likelihood of getting your dementia diagnosed varies, and that may happen because of everything from practice norms for healthcare providers to individual patients’ knowledge and care-seeking behavior. These findings go beyond demographic and population-level differences in risk and indicate that there are health system-level differences that could be targeted and remediated,” lead author Julie P.W. Bynum, MD, MPH, said in a press release.

SOURCE:

The study was led by Dr. Bynum, professor of internal medicine, University of Michigan Medical School, Ann Arbor, Michigan, and published online in Alzheimer’s & Dementia.

LIMITATIONS:

The results may not be generalizable to other groups. The observational design of the study cannot completely negate residual confounding. The measures of population risks are coarser than those used in well-characterized epidemiologic studies, leading to potential imprecision. Finally, the study was not designed to determine whether regional differences in the likelihood of ADRD diagnosis resulted in differences in the population health outcomes.

DISCLOSURES:

The study was supported by a grant from the National Institute on Aging. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The likelihood of receiving a dementia diagnosis in older adults varies significantly by region across the United States, a new study suggests. Rates ranged from 1.7% to 5.4%, with variations more pronounced in those aged 66-74 years and Black or Hispanic individuals.

METHODOLOGY:

  • Researchers analyzed newly diagnosed cases of Alzheimer’s disease and related dementias (ADRD) using the 2018-2019 Medicare claims data for 4.8 million older adults across 306 hospital referral regions (HRRs).
  • Participants were categorized by age and race or ethnicity to examine variations in diagnosis rates.
  • Regional characteristics such as education level and prevalence of obesity, smoking, and diabetes were included to adjust for population risk factors.
  • ADRD-specific diagnostic intensity was calculated as the ratio of the observed-to-expected new cases of ADRD in each HRR.

TAKEAWAY:

  • Unadjusted analysis for that overall, 3% of older adults received a new ADRD diagnosis in 2019, with rates ranging from 1.7 to 5.4 per 100 individuals across HRRs and varied by age category.
  • Regions in the South had the highest unadjusted ADRD case concentration, and the areas in the West/Northwest had the lowest.
  • The ADRD-specific diagnosis intensity was 0.69-1.47 and varied the most in Black and Hispanic individuals and those aged 66-74 years.
  • Regional differences in ADRD diagnosis rates are not fully explained by population risk factors, indicating potential health system-level differences.

IN PRACTICE:

“From place to place, the likelihood of getting your dementia diagnosed varies, and that may happen because of everything from practice norms for healthcare providers to individual patients’ knowledge and care-seeking behavior. These findings go beyond demographic and population-level differences in risk and indicate that there are health system-level differences that could be targeted and remediated,” lead author Julie P.W. Bynum, MD, MPH, said in a press release.

SOURCE:

The study was led by Dr. Bynum, professor of internal medicine, University of Michigan Medical School, Ann Arbor, Michigan, and published online in Alzheimer’s & Dementia.

LIMITATIONS:

The results may not be generalizable to other groups. The observational design of the study cannot completely negate residual confounding. The measures of population risks are coarser than those used in well-characterized epidemiologic studies, leading to potential imprecision. Finally, the study was not designed to determine whether regional differences in the likelihood of ADRD diagnosis resulted in differences in the population health outcomes.

DISCLOSURES:

The study was supported by a grant from the National Institute on Aging. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

The likelihood of receiving a dementia diagnosis in older adults varies significantly by region across the United States, a new study suggests. Rates ranged from 1.7% to 5.4%, with variations more pronounced in those aged 66-74 years and Black or Hispanic individuals.

METHODOLOGY:

  • Researchers analyzed newly diagnosed cases of Alzheimer’s disease and related dementias (ADRD) using the 2018-2019 Medicare claims data for 4.8 million older adults across 306 hospital referral regions (HRRs).
  • Participants were categorized by age and race or ethnicity to examine variations in diagnosis rates.
  • Regional characteristics such as education level and prevalence of obesity, smoking, and diabetes were included to adjust for population risk factors.
  • ADRD-specific diagnostic intensity was calculated as the ratio of the observed-to-expected new cases of ADRD in each HRR.

TAKEAWAY:

  • Unadjusted analysis for that overall, 3% of older adults received a new ADRD diagnosis in 2019, with rates ranging from 1.7 to 5.4 per 100 individuals across HRRs and varied by age category.
  • Regions in the South had the highest unadjusted ADRD case concentration, and the areas in the West/Northwest had the lowest.
  • The ADRD-specific diagnosis intensity was 0.69-1.47 and varied the most in Black and Hispanic individuals and those aged 66-74 years.
  • Regional differences in ADRD diagnosis rates are not fully explained by population risk factors, indicating potential health system-level differences.

IN PRACTICE:

“From place to place, the likelihood of getting your dementia diagnosed varies, and that may happen because of everything from practice norms for healthcare providers to individual patients’ knowledge and care-seeking behavior. These findings go beyond demographic and population-level differences in risk and indicate that there are health system-level differences that could be targeted and remediated,” lead author Julie P.W. Bynum, MD, MPH, said in a press release.

SOURCE:

The study was led by Dr. Bynum, professor of internal medicine, University of Michigan Medical School, Ann Arbor, Michigan, and published online in Alzheimer’s & Dementia.

LIMITATIONS:

The results may not be generalizable to other groups. The observational design of the study cannot completely negate residual confounding. The measures of population risks are coarser than those used in well-characterized epidemiologic studies, leading to potential imprecision. Finally, the study was not designed to determine whether regional differences in the likelihood of ADRD diagnosis resulted in differences in the population health outcomes.

DISCLOSURES:

The study was supported by a grant from the National Institute on Aging. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Parkinson’s Risk in Women and History of Migraine: New Data

Article Type
Changed
Wed, 09/11/2024 - 11:49

 

TOPLINE:

A history of migraine is not associated with an elevated risk for Parkinson’s disease (PD) in women, regardless of headache frequency or migraine subtype, a new study suggests.

METHODOLOGY:

  • Researchers analyzed data on 39,312 women health professionals aged ≥ 45 years and having no history of PD who enrolled in the Women’s Health Study between 1992 and 1995 and were followed until 2021.
  • At baseline, 7321 women (18.6%) had migraine.
  • The mean follow-up duration was 22 years.
  • The primary outcome was a self-reported, physician-confirmed diagnosis of PD.

TAKEAWAY:

  • During the study period, 685 women self-reported a diagnosis of PD.
  • Of these, 18.7% of reported cases were in women with any migraine and 81.3% in women without migraine.
  • No significant association was found between PD risk and a history of migraine, migraine subtypes (with or without aura), or migraine frequency.
  • Migraine was not associated with a higher risk for PD than that of nonmigraine headaches.

IN PRACTICE:

“These results are reassuring for women who have migraine, which itself causes many burdens, that they don’t have to worry about an increased risk of Parkinson’s disease in the future,” study author Tobias Kurth, Charité - Universitätsmedizin Berlin, Germany, said in a press release.

SOURCE:

The study was led by Ricarda S. Schulz, MSc, Charité - Universitätsmedizin Berlin. It was published online in Neurology.

LIMITATIONS:

The study’s findings may not be generalizable to other populations, such as men and non-White individuals. The self-reported data on migraine and PD may be subject to inaccuracies. PD is often not diagnosed until symptoms have reached an advanced stage, potentially leading to cases being underreported. Changes in the status and frequency of migraine over the study period were not accounted for, which may have affected the results.

DISCLOSURES:

The authors did not disclose any specific funding for this work. The Women’s Health Study was supported by the National Cancer Institute and National Heart, Lung, and Blood Institute. Two authors reported having financial ties outside this work. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A history of migraine is not associated with an elevated risk for Parkinson’s disease (PD) in women, regardless of headache frequency or migraine subtype, a new study suggests.

METHODOLOGY:

  • Researchers analyzed data on 39,312 women health professionals aged ≥ 45 years and having no history of PD who enrolled in the Women’s Health Study between 1992 and 1995 and were followed until 2021.
  • At baseline, 7321 women (18.6%) had migraine.
  • The mean follow-up duration was 22 years.
  • The primary outcome was a self-reported, physician-confirmed diagnosis of PD.

TAKEAWAY:

  • During the study period, 685 women self-reported a diagnosis of PD.
  • Of these, 18.7% of reported cases were in women with any migraine and 81.3% in women without migraine.
  • No significant association was found between PD risk and a history of migraine, migraine subtypes (with or without aura), or migraine frequency.
  • Migraine was not associated with a higher risk for PD than that of nonmigraine headaches.

IN PRACTICE:

“These results are reassuring for women who have migraine, which itself causes many burdens, that they don’t have to worry about an increased risk of Parkinson’s disease in the future,” study author Tobias Kurth, Charité - Universitätsmedizin Berlin, Germany, said in a press release.

SOURCE:

The study was led by Ricarda S. Schulz, MSc, Charité - Universitätsmedizin Berlin. It was published online in Neurology.

LIMITATIONS:

The study’s findings may not be generalizable to other populations, such as men and non-White individuals. The self-reported data on migraine and PD may be subject to inaccuracies. PD is often not diagnosed until symptoms have reached an advanced stage, potentially leading to cases being underreported. Changes in the status and frequency of migraine over the study period were not accounted for, which may have affected the results.

DISCLOSURES:

The authors did not disclose any specific funding for this work. The Women’s Health Study was supported by the National Cancer Institute and National Heart, Lung, and Blood Institute. Two authors reported having financial ties outside this work. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

A history of migraine is not associated with an elevated risk for Parkinson’s disease (PD) in women, regardless of headache frequency or migraine subtype, a new study suggests.

METHODOLOGY:

  • Researchers analyzed data on 39,312 women health professionals aged ≥ 45 years and having no history of PD who enrolled in the Women’s Health Study between 1992 and 1995 and were followed until 2021.
  • At baseline, 7321 women (18.6%) had migraine.
  • The mean follow-up duration was 22 years.
  • The primary outcome was a self-reported, physician-confirmed diagnosis of PD.

TAKEAWAY:

  • During the study period, 685 women self-reported a diagnosis of PD.
  • Of these, 18.7% of reported cases were in women with any migraine and 81.3% in women without migraine.
  • No significant association was found between PD risk and a history of migraine, migraine subtypes (with or without aura), or migraine frequency.
  • Migraine was not associated with a higher risk for PD than that of nonmigraine headaches.

IN PRACTICE:

“These results are reassuring for women who have migraine, which itself causes many burdens, that they don’t have to worry about an increased risk of Parkinson’s disease in the future,” study author Tobias Kurth, Charité - Universitätsmedizin Berlin, Germany, said in a press release.

SOURCE:

The study was led by Ricarda S. Schulz, MSc, Charité - Universitätsmedizin Berlin. It was published online in Neurology.

LIMITATIONS:

The study’s findings may not be generalizable to other populations, such as men and non-White individuals. The self-reported data on migraine and PD may be subject to inaccuracies. PD is often not diagnosed until symptoms have reached an advanced stage, potentially leading to cases being underreported. Changes in the status and frequency of migraine over the study period were not accounted for, which may have affected the results.

DISCLOSURES:

The authors did not disclose any specific funding for this work. The Women’s Health Study was supported by the National Cancer Institute and National Heart, Lung, and Blood Institute. Two authors reported having financial ties outside this work. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Do Cannabis Users Need More Anesthesia During Surgery?

Article Type
Changed
Wed, 09/11/2024 - 11:17

 

TOPLINE: 

Cannabis users aged 65 years or older undergoing general anesthesia for surgery required higher doses of inhalational anesthetics than nonusers. However, the clinical relevance of this difference remains unclear.

METHODOLOGY:

  • To assess if cannabis use leads to higher doses of inhalational anesthesia during surgery, the researchers conducted a retrospective cohort study comparing the average intraoperative minimum alveolar concentrations of volatile anesthetics (isoflurane and sevoflurane) between older adults who used cannabis products and those who did not.
  • The researchers reviewed electronic health records of 22,476 patients aged 65 years or older who underwent surgery at the University of Florida Health System between 2018 and 2020.
  • Overall, 268 patients who reported using cannabis within 60 days of surgery (median age, 69 years; 35% women) were matched to 1072 nonusers.
  • The median duration of anesthesia was 175 minutes.
  • The primary outcome was the intraoperative time-weighted average of isoflurane or sevoflurane minimum alveolar concentration equivalents.

TAKEAWAY:

  • Cannabis users had significantly higher average minimum alveolar concentrations of isoflurane or sevoflurane than nonusers (mean, 0.58 vs 0.54; mean difference, 0.04; P = .021).
  • The findings were confirmed in a sensitivity analysis that revealed higher mean average minimum alveolar concentrations of anesthesia in cannabis users than in nonusers (0.57 vs 0.53; P = .029).
  • Although the 0.04 difference in minimum alveolar concentration between cannabis users and nonusers was statistically significant, its clinical importance is unclear.

IN PRACTICE:

“While recent guidelines underscore the importance of universal screening for cannabinoids before surgery, caution is paramount to prevent clinical bias leading to the administration of unnecessary higher doses of inhalational anesthesia, especially as robust evidence supporting such practices remains lacking,” the authors of the study wrote.
 

SOURCE:

This study was led by Ruba Sajdeya, MD, PhD, of the Department of Epidemiology at the University of Florida, Gainesville, and was published online in August 2024 in Anesthesiology.

LIMITATIONS: 

This study lacked access to prescription or dispensed medications, including opioids, which may have introduced residual confounding. Potential underdocumentation of cannabis use in medical records could have led to exposure misclassification. The causality between cannabis usage and increased anesthetic dosing could not be established due to the observational nature of this study. 

DISCLOSURES:

This study was supported by the National Institute on Aging, the National Institutes of Health, and in part by the University of Florida Clinical and Translational Science Institute. Some authors declared receiving research support, consulting fees, and honoraria and having other ties with pharmaceutical companies and various other sources.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

Cannabis users aged 65 years or older undergoing general anesthesia for surgery required higher doses of inhalational anesthetics than nonusers. However, the clinical relevance of this difference remains unclear.

METHODOLOGY:

  • To assess if cannabis use leads to higher doses of inhalational anesthesia during surgery, the researchers conducted a retrospective cohort study comparing the average intraoperative minimum alveolar concentrations of volatile anesthetics (isoflurane and sevoflurane) between older adults who used cannabis products and those who did not.
  • The researchers reviewed electronic health records of 22,476 patients aged 65 years or older who underwent surgery at the University of Florida Health System between 2018 and 2020.
  • Overall, 268 patients who reported using cannabis within 60 days of surgery (median age, 69 years; 35% women) were matched to 1072 nonusers.
  • The median duration of anesthesia was 175 minutes.
  • The primary outcome was the intraoperative time-weighted average of isoflurane or sevoflurane minimum alveolar concentration equivalents.

TAKEAWAY:

  • Cannabis users had significantly higher average minimum alveolar concentrations of isoflurane or sevoflurane than nonusers (mean, 0.58 vs 0.54; mean difference, 0.04; P = .021).
  • The findings were confirmed in a sensitivity analysis that revealed higher mean average minimum alveolar concentrations of anesthesia in cannabis users than in nonusers (0.57 vs 0.53; P = .029).
  • Although the 0.04 difference in minimum alveolar concentration between cannabis users and nonusers was statistically significant, its clinical importance is unclear.

IN PRACTICE:

“While recent guidelines underscore the importance of universal screening for cannabinoids before surgery, caution is paramount to prevent clinical bias leading to the administration of unnecessary higher doses of inhalational anesthesia, especially as robust evidence supporting such practices remains lacking,” the authors of the study wrote.
 

SOURCE:

This study was led by Ruba Sajdeya, MD, PhD, of the Department of Epidemiology at the University of Florida, Gainesville, and was published online in August 2024 in Anesthesiology.

LIMITATIONS: 

This study lacked access to prescription or dispensed medications, including opioids, which may have introduced residual confounding. Potential underdocumentation of cannabis use in medical records could have led to exposure misclassification. The causality between cannabis usage and increased anesthetic dosing could not be established due to the observational nature of this study. 

DISCLOSURES:

This study was supported by the National Institute on Aging, the National Institutes of Health, and in part by the University of Florida Clinical and Translational Science Institute. Some authors declared receiving research support, consulting fees, and honoraria and having other ties with pharmaceutical companies and various other sources.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE: 

Cannabis users aged 65 years or older undergoing general anesthesia for surgery required higher doses of inhalational anesthetics than nonusers. However, the clinical relevance of this difference remains unclear.

METHODOLOGY:

  • To assess if cannabis use leads to higher doses of inhalational anesthesia during surgery, the researchers conducted a retrospective cohort study comparing the average intraoperative minimum alveolar concentrations of volatile anesthetics (isoflurane and sevoflurane) between older adults who used cannabis products and those who did not.
  • The researchers reviewed electronic health records of 22,476 patients aged 65 years or older who underwent surgery at the University of Florida Health System between 2018 and 2020.
  • Overall, 268 patients who reported using cannabis within 60 days of surgery (median age, 69 years; 35% women) were matched to 1072 nonusers.
  • The median duration of anesthesia was 175 minutes.
  • The primary outcome was the intraoperative time-weighted average of isoflurane or sevoflurane minimum alveolar concentration equivalents.

TAKEAWAY:

  • Cannabis users had significantly higher average minimum alveolar concentrations of isoflurane or sevoflurane than nonusers (mean, 0.58 vs 0.54; mean difference, 0.04; P = .021).
  • The findings were confirmed in a sensitivity analysis that revealed higher mean average minimum alveolar concentrations of anesthesia in cannabis users than in nonusers (0.57 vs 0.53; P = .029).
  • Although the 0.04 difference in minimum alveolar concentration between cannabis users and nonusers was statistically significant, its clinical importance is unclear.

IN PRACTICE:

“While recent guidelines underscore the importance of universal screening for cannabinoids before surgery, caution is paramount to prevent clinical bias leading to the administration of unnecessary higher doses of inhalational anesthesia, especially as robust evidence supporting such practices remains lacking,” the authors of the study wrote.
 

SOURCE:

This study was led by Ruba Sajdeya, MD, PhD, of the Department of Epidemiology at the University of Florida, Gainesville, and was published online in August 2024 in Anesthesiology.

LIMITATIONS: 

This study lacked access to prescription or dispensed medications, including opioids, which may have introduced residual confounding. Potential underdocumentation of cannabis use in medical records could have led to exposure misclassification. The causality between cannabis usage and increased anesthetic dosing could not be established due to the observational nature of this study. 

DISCLOSURES:

This study was supported by the National Institute on Aging, the National Institutes of Health, and in part by the University of Florida Clinical and Translational Science Institute. Some authors declared receiving research support, consulting fees, and honoraria and having other ties with pharmaceutical companies and various other sources.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Monitor Asthma Patients on Biologics for Remission, Potential EGPA Symptoms During Steroid Tapering

Article Type
Changed
Wed, 09/11/2024 - 13:44

 

Physicians are called to record clinical details of patients with asthma undergoing biologic therapy to monitor clinical remission and keep an eye on eosinophilic granulomatosis with polyangiitis (EGPA) symptoms as patients come off the medications, according to pulmonary experts presenting at the European Respiratory Society (ERS) 2024 International Congress.

Biologics have revolutionized the treatment of severe asthma, significantly improving patient outcomes. However, the focus has recently shifted toward achieving more comprehensive disease control. Remission, already a well-established goal in conditions like rheumatoid arthritis and inflammatory bowel disease, is now being explored in patients with asthma receiving biologics.

Peter Howarth, medical director at Global Medical, Specialty Medicine, GSK, in Brentford, England, said that new clinical remission criteria in asthma may be overly rigid and of little use. He said that more attainable limits must be created. Meanwhile, clinicians should collect clinical data more thoroughly.

In parallel, studies have also raised questions about the role of biologics in the emergence of EGPA.
 

Defining Clinical Remission in Asthma

Last year, a working group, including members from the American Thoracic Society and the American College and Academy of Allergy, Asthma, and Immunology, proposed new guidelines to define clinical remission in asthma. These guidelines extended beyond the typical outcomes of no severe exacerbations, no maintenance oral corticosteroid use, good asthma control, and stable lung function. The additional recommendations included no missed work or school due to asthma, limited use of rescue medication (no more than once a month), and reduced inhaled corticosteroid use to low or medium doses.

To explore the feasibility of achieving these clinical remission outcomes, GSK partnered with the Mayo Clinic for a retrospective analysis of the medical records of 700 patients with asthma undergoing various biologic therapies. The study revealed that essential data for determining clinical remission, such as asthma control and exacerbation records, were inconsistently documented. While some data were recorded, such as maintenance corticosteroid use in 50%-60% of cases, other key measures, like asthma control, were recorded in less than a quarter of the patients.

GSK researchers analyzed available data and found that around 30% of patients on any biologic therapy met three components of remission. Mepolizumab performed better than other corticosteroids, with over 40% of those receiving the drug meeting these criteria. However, when stricter definitions were applied, such as requiring four or more remission components, fewer patients achieved remission — less than 10% for four components, with no patients meeting the full seven-point criteria proposed by the working group.

An ongoing ERS Task Force is now exploring what clinical remission outcomes are practical to achieve, as the current definitions may be too aspirational, said Mr. Howarth. “It’s a matter of defying what is practical to achieve because if you can’t achieve it, then it won’t be valuable.”

He also pointed out that biologics are often used for the most severe cases of asthma after other treatments have failed. Evidence suggests that introducing biologics earlier in the disease, before chronic damage occurs, may result in better patient outcomes.
 

 

 

Biologics and EGPA

In a retrospective study, clinical details of 27 patients with adult-onset asthma from 28 countries, all on biologic therapy, were analyzed. The study, a multicounty collaboration, was led by ERS Severe Heterogeneous Asthma Research Collaboration, Patient-centred (SHARP), and aimed to understand the role of biologics in the emergence of EGPA.

The most significant finding presented at the ERS 2024 International Congress was that EGPA was not associated with maintenance corticosteroids; instead, it often emerged when corticosteroid doses were reduced or tapered off. “This might suggest that steroid withdrawal may unmask the underlying disease,” said Hitasha Rupani, MD, a consultant respiratory physician at the University Hospital Southampton, in Southampton, England. Importantly, the rate at which steroids were tapered did not influence the onset of EGPA, indicating that the tapering process, rather than its speed, may be the critical factor. However, due to the small sample size, this remains a hypothesis, Dr. Rupani explained.

The study also found that when clinicians had a clinical suspicion of EGPA before starting biologic therapy, the diagnosis was made earlier than in cases without such suspicion. Dr. Rupani concluded that this underscores the importance of clinical vigilance and the need to monitor patients closely for EGPA symptoms, especially during corticosteroid tapering.

The study was funded by GSK. Mr. Howarth is an employee at GSK. Dr. Rupani reports no relevant financial relationships. 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Physicians are called to record clinical details of patients with asthma undergoing biologic therapy to monitor clinical remission and keep an eye on eosinophilic granulomatosis with polyangiitis (EGPA) symptoms as patients come off the medications, according to pulmonary experts presenting at the European Respiratory Society (ERS) 2024 International Congress.

Biologics have revolutionized the treatment of severe asthma, significantly improving patient outcomes. However, the focus has recently shifted toward achieving more comprehensive disease control. Remission, already a well-established goal in conditions like rheumatoid arthritis and inflammatory bowel disease, is now being explored in patients with asthma receiving biologics.

Peter Howarth, medical director at Global Medical, Specialty Medicine, GSK, in Brentford, England, said that new clinical remission criteria in asthma may be overly rigid and of little use. He said that more attainable limits must be created. Meanwhile, clinicians should collect clinical data more thoroughly.

In parallel, studies have also raised questions about the role of biologics in the emergence of EGPA.
 

Defining Clinical Remission in Asthma

Last year, a working group, including members from the American Thoracic Society and the American College and Academy of Allergy, Asthma, and Immunology, proposed new guidelines to define clinical remission in asthma. These guidelines extended beyond the typical outcomes of no severe exacerbations, no maintenance oral corticosteroid use, good asthma control, and stable lung function. The additional recommendations included no missed work or school due to asthma, limited use of rescue medication (no more than once a month), and reduced inhaled corticosteroid use to low or medium doses.

To explore the feasibility of achieving these clinical remission outcomes, GSK partnered with the Mayo Clinic for a retrospective analysis of the medical records of 700 patients with asthma undergoing various biologic therapies. The study revealed that essential data for determining clinical remission, such as asthma control and exacerbation records, were inconsistently documented. While some data were recorded, such as maintenance corticosteroid use in 50%-60% of cases, other key measures, like asthma control, were recorded in less than a quarter of the patients.

GSK researchers analyzed available data and found that around 30% of patients on any biologic therapy met three components of remission. Mepolizumab performed better than other corticosteroids, with over 40% of those receiving the drug meeting these criteria. However, when stricter definitions were applied, such as requiring four or more remission components, fewer patients achieved remission — less than 10% for four components, with no patients meeting the full seven-point criteria proposed by the working group.

An ongoing ERS Task Force is now exploring what clinical remission outcomes are practical to achieve, as the current definitions may be too aspirational, said Mr. Howarth. “It’s a matter of defying what is practical to achieve because if you can’t achieve it, then it won’t be valuable.”

He also pointed out that biologics are often used for the most severe cases of asthma after other treatments have failed. Evidence suggests that introducing biologics earlier in the disease, before chronic damage occurs, may result in better patient outcomes.
 

 

 

Biologics and EGPA

In a retrospective study, clinical details of 27 patients with adult-onset asthma from 28 countries, all on biologic therapy, were analyzed. The study, a multicounty collaboration, was led by ERS Severe Heterogeneous Asthma Research Collaboration, Patient-centred (SHARP), and aimed to understand the role of biologics in the emergence of EGPA.

The most significant finding presented at the ERS 2024 International Congress was that EGPA was not associated with maintenance corticosteroids; instead, it often emerged when corticosteroid doses were reduced or tapered off. “This might suggest that steroid withdrawal may unmask the underlying disease,” said Hitasha Rupani, MD, a consultant respiratory physician at the University Hospital Southampton, in Southampton, England. Importantly, the rate at which steroids were tapered did not influence the onset of EGPA, indicating that the tapering process, rather than its speed, may be the critical factor. However, due to the small sample size, this remains a hypothesis, Dr. Rupani explained.

The study also found that when clinicians had a clinical suspicion of EGPA before starting biologic therapy, the diagnosis was made earlier than in cases without such suspicion. Dr. Rupani concluded that this underscores the importance of clinical vigilance and the need to monitor patients closely for EGPA symptoms, especially during corticosteroid tapering.

The study was funded by GSK. Mr. Howarth is an employee at GSK. Dr. Rupani reports no relevant financial relationships. 

A version of this article appeared on Medscape.com.

 

Physicians are called to record clinical details of patients with asthma undergoing biologic therapy to monitor clinical remission and keep an eye on eosinophilic granulomatosis with polyangiitis (EGPA) symptoms as patients come off the medications, according to pulmonary experts presenting at the European Respiratory Society (ERS) 2024 International Congress.

Biologics have revolutionized the treatment of severe asthma, significantly improving patient outcomes. However, the focus has recently shifted toward achieving more comprehensive disease control. Remission, already a well-established goal in conditions like rheumatoid arthritis and inflammatory bowel disease, is now being explored in patients with asthma receiving biologics.

Peter Howarth, medical director at Global Medical, Specialty Medicine, GSK, in Brentford, England, said that new clinical remission criteria in asthma may be overly rigid and of little use. He said that more attainable limits must be created. Meanwhile, clinicians should collect clinical data more thoroughly.

In parallel, studies have also raised questions about the role of biologics in the emergence of EGPA.
 

Defining Clinical Remission in Asthma

Last year, a working group, including members from the American Thoracic Society and the American College and Academy of Allergy, Asthma, and Immunology, proposed new guidelines to define clinical remission in asthma. These guidelines extended beyond the typical outcomes of no severe exacerbations, no maintenance oral corticosteroid use, good asthma control, and stable lung function. The additional recommendations included no missed work or school due to asthma, limited use of rescue medication (no more than once a month), and reduced inhaled corticosteroid use to low or medium doses.

To explore the feasibility of achieving these clinical remission outcomes, GSK partnered with the Mayo Clinic for a retrospective analysis of the medical records of 700 patients with asthma undergoing various biologic therapies. The study revealed that essential data for determining clinical remission, such as asthma control and exacerbation records, were inconsistently documented. While some data were recorded, such as maintenance corticosteroid use in 50%-60% of cases, other key measures, like asthma control, were recorded in less than a quarter of the patients.

GSK researchers analyzed available data and found that around 30% of patients on any biologic therapy met three components of remission. Mepolizumab performed better than other corticosteroids, with over 40% of those receiving the drug meeting these criteria. However, when stricter definitions were applied, such as requiring four or more remission components, fewer patients achieved remission — less than 10% for four components, with no patients meeting the full seven-point criteria proposed by the working group.

An ongoing ERS Task Force is now exploring what clinical remission outcomes are practical to achieve, as the current definitions may be too aspirational, said Mr. Howarth. “It’s a matter of defying what is practical to achieve because if you can’t achieve it, then it won’t be valuable.”

He also pointed out that biologics are often used for the most severe cases of asthma after other treatments have failed. Evidence suggests that introducing biologics earlier in the disease, before chronic damage occurs, may result in better patient outcomes.
 

 

 

Biologics and EGPA

In a retrospective study, clinical details of 27 patients with adult-onset asthma from 28 countries, all on biologic therapy, were analyzed. The study, a multicounty collaboration, was led by ERS Severe Heterogeneous Asthma Research Collaboration, Patient-centred (SHARP), and aimed to understand the role of biologics in the emergence of EGPA.

The most significant finding presented at the ERS 2024 International Congress was that EGPA was not associated with maintenance corticosteroids; instead, it often emerged when corticosteroid doses were reduced or tapered off. “This might suggest that steroid withdrawal may unmask the underlying disease,” said Hitasha Rupani, MD, a consultant respiratory physician at the University Hospital Southampton, in Southampton, England. Importantly, the rate at which steroids were tapered did not influence the onset of EGPA, indicating that the tapering process, rather than its speed, may be the critical factor. However, due to the small sample size, this remains a hypothesis, Dr. Rupani explained.

The study also found that when clinicians had a clinical suspicion of EGPA before starting biologic therapy, the diagnosis was made earlier than in cases without such suspicion. Dr. Rupani concluded that this underscores the importance of clinical vigilance and the need to monitor patients closely for EGPA symptoms, especially during corticosteroid tapering.

The study was funded by GSK. Mr. Howarth is an employee at GSK. Dr. Rupani reports no relevant financial relationships. 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Night Owls May Be at Greater Risk for T2D, Beyond Lifestyle

Article Type
Changed
Wed, 09/11/2024 - 10:20

 

Night owls — individuals with late chronotypes — may be at an increased risk for type 2 diabetes (T2D), beyond the risks conferred by an unhealthy lifestyle, research presented at the annual meeting of the European Association for the Study of Diabetes suggested.

In the study, night owls were almost 50% more likely to develop T2D than those who went to sleep earlier.

“The magnitude of this risk was more than I expected, [although] residual confounding may have occurred,” said Jeroen van der Velde, PhD, Leiden University Medical Center in the Netherlands, who presented the study.

“Late chronotype has previously been associated with unhealthy lifestyle and overweight or obesity and, subsequently, cardiometabolic diseases,” he said in an interview. However, although the current study found that individuals with late chronotypes did indeed have larger waists and more visceral fat, “we (and others) believe that lifestyle cannot fully explain the relation between late chronotype and metabolic disorders.”

“In addition,” he noted, “previous studies that observed that late chronotype is associated with overweight or obesity mainly focused on body mass index [BMI]. However, BMI alone does not provide accurate information regarding fat distribution in the body. People with similar BMI may have different underlying fat distribution, and this may be more relevant than BMI for metabolic risk.”

The researchers examined associations between chronotype and BMI, waist circumference, visceral fat, liver fat, and the risk for T2D in a middle-aged population from the Netherlands Epidemiology of Obesity study. Among the 5026 participants, the mean age was 56 years, 54% were women, and mean BMI was 30.

Using data from the study, the study investigators calculated the midpoint of sleep (MPS) and divided participants into three chronotypes: Early MPS < 2:30 PM (20% of participants); intermediate MPS 2:30–4:00 PM (reference category; 60% of participants); and late MPS ≥ 4:00 PM (20% of participants). BMI and waist circumference were measured in all participants, and visceral fat and liver fat were measured in 1576 participants using MRI scans and MR spectroscopy, respectively.

During a median follow-up of 6.6 years, 225 participants were diagnosed with T2D. After adjustment for age, sex, education, physical activity, smoking, alcohol intake, diet quality, sleep quality and duration, and total body fat, participants with a late chronotype had a 46% increased risk for T2D.

Further, those with a late chronotype had 0.7 higher BMI, 1.9-cm larger waist circumference, 7 cm2 more visceral fat, and 14% more liver fat.
 

Body Clock Out of Sync?

“Late chronotype was associated with increased ectopic body fat and with an increased risk of T2D independent of lifestyle factors and is an emerging risk factor for metabolic diseases,” the researchers concluded.

“A likely explanation is that the circadian rhythm or body clock in late chronotypes is out of sync with the work and social schedules followed by society,” Dr. van der Velde suggested. “This can lead to circadian misalignment, which we know can lead to metabolic disturbances and ultimately type 2 diabetes.”

Might trying to adjust chronotype earlier in life have an effect on risk?

“Chronotype, as measured via midpoint of sleep, does change a lot in the first 30 years or so in life,” he said. “After that it seems to stabilize. I suppose that if you adapt an intermediate or early chronotype around the age of 30 years, this will help to maintain an earlier chronotype later in life, although we cannot answer this from our study.”

Nevertheless, with respect to T2D risk, “chronotype is likely only part of the puzzle,” he noted.

“People with late chronotypes typically eat late in the evening, and this has also been associated with adverse metabolic effects. At this stage, we do not know if a person changes his/her chronotype that this will also lead to metabolic improvements. More research is needed before we can make recommendations regarding chronotype and timing of other lifestyle behaviors.”

Commenting on the study, Gianluca Iacobellis, MD, PhD, director of the University of Miami Hospital Diabetes Service, Coral Gables, Florida, said: “Interesting data. Altering the physiological circadian rhythm can affect the complex hormonal system — including cortisol, ghrelin, leptin, and serotonin — that regulates insulin sensitivity, glucose, and blood pressure control. The night owl may become more insulin resistant and therefore at higher risk of developing diabetes.”

Like Dr. van der Velde, he noted that “late sleep may be associated with night binging that can cause weight gain and ultimately obesity, further increasing the risk of diabetes.”

Dr. Iacobellis’s group recently showed that vital exhaustion, which is characterized by fatigue and loss of vigor, is associated with a higher cardiovascular risk for and markers of visceral adiposity.

“Abnormal circadian rhythms can be easily associated with vital exhaustion,” he said. Therefore, night owls with more visceral than peripheral fat accumulation might also be at higher cardiometabolic risk through that mechanism.

“However environmental factors and family history can play an important role too,” he added.

Regardless of the mechanisms involved, “preventive actions should be taken to educate teenagers and individuals at higher risk to have healthy sleep habits,” Dr. Iacobellis concluded.

No information regarding funding was provided; Dr. van der Velde and Dr. Iacobellis reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Night owls — individuals with late chronotypes — may be at an increased risk for type 2 diabetes (T2D), beyond the risks conferred by an unhealthy lifestyle, research presented at the annual meeting of the European Association for the Study of Diabetes suggested.

In the study, night owls were almost 50% more likely to develop T2D than those who went to sleep earlier.

“The magnitude of this risk was more than I expected, [although] residual confounding may have occurred,” said Jeroen van der Velde, PhD, Leiden University Medical Center in the Netherlands, who presented the study.

“Late chronotype has previously been associated with unhealthy lifestyle and overweight or obesity and, subsequently, cardiometabolic diseases,” he said in an interview. However, although the current study found that individuals with late chronotypes did indeed have larger waists and more visceral fat, “we (and others) believe that lifestyle cannot fully explain the relation between late chronotype and metabolic disorders.”

“In addition,” he noted, “previous studies that observed that late chronotype is associated with overweight or obesity mainly focused on body mass index [BMI]. However, BMI alone does not provide accurate information regarding fat distribution in the body. People with similar BMI may have different underlying fat distribution, and this may be more relevant than BMI for metabolic risk.”

The researchers examined associations between chronotype and BMI, waist circumference, visceral fat, liver fat, and the risk for T2D in a middle-aged population from the Netherlands Epidemiology of Obesity study. Among the 5026 participants, the mean age was 56 years, 54% were women, and mean BMI was 30.

Using data from the study, the study investigators calculated the midpoint of sleep (MPS) and divided participants into three chronotypes: Early MPS < 2:30 PM (20% of participants); intermediate MPS 2:30–4:00 PM (reference category; 60% of participants); and late MPS ≥ 4:00 PM (20% of participants). BMI and waist circumference were measured in all participants, and visceral fat and liver fat were measured in 1576 participants using MRI scans and MR spectroscopy, respectively.

During a median follow-up of 6.6 years, 225 participants were diagnosed with T2D. After adjustment for age, sex, education, physical activity, smoking, alcohol intake, diet quality, sleep quality and duration, and total body fat, participants with a late chronotype had a 46% increased risk for T2D.

Further, those with a late chronotype had 0.7 higher BMI, 1.9-cm larger waist circumference, 7 cm2 more visceral fat, and 14% more liver fat.
 

Body Clock Out of Sync?

“Late chronotype was associated with increased ectopic body fat and with an increased risk of T2D independent of lifestyle factors and is an emerging risk factor for metabolic diseases,” the researchers concluded.

“A likely explanation is that the circadian rhythm or body clock in late chronotypes is out of sync with the work and social schedules followed by society,” Dr. van der Velde suggested. “This can lead to circadian misalignment, which we know can lead to metabolic disturbances and ultimately type 2 diabetes.”

Might trying to adjust chronotype earlier in life have an effect on risk?

“Chronotype, as measured via midpoint of sleep, does change a lot in the first 30 years or so in life,” he said. “After that it seems to stabilize. I suppose that if you adapt an intermediate or early chronotype around the age of 30 years, this will help to maintain an earlier chronotype later in life, although we cannot answer this from our study.”

Nevertheless, with respect to T2D risk, “chronotype is likely only part of the puzzle,” he noted.

“People with late chronotypes typically eat late in the evening, and this has also been associated with adverse metabolic effects. At this stage, we do not know if a person changes his/her chronotype that this will also lead to metabolic improvements. More research is needed before we can make recommendations regarding chronotype and timing of other lifestyle behaviors.”

Commenting on the study, Gianluca Iacobellis, MD, PhD, director of the University of Miami Hospital Diabetes Service, Coral Gables, Florida, said: “Interesting data. Altering the physiological circadian rhythm can affect the complex hormonal system — including cortisol, ghrelin, leptin, and serotonin — that regulates insulin sensitivity, glucose, and blood pressure control. The night owl may become more insulin resistant and therefore at higher risk of developing diabetes.”

Like Dr. van der Velde, he noted that “late sleep may be associated with night binging that can cause weight gain and ultimately obesity, further increasing the risk of diabetes.”

Dr. Iacobellis’s group recently showed that vital exhaustion, which is characterized by fatigue and loss of vigor, is associated with a higher cardiovascular risk for and markers of visceral adiposity.

“Abnormal circadian rhythms can be easily associated with vital exhaustion,” he said. Therefore, night owls with more visceral than peripheral fat accumulation might also be at higher cardiometabolic risk through that mechanism.

“However environmental factors and family history can play an important role too,” he added.

Regardless of the mechanisms involved, “preventive actions should be taken to educate teenagers and individuals at higher risk to have healthy sleep habits,” Dr. Iacobellis concluded.

No information regarding funding was provided; Dr. van der Velde and Dr. Iacobellis reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

 

Night owls — individuals with late chronotypes — may be at an increased risk for type 2 diabetes (T2D), beyond the risks conferred by an unhealthy lifestyle, research presented at the annual meeting of the European Association for the Study of Diabetes suggested.

In the study, night owls were almost 50% more likely to develop T2D than those who went to sleep earlier.

“The magnitude of this risk was more than I expected, [although] residual confounding may have occurred,” said Jeroen van der Velde, PhD, Leiden University Medical Center in the Netherlands, who presented the study.

“Late chronotype has previously been associated with unhealthy lifestyle and overweight or obesity and, subsequently, cardiometabolic diseases,” he said in an interview. However, although the current study found that individuals with late chronotypes did indeed have larger waists and more visceral fat, “we (and others) believe that lifestyle cannot fully explain the relation between late chronotype and metabolic disorders.”

“In addition,” he noted, “previous studies that observed that late chronotype is associated with overweight or obesity mainly focused on body mass index [BMI]. However, BMI alone does not provide accurate information regarding fat distribution in the body. People with similar BMI may have different underlying fat distribution, and this may be more relevant than BMI for metabolic risk.”

The researchers examined associations between chronotype and BMI, waist circumference, visceral fat, liver fat, and the risk for T2D in a middle-aged population from the Netherlands Epidemiology of Obesity study. Among the 5026 participants, the mean age was 56 years, 54% were women, and mean BMI was 30.

Using data from the study, the study investigators calculated the midpoint of sleep (MPS) and divided participants into three chronotypes: Early MPS < 2:30 PM (20% of participants); intermediate MPS 2:30–4:00 PM (reference category; 60% of participants); and late MPS ≥ 4:00 PM (20% of participants). BMI and waist circumference were measured in all participants, and visceral fat and liver fat were measured in 1576 participants using MRI scans and MR spectroscopy, respectively.

During a median follow-up of 6.6 years, 225 participants were diagnosed with T2D. After adjustment for age, sex, education, physical activity, smoking, alcohol intake, diet quality, sleep quality and duration, and total body fat, participants with a late chronotype had a 46% increased risk for T2D.

Further, those with a late chronotype had 0.7 higher BMI, 1.9-cm larger waist circumference, 7 cm2 more visceral fat, and 14% more liver fat.
 

Body Clock Out of Sync?

“Late chronotype was associated with increased ectopic body fat and with an increased risk of T2D independent of lifestyle factors and is an emerging risk factor for metabolic diseases,” the researchers concluded.

“A likely explanation is that the circadian rhythm or body clock in late chronotypes is out of sync with the work and social schedules followed by society,” Dr. van der Velde suggested. “This can lead to circadian misalignment, which we know can lead to metabolic disturbances and ultimately type 2 diabetes.”

Might trying to adjust chronotype earlier in life have an effect on risk?

“Chronotype, as measured via midpoint of sleep, does change a lot in the first 30 years or so in life,” he said. “After that it seems to stabilize. I suppose that if you adapt an intermediate or early chronotype around the age of 30 years, this will help to maintain an earlier chronotype later in life, although we cannot answer this from our study.”

Nevertheless, with respect to T2D risk, “chronotype is likely only part of the puzzle,” he noted.

“People with late chronotypes typically eat late in the evening, and this has also been associated with adverse metabolic effects. At this stage, we do not know if a person changes his/her chronotype that this will also lead to metabolic improvements. More research is needed before we can make recommendations regarding chronotype and timing of other lifestyle behaviors.”

Commenting on the study, Gianluca Iacobellis, MD, PhD, director of the University of Miami Hospital Diabetes Service, Coral Gables, Florida, said: “Interesting data. Altering the physiological circadian rhythm can affect the complex hormonal system — including cortisol, ghrelin, leptin, and serotonin — that regulates insulin sensitivity, glucose, and blood pressure control. The night owl may become more insulin resistant and therefore at higher risk of developing diabetes.”

Like Dr. van der Velde, he noted that “late sleep may be associated with night binging that can cause weight gain and ultimately obesity, further increasing the risk of diabetes.”

Dr. Iacobellis’s group recently showed that vital exhaustion, which is characterized by fatigue and loss of vigor, is associated with a higher cardiovascular risk for and markers of visceral adiposity.

“Abnormal circadian rhythms can be easily associated with vital exhaustion,” he said. Therefore, night owls with more visceral than peripheral fat accumulation might also be at higher cardiometabolic risk through that mechanism.

“However environmental factors and family history can play an important role too,” he added.

Regardless of the mechanisms involved, “preventive actions should be taken to educate teenagers and individuals at higher risk to have healthy sleep habits,” Dr. Iacobellis concluded.

No information regarding funding was provided; Dr. van der Velde and Dr. Iacobellis reported no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EASD 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Five Key Measures to Ensure a Quality Colonoscopy

Article Type
Changed
Wed, 09/18/2024 - 09:44

 

A task force established by the American College of Gastroenterology (ACG) and the American Society for Gastrointestinal Endoscopy (ASGE) issued updated recommendations highlighting what they consider to be the highest priority quality indicators for colonoscopy, a list that, for the first time, includes adequate bowel preparation and sessile serrated lesion detection rate (SSLDR).

“Endoscopy teams now have an updated set of guidelines which can be used to enhance the quality of their colonoscopies and should certainly use these current quality measures to ‘raise the bar’ on behalf of their patients,” task force member Nicholas J. Shaheen, MD, MPH, Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, said in a statement.

Shaheen_Nicholas_J
Dr. Nicholas J. Shaheen



The task force published the recommendations online August 21 in The American Journal of Gastroenterology and in Gastrointestinal Endoscopy. It represents the third iteration of the ACG/ASGE quality indicators on colonoscopy recommendations and incorporates new evidence published since 2015.

“The last set of quality indicators from this group was 9 years ago. Since then, there has been a tremendous amount of new data published in colonoscopy quality,” Ziad F. Gellad, MD, MPH, professor of medicine, Duke University Medical Center, Durham, North Carolina, said in an interview.

“Keeping up with that data is a challenge, and so guidelines such as these are important in helping clinicians synthesize data on quality of care and implement best practices,” said Dr. Gellad, who was not involved with the task force.
 

Two New Priority Indicators 

The task force identified 15 quality indicators, divided into preprocedure, intraprocedure, and postprocedure. It includes five “priority” indicators — two of which are new.

One is the rate of adequate bowel preparation, preferably defined as a Boston Bowel Preparation Scale score ≥ 2 in each of three colon segments or by description of the preparation as excellent, good, or adequate. It has a performance target > 90%.

“Inadequate bowel preparation substantially increases the cost of colonoscopy delivery and creates risk and inconvenience for patients, thus warranting a ranking as a priority indicator,” the task force wrote.

Dr. Gellad explained that the addition of this priority indicator is “notable because it highlights the importance of bowel prep in high-quality colonoscopy. It also shifts more of the responsibility of bowel prep from the patient to the practice.”

The second new quality indicator is the SSLDR, which was selected due to its ability to contribute to cancer prevention.

Based on available evidence, the task force recommends a current minimum threshold for the SSLDR of 6%. “This is expected to be revised upward as evidence of increasing detection occurs,” they wrote.

Dr. Ziad F. Gellad, Duke University, Durham, N.C.
Duke University
Dr. Ziad F. Gellad



Dr. Gellad said the addition of SSLDR is “an important advance in these recommendations. We know that serrated adenomas are a precursor for colorectal cancer and that the detection of these subtle lesions is variable.

“Providing a benchmark encourages practices to measure the detection of serrated adenomas and intervene when rates are below benchmarks. Prior to these benchmarks, it was difficult to know where to peg our expectations,” Dr. Gellad added.
 

 

 

Changes to the Adenoma Detection Rate (ADR)

The ADR remains a priority indicator in the update, albeit with changes.

To keep the ADR measurement consistent with current screening guidelines, the task force now recommends that the ADR be measured starting at age 45 rather than 50 years.

“ADR plays a critical role in evaluating the performance of the colonoscopists,” task force lead Douglas K. Rex, MD, a gastroenterologist at Indiana University School of Medicine in Indianapolis, said in the statement.

“It is recommended that ADR calculations include screening, surveillance, and diagnostic colonoscopy but exclude indications of a positive noncolonoscopy screening test and therapeutic procedures for resection or treatment of known neoplasia, genetic cancer syndromes, and inflammatory bowel disease,” Dr. Rex explained.

Dr. Douglas K. Rex, emeritus professor of medicine, Indiana University School of Medicine, Indianapolis
Dr. Douglas K. Rex



The task force recommends a minimum ADR threshold of 35% (40% in men and 30% in women) and that colonoscopists with ADRs below 35% “undertake remedial measures to improve and to achieve acceptable performance.”
 

Additional Priorities 

The cecal intubation rate (CIR) — the percentage of patients undergoing colonoscopy with intact colons who have full intubation of the cecum with photo documentation of cecal landmarks — remains a priority quality indicator and has a performance target ≥ 95%.

“A trained colonoscopist should achieve a high CIR with a very high level of safety,” the task force wrote. “Low CIRs have been associated with higher PCCRC [postcolonoscopy colorectal cancer] rates.” 

The final priority indicator is the rate of using recommended screening and surveillance intervals, which carries a performance target ≥ 90%.

“We recommend that quality improvement efforts initially focus on high-priority indicators and then progress to other indicators once it is ascertained that endoscopists are performing above recommended thresholds, either at baseline or after corrective interventions,” the task force wrote.

“The priority indicators are absolutely important for practices to implement,” Dr. Gellad said.

“There is compelling evidence that these measures are correlated with clinically important outcomes, particularly ADR,” he added. “Many practices already capture this data, and the changes in ADR calculation make measurement less burdensome. Hopefully, this will encourage more practices to collect and report these measures.” 

Dr. Rex is a consultant for Olympus, Boston Scientific, Braintree Laboratories, Norgine, GI Supply, Medtronic, and Acacia Pharmaceuticals; receives research support from Olympus, Medivators, Erbe USA, and Braintree Laboratories; and is a shareholder in Satisfai Health. Dr. Shaheen had no relevant disclosures. Dr. Gellad has consulted for Merck & Co. and Novo Nordisk and is a cofounder of Higgs Boson.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

A task force established by the American College of Gastroenterology (ACG) and the American Society for Gastrointestinal Endoscopy (ASGE) issued updated recommendations highlighting what they consider to be the highest priority quality indicators for colonoscopy, a list that, for the first time, includes adequate bowel preparation and sessile serrated lesion detection rate (SSLDR).

“Endoscopy teams now have an updated set of guidelines which can be used to enhance the quality of their colonoscopies and should certainly use these current quality measures to ‘raise the bar’ on behalf of their patients,” task force member Nicholas J. Shaheen, MD, MPH, Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, said in a statement.

Shaheen_Nicholas_J
Dr. Nicholas J. Shaheen



The task force published the recommendations online August 21 in The American Journal of Gastroenterology and in Gastrointestinal Endoscopy. It represents the third iteration of the ACG/ASGE quality indicators on colonoscopy recommendations and incorporates new evidence published since 2015.

“The last set of quality indicators from this group was 9 years ago. Since then, there has been a tremendous amount of new data published in colonoscopy quality,” Ziad F. Gellad, MD, MPH, professor of medicine, Duke University Medical Center, Durham, North Carolina, said in an interview.

“Keeping up with that data is a challenge, and so guidelines such as these are important in helping clinicians synthesize data on quality of care and implement best practices,” said Dr. Gellad, who was not involved with the task force.
 

Two New Priority Indicators 

The task force identified 15 quality indicators, divided into preprocedure, intraprocedure, and postprocedure. It includes five “priority” indicators — two of which are new.

One is the rate of adequate bowel preparation, preferably defined as a Boston Bowel Preparation Scale score ≥ 2 in each of three colon segments or by description of the preparation as excellent, good, or adequate. It has a performance target > 90%.

“Inadequate bowel preparation substantially increases the cost of colonoscopy delivery and creates risk and inconvenience for patients, thus warranting a ranking as a priority indicator,” the task force wrote.

Dr. Gellad explained that the addition of this priority indicator is “notable because it highlights the importance of bowel prep in high-quality colonoscopy. It also shifts more of the responsibility of bowel prep from the patient to the practice.”

The second new quality indicator is the SSLDR, which was selected due to its ability to contribute to cancer prevention.

Based on available evidence, the task force recommends a current minimum threshold for the SSLDR of 6%. “This is expected to be revised upward as evidence of increasing detection occurs,” they wrote.

Dr. Ziad F. Gellad, Duke University, Durham, N.C.
Duke University
Dr. Ziad F. Gellad



Dr. Gellad said the addition of SSLDR is “an important advance in these recommendations. We know that serrated adenomas are a precursor for colorectal cancer and that the detection of these subtle lesions is variable.

“Providing a benchmark encourages practices to measure the detection of serrated adenomas and intervene when rates are below benchmarks. Prior to these benchmarks, it was difficult to know where to peg our expectations,” Dr. Gellad added.
 

 

 

Changes to the Adenoma Detection Rate (ADR)

The ADR remains a priority indicator in the update, albeit with changes.

To keep the ADR measurement consistent with current screening guidelines, the task force now recommends that the ADR be measured starting at age 45 rather than 50 years.

“ADR plays a critical role in evaluating the performance of the colonoscopists,” task force lead Douglas K. Rex, MD, a gastroenterologist at Indiana University School of Medicine in Indianapolis, said in the statement.

“It is recommended that ADR calculations include screening, surveillance, and diagnostic colonoscopy but exclude indications of a positive noncolonoscopy screening test and therapeutic procedures for resection or treatment of known neoplasia, genetic cancer syndromes, and inflammatory bowel disease,” Dr. Rex explained.

Dr. Douglas K. Rex, emeritus professor of medicine, Indiana University School of Medicine, Indianapolis
Dr. Douglas K. Rex



The task force recommends a minimum ADR threshold of 35% (40% in men and 30% in women) and that colonoscopists with ADRs below 35% “undertake remedial measures to improve and to achieve acceptable performance.”
 

Additional Priorities 

The cecal intubation rate (CIR) — the percentage of patients undergoing colonoscopy with intact colons who have full intubation of the cecum with photo documentation of cecal landmarks — remains a priority quality indicator and has a performance target ≥ 95%.

“A trained colonoscopist should achieve a high CIR with a very high level of safety,” the task force wrote. “Low CIRs have been associated with higher PCCRC [postcolonoscopy colorectal cancer] rates.” 

The final priority indicator is the rate of using recommended screening and surveillance intervals, which carries a performance target ≥ 90%.

“We recommend that quality improvement efforts initially focus on high-priority indicators and then progress to other indicators once it is ascertained that endoscopists are performing above recommended thresholds, either at baseline or after corrective interventions,” the task force wrote.

“The priority indicators are absolutely important for practices to implement,” Dr. Gellad said.

“There is compelling evidence that these measures are correlated with clinically important outcomes, particularly ADR,” he added. “Many practices already capture this data, and the changes in ADR calculation make measurement less burdensome. Hopefully, this will encourage more practices to collect and report these measures.” 

Dr. Rex is a consultant for Olympus, Boston Scientific, Braintree Laboratories, Norgine, GI Supply, Medtronic, and Acacia Pharmaceuticals; receives research support from Olympus, Medivators, Erbe USA, and Braintree Laboratories; and is a shareholder in Satisfai Health. Dr. Shaheen had no relevant disclosures. Dr. Gellad has consulted for Merck & Co. and Novo Nordisk and is a cofounder of Higgs Boson.
 

A version of this article first appeared on Medscape.com.

 

A task force established by the American College of Gastroenterology (ACG) and the American Society for Gastrointestinal Endoscopy (ASGE) issued updated recommendations highlighting what they consider to be the highest priority quality indicators for colonoscopy, a list that, for the first time, includes adequate bowel preparation and sessile serrated lesion detection rate (SSLDR).

“Endoscopy teams now have an updated set of guidelines which can be used to enhance the quality of their colonoscopies and should certainly use these current quality measures to ‘raise the bar’ on behalf of their patients,” task force member Nicholas J. Shaheen, MD, MPH, Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, said in a statement.

Shaheen_Nicholas_J
Dr. Nicholas J. Shaheen



The task force published the recommendations online August 21 in The American Journal of Gastroenterology and in Gastrointestinal Endoscopy. It represents the third iteration of the ACG/ASGE quality indicators on colonoscopy recommendations and incorporates new evidence published since 2015.

“The last set of quality indicators from this group was 9 years ago. Since then, there has been a tremendous amount of new data published in colonoscopy quality,” Ziad F. Gellad, MD, MPH, professor of medicine, Duke University Medical Center, Durham, North Carolina, said in an interview.

“Keeping up with that data is a challenge, and so guidelines such as these are important in helping clinicians synthesize data on quality of care and implement best practices,” said Dr. Gellad, who was not involved with the task force.
 

Two New Priority Indicators 

The task force identified 15 quality indicators, divided into preprocedure, intraprocedure, and postprocedure. It includes five “priority” indicators — two of which are new.

One is the rate of adequate bowel preparation, preferably defined as a Boston Bowel Preparation Scale score ≥ 2 in each of three colon segments or by description of the preparation as excellent, good, or adequate. It has a performance target > 90%.

“Inadequate bowel preparation substantially increases the cost of colonoscopy delivery and creates risk and inconvenience for patients, thus warranting a ranking as a priority indicator,” the task force wrote.

Dr. Gellad explained that the addition of this priority indicator is “notable because it highlights the importance of bowel prep in high-quality colonoscopy. It also shifts more of the responsibility of bowel prep from the patient to the practice.”

The second new quality indicator is the SSLDR, which was selected due to its ability to contribute to cancer prevention.

Based on available evidence, the task force recommends a current minimum threshold for the SSLDR of 6%. “This is expected to be revised upward as evidence of increasing detection occurs,” they wrote.

Dr. Ziad F. Gellad, Duke University, Durham, N.C.
Duke University
Dr. Ziad F. Gellad



Dr. Gellad said the addition of SSLDR is “an important advance in these recommendations. We know that serrated adenomas are a precursor for colorectal cancer and that the detection of these subtle lesions is variable.

“Providing a benchmark encourages practices to measure the detection of serrated adenomas and intervene when rates are below benchmarks. Prior to these benchmarks, it was difficult to know where to peg our expectations,” Dr. Gellad added.
 

 

 

Changes to the Adenoma Detection Rate (ADR)

The ADR remains a priority indicator in the update, albeit with changes.

To keep the ADR measurement consistent with current screening guidelines, the task force now recommends that the ADR be measured starting at age 45 rather than 50 years.

“ADR plays a critical role in evaluating the performance of the colonoscopists,” task force lead Douglas K. Rex, MD, a gastroenterologist at Indiana University School of Medicine in Indianapolis, said in the statement.

“It is recommended that ADR calculations include screening, surveillance, and diagnostic colonoscopy but exclude indications of a positive noncolonoscopy screening test and therapeutic procedures for resection or treatment of known neoplasia, genetic cancer syndromes, and inflammatory bowel disease,” Dr. Rex explained.

Dr. Douglas K. Rex, emeritus professor of medicine, Indiana University School of Medicine, Indianapolis
Dr. Douglas K. Rex



The task force recommends a minimum ADR threshold of 35% (40% in men and 30% in women) and that colonoscopists with ADRs below 35% “undertake remedial measures to improve and to achieve acceptable performance.”
 

Additional Priorities 

The cecal intubation rate (CIR) — the percentage of patients undergoing colonoscopy with intact colons who have full intubation of the cecum with photo documentation of cecal landmarks — remains a priority quality indicator and has a performance target ≥ 95%.

“A trained colonoscopist should achieve a high CIR with a very high level of safety,” the task force wrote. “Low CIRs have been associated with higher PCCRC [postcolonoscopy colorectal cancer] rates.” 

The final priority indicator is the rate of using recommended screening and surveillance intervals, which carries a performance target ≥ 90%.

“We recommend that quality improvement efforts initially focus on high-priority indicators and then progress to other indicators once it is ascertained that endoscopists are performing above recommended thresholds, either at baseline or after corrective interventions,” the task force wrote.

“The priority indicators are absolutely important for practices to implement,” Dr. Gellad said.

“There is compelling evidence that these measures are correlated with clinically important outcomes, particularly ADR,” he added. “Many practices already capture this data, and the changes in ADR calculation make measurement less burdensome. Hopefully, this will encourage more practices to collect and report these measures.” 

Dr. Rex is a consultant for Olympus, Boston Scientific, Braintree Laboratories, Norgine, GI Supply, Medtronic, and Acacia Pharmaceuticals; receives research support from Olympus, Medivators, Erbe USA, and Braintree Laboratories; and is a shareholder in Satisfai Health. Dr. Shaheen had no relevant disclosures. Dr. Gellad has consulted for Merck & Co. and Novo Nordisk and is a cofounder of Higgs Boson.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 09/18/2024 - 01:23
Un-Gate On Date
Wed, 09/18/2024 - 01:23
Use ProPublica
CFC Schedule Remove Status
Wed, 09/18/2024 - 01:23
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 09/18/2024 - 01:23