Top Sections
The Optimized Doctor
ACO Insider
Managing Your Practice
im
Main menu
IMN Main Menu
Explore menu
IMN Explore Menu
Proclivity ID
18818001
Unpublish
Specialty Focus
Mental Health
Vaccines
Addiction Medicine
Geriatrics
Negative Keywords
gaming
gambling
compulsive behaviors
ammunition
assault rifle
black jack
Boko Haram
bondage
child abuse
cocaine
Daech
drug paraphernalia
explosion
gun
human trafficking
ISIL
ISIS
Islamic caliphate
Islamic state
mixed martial arts
MMA
molestation
national rifle association
NRA
nsfw
pedophile
pedophilia
poker
porn
pornography
psychedelic drug
recreational drug
sex slave rings
slot machine
terrorism
terrorist
Texas hold 'em
UFC
substance abuse
abuseed
abuseer
abusees
abuseing
abusely
abuses
aeolus
aeolused
aeoluser
aeoluses
aeolusing
aeolusly
aeoluss
ahole
aholeed
aholeer
aholees
aholeing
aholely
aholes
alcohol
alcoholed
alcoholer
alcoholes
alcoholing
alcoholly
alcohols
allman
allmaned
allmaner
allmanes
allmaning
allmanly
allmans
alted
altes
alting
altly
alts
analed
analer
anales
analing
anally
analprobe
analprobeed
analprobeer
analprobees
analprobeing
analprobely
analprobes
anals
anilingus
anilingused
anilinguser
anilinguses
anilingusing
anilingusly
anilinguss
anus
anused
anuser
anuses
anusing
anusly
anuss
areola
areolaed
areolaer
areolaes
areolaing
areolaly
areolas
areole
areoleed
areoleer
areolees
areoleing
areolely
areoles
arian
arianed
arianer
arianes
arianing
arianly
arians
aryan
aryaned
aryaner
aryanes
aryaning
aryanly
aryans
asiaed
asiaer
asiaes
asiaing
asialy
asias
ass
ass hole
ass lick
ass licked
ass licker
ass lickes
ass licking
ass lickly
ass licks
assbang
assbanged
assbangeded
assbangeder
assbangedes
assbangeding
assbangedly
assbangeds
assbanger
assbanges
assbanging
assbangly
assbangs
assbangsed
assbangser
assbangses
assbangsing
assbangsly
assbangss
assed
asser
asses
assesed
asseser
asseses
assesing
assesly
assess
assfuck
assfucked
assfucker
assfuckered
assfuckerer
assfuckeres
assfuckering
assfuckerly
assfuckers
assfuckes
assfucking
assfuckly
assfucks
asshat
asshated
asshater
asshates
asshating
asshatly
asshats
assholeed
assholeer
assholees
assholeing
assholely
assholes
assholesed
assholeser
assholeses
assholesing
assholesly
assholess
assing
assly
assmaster
assmastered
assmasterer
assmasteres
assmastering
assmasterly
assmasters
assmunch
assmunched
assmuncher
assmunches
assmunching
assmunchly
assmunchs
asss
asswipe
asswipeed
asswipeer
asswipees
asswipeing
asswipely
asswipes
asswipesed
asswipeser
asswipeses
asswipesing
asswipesly
asswipess
azz
azzed
azzer
azzes
azzing
azzly
azzs
babeed
babeer
babees
babeing
babely
babes
babesed
babeser
babeses
babesing
babesly
babess
ballsac
ballsaced
ballsacer
ballsaces
ballsacing
ballsack
ballsacked
ballsacker
ballsackes
ballsacking
ballsackly
ballsacks
ballsacly
ballsacs
ballsed
ballser
ballses
ballsing
ballsly
ballss
barf
barfed
barfer
barfes
barfing
barfly
barfs
bastard
bastarded
bastarder
bastardes
bastarding
bastardly
bastards
bastardsed
bastardser
bastardses
bastardsing
bastardsly
bastardss
bawdy
bawdyed
bawdyer
bawdyes
bawdying
bawdyly
bawdys
beaner
beanered
beanerer
beaneres
beanering
beanerly
beaners
beardedclam
beardedclamed
beardedclamer
beardedclames
beardedclaming
beardedclamly
beardedclams
beastiality
beastialityed
beastialityer
beastialityes
beastialitying
beastialityly
beastialitys
beatch
beatched
beatcher
beatches
beatching
beatchly
beatchs
beater
beatered
beaterer
beateres
beatering
beaterly
beaters
beered
beerer
beeres
beering
beerly
beeyotch
beeyotched
beeyotcher
beeyotches
beeyotching
beeyotchly
beeyotchs
beotch
beotched
beotcher
beotches
beotching
beotchly
beotchs
biatch
biatched
biatcher
biatches
biatching
biatchly
biatchs
big tits
big titsed
big titser
big titses
big titsing
big titsly
big titss
bigtits
bigtitsed
bigtitser
bigtitses
bigtitsing
bigtitsly
bigtitss
bimbo
bimboed
bimboer
bimboes
bimboing
bimboly
bimbos
bisexualed
bisexualer
bisexuales
bisexualing
bisexually
bisexuals
bitch
bitched
bitcheded
bitcheder
bitchedes
bitcheding
bitchedly
bitcheds
bitcher
bitches
bitchesed
bitcheser
bitcheses
bitchesing
bitchesly
bitchess
bitching
bitchly
bitchs
bitchy
bitchyed
bitchyer
bitchyes
bitchying
bitchyly
bitchys
bleached
bleacher
bleaches
bleaching
bleachly
bleachs
blow job
blow jobed
blow jober
blow jobes
blow jobing
blow jobly
blow jobs
blowed
blower
blowes
blowing
blowjob
blowjobed
blowjober
blowjobes
blowjobing
blowjobly
blowjobs
blowjobsed
blowjobser
blowjobses
blowjobsing
blowjobsly
blowjobss
blowly
blows
boink
boinked
boinker
boinkes
boinking
boinkly
boinks
bollock
bollocked
bollocker
bollockes
bollocking
bollockly
bollocks
bollocksed
bollockser
bollockses
bollocksing
bollocksly
bollockss
bollok
bolloked
bolloker
bollokes
bolloking
bollokly
bolloks
boner
bonered
bonerer
boneres
bonering
bonerly
boners
bonersed
bonerser
bonerses
bonersing
bonersly
bonerss
bong
bonged
bonger
bonges
bonging
bongly
bongs
boob
boobed
boober
boobes
boobies
boobiesed
boobieser
boobieses
boobiesing
boobiesly
boobiess
boobing
boobly
boobs
boobsed
boobser
boobses
boobsing
boobsly
boobss
booby
boobyed
boobyer
boobyes
boobying
boobyly
boobys
booger
boogered
boogerer
boogeres
boogering
boogerly
boogers
bookie
bookieed
bookieer
bookiees
bookieing
bookiely
bookies
bootee
booteeed
booteeer
booteees
booteeing
booteely
bootees
bootie
bootieed
bootieer
bootiees
bootieing
bootiely
booties
booty
bootyed
bootyer
bootyes
bootying
bootyly
bootys
boozeed
boozeer
boozees
boozeing
boozely
boozer
boozered
boozerer
boozeres
boozering
boozerly
boozers
boozes
boozy
boozyed
boozyer
boozyes
boozying
boozyly
boozys
bosomed
bosomer
bosomes
bosoming
bosomly
bosoms
bosomy
bosomyed
bosomyer
bosomyes
bosomying
bosomyly
bosomys
bugger
buggered
buggerer
buggeres
buggering
buggerly
buggers
bukkake
bukkakeed
bukkakeer
bukkakees
bukkakeing
bukkakely
bukkakes
bull shit
bull shited
bull shiter
bull shites
bull shiting
bull shitly
bull shits
bullshit
bullshited
bullshiter
bullshites
bullshiting
bullshitly
bullshits
bullshitsed
bullshitser
bullshitses
bullshitsing
bullshitsly
bullshitss
bullshitted
bullshitteded
bullshitteder
bullshittedes
bullshitteding
bullshittedly
bullshitteds
bullturds
bullturdsed
bullturdser
bullturdses
bullturdsing
bullturdsly
bullturdss
bung
bunged
bunger
bunges
bunging
bungly
bungs
busty
bustyed
bustyer
bustyes
bustying
bustyly
bustys
butt
butt fuck
butt fucked
butt fucker
butt fuckes
butt fucking
butt fuckly
butt fucks
butted
buttes
buttfuck
buttfucked
buttfucker
buttfuckered
buttfuckerer
buttfuckeres
buttfuckering
buttfuckerly
buttfuckers
buttfuckes
buttfucking
buttfuckly
buttfucks
butting
buttly
buttplug
buttpluged
buttpluger
buttpluges
buttpluging
buttplugly
buttplugs
butts
caca
cacaed
cacaer
cacaes
cacaing
cacaly
cacas
cahone
cahoneed
cahoneer
cahonees
cahoneing
cahonely
cahones
cameltoe
cameltoeed
cameltoeer
cameltoees
cameltoeing
cameltoely
cameltoes
carpetmuncher
carpetmunchered
carpetmuncherer
carpetmuncheres
carpetmunchering
carpetmuncherly
carpetmunchers
cawk
cawked
cawker
cawkes
cawking
cawkly
cawks
chinc
chinced
chincer
chinces
chincing
chincly
chincs
chincsed
chincser
chincses
chincsing
chincsly
chincss
chink
chinked
chinker
chinkes
chinking
chinkly
chinks
chode
chodeed
chodeer
chodees
chodeing
chodely
chodes
chodesed
chodeser
chodeses
chodesing
chodesly
chodess
clit
clited
cliter
clites
cliting
clitly
clitoris
clitorised
clitoriser
clitorises
clitorising
clitorisly
clitoriss
clitorus
clitorused
clitoruser
clitoruses
clitorusing
clitorusly
clitoruss
clits
clitsed
clitser
clitses
clitsing
clitsly
clitss
clitty
clittyed
clittyer
clittyes
clittying
clittyly
clittys
cocain
cocaine
cocained
cocaineed
cocaineer
cocainees
cocaineing
cocainely
cocainer
cocaines
cocaining
cocainly
cocains
cock
cock sucker
cock suckered
cock suckerer
cock suckeres
cock suckering
cock suckerly
cock suckers
cockblock
cockblocked
cockblocker
cockblockes
cockblocking
cockblockly
cockblocks
cocked
cocker
cockes
cockholster
cockholstered
cockholsterer
cockholsteres
cockholstering
cockholsterly
cockholsters
cocking
cockknocker
cockknockered
cockknockerer
cockknockeres
cockknockering
cockknockerly
cockknockers
cockly
cocks
cocksed
cockser
cockses
cocksing
cocksly
cocksmoker
cocksmokered
cocksmokerer
cocksmokeres
cocksmokering
cocksmokerly
cocksmokers
cockss
cocksucker
cocksuckered
cocksuckerer
cocksuckeres
cocksuckering
cocksuckerly
cocksuckers
coital
coitaled
coitaler
coitales
coitaling
coitally
coitals
commie
commieed
commieer
commiees
commieing
commiely
commies
condomed
condomer
condomes
condoming
condomly
condoms
coon
cooned
cooner
coones
cooning
coonly
coons
coonsed
coonser
coonses
coonsing
coonsly
coonss
corksucker
corksuckered
corksuckerer
corksuckeres
corksuckering
corksuckerly
corksuckers
cracked
crackwhore
crackwhoreed
crackwhoreer
crackwhorees
crackwhoreing
crackwhorely
crackwhores
crap
craped
craper
crapes
craping
craply
crappy
crappyed
crappyer
crappyes
crappying
crappyly
crappys
cum
cumed
cumer
cumes
cuming
cumly
cummin
cummined
cumminer
cummines
cumming
cumminged
cumminger
cumminges
cumminging
cummingly
cummings
cummining
cumminly
cummins
cums
cumshot
cumshoted
cumshoter
cumshotes
cumshoting
cumshotly
cumshots
cumshotsed
cumshotser
cumshotses
cumshotsing
cumshotsly
cumshotss
cumslut
cumsluted
cumsluter
cumslutes
cumsluting
cumslutly
cumsluts
cumstain
cumstained
cumstainer
cumstaines
cumstaining
cumstainly
cumstains
cunilingus
cunilingused
cunilinguser
cunilinguses
cunilingusing
cunilingusly
cunilinguss
cunnilingus
cunnilingused
cunnilinguser
cunnilinguses
cunnilingusing
cunnilingusly
cunnilinguss
cunny
cunnyed
cunnyer
cunnyes
cunnying
cunnyly
cunnys
cunt
cunted
cunter
cuntes
cuntface
cuntfaceed
cuntfaceer
cuntfacees
cuntfaceing
cuntfacely
cuntfaces
cunthunter
cunthuntered
cunthunterer
cunthunteres
cunthuntering
cunthunterly
cunthunters
cunting
cuntlick
cuntlicked
cuntlicker
cuntlickered
cuntlickerer
cuntlickeres
cuntlickering
cuntlickerly
cuntlickers
cuntlickes
cuntlicking
cuntlickly
cuntlicks
cuntly
cunts
cuntsed
cuntser
cuntses
cuntsing
cuntsly
cuntss
dago
dagoed
dagoer
dagoes
dagoing
dagoly
dagos
dagosed
dagoser
dagoses
dagosing
dagosly
dagoss
dammit
dammited
dammiter
dammites
dammiting
dammitly
dammits
damn
damned
damneded
damneder
damnedes
damneding
damnedly
damneds
damner
damnes
damning
damnit
damnited
damniter
damnites
damniting
damnitly
damnits
damnly
damns
dick
dickbag
dickbaged
dickbager
dickbages
dickbaging
dickbagly
dickbags
dickdipper
dickdippered
dickdipperer
dickdipperes
dickdippering
dickdipperly
dickdippers
dicked
dicker
dickes
dickface
dickfaceed
dickfaceer
dickfacees
dickfaceing
dickfacely
dickfaces
dickflipper
dickflippered
dickflipperer
dickflipperes
dickflippering
dickflipperly
dickflippers
dickhead
dickheaded
dickheader
dickheades
dickheading
dickheadly
dickheads
dickheadsed
dickheadser
dickheadses
dickheadsing
dickheadsly
dickheadss
dicking
dickish
dickished
dickisher
dickishes
dickishing
dickishly
dickishs
dickly
dickripper
dickrippered
dickripperer
dickripperes
dickrippering
dickripperly
dickrippers
dicks
dicksipper
dicksippered
dicksipperer
dicksipperes
dicksippering
dicksipperly
dicksippers
dickweed
dickweeded
dickweeder
dickweedes
dickweeding
dickweedly
dickweeds
dickwhipper
dickwhippered
dickwhipperer
dickwhipperes
dickwhippering
dickwhipperly
dickwhippers
dickzipper
dickzippered
dickzipperer
dickzipperes
dickzippering
dickzipperly
dickzippers
diddle
diddleed
diddleer
diddlees
diddleing
diddlely
diddles
dike
dikeed
dikeer
dikees
dikeing
dikely
dikes
dildo
dildoed
dildoer
dildoes
dildoing
dildoly
dildos
dildosed
dildoser
dildoses
dildosing
dildosly
dildoss
diligaf
diligafed
diligafer
diligafes
diligafing
diligafly
diligafs
dillweed
dillweeded
dillweeder
dillweedes
dillweeding
dillweedly
dillweeds
dimwit
dimwited
dimwiter
dimwites
dimwiting
dimwitly
dimwits
dingle
dingleed
dingleer
dinglees
dingleing
dinglely
dingles
dipship
dipshiped
dipshiper
dipshipes
dipshiping
dipshiply
dipships
dizzyed
dizzyer
dizzyes
dizzying
dizzyly
dizzys
doggiestyleed
doggiestyleer
doggiestylees
doggiestyleing
doggiestylely
doggiestyles
doggystyleed
doggystyleer
doggystylees
doggystyleing
doggystylely
doggystyles
dong
donged
donger
donges
donging
dongly
dongs
doofus
doofused
doofuser
doofuses
doofusing
doofusly
doofuss
doosh
dooshed
doosher
dooshes
dooshing
dooshly
dooshs
dopeyed
dopeyer
dopeyes
dopeying
dopeyly
dopeys
douchebag
douchebaged
douchebager
douchebages
douchebaging
douchebagly
douchebags
douchebagsed
douchebagser
douchebagses
douchebagsing
douchebagsly
douchebagss
doucheed
doucheer
douchees
doucheing
douchely
douches
douchey
doucheyed
doucheyer
doucheyes
doucheying
doucheyly
doucheys
drunk
drunked
drunker
drunkes
drunking
drunkly
drunks
dumass
dumassed
dumasser
dumasses
dumassing
dumassly
dumasss
dumbass
dumbassed
dumbasser
dumbasses
dumbassesed
dumbasseser
dumbasseses
dumbassesing
dumbassesly
dumbassess
dumbassing
dumbassly
dumbasss
dummy
dummyed
dummyer
dummyes
dummying
dummyly
dummys
dyke
dykeed
dykeer
dykees
dykeing
dykely
dykes
dykesed
dykeser
dykeses
dykesing
dykesly
dykess
erotic
eroticed
eroticer
erotices
eroticing
eroticly
erotics
extacy
extacyed
extacyer
extacyes
extacying
extacyly
extacys
extasy
extasyed
extasyer
extasyes
extasying
extasyly
extasys
fack
facked
facker
fackes
facking
fackly
facks
fag
faged
fager
fages
fagg
fagged
faggeded
faggeder
faggedes
faggeding
faggedly
faggeds
fagger
fagges
fagging
faggit
faggited
faggiter
faggites
faggiting
faggitly
faggits
faggly
faggot
faggoted
faggoter
faggotes
faggoting
faggotly
faggots
faggs
faging
fagly
fagot
fagoted
fagoter
fagotes
fagoting
fagotly
fagots
fags
fagsed
fagser
fagses
fagsing
fagsly
fagss
faig
faiged
faiger
faiges
faiging
faigly
faigs
faigt
faigted
faigter
faigtes
faigting
faigtly
faigts
fannybandit
fannybandited
fannybanditer
fannybandites
fannybanditing
fannybanditly
fannybandits
farted
farter
fartes
farting
fartknocker
fartknockered
fartknockerer
fartknockeres
fartknockering
fartknockerly
fartknockers
fartly
farts
felch
felched
felcher
felchered
felcherer
felcheres
felchering
felcherly
felchers
felches
felching
felchinged
felchinger
felchinges
felchinging
felchingly
felchings
felchly
felchs
fellate
fellateed
fellateer
fellatees
fellateing
fellately
fellates
fellatio
fellatioed
fellatioer
fellatioes
fellatioing
fellatioly
fellatios
feltch
feltched
feltcher
feltchered
feltcherer
feltcheres
feltchering
feltcherly
feltchers
feltches
feltching
feltchly
feltchs
feom
feomed
feomer
feomes
feoming
feomly
feoms
fisted
fisteded
fisteder
fistedes
fisteding
fistedly
fisteds
fisting
fistinged
fistinger
fistinges
fistinging
fistingly
fistings
fisty
fistyed
fistyer
fistyes
fistying
fistyly
fistys
floozy
floozyed
floozyer
floozyes
floozying
floozyly
floozys
foad
foaded
foader
foades
foading
foadly
foads
fondleed
fondleer
fondlees
fondleing
fondlely
fondles
foobar
foobared
foobarer
foobares
foobaring
foobarly
foobars
freex
freexed
freexer
freexes
freexing
freexly
freexs
frigg
frigga
friggaed
friggaer
friggaes
friggaing
friggaly
friggas
frigged
frigger
frigges
frigging
friggly
friggs
fubar
fubared
fubarer
fubares
fubaring
fubarly
fubars
fuck
fuckass
fuckassed
fuckasser
fuckasses
fuckassing
fuckassly
fuckasss
fucked
fuckeded
fuckeder
fuckedes
fuckeding
fuckedly
fuckeds
fucker
fuckered
fuckerer
fuckeres
fuckering
fuckerly
fuckers
fuckes
fuckface
fuckfaceed
fuckfaceer
fuckfacees
fuckfaceing
fuckfacely
fuckfaces
fuckin
fuckined
fuckiner
fuckines
fucking
fuckinged
fuckinger
fuckinges
fuckinging
fuckingly
fuckings
fuckining
fuckinly
fuckins
fuckly
fucknugget
fucknuggeted
fucknuggeter
fucknuggetes
fucknuggeting
fucknuggetly
fucknuggets
fucknut
fucknuted
fucknuter
fucknutes
fucknuting
fucknutly
fucknuts
fuckoff
fuckoffed
fuckoffer
fuckoffes
fuckoffing
fuckoffly
fuckoffs
fucks
fucksed
fuckser
fuckses
fucksing
fucksly
fuckss
fucktard
fucktarded
fucktarder
fucktardes
fucktarding
fucktardly
fucktards
fuckup
fuckuped
fuckuper
fuckupes
fuckuping
fuckuply
fuckups
fuckwad
fuckwaded
fuckwader
fuckwades
fuckwading
fuckwadly
fuckwads
fuckwit
fuckwited
fuckwiter
fuckwites
fuckwiting
fuckwitly
fuckwits
fudgepacker
fudgepackered
fudgepackerer
fudgepackeres
fudgepackering
fudgepackerly
fudgepackers
fuk
fuked
fuker
fukes
fuking
fukly
fuks
fvck
fvcked
fvcker
fvckes
fvcking
fvckly
fvcks
fxck
fxcked
fxcker
fxckes
fxcking
fxckly
fxcks
gae
gaeed
gaeer
gaees
gaeing
gaely
gaes
gai
gaied
gaier
gaies
gaiing
gaily
gais
ganja
ganjaed
ganjaer
ganjaes
ganjaing
ganjaly
ganjas
gayed
gayer
gayes
gaying
gayly
gays
gaysed
gayser
gayses
gaysing
gaysly
gayss
gey
geyed
geyer
geyes
geying
geyly
geys
gfc
gfced
gfcer
gfces
gfcing
gfcly
gfcs
gfy
gfyed
gfyer
gfyes
gfying
gfyly
gfys
ghay
ghayed
ghayer
ghayes
ghaying
ghayly
ghays
ghey
gheyed
gheyer
gheyes
gheying
gheyly
gheys
gigolo
gigoloed
gigoloer
gigoloes
gigoloing
gigololy
gigolos
goatse
goatseed
goatseer
goatsees
goatseing
goatsely
goatses
godamn
godamned
godamner
godamnes
godamning
godamnit
godamnited
godamniter
godamnites
godamniting
godamnitly
godamnits
godamnly
godamns
goddam
goddamed
goddamer
goddames
goddaming
goddamly
goddammit
goddammited
goddammiter
goddammites
goddammiting
goddammitly
goddammits
goddamn
goddamned
goddamner
goddamnes
goddamning
goddamnly
goddamns
goddams
goldenshower
goldenshowered
goldenshowerer
goldenshoweres
goldenshowering
goldenshowerly
goldenshowers
gonad
gonaded
gonader
gonades
gonading
gonadly
gonads
gonadsed
gonadser
gonadses
gonadsing
gonadsly
gonadss
gook
gooked
gooker
gookes
gooking
gookly
gooks
gooksed
gookser
gookses
gooksing
gooksly
gookss
gringo
gringoed
gringoer
gringoes
gringoing
gringoly
gringos
gspot
gspoted
gspoter
gspotes
gspoting
gspotly
gspots
gtfo
gtfoed
gtfoer
gtfoes
gtfoing
gtfoly
gtfos
guido
guidoed
guidoer
guidoes
guidoing
guidoly
guidos
handjob
handjobed
handjober
handjobes
handjobing
handjobly
handjobs
hard on
hard oned
hard oner
hard ones
hard oning
hard only
hard ons
hardknight
hardknighted
hardknighter
hardknightes
hardknighting
hardknightly
hardknights
hebe
hebeed
hebeer
hebees
hebeing
hebely
hebes
heeb
heebed
heeber
heebes
heebing
heebly
heebs
hell
helled
heller
helles
helling
hellly
hells
hemp
hemped
hemper
hempes
hemping
hemply
hemps
heroined
heroiner
heroines
heroining
heroinly
heroins
herp
herped
herper
herpes
herpesed
herpeser
herpeses
herpesing
herpesly
herpess
herping
herply
herps
herpy
herpyed
herpyer
herpyes
herpying
herpyly
herpys
hitler
hitlered
hitlerer
hitleres
hitlering
hitlerly
hitlers
hived
hiver
hives
hiving
hivly
hivs
hobag
hobaged
hobager
hobages
hobaging
hobagly
hobags
homey
homeyed
homeyer
homeyes
homeying
homeyly
homeys
homo
homoed
homoer
homoes
homoey
homoeyed
homoeyer
homoeyes
homoeying
homoeyly
homoeys
homoing
homoly
homos
honky
honkyed
honkyer
honkyes
honkying
honkyly
honkys
hooch
hooched
hoocher
hooches
hooching
hoochly
hoochs
hookah
hookahed
hookaher
hookahes
hookahing
hookahly
hookahs
hooker
hookered
hookerer
hookeres
hookering
hookerly
hookers
hoor
hoored
hoorer
hoores
hooring
hoorly
hoors
hootch
hootched
hootcher
hootches
hootching
hootchly
hootchs
hooter
hootered
hooterer
hooteres
hootering
hooterly
hooters
hootersed
hooterser
hooterses
hootersing
hootersly
hooterss
horny
hornyed
hornyer
hornyes
hornying
hornyly
hornys
houstoned
houstoner
houstones
houstoning
houstonly
houstons
hump
humped
humpeded
humpeder
humpedes
humpeding
humpedly
humpeds
humper
humpes
humping
humpinged
humpinger
humpinges
humpinging
humpingly
humpings
humply
humps
husbanded
husbander
husbandes
husbanding
husbandly
husbands
hussy
hussyed
hussyer
hussyes
hussying
hussyly
hussys
hymened
hymener
hymenes
hymening
hymenly
hymens
inbred
inbreded
inbreder
inbredes
inbreding
inbredly
inbreds
incest
incested
incester
incestes
incesting
incestly
incests
injun
injuned
injuner
injunes
injuning
injunly
injuns
jackass
jackassed
jackasser
jackasses
jackassing
jackassly
jackasss
jackhole
jackholeed
jackholeer
jackholees
jackholeing
jackholely
jackholes
jackoff
jackoffed
jackoffer
jackoffes
jackoffing
jackoffly
jackoffs
jap
japed
japer
japes
japing
japly
japs
japsed
japser
japses
japsing
japsly
japss
jerkoff
jerkoffed
jerkoffer
jerkoffes
jerkoffing
jerkoffly
jerkoffs
jerks
jism
jismed
jismer
jismes
jisming
jismly
jisms
jiz
jized
jizer
jizes
jizing
jizly
jizm
jizmed
jizmer
jizmes
jizming
jizmly
jizms
jizs
jizz
jizzed
jizzeded
jizzeder
jizzedes
jizzeding
jizzedly
jizzeds
jizzer
jizzes
jizzing
jizzly
jizzs
junkie
junkieed
junkieer
junkiees
junkieing
junkiely
junkies
junky
junkyed
junkyer
junkyes
junkying
junkyly
junkys
kike
kikeed
kikeer
kikees
kikeing
kikely
kikes
kikesed
kikeser
kikeses
kikesing
kikesly
kikess
killed
killer
killes
killing
killly
kills
kinky
kinkyed
kinkyer
kinkyes
kinkying
kinkyly
kinkys
kkk
kkked
kkker
kkkes
kkking
kkkly
kkks
klan
klaned
klaner
klanes
klaning
klanly
klans
knobend
knobended
knobender
knobendes
knobending
knobendly
knobends
kooch
kooched
koocher
kooches
koochesed
koocheser
koocheses
koochesing
koochesly
koochess
kooching
koochly
koochs
kootch
kootched
kootcher
kootches
kootching
kootchly
kootchs
kraut
krauted
krauter
krautes
krauting
krautly
krauts
kyke
kykeed
kykeer
kykees
kykeing
kykely
kykes
lech
leched
lecher
leches
leching
lechly
lechs
leper
lepered
leperer
leperes
lepering
leperly
lepers
lesbiansed
lesbianser
lesbianses
lesbiansing
lesbiansly
lesbianss
lesbo
lesboed
lesboer
lesboes
lesboing
lesboly
lesbos
lesbosed
lesboser
lesboses
lesbosing
lesbosly
lesboss
lez
lezbianed
lezbianer
lezbianes
lezbianing
lezbianly
lezbians
lezbiansed
lezbianser
lezbianses
lezbiansing
lezbiansly
lezbianss
lezbo
lezboed
lezboer
lezboes
lezboing
lezboly
lezbos
lezbosed
lezboser
lezboses
lezbosing
lezbosly
lezboss
lezed
lezer
lezes
lezing
lezly
lezs
lezzie
lezzieed
lezzieer
lezziees
lezzieing
lezziely
lezzies
lezziesed
lezzieser
lezzieses
lezziesing
lezziesly
lezziess
lezzy
lezzyed
lezzyer
lezzyes
lezzying
lezzyly
lezzys
lmaoed
lmaoer
lmaoes
lmaoing
lmaoly
lmaos
lmfao
lmfaoed
lmfaoer
lmfaoes
lmfaoing
lmfaoly
lmfaos
loined
loiner
loines
loining
loinly
loins
loinsed
loinser
loinses
loinsing
loinsly
loinss
lubeed
lubeer
lubees
lubeing
lubely
lubes
lusty
lustyed
lustyer
lustyes
lustying
lustyly
lustys
massa
massaed
massaer
massaes
massaing
massaly
massas
masterbate
masterbateed
masterbateer
masterbatees
masterbateing
masterbately
masterbates
masterbating
masterbatinged
masterbatinger
masterbatinges
masterbatinging
masterbatingly
masterbatings
masterbation
masterbationed
masterbationer
masterbationes
masterbationing
masterbationly
masterbations
masturbate
masturbateed
masturbateer
masturbatees
masturbateing
masturbately
masturbates
masturbating
masturbatinged
masturbatinger
masturbatinges
masturbatinging
masturbatingly
masturbatings
masturbation
masturbationed
masturbationer
masturbationes
masturbationing
masturbationly
masturbations
methed
mether
methes
mething
methly
meths
militaryed
militaryer
militaryes
militarying
militaryly
militarys
mofo
mofoed
mofoer
mofoes
mofoing
mofoly
mofos
molest
molested
molester
molestes
molesting
molestly
molests
moolie
moolieed
moolieer
mooliees
moolieing
mooliely
moolies
moron
moroned
moroner
morones
moroning
moronly
morons
motherfucka
motherfuckaed
motherfuckaer
motherfuckaes
motherfuckaing
motherfuckaly
motherfuckas
motherfucker
motherfuckered
motherfuckerer
motherfuckeres
motherfuckering
motherfuckerly
motherfuckers
motherfucking
motherfuckinged
motherfuckinger
motherfuckinges
motherfuckinging
motherfuckingly
motherfuckings
mtherfucker
mtherfuckered
mtherfuckerer
mtherfuckeres
mtherfuckering
mtherfuckerly
mtherfuckers
mthrfucker
mthrfuckered
mthrfuckerer
mthrfuckeres
mthrfuckering
mthrfuckerly
mthrfuckers
mthrfucking
mthrfuckinged
mthrfuckinger
mthrfuckinges
mthrfuckinging
mthrfuckingly
mthrfuckings
muff
muffdiver
muffdivered
muffdiverer
muffdiveres
muffdivering
muffdiverly
muffdivers
muffed
muffer
muffes
muffing
muffly
muffs
murdered
murderer
murderes
murdering
murderly
murders
muthafuckaz
muthafuckazed
muthafuckazer
muthafuckazes
muthafuckazing
muthafuckazly
muthafuckazs
muthafucker
muthafuckered
muthafuckerer
muthafuckeres
muthafuckering
muthafuckerly
muthafuckers
mutherfucker
mutherfuckered
mutherfuckerer
mutherfuckeres
mutherfuckering
mutherfuckerly
mutherfuckers
mutherfucking
mutherfuckinged
mutherfuckinger
mutherfuckinges
mutherfuckinging
mutherfuckingly
mutherfuckings
muthrfucking
muthrfuckinged
muthrfuckinger
muthrfuckinges
muthrfuckinging
muthrfuckingly
muthrfuckings
nad
naded
nader
nades
nading
nadly
nads
nadsed
nadser
nadses
nadsing
nadsly
nadss
nakeded
nakeder
nakedes
nakeding
nakedly
nakeds
napalm
napalmed
napalmer
napalmes
napalming
napalmly
napalms
nappy
nappyed
nappyer
nappyes
nappying
nappyly
nappys
nazi
nazied
nazier
nazies
naziing
nazily
nazis
nazism
nazismed
nazismer
nazismes
nazisming
nazismly
nazisms
negro
negroed
negroer
negroes
negroing
negroly
negros
nigga
niggaed
niggaer
niggaes
niggah
niggahed
niggaher
niggahes
niggahing
niggahly
niggahs
niggaing
niggaly
niggas
niggased
niggaser
niggases
niggasing
niggasly
niggass
niggaz
niggazed
niggazer
niggazes
niggazing
niggazly
niggazs
nigger
niggered
niggerer
niggeres
niggering
niggerly
niggers
niggersed
niggerser
niggerses
niggersing
niggersly
niggerss
niggle
niggleed
niggleer
nigglees
niggleing
nigglely
niggles
niglet
nigleted
nigleter
nigletes
nigleting
nigletly
niglets
nimrod
nimroded
nimroder
nimrodes
nimroding
nimrodly
nimrods
ninny
ninnyed
ninnyer
ninnyes
ninnying
ninnyly
ninnys
nooky
nookyed
nookyer
nookyes
nookying
nookyly
nookys
nuccitelli
nuccitellied
nuccitellier
nuccitellies
nuccitelliing
nuccitellily
nuccitellis
nympho
nymphoed
nymphoer
nymphoes
nymphoing
nympholy
nymphos
opium
opiumed
opiumer
opiumes
opiuming
opiumly
opiums
orgies
orgiesed
orgieser
orgieses
orgiesing
orgiesly
orgiess
orgy
orgyed
orgyer
orgyes
orgying
orgyly
orgys
paddy
paddyed
paddyer
paddyes
paddying
paddyly
paddys
paki
pakied
pakier
pakies
pakiing
pakily
pakis
pantie
pantieed
pantieer
pantiees
pantieing
pantiely
panties
pantiesed
pantieser
pantieses
pantiesing
pantiesly
pantiess
panty
pantyed
pantyer
pantyes
pantying
pantyly
pantys
pastie
pastieed
pastieer
pastiees
pastieing
pastiely
pasties
pasty
pastyed
pastyer
pastyes
pastying
pastyly
pastys
pecker
peckered
peckerer
peckeres
peckering
peckerly
peckers
pedo
pedoed
pedoer
pedoes
pedoing
pedoly
pedophile
pedophileed
pedophileer
pedophilees
pedophileing
pedophilely
pedophiles
pedophilia
pedophiliac
pedophiliaced
pedophiliacer
pedophiliaces
pedophiliacing
pedophiliacly
pedophiliacs
pedophiliaed
pedophiliaer
pedophiliaes
pedophiliaing
pedophilialy
pedophilias
pedos
penial
penialed
penialer
peniales
penialing
penially
penials
penile
penileed
penileer
penilees
penileing
penilely
peniles
penis
penised
peniser
penises
penising
penisly
peniss
perversion
perversioned
perversioner
perversiones
perversioning
perversionly
perversions
peyote
peyoteed
peyoteer
peyotees
peyoteing
peyotely
peyotes
phuck
phucked
phucker
phuckes
phucking
phuckly
phucks
pillowbiter
pillowbitered
pillowbiterer
pillowbiteres
pillowbitering
pillowbiterly
pillowbiters
pimp
pimped
pimper
pimpes
pimping
pimply
pimps
pinko
pinkoed
pinkoer
pinkoes
pinkoing
pinkoly
pinkos
pissed
pisseded
pisseder
pissedes
pisseding
pissedly
pisseds
pisser
pisses
pissing
pissly
pissoff
pissoffed
pissoffer
pissoffes
pissoffing
pissoffly
pissoffs
pisss
polack
polacked
polacker
polackes
polacking
polackly
polacks
pollock
pollocked
pollocker
pollockes
pollocking
pollockly
pollocks
poon
pooned
pooner
poones
pooning
poonly
poons
poontang
poontanged
poontanger
poontanges
poontanging
poontangly
poontangs
porn
porned
porner
pornes
porning
pornly
porno
pornoed
pornoer
pornoes
pornography
pornographyed
pornographyer
pornographyes
pornographying
pornographyly
pornographys
pornoing
pornoly
pornos
porns
prick
pricked
pricker
prickes
pricking
prickly
pricks
prig
priged
priger
priges
priging
prigly
prigs
prostitute
prostituteed
prostituteer
prostitutees
prostituteing
prostitutely
prostitutes
prude
prudeed
prudeer
prudees
prudeing
prudely
prudes
punkass
punkassed
punkasser
punkasses
punkassing
punkassly
punkasss
punky
punkyed
punkyer
punkyes
punkying
punkyly
punkys
puss
pussed
pusser
pusses
pussies
pussiesed
pussieser
pussieses
pussiesing
pussiesly
pussiess
pussing
pussly
pusss
pussy
pussyed
pussyer
pussyes
pussying
pussyly
pussypounder
pussypoundered
pussypounderer
pussypounderes
pussypoundering
pussypounderly
pussypounders
pussys
puto
putoed
putoer
putoes
putoing
putoly
putos
queaf
queafed
queafer
queafes
queafing
queafly
queafs
queef
queefed
queefer
queefes
queefing
queefly
queefs
queer
queered
queerer
queeres
queering
queerly
queero
queeroed
queeroer
queeroes
queeroing
queeroly
queeros
queers
queersed
queerser
queerses
queersing
queersly
queerss
quicky
quickyed
quickyer
quickyes
quickying
quickyly
quickys
quim
quimed
quimer
quimes
quiming
quimly
quims
racy
racyed
racyer
racyes
racying
racyly
racys
rape
raped
rapeded
rapeder
rapedes
rapeding
rapedly
rapeds
rapeed
rapeer
rapees
rapeing
rapely
raper
rapered
raperer
raperes
rapering
raperly
rapers
rapes
rapist
rapisted
rapister
rapistes
rapisting
rapistly
rapists
raunch
raunched
rauncher
raunches
raunching
raunchly
raunchs
rectus
rectused
rectuser
rectuses
rectusing
rectusly
rectuss
reefer
reefered
reeferer
reeferes
reefering
reeferly
reefers
reetard
reetarded
reetarder
reetardes
reetarding
reetardly
reetards
reich
reiched
reicher
reiches
reiching
reichly
reichs
retard
retarded
retardeded
retardeder
retardedes
retardeding
retardedly
retardeds
retarder
retardes
retarding
retardly
retards
rimjob
rimjobed
rimjober
rimjobes
rimjobing
rimjobly
rimjobs
ritard
ritarded
ritarder
ritardes
ritarding
ritardly
ritards
rtard
rtarded
rtarder
rtardes
rtarding
rtardly
rtards
rum
rumed
rumer
rumes
ruming
rumly
rump
rumped
rumper
rumpes
rumping
rumply
rumprammer
rumprammered
rumprammerer
rumprammeres
rumprammering
rumprammerly
rumprammers
rumps
rums
ruski
ruskied
ruskier
ruskies
ruskiing
ruskily
ruskis
sadism
sadismed
sadismer
sadismes
sadisming
sadismly
sadisms
sadist
sadisted
sadister
sadistes
sadisting
sadistly
sadists
scag
scaged
scager
scages
scaging
scagly
scags
scantily
scantilyed
scantilyer
scantilyes
scantilying
scantilyly
scantilys
schlong
schlonged
schlonger
schlonges
schlonging
schlongly
schlongs
scrog
scroged
scroger
scroges
scroging
scrogly
scrogs
scrot
scrote
scroted
scroteed
scroteer
scrotees
scroteing
scrotely
scroter
scrotes
scroting
scrotly
scrots
scrotum
scrotumed
scrotumer
scrotumes
scrotuming
scrotumly
scrotums
scrud
scruded
scruder
scrudes
scruding
scrudly
scruds
scum
scumed
scumer
scumes
scuming
scumly
scums
seaman
seamaned
seamaner
seamanes
seamaning
seamanly
seamans
seamen
seamened
seamener
seamenes
seamening
seamenly
seamens
seduceed
seduceer
seducees
seduceing
seducely
seduces
semen
semened
semener
semenes
semening
semenly
semens
shamedame
shamedameed
shamedameer
shamedamees
shamedameing
shamedamely
shamedames
shit
shite
shiteater
shiteatered
shiteaterer
shiteateres
shiteatering
shiteaterly
shiteaters
shited
shiteed
shiteer
shitees
shiteing
shitely
shiter
shites
shitface
shitfaceed
shitfaceer
shitfacees
shitfaceing
shitfacely
shitfaces
shithead
shitheaded
shitheader
shitheades
shitheading
shitheadly
shitheads
shithole
shitholeed
shitholeer
shitholees
shitholeing
shitholely
shitholes
shithouse
shithouseed
shithouseer
shithousees
shithouseing
shithousely
shithouses
shiting
shitly
shits
shitsed
shitser
shitses
shitsing
shitsly
shitss
shitt
shitted
shitteded
shitteder
shittedes
shitteding
shittedly
shitteds
shitter
shittered
shitterer
shitteres
shittering
shitterly
shitters
shittes
shitting
shittly
shitts
shitty
shittyed
shittyer
shittyes
shittying
shittyly
shittys
shiz
shized
shizer
shizes
shizing
shizly
shizs
shooted
shooter
shootes
shooting
shootly
shoots
sissy
sissyed
sissyer
sissyes
sissying
sissyly
sissys
skag
skaged
skager
skages
skaging
skagly
skags
skank
skanked
skanker
skankes
skanking
skankly
skanks
slave
slaveed
slaveer
slavees
slaveing
slavely
slaves
sleaze
sleazeed
sleazeer
sleazees
sleazeing
sleazely
sleazes
sleazy
sleazyed
sleazyer
sleazyes
sleazying
sleazyly
sleazys
slut
slutdumper
slutdumpered
slutdumperer
slutdumperes
slutdumpering
slutdumperly
slutdumpers
sluted
sluter
slutes
sluting
slutkiss
slutkissed
slutkisser
slutkisses
slutkissing
slutkissly
slutkisss
slutly
sluts
slutsed
slutser
slutses
slutsing
slutsly
slutss
smegma
smegmaed
smegmaer
smegmaes
smegmaing
smegmaly
smegmas
smut
smuted
smuter
smutes
smuting
smutly
smuts
smutty
smuttyed
smuttyer
smuttyes
smuttying
smuttyly
smuttys
snatch
snatched
snatcher
snatches
snatching
snatchly
snatchs
sniper
snipered
sniperer
sniperes
snipering
sniperly
snipers
snort
snorted
snorter
snortes
snorting
snortly
snorts
snuff
snuffed
snuffer
snuffes
snuffing
snuffly
snuffs
sodom
sodomed
sodomer
sodomes
sodoming
sodomly
sodoms
spic
spiced
spicer
spices
spicing
spick
spicked
spicker
spickes
spicking
spickly
spicks
spicly
spics
spik
spoof
spoofed
spoofer
spoofes
spoofing
spoofly
spoofs
spooge
spoogeed
spoogeer
spoogees
spoogeing
spoogely
spooges
spunk
spunked
spunker
spunkes
spunking
spunkly
spunks
steamyed
steamyer
steamyes
steamying
steamyly
steamys
stfu
stfued
stfuer
stfues
stfuing
stfuly
stfus
stiffy
stiffyed
stiffyer
stiffyes
stiffying
stiffyly
stiffys
stoneded
stoneder
stonedes
stoneding
stonedly
stoneds
stupided
stupider
stupides
stupiding
stupidly
stupids
suckeded
suckeder
suckedes
suckeding
suckedly
suckeds
sucker
suckes
sucking
suckinged
suckinger
suckinges
suckinging
suckingly
suckings
suckly
sucks
sumofabiatch
sumofabiatched
sumofabiatcher
sumofabiatches
sumofabiatching
sumofabiatchly
sumofabiatchs
tard
tarded
tarder
tardes
tarding
tardly
tards
tawdry
tawdryed
tawdryer
tawdryes
tawdrying
tawdryly
tawdrys
teabagging
teabagginged
teabagginger
teabagginges
teabagginging
teabaggingly
teabaggings
terd
terded
terder
terdes
terding
terdly
terds
teste
testee
testeed
testeeed
testeeer
testeees
testeeing
testeely
testeer
testees
testeing
testely
testes
testesed
testeser
testeses
testesing
testesly
testess
testicle
testicleed
testicleer
testiclees
testicleing
testiclely
testicles
testis
testised
testiser
testises
testising
testisly
testiss
thrusted
thruster
thrustes
thrusting
thrustly
thrusts
thug
thuged
thuger
thuges
thuging
thugly
thugs
tinkle
tinkleed
tinkleer
tinklees
tinkleing
tinklely
tinkles
tit
tited
titer
tites
titfuck
titfucked
titfucker
titfuckes
titfucking
titfuckly
titfucks
titi
titied
titier
tities
titiing
titily
titing
titis
titly
tits
titsed
titser
titses
titsing
titsly
titss
tittiefucker
tittiefuckered
tittiefuckerer
tittiefuckeres
tittiefuckering
tittiefuckerly
tittiefuckers
titties
tittiesed
tittieser
tittieses
tittiesing
tittiesly
tittiess
titty
tittyed
tittyer
tittyes
tittyfuck
tittyfucked
tittyfucker
tittyfuckered
tittyfuckerer
tittyfuckeres
tittyfuckering
tittyfuckerly
tittyfuckers
tittyfuckes
tittyfucking
tittyfuckly
tittyfucks
tittying
tittyly
tittys
toke
tokeed
tokeer
tokees
tokeing
tokely
tokes
toots
tootsed
tootser
tootses
tootsing
tootsly
tootss
tramp
tramped
tramper
trampes
tramping
tramply
tramps
transsexualed
transsexualer
transsexuales
transsexualing
transsexually
transsexuals
trashy
trashyed
trashyer
trashyes
trashying
trashyly
trashys
tubgirl
tubgirled
tubgirler
tubgirles
tubgirling
tubgirlly
tubgirls
turd
turded
turder
turdes
turding
turdly
turds
tush
tushed
tusher
tushes
tushing
tushly
tushs
twat
twated
twater
twates
twating
twatly
twats
twatsed
twatser
twatses
twatsing
twatsly
twatss
undies
undiesed
undieser
undieses
undiesing
undiesly
undiess
unweded
unweder
unwedes
unweding
unwedly
unweds
uzi
uzied
uzier
uzies
uziing
uzily
uzis
vag
vaged
vager
vages
vaging
vagly
vags
valium
valiumed
valiumer
valiumes
valiuming
valiumly
valiums
venous
virgined
virginer
virgines
virgining
virginly
virgins
vixen
vixened
vixener
vixenes
vixening
vixenly
vixens
vodkaed
vodkaer
vodkaes
vodkaing
vodkaly
vodkas
voyeur
voyeured
voyeurer
voyeures
voyeuring
voyeurly
voyeurs
vulgar
vulgared
vulgarer
vulgares
vulgaring
vulgarly
vulgars
wang
wanged
wanger
wanges
wanging
wangly
wangs
wank
wanked
wanker
wankered
wankerer
wankeres
wankering
wankerly
wankers
wankes
wanking
wankly
wanks
wazoo
wazooed
wazooer
wazooes
wazooing
wazooly
wazoos
wedgie
wedgieed
wedgieer
wedgiees
wedgieing
wedgiely
wedgies
weeded
weeder
weedes
weeding
weedly
weeds
weenie
weenieed
weenieer
weeniees
weenieing
weeniely
weenies
weewee
weeweeed
weeweeer
weeweees
weeweeing
weeweely
weewees
weiner
weinered
weinerer
weineres
weinering
weinerly
weiners
weirdo
weirdoed
weirdoer
weirdoes
weirdoing
weirdoly
weirdos
wench
wenched
wencher
wenches
wenching
wenchly
wenchs
wetback
wetbacked
wetbacker
wetbackes
wetbacking
wetbackly
wetbacks
whitey
whiteyed
whiteyer
whiteyes
whiteying
whiteyly
whiteys
whiz
whized
whizer
whizes
whizing
whizly
whizs
whoralicious
whoralicioused
whoraliciouser
whoraliciouses
whoraliciousing
whoraliciously
whoraliciouss
whore
whorealicious
whorealicioused
whorealiciouser
whorealiciouses
whorealiciousing
whorealiciously
whorealiciouss
whored
whoreded
whoreder
whoredes
whoreding
whoredly
whoreds
whoreed
whoreer
whorees
whoreface
whorefaceed
whorefaceer
whorefacees
whorefaceing
whorefacely
whorefaces
whorehopper
whorehoppered
whorehopperer
whorehopperes
whorehoppering
whorehopperly
whorehoppers
whorehouse
whorehouseed
whorehouseer
whorehousees
whorehouseing
whorehousely
whorehouses
whoreing
whorely
whores
whoresed
whoreser
whoreses
whoresing
whoresly
whoress
whoring
whoringed
whoringer
whoringes
whoringing
whoringly
whorings
wigger
wiggered
wiggerer
wiggeres
wiggering
wiggerly
wiggers
woody
woodyed
woodyer
woodyes
woodying
woodyly
woodys
wop
woped
woper
wopes
woping
woply
wops
wtf
wtfed
wtfer
wtfes
wtfing
wtfly
wtfs
xxx
xxxed
xxxer
xxxes
xxxing
xxxly
xxxs
yeasty
yeastyed
yeastyer
yeastyes
yeastying
yeastyly
yeastys
yobbo
yobboed
yobboer
yobboes
yobboing
yobboly
yobbos
zoophile
zoophileed
zoophileer
zoophilees
zoophileing
zoophilely
zoophiles
anal
ass
ass lick
balls
ballsac
bisexual
bleach
causas
cheap
cost of miracles
cunt
display network stats
fart
fda and death
fda AND warn
fda AND warning
fda AND warns
feom
fuck
gfc
humira AND expensive
illegal
madvocate
masturbation
nuccitelli
overdose
porn
shit
snort
texarkana
effective for the treatment of a baby
effective for the treatment of a boy
effective for the treatment of a child
effective for the treatment of a female
effective for the treatment of a girl
effective for the treatment of a kid
effective for the treatment of a minor
effective for the treatment of a newborn
effective for the treatment of a teen
effective for the treatment of a teenager
effective for the treatment of a toddler
effective for the treatment of a woman
effective for the treatment of adolescents
effective for the treatment of an adolescent
effective for the treatment of an infant
effective for the treatment of babies
effective for the treatment of baby
effective for the treatment of body building
effective for the treatment of boys
effective for the treatment of breast feeding
effective for the treatment of children
effective for the treatment of females
effective for the treatment of fetus
effective for the treatment of girls
effective for the treatment of infants
effective for the treatment of kids
effective for the treatment of minors
effective for the treatment of newborn
effective for the treatment of pediatric
effective for the treatment of pregnancy
effective for the treatment of pregnant
effective for the treatment of teenagers
effective for the treatment of teens
effective for the treatment of toddlers
effective for the treatment of women
effective for the treatment of youths
for the relief of a baby
for the relief of a boy
for the relief of a child
for the relief of a female
for the relief of a girl
for the relief of a kid
for the relief of a minor
for the relief of a newborn
for the relief of a teen
for the relief of a teenager
for the relief of a toddler
for the relief of a woman
for the relief of adolescents
for the relief of an adolescent
for the relief of an infant
for the relief of babies
for the relief of baby
for the relief of body building
for the relief of boys
for the relief of breast feeding
for the relief of children
for the relief of females
for the relief of fetus
for the relief of girls
for the relief of infants
for the relief of kids
for the relief of minors
for the relief of newborn
for the relief of pediatric
for the relief of pregnancy
for the relief of pregnant
for the relief of teenagers
for the relief of teens
for the relief of toddlers
for the relief of women
for the relief of youths
medicating a baby
medicating a boy
medicating a child
medicating a female
medicating a girl
medicating a kid
medicating a minor
medicating a newborn
medicating a teen
medicating a teenager
medicating a toddler
medicating a woman
medicating adolescents
medicating an adolescent
medicating an infant
medicating babies
medicating baby
medicating body building
medicating boys
medicating breast feeding
medicating children
medicating females
medicating fetus
medicating girls
medicating infants
medicating kids
medicating minors
medicating newborn
medicating pediatric
medicating pregnancy
medicating pregnant
medicating teenagers
medicating teens
medicating toddlers
medicating women
medicating youths
at risk for a baby
at risk for a boy
at risk for a child
at risk for a female
at risk for a girl
at risk for a kid
at risk for a minor
at risk for a newborn
at risk for a teen
at risk for a teenager
at risk for a toddler
at risk for a woman
at risk for adolescents
at risk for an adolescent
at risk for an infant
at risk for babies
at risk for baby
at risk for body building
at risk for boys
at risk for breast feeding
at risk for children
at risk for females
at risk for fetus
at risk for girls
at risk for infants
at risk for kids
at risk for minors
at risk for newborn
at risk for pediatric
at risk for pregnancy
at risk for pregnant
at risk for teenagers
at risk for teens
at risk for toddlers
at risk for women
at risk for youths
treating a baby
treating a boy
treating a child
treating a female
treating a girl
treating a kid
treating a minor
treating a newborn
treating a teen
treating a teenager
treating a toddler
treating a woman
treating adolescents
treating an adolescent
treating an infant
treating babies
treating baby
treating body building
treating boys
treating breast feeding
treating children
treating females
treating fetus
treating girls
treating infants
treating kids
treating minors
treating newborn
treating pediatric
treating pregnancy
treating pregnant
treating teenagers
treating teens
treating toddlers
treating women
treating youths
treatment for a baby
treatment for a boy
treatment for a child
treatment for a female
treatment for a girl
treatment for a kid
treatment for a minor
treatment for a newborn
treatment for a teen
treatment for a teenager
treatment for a toddler
treatment for a woman
treatment for adolescents
treatment for an adolescent
treatment for an infant
treatment for babies
treatment for baby
treatment for body building
treatment for boys
treatment for breast feeding
treatment for children
treatment for females
treatment for fetus
treatment for girls
treatment for infants
treatment for kids
treatment for minors
treatment for newborn
treatment for pediatric
treatment for pregnancy
treatment for pregnant
treatment for teenagers
treatment for teens
treatment for toddlers
treatment for women
treatment for youths
treatments for a baby
treatments for a boy
treatments for a child
treatments for a female
treatments for a girl
treatments for a kid
treatments for a minor
treatments for a newborn
treatments for a teen
treatments for a teenager
treatments for a toddler
treatments for a woman
treatments for adolescents
treatments for an adolescent
treatments for an infant
treatments for babies
treatments for baby
treatments for body building
treatments for boys
treatments for breast feeding
treatments for children
treatments for females
treatments for fetus
treatments for girls
treatments for infants
treatments for kids
treatments for minors
treatments for newborn
treatments for pediatric
treatments for pregnancy
treatments for pregnant
treatments for teenagers
treatments for teens
treatments for toddlers
treatments for women
treatments for youths
diagnosing a baby
diagnosing a boy
diagnosing a child
diagnosing a female
diagnosing a girl
diagnosing a kid
diagnosing a minor
diagnosing a newborn
diagnosing a teen
diagnosing a teenager
diagnosing a toddler
diagnosing a woman
diagnosing adolescents
diagnosing an adolescent
diagnosing an infant
diagnosing babies
diagnosing baby
diagnosing body building
diagnosing boys
diagnosing breast feeding
diagnosing children
diagnosing females
diagnosing fetus
diagnosing girls
diagnosing infants
diagnosing kids
diagnosing minors
diagnosing newborn
diagnosing pediatric
diagnosing pregnancy
diagnosing pregnant
diagnosing teenagers
diagnosing teens
diagnosing toddlers
diagnosing women
diagnosing youths
indicated for a baby
indicated for a boy
indicated for a child
indicated for a female
indicated for a girl
indicated for a kid
indicated for a minor
indicated for a newborn
indicated for a teen
indicated for a teenager
indicated for a toddler
indicated for a woman
indicated for adolescents
indicated for an adolescent
indicated for an infant
indicated for babies
indicated for baby
indicated for body building
indicated for boys
indicated for breast feeding
indicated for children
indicated for females
indicated for fetus
indicated for girls
indicated for infants
indicated for kids
indicated for minors
indicated for newborn
indicated for pediatric
indicated for pregnancy
indicated for pregnant
indicated for teenagers
indicated for teens
indicated for toddlers
indicated for women
indicated for youths
useful for a baby
useful for a boy
useful for a child
useful for a female
useful for a girl
useful for a kid
useful for a minor
useful for a newborn
useful for a teen
useful for a teenager
useful for a toddler
useful for a woman
useful for adolescents
useful for an adolescent
useful for an infant
useful for babies
useful for baby
useful for body building
useful for boys
useful for breast feeding
useful for children
useful for females
useful for fetus
useful for girls
useful for infants
useful for kids
useful for minors
useful for newborn
useful for pediatric
useful for pregnancy
useful for pregnant
useful for teenagers
useful for teens
useful for toddlers
useful for women
useful for youths
effective for a baby
effective for a boy
effective for a child
effective for a female
effective for a girl
effective for a kid
effective for a minor
effective for a newborn
effective for a teen
effective for a teenager
effective for a toddler
effective for a woman
effective for adolescents
effective for an adolescent
effective for an infant
effective for babies
effective for baby
effective for body building
effective for boys
effective for breast feeding
effective for children
effective for females
effective for fetus
effective for girls
effective for infants
effective for kids
effective for minors
effective for newborn
effective for pediatric
effective for pregnancy
effective for pregnant
effective for teenagers
effective for teens
effective for toddlers
effective for women
effective for youths
cures for a baby
cures for a boy
cures for a child
cures for a female
cures for a girl
cures for a kid
cures for a minor
cures for a newborn
cures for a teen
cures for a teenager
cures for a toddler
cures for a woman
cures for adolescents
cures for an adolescent
cures for an infant
cures for babies
cures for baby
cures for body building
cures for boys
cures for breast feeding
cures for children
cures for females
cures for fetus
cures for girls
cures for infants
cures for kids
cures for minors
cures for newborn
cures for pediatric
cures for pregnancy
cures for pregnant
cures for teenagers
cures for teens
cures for toddlers
cures for women
cures for youths
use in a baby
use in a boy
use in a child
use in a female
use in a girl
use in a kid
use in a minor
use in a newborn
use in a teen
use in a teenager
use in a toddler
use in a woman
use in adolescents
use in an adolescent
use in an infant
use in babies
use in baby
use in body building
use in boys
use in breast feeding
use in children
use in females
use in fetus
use in girls
use in infants
use in kids
use in minors
use in newborn
use in pediatric
use in pregnancy
use in pregnant
use in teenagers
use in teens
use in toddlers
use in women
use in youths
use in patients with a baby
use in patients with a boy
use in patients with a child
use in patients with a female
use in patients with a girl
use in patients with a kid
use in patients with a minor
use in patients with a newborn
use in patients with a teen
use in patients with a teenager
use in patients with a toddler
use in patients with a woman
use in patients with adolescents
use in patients with an adolescent
use in patients with an infant
use in patients with babies
use in patients with baby
use in patients with body building
use in patients with boys
use in patients with breast feeding
use in patients with children
use in patients with females
use in patients with fetus
use in patients with girls
use in patients with infants
use in patients with kids
use in patients with minors
use in patients with newborn
use in patients with pediatric
use in patients with pregnancy
use in patients with pregnant
use in patients with teenagers
use in patients with teens
use in patients with toddlers
use in patients with women
use in patients with youths
a baby diagnosis
a boy diagnosis
a child diagnosis
a female diagnosis
a girl diagnosis
a kid diagnosis
a minor diagnosis
a newborn diagnosis
a teen diagnosis
a teenager diagnosis
a toddler diagnosis
a woman diagnosis
adolescents diagnosis
an adolescent diagnosis
an infant diagnosis
babies diagnosis
baby diagnosis
body building diagnosis
boys diagnosis
breast feeding diagnosis
children diagnosis
females diagnosis
fetus diagnosis
girls diagnosis
infants diagnosis
kids diagnosis
minors diagnosis
newborn diagnosis
pediatric diagnosis
pregnancy diagnosis
pregnant diagnosis
teenagers diagnosis
teens diagnosis
toddlers diagnosis
women diagnosis
youths diagnosis
a baby medication
a boy medication
a child medication
a female medication
a girl medication
a kid medication
a minor medication
a newborn medication
a teen medication
a teenager medication
a toddler medication
a woman medication
adolescents medication
an adolescent medication
an infant medication
babies medication
baby medication
body building medication
boys medication
breast feeding medication
children medication
females medication
fetus medication
girls medication
infants medication
kids medication
minors medication
newborn medication
pediatric medication
pregnancy medication
pregnant medication
teenagers medication
teens medication
toddlers medication
women medication
youths medication
a baby therapy
a boy therapy
a child therapy
a female therapy
a girl therapy
a kid therapy
a minor therapy
a newborn therapy
a teen therapy
a teenager therapy
a toddler therapy
a woman therapy
adolescents therapy
an adolescent therapy
an infant therapy
babies therapy
baby therapy
body building therapy
boys therapy
breast feeding therapy
children therapy
females therapy
fetus therapy
girls therapy
infants therapy
kids therapy
minors therapy
newborn therapy
pediatric therapy
pregnancy therapy
pregnant therapy
teenagers therapy
teens therapy
toddlers therapy
women therapy
youths therapy
a baby treatment
a boy treatment
a child treatment
a female treatment
a girl treatment
a kid treatment
a minor treatment
a newborn treatment
a teen treatment
a teenager treatment
a toddler treatment
a woman treatment
adolescents treatment
an adolescent treatment
an infant treatment
babies treatment
baby treatment
body building treatment
boys treatment
breast feeding treatment
children treatment
females treatment
fetus treatment
girls treatment
infants treatment
kids treatment
minors treatment
newborn treatment
pediatric treatment
pregnancy treatment
pregnant treatment
teenagers treatment
teens treatment
toddlers treatment
women treatment
youths treatment
a baby cure
a boy cure
a child cure
a female cure
a girl cure
a kid cure
a minor cure
a newborn cure
a teen cure
a teenager cure
a toddler cure
a woman cure
adolescents cure
an adolescent cure
an infant cure
babies cure
baby cure
body building cure
boys cure
breast feeding cure
children cure
females cure
fetus cure
girls cure
infants cure
kids cure
minors cure
newborn cure
pediatric cure
pregnancy cure
pregnant cure
teenagers cure
teens cure
toddlers cure
women cure
youths cure
a baby symptoms
a boy symptoms
a child symptoms
a female symptoms
a girl symptoms
a kid symptoms
a minor symptoms
a newborn symptoms
a teen symptoms
a teenager symptoms
a toddler symptoms
a woman symptoms
adolescents symptoms
an adolescent symptoms
an infant symptoms
babies symptoms
baby symptoms
body building symptoms
boys symptoms
breast feeding symptoms
children symptoms
females symptoms
fetus symptoms
girls symptoms
infants symptoms
kids symptoms
minors symptoms
newborn symptoms
pediatric symptoms
pregnancy symptoms
pregnant symptoms
teenagers symptoms
teens symptoms
toddlers symptoms
women symptoms
youths symptoms
a baby medicine
a boy medicine
a child medicine
a female medicine
a girl medicine
a kid medicine
a minor medicine
a newborn medicine
a teen medicine
a teenager medicine
a toddler medicine
a woman medicine
adolescents medicine
an adolescent medicine
an infant medicine
babies medicine
baby medicine
body building medicine
boys medicine
breast feeding medicine
children medicine
females medicine
fetus medicine
girls medicine
infants medicine
kids medicine
minors medicine
newborn medicine
pediatric medicine
pregnancy medicine
pregnant medicine
teenagers medicine
teens medicine
toddlers medicine
women medicine
youths medicine
a baby usage
a boy usage
a child usage
a female usage
a girl usage
a kid usage
a minor usage
a newborn usage
a teen usage
a teenager usage
a toddler usage
a woman usage
adolescents usage
an adolescent usage
an infant usage
babies usage
baby usage
body building usage
boys usage
breast feeding usage
children usage
females usage
fetus usage
girls usage
infants usage
kids usage
minors usage
newborn usage
pediatric usage
pregnancy usage
pregnant usage
teenagers usage
teens usage
toddlers usage
women usage
youths usage
a baby remedy
a boy remedy
a child remedy
a female remedy
a girl remedy
a kid remedy
a minor remedy
a newborn remedy
a teen remedy
a teenager remedy
a toddler remedy
a woman remedy
adolescents remedy
an adolescent remedy
an infant remedy
babies remedy
baby remedy
body building remedy
boys remedy
breast feeding remedy
children remedy
females remedy
fetus remedy
girls remedy
infants remedy
kids remedy
minors remedy
newborn remedy
pediatric remedy
pregnancy remedy
pregnant remedy
teenagers remedy
teens remedy
toddlers remedy
women remedy
youths remedy
a baby prescription
a boy prescription
a child prescription
a female prescription
a girl prescription
a kid prescription
a minor prescription
a newborn prescription
a teen prescription
a teenager prescription
a toddler prescription
a woman prescription
adolescents prescription
an adolescent prescription
an infant prescription
babies prescription
baby prescription
body building prescription
boys prescription
breast feeding prescription
children prescription
females prescription
fetus prescription
girls prescription
infants prescription
kids prescription
minors prescription
newborn prescription
pediatric prescription
pregnancy prescription
pregnant prescription
teenagers prescription
teens prescription
toddlers prescription
women prescription
youths prescription
a baby pill
a boy pill
a child pill
a female pill
a girl pill
a kid pill
a minor pill
a newborn pill
a teen pill
a teenager pill
a toddler pill
a woman pill
adolescents pill
an adolescent pill
an infant pill
babies pill
baby pill
body building pill
boys pill
breast feeding pill
children pill
females pill
fetus pill
girls pill
infants pill
kids pill
minors pill
newborn pill
pediatric pill
pregnancy pill
pregnant pill
teenagers pill
teens pill
toddlers pill
women pill
youths pill
a baby drug
a boy drug
a child drug
a female drug
a girl drug
a kid drug
a minor drug
a newborn drug
a teen drug
a teenager drug
a toddler drug
a woman drug
adolescents drug
an adolescent drug
an infant drug
babies drug
baby drug
body building drug
boys drug
breast feeding drug
children drug
females drug
fetus drug
girls drug
infants drug
kids drug
minors drug
newborn drug
pediatric drug
pregnancy drug
pregnant drug
teenagers drug
teens drug
toddlers drug
women drug
youths drug
a baby tablet
a boy tablet
a child tablet
a female tablet
a girl tablet
a kid tablet
a minor tablet
a newborn tablet
a teen tablet
a teenager tablet
a toddler tablet
a woman tablet
adolescents tablet
an adolescent tablet
an infant tablet
babies tablet
baby tablet
body building tablet
boys tablet
breast feeding tablet
children tablet
females tablet
fetus tablet
girls tablet
infants tablet
kids tablet
minors tablet
newborn tablet
pediatric tablet
pregnancy tablet
pregnant tablet
teenagers tablet
teens tablet
toddlers tablet
women tablet
youths tablet
a baby management
a boy management
a child management
a female management
a girl management
a kid management
a minor management
a newborn management
a teen management
a teenager management
a toddler management
a woman management
adolescents management
an adolescent management
an infant management
babies management
baby management
body building management
boys management
breast feeding management
children management
females management
fetus management
girls management
infants management
kids management
minors management
newborn management
pediatric management
pregnancy management
pregnant management
teenagers management
teens management
toddlers management
women management
youths management
a baby indication
a boy indication
a child indication
a female indication
a girl indication
a kid indication
a minor indication
a newborn indication
a teen indication
a teenager indication
a toddler indication
a woman indication
adolescents indication
an adolescent indication
an infant indication
babies indication
baby indication
body building indication
boys indication
breast feeding indication
children indication
females indication
fetus indication
girls indication
infants indication
kids indication
minors indication
newborn indication
pediatric indication
pregnancy indication
pregnant indication
teenagers indication
teens indication
toddlers indication
women indication
youths indication
breast cancer a baby
breast cancer a boy
breast cancer a child
breast cancer a female
breast cancer a girl
breast cancer a kid
breast cancer a minor
breast cancer a newborn
breast cancer a teen
breast cancer a teenager
breast cancer a toddler
breast cancer a woman
breast cancer adolescents
breast cancer an adolescent
breast cancer an infant
breast cancer babies
breast cancer baby
breast cancer body building
breast cancer boys
breast cancer breast feeding
breast cancer children
breast cancer females
breast cancer fetus
breast cancer girls
breast cancer infants
breast cancer kids
breast cancer minors
breast cancer newborn
breast cancer pediatric
breast cancer pregnancy
breast cancer pregnant
breast cancer teenagers
breast cancer teens
breast cancer toddlers
breast cancer women
breast cancer youths
prostate cancer a baby
prostate cancer a boy
prostate cancer a child
prostate cancer a female
prostate cancer a girl
prostate cancer a kid
prostate cancer a minor
prostate cancer a newborn
prostate cancer a teen
prostate cancer a teenager
prostate cancer a toddler
prostate cancer a woman
prostate cancer adolescents
prostate cancer an adolescent
prostate cancer an infant
prostate cancer babies
prostate cancer baby
prostate cancer body building
prostate cancer boys
prostate cancer breast feeding
prostate cancer children
prostate cancer females
prostate cancer fetus
prostate cancer girls
prostate cancer infants
prostate cancer kids
prostate cancer minors
prostate cancer newborn
prostate cancer pediatric
prostate cancer pregnancy
prostate cancer pregnant
prostate cancer teenagers
prostate cancer teens
prostate cancer toddlers
prostate cancer women
prostate cancer youths
steroid a baby
steroid a boy
steroid a child
steroid a female
steroid a girl
steroid a kid
steroid a minor
steroid a newborn
steroid a teen
steroid a teenager
steroid a toddler
steroid a woman
steroid adolescents
steroid an adolescent
steroid an infant
steroid babies
steroid baby
steroid body building
steroid boys
steroid breast feeding
steroid children
steroid females
steroid fetus
steroid girls
steroid infants
steroid kids
steroid minors
steroid newborn
steroid pediatric
steroid pregnancy
steroid pregnant
steroid teenagers
steroid teens
steroid toddlers
steroid women
steroid youths
steroids a baby
steroids a boy
steroids a child
steroids a female
steroids a girl
steroids a kid
steroids a minor
steroids a newborn
steroids a teen
steroids a teenager
steroids a toddler
steroids a woman
steroids adolescents
steroids an adolescent
steroids an infant
steroids babies
steroids baby
steroids body building
steroids boys
steroids breast feeding
steroids children
steroids females
steroids fetus
steroids girls
steroids infants
steroids kids
steroids minors
steroids newborn
steroids pediatric
steroids pregnancy
steroids pregnant
steroids teenagers
steroids teens
steroids toddlers
steroids women
steroids youths
abbvie
AbbVie
acid
addicted
addiction
adolescent
adult sites
Advocacy
advocacy
agitated states
AJO, postsurgical analgesic, knee, replacement, surgery
alcohol
amphetamine
androgen
antibody
apple cider vinegar
assistance
Assistance
association
at home
attorney
audit
ayurvedic
baby
ban
baricitinib
bed bugs
best
bible
bisexual
black
bleach
blog
bulimia nervosa
buy
cannabis
certificate
certification
certified
cervical cancer, concurrent chemoradiotherapy, intravoxel incoherent motion magnetic resonance imaging, MRI, IVIM, diffusion-weighted MRI, DWI
charlie sheen
cheap
cheapest
child
childhood
childlike
children
chronic fatigue syndrome
Cladribine Tablets
cocaine
cock
combination therapies, synergistic antitumor efficacy, pertuzumab, trastuzumab, ipilimumab, nivolumab, palbociclib, letrozole, lapatinib, docetaxel, trametinib, dabrafenib, carflzomib, lenalidomide
contagious
Cortical Lesions
cream
creams
crime
criminal
cure
dangerous
dangers
dasabuvir
Dasabuvir
dead
deadly
death
dementia
dependence
dependent
depression
dermatillomania
die
diet
Disability
Discount
discount
dog
drink
drug abuse
drug-induced
dying
eastern medicine
eat
ect
eczema
electroconvulsive therapy
electromagnetic therapy
electrotherapy
epa
epilepsy
erectile dysfunction
explosive disorder
fake
Fake-ovir
fatal
fatalities
fatality
fibromyalgia
financial
Financial
fish oil
food
foods
foundation
free
Gabriel Pardo
gaston
general hospital
genetic
geriatric
Giancarlo Comi
gilead
Gilead
glaucoma
Glenn S. Williams
Glenn Williams
Gloria Dalla Costa
gonorrhea
Greedy
greedy
guns
hallucinations
harvoni
Harvoni
herbal
herbs
heroin
herpes
Hidradenitis Suppurativa
holistic
home
home remedies
home remedy
homeopathic
homeopathy
hydrocortisone
ice
image
images
job
kid
kids
kill
killer
laser
lawsuit
lawyer
ledipasvir
Ledipasvir
lesbian
lesions
lights
liver
lupus
marijuana
melancholic
memory loss
menopausal
mental retardation
military
milk
moisturizers
monoamine oxidase inhibitor drugs
MRI
MS
murder
national
natural
natural cure
natural cures
natural medications
natural medicine
natural medicines
natural remedies
natural remedy
natural treatment
natural treatments
naturally
Needy
needy
Neurology Reviews
neuropathic
nightclub massacre
nightclub shooting
nude
nudity
nutraceuticals
OASIS
oasis
off label
ombitasvir
Ombitasvir
ombitasvir/paritaprevir/ritonavir with dasabuvir
orlando shooting
overactive thyroid gland
overdose
overdosed
Paolo Preziosa
paritaprevir
Paritaprevir
pediatric
pedophile
photo
photos
picture
post partum
postnatal
pregnancy
pregnant
prenatal
prepartum
prison
program
Program
Protest
protest
psychedelics
pulse nightclub
puppy
purchase
purchasing
rape
recall
recreational drug
Rehabilitation
Retinal Measurements
retrograde ejaculation
risperdal
ritonavir
Ritonavir
ritonavir with dasabuvir
robin williams
sales
sasquatch
schizophrenia
seizure
seizures
sex
sexual
sexy
shock treatment
silver
sleep disorders
smoking
sociopath
sofosbuvir
Sofosbuvir
sovaldi
ssri
store
sue
suicidal
suicide
supplements
support
Support
Support Path
teen
teenage
teenagers
Telerehabilitation
testosterone
Th17
Th17:FoxP3+Treg cell ratio
Th22
toxic
toxin
tragedy
treatment resistant
V Pak
vagina
velpatasvir
Viekira Pa
Viekira Pak
viekira pak
violence
virgin
vitamin
VPak
weight loss
withdrawal
wrinkles
xxx
young adult
young adults
zoloft
financial
sofosbuvir
ritonavir with dasabuvir
discount
support path
program
ritonavir
greedy
ledipasvir
assistance
viekira pak
vpak
advocacy
needy
protest
abbvie
paritaprevir
ombitasvir
direct-acting antivirals
dasabuvir
gilead
fake-ovir
support
v pak
oasis
harvoni
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-imn')]
div[contains(@class, 'pane-pub-home-imn')]
div[contains(@class, 'pane-pub-topic-imn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Internal Medicine News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 09:05
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 09:05

Species Possibly Responsible for COVID Pandemic Identified

Article Type
Changed
Tue, 10/01/2024 - 06:46

The origin of the COVID-19 pandemic has sparked much debate, and various hypotheses have been put forward.

“My colleagues and I have examined the issue with an open mind, taking into account all possible hypotheses. The laboratory origin hypothesis was legitimate and deserved to be investigated,” Florence Débarre, PhD, a research director at the French National Center for Scientific Research at the Institute of Ecology and Environmental Sciences in Paris, France, told this news organization. Nevertheless, research carried out as part of a large international collaboration points more toward an animal origin at the Wuhan market in China.

“We studied data from environmental samples taken at the Huanan market in Wuhan shortly after its closure in early 2020,” said Dr. Débarre. The data were shared by the Chinese Center for Disease Control and Prevention on open and public databases. They include the raw genetic sequences of more than 800 samples collected at the Huanan market, on cages and carts, on the floors and walls of the stalls, and in the pipes and sewers.

These data allowed researchers to highlight the co-presence at this location of genetic material from the SARS-CoV-2 virus and certain wild animals. Masked palm civets, which are wild canids similar to foxes, with a dark facial mask similar to that of raccoons, and civets, small carnivorous mammals close to mongooses, were at the site.

“These species were already involved in the emergence of the SARS epidemic in the early 2000s and considered to facilitate the transmission of the virus from animals to humans,” said Dr. Débarre.

These animals were identified based on their DNA and located in the southwest part of the market, which is also a hotspot where many samples tested positive for SARS-CoV-2.

“There is a particular stall where the virus and the animals were found,” she said.

Since the data used are based on environmental samples, it is not possible to formally demonstrate that the animals were infected, but the discovery of virus samples located in the same place as the genetic material of these animals suggests that they were.

“There were samples taken from some animals at the market, but not from others, as they had already been evacuated when the sampling services arrived,” said Dr. Débarre. These results add to a large body of evidence that all points in the same direction: an animal origin at the Wuhan market.

The team also found other zoonotic viruses, such as avian flu. “This study confirms that live animal markets pose a high health risk, especially when they are at the heart of urban centers,” said Dr. Débarre. “It can provide avenues for prevention, particularly by limiting interactions between humans and wild fauna.”

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The origin of the COVID-19 pandemic has sparked much debate, and various hypotheses have been put forward.

“My colleagues and I have examined the issue with an open mind, taking into account all possible hypotheses. The laboratory origin hypothesis was legitimate and deserved to be investigated,” Florence Débarre, PhD, a research director at the French National Center for Scientific Research at the Institute of Ecology and Environmental Sciences in Paris, France, told this news organization. Nevertheless, research carried out as part of a large international collaboration points more toward an animal origin at the Wuhan market in China.

“We studied data from environmental samples taken at the Huanan market in Wuhan shortly after its closure in early 2020,” said Dr. Débarre. The data were shared by the Chinese Center for Disease Control and Prevention on open and public databases. They include the raw genetic sequences of more than 800 samples collected at the Huanan market, on cages and carts, on the floors and walls of the stalls, and in the pipes and sewers.

These data allowed researchers to highlight the co-presence at this location of genetic material from the SARS-CoV-2 virus and certain wild animals. Masked palm civets, which are wild canids similar to foxes, with a dark facial mask similar to that of raccoons, and civets, small carnivorous mammals close to mongooses, were at the site.

“These species were already involved in the emergence of the SARS epidemic in the early 2000s and considered to facilitate the transmission of the virus from animals to humans,” said Dr. Débarre.

These animals were identified based on their DNA and located in the southwest part of the market, which is also a hotspot where many samples tested positive for SARS-CoV-2.

“There is a particular stall where the virus and the animals were found,” she said.

Since the data used are based on environmental samples, it is not possible to formally demonstrate that the animals were infected, but the discovery of virus samples located in the same place as the genetic material of these animals suggests that they were.

“There were samples taken from some animals at the market, but not from others, as they had already been evacuated when the sampling services arrived,” said Dr. Débarre. These results add to a large body of evidence that all points in the same direction: an animal origin at the Wuhan market.

The team also found other zoonotic viruses, such as avian flu. “This study confirms that live animal markets pose a high health risk, especially when they are at the heart of urban centers,” said Dr. Débarre. “It can provide avenues for prevention, particularly by limiting interactions between humans and wild fauna.”

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

The origin of the COVID-19 pandemic has sparked much debate, and various hypotheses have been put forward.

“My colleagues and I have examined the issue with an open mind, taking into account all possible hypotheses. The laboratory origin hypothesis was legitimate and deserved to be investigated,” Florence Débarre, PhD, a research director at the French National Center for Scientific Research at the Institute of Ecology and Environmental Sciences in Paris, France, told this news organization. Nevertheless, research carried out as part of a large international collaboration points more toward an animal origin at the Wuhan market in China.

“We studied data from environmental samples taken at the Huanan market in Wuhan shortly after its closure in early 2020,” said Dr. Débarre. The data were shared by the Chinese Center for Disease Control and Prevention on open and public databases. They include the raw genetic sequences of more than 800 samples collected at the Huanan market, on cages and carts, on the floors and walls of the stalls, and in the pipes and sewers.

These data allowed researchers to highlight the co-presence at this location of genetic material from the SARS-CoV-2 virus and certain wild animals. Masked palm civets, which are wild canids similar to foxes, with a dark facial mask similar to that of raccoons, and civets, small carnivorous mammals close to mongooses, were at the site.

“These species were already involved in the emergence of the SARS epidemic in the early 2000s and considered to facilitate the transmission of the virus from animals to humans,” said Dr. Débarre.

These animals were identified based on their DNA and located in the southwest part of the market, which is also a hotspot where many samples tested positive for SARS-CoV-2.

“There is a particular stall where the virus and the animals were found,” she said.

Since the data used are based on environmental samples, it is not possible to formally demonstrate that the animals were infected, but the discovery of virus samples located in the same place as the genetic material of these animals suggests that they were.

“There were samples taken from some animals at the market, but not from others, as they had already been evacuated when the sampling services arrived,” said Dr. Débarre. These results add to a large body of evidence that all points in the same direction: an animal origin at the Wuhan market.

The team also found other zoonotic viruses, such as avian flu. “This study confirms that live animal markets pose a high health risk, especially when they are at the heart of urban centers,” said Dr. Débarre. “It can provide avenues for prevention, particularly by limiting interactions between humans and wild fauna.”

This story was translated from the Medscape French edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Beyond the Title: How PAs Handle the Burden of MD-Level Responsibilities

Article Type
Changed
Fri, 09/27/2024 - 12:08

Within the physician assistant (PA) community, many PAs have expressed the heavy weight of their job expectation and their subsequent feelings of discontent. As one respondent said in a recent Medscape PA Burnout report, there are expectations for PAs to see the same complexity and quantity of patients as physician providers with less support, little oversight, less respect, and less pay.

Mirela Bruza-Augatis, PhD, MS, PA-C, a researcher at the National Commission on Certification of Physician Assistants, said the sentiment is similar to what she’s heard from colleagues, as well as seen in her own research examining PA work-life balance.

“Unfortunately, part of this is just the culture of medicine — and other healthcare workers report similar experiences. The patient comes first, and you are secondary,” she said. “You have to make do with the resources you have, and that’s not always enough.”

Yet, despite the challenges of working as a PA in today’s healthcare industry, many are finding ways not just to survive but to thrive. Brian McCambley, DHSc, PA-C, who works as both an emergency medicine PA and a system wellness officer at Nuvance Health, has been looking at ways to improve morale (and, consequently, lower turnover rates), especially among new PA recruits.

He said that the first step is finding the right practice environment. He encourages even experienced PAs to take the time to understand the culture of any practice they consider joining — and ask a lot of questions about what kind of support is available.

“Ask the right questions from the very beginning. What does the job truly entail? What is the culture within the group that you’ll be joining? Talk to the entire team to get a real sense of what’s going on there day to day,” he said. “One benefit of being a PA is that most of us are trained as generalists. We have a lot of mobility between specialties. If the work hours, culture, or fit doesn’t work, it is possible to morph and try something different.”
 

See How Other PAs Are Managing

Dr. Bruza-Augatis added that finding peer support is also beneficial. She said being able to discuss your experiences with other PAs, both within your workplace and outside of it, offers more than just the benefit of knowing you are not alone.

“When you talk to other colleagues who have had similar experiences, they may have found solutions to help,” she said. “The solution that works for one person may not work for everyone. But it can at least offer some ideas and help you focus on the things you may be able to control and change.”

Raquelle Akavan, DMSc, PA-C, founder of the popular PA Moms® group, agreed on both points. She said that finding both institutional and personal support is remarkably helpful in dealing with the stressors most PAs face both at work and home. With that kind of support in place, you can start to set the appropriate boundaries to help ensure you aren’t feeling overwhelmed by all the expectations placed on you.

“This is crucial to finding good work-life integration,” she said. “You can set boundaries with both your patients and your managers. You can carve out time for your family and let your job know that you won’t be taking calls between 5:00 pm and 9:00 pm. You can go to your manager and let them know what you need to do your job well — whether it’s a scribe, continuing medical education, or help managing the workload.”
 

 

 

Speak Up

Advocating for yourself is key, said Hope Cook, PA-C, who works as both a PA in a dermatology practice and as a licensed life coach. She said that taking the time to be self-aware of the work stressors that negatively affect you allows you to “give yourself permission” to do something about them.

“Like any profession, you have to know your limits,” she said. “If you need more collaboration from your team, you need to figure out how to get that. You need to ask for it. If you feel like you have insufficient training to deal with the complexity of the patients who are coming to see you, you need to talk to the practice about how to fix that. It’s important to let people know what support you need. And, if they aren’t going to help provide it, understand that it may be time to go elsewhere.”

None of these things are necessarily easy, said Dr. McCambley. But replacing a PA costs a practice significant time and money. So, finding ways to promote growth and resilience early on in your career will help protect you from later burnout, and save the healthcare organization in the long run, too. He believes Nuvance has had great success in their efforts to support clinician wellness across the board by having PAs contribute to leadership discussions and decisions.

“When you can get with like-minded folks and sit with hospital administration to talk about the best ways to get PAs intermixed with the medical staff and how to support them in their roles, you can make a difference,” he told this news organization. “I’ve been at my healthcare institution for 26 years. We PAs didn’t really have a big voice at the beginning. But, little by little, by having important discussions with our leadership, we’ve been able to show our medical staff that PAs bring something really important to the table — and that it benefits everyone when we support them.”
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Within the physician assistant (PA) community, many PAs have expressed the heavy weight of their job expectation and their subsequent feelings of discontent. As one respondent said in a recent Medscape PA Burnout report, there are expectations for PAs to see the same complexity and quantity of patients as physician providers with less support, little oversight, less respect, and less pay.

Mirela Bruza-Augatis, PhD, MS, PA-C, a researcher at the National Commission on Certification of Physician Assistants, said the sentiment is similar to what she’s heard from colleagues, as well as seen in her own research examining PA work-life balance.

“Unfortunately, part of this is just the culture of medicine — and other healthcare workers report similar experiences. The patient comes first, and you are secondary,” she said. “You have to make do with the resources you have, and that’s not always enough.”

Yet, despite the challenges of working as a PA in today’s healthcare industry, many are finding ways not just to survive but to thrive. Brian McCambley, DHSc, PA-C, who works as both an emergency medicine PA and a system wellness officer at Nuvance Health, has been looking at ways to improve morale (and, consequently, lower turnover rates), especially among new PA recruits.

He said that the first step is finding the right practice environment. He encourages even experienced PAs to take the time to understand the culture of any practice they consider joining — and ask a lot of questions about what kind of support is available.

“Ask the right questions from the very beginning. What does the job truly entail? What is the culture within the group that you’ll be joining? Talk to the entire team to get a real sense of what’s going on there day to day,” he said. “One benefit of being a PA is that most of us are trained as generalists. We have a lot of mobility between specialties. If the work hours, culture, or fit doesn’t work, it is possible to morph and try something different.”
 

See How Other PAs Are Managing

Dr. Bruza-Augatis added that finding peer support is also beneficial. She said being able to discuss your experiences with other PAs, both within your workplace and outside of it, offers more than just the benefit of knowing you are not alone.

“When you talk to other colleagues who have had similar experiences, they may have found solutions to help,” she said. “The solution that works for one person may not work for everyone. But it can at least offer some ideas and help you focus on the things you may be able to control and change.”

Raquelle Akavan, DMSc, PA-C, founder of the popular PA Moms® group, agreed on both points. She said that finding both institutional and personal support is remarkably helpful in dealing with the stressors most PAs face both at work and home. With that kind of support in place, you can start to set the appropriate boundaries to help ensure you aren’t feeling overwhelmed by all the expectations placed on you.

“This is crucial to finding good work-life integration,” she said. “You can set boundaries with both your patients and your managers. You can carve out time for your family and let your job know that you won’t be taking calls between 5:00 pm and 9:00 pm. You can go to your manager and let them know what you need to do your job well — whether it’s a scribe, continuing medical education, or help managing the workload.”
 

 

 

Speak Up

Advocating for yourself is key, said Hope Cook, PA-C, who works as both a PA in a dermatology practice and as a licensed life coach. She said that taking the time to be self-aware of the work stressors that negatively affect you allows you to “give yourself permission” to do something about them.

“Like any profession, you have to know your limits,” she said. “If you need more collaboration from your team, you need to figure out how to get that. You need to ask for it. If you feel like you have insufficient training to deal with the complexity of the patients who are coming to see you, you need to talk to the practice about how to fix that. It’s important to let people know what support you need. And, if they aren’t going to help provide it, understand that it may be time to go elsewhere.”

None of these things are necessarily easy, said Dr. McCambley. But replacing a PA costs a practice significant time and money. So, finding ways to promote growth and resilience early on in your career will help protect you from later burnout, and save the healthcare organization in the long run, too. He believes Nuvance has had great success in their efforts to support clinician wellness across the board by having PAs contribute to leadership discussions and decisions.

“When you can get with like-minded folks and sit with hospital administration to talk about the best ways to get PAs intermixed with the medical staff and how to support them in their roles, you can make a difference,” he told this news organization. “I’ve been at my healthcare institution for 26 years. We PAs didn’t really have a big voice at the beginning. But, little by little, by having important discussions with our leadership, we’ve been able to show our medical staff that PAs bring something really important to the table — and that it benefits everyone when we support them.”
 

A version of this article first appeared on Medscape.com.

Within the physician assistant (PA) community, many PAs have expressed the heavy weight of their job expectation and their subsequent feelings of discontent. As one respondent said in a recent Medscape PA Burnout report, there are expectations for PAs to see the same complexity and quantity of patients as physician providers with less support, little oversight, less respect, and less pay.

Mirela Bruza-Augatis, PhD, MS, PA-C, a researcher at the National Commission on Certification of Physician Assistants, said the sentiment is similar to what she’s heard from colleagues, as well as seen in her own research examining PA work-life balance.

“Unfortunately, part of this is just the culture of medicine — and other healthcare workers report similar experiences. The patient comes first, and you are secondary,” she said. “You have to make do with the resources you have, and that’s not always enough.”

Yet, despite the challenges of working as a PA in today’s healthcare industry, many are finding ways not just to survive but to thrive. Brian McCambley, DHSc, PA-C, who works as both an emergency medicine PA and a system wellness officer at Nuvance Health, has been looking at ways to improve morale (and, consequently, lower turnover rates), especially among new PA recruits.

He said that the first step is finding the right practice environment. He encourages even experienced PAs to take the time to understand the culture of any practice they consider joining — and ask a lot of questions about what kind of support is available.

“Ask the right questions from the very beginning. What does the job truly entail? What is the culture within the group that you’ll be joining? Talk to the entire team to get a real sense of what’s going on there day to day,” he said. “One benefit of being a PA is that most of us are trained as generalists. We have a lot of mobility between specialties. If the work hours, culture, or fit doesn’t work, it is possible to morph and try something different.”
 

See How Other PAs Are Managing

Dr. Bruza-Augatis added that finding peer support is also beneficial. She said being able to discuss your experiences with other PAs, both within your workplace and outside of it, offers more than just the benefit of knowing you are not alone.

“When you talk to other colleagues who have had similar experiences, they may have found solutions to help,” she said. “The solution that works for one person may not work for everyone. But it can at least offer some ideas and help you focus on the things you may be able to control and change.”

Raquelle Akavan, DMSc, PA-C, founder of the popular PA Moms® group, agreed on both points. She said that finding both institutional and personal support is remarkably helpful in dealing with the stressors most PAs face both at work and home. With that kind of support in place, you can start to set the appropriate boundaries to help ensure you aren’t feeling overwhelmed by all the expectations placed on you.

“This is crucial to finding good work-life integration,” she said. “You can set boundaries with both your patients and your managers. You can carve out time for your family and let your job know that you won’t be taking calls between 5:00 pm and 9:00 pm. You can go to your manager and let them know what you need to do your job well — whether it’s a scribe, continuing medical education, or help managing the workload.”
 

 

 

Speak Up

Advocating for yourself is key, said Hope Cook, PA-C, who works as both a PA in a dermatology practice and as a licensed life coach. She said that taking the time to be self-aware of the work stressors that negatively affect you allows you to “give yourself permission” to do something about them.

“Like any profession, you have to know your limits,” she said. “If you need more collaboration from your team, you need to figure out how to get that. You need to ask for it. If you feel like you have insufficient training to deal with the complexity of the patients who are coming to see you, you need to talk to the practice about how to fix that. It’s important to let people know what support you need. And, if they aren’t going to help provide it, understand that it may be time to go elsewhere.”

None of these things are necessarily easy, said Dr. McCambley. But replacing a PA costs a practice significant time and money. So, finding ways to promote growth and resilience early on in your career will help protect you from later burnout, and save the healthcare organization in the long run, too. He believes Nuvance has had great success in their efforts to support clinician wellness across the board by having PAs contribute to leadership discussions and decisions.

“When you can get with like-minded folks and sit with hospital administration to talk about the best ways to get PAs intermixed with the medical staff and how to support them in their roles, you can make a difference,” he told this news organization. “I’ve been at my healthcare institution for 26 years. We PAs didn’t really have a big voice at the beginning. But, little by little, by having important discussions with our leadership, we’ve been able to show our medical staff that PAs bring something really important to the table — and that it benefits everyone when we support them.”
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Nearly 1 in 3 US Adults May Have Low Iron Levels

Article Type
Changed
Fri, 09/27/2024 - 11:46

Nearly one-third of US adults may have low iron levels that can add to problems ranging from fatigue to heart failure. 

Researchers in a new study estimated that 7% of US adults have anemia, a blood disorder that can be iron related and is particularly well-known in part because of screenings given during pregnancy. But more striking was the finding in this latest study that a significant portion of the population may have less severe iron deficiencies that have been linked to serious health problems.

The body gets iron from food, and it can store iron for times when there isn’t enough it can access right away. The research team looked at test results that show whether people have enough iron stored, as well as whether their bodies could effectively use available iron. If you don’t have enough iron stored, you have a condition called absolute iron deficiency. And if you have stored iron but problems using it, you have what’s called functional iron deficiency. The study found that an estimated 14% of adults have absolute iron deficiency, and another 15% have functional iron deficiency.

The findings, published in JAMA Network Open, are based on data from more than 8,000 people who had laboratory iron levels on file as part of the National Health and Nutrition Examination Survey that was done from 2017 to 2020.

Besides anemia, iron deficiency is linked to other serious health problems, including restless legs syndrome, mental and thinking difficulties, reduced physical abilities, and heart failure, the authors noted. The effects of iron deficiency can significantly impact a person’s quality of life.

Routine blood work as part of an annual physical doesn’t typically include a check of iron levels unless there is a cause for concern. The out-of-pocket cost without using insurance for a blood test to check iron levels is typically around $60. 

“This is a common yet underappreciated public health problem,” study author Leo Buckley, PharmD, MPH, a clinical pharmacology specialist at Brigham and Women’s Hospital in Boston, Massachusetts, told NBC News. “What’s unique about our study is we were looking at regular people who would not otherwise have been screened or tested.”

Treatment for low iron levels can include changes to your diet, as well as intravenous or oral supplements. Taking an iron supplement should be done under the guidance of a health care provider because of the risk of iron toxicity.

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

Nearly one-third of US adults may have low iron levels that can add to problems ranging from fatigue to heart failure. 

Researchers in a new study estimated that 7% of US adults have anemia, a blood disorder that can be iron related and is particularly well-known in part because of screenings given during pregnancy. But more striking was the finding in this latest study that a significant portion of the population may have less severe iron deficiencies that have been linked to serious health problems.

The body gets iron from food, and it can store iron for times when there isn’t enough it can access right away. The research team looked at test results that show whether people have enough iron stored, as well as whether their bodies could effectively use available iron. If you don’t have enough iron stored, you have a condition called absolute iron deficiency. And if you have stored iron but problems using it, you have what’s called functional iron deficiency. The study found that an estimated 14% of adults have absolute iron deficiency, and another 15% have functional iron deficiency.

The findings, published in JAMA Network Open, are based on data from more than 8,000 people who had laboratory iron levels on file as part of the National Health and Nutrition Examination Survey that was done from 2017 to 2020.

Besides anemia, iron deficiency is linked to other serious health problems, including restless legs syndrome, mental and thinking difficulties, reduced physical abilities, and heart failure, the authors noted. The effects of iron deficiency can significantly impact a person’s quality of life.

Routine blood work as part of an annual physical doesn’t typically include a check of iron levels unless there is a cause for concern. The out-of-pocket cost without using insurance for a blood test to check iron levels is typically around $60. 

“This is a common yet underappreciated public health problem,” study author Leo Buckley, PharmD, MPH, a clinical pharmacology specialist at Brigham and Women’s Hospital in Boston, Massachusetts, told NBC News. “What’s unique about our study is we were looking at regular people who would not otherwise have been screened or tested.”

Treatment for low iron levels can include changes to your diet, as well as intravenous or oral supplements. Taking an iron supplement should be done under the guidance of a health care provider because of the risk of iron toxicity.

A version of this article first appeared on WebMD.com.

Nearly one-third of US adults may have low iron levels that can add to problems ranging from fatigue to heart failure. 

Researchers in a new study estimated that 7% of US adults have anemia, a blood disorder that can be iron related and is particularly well-known in part because of screenings given during pregnancy. But more striking was the finding in this latest study that a significant portion of the population may have less severe iron deficiencies that have been linked to serious health problems.

The body gets iron from food, and it can store iron for times when there isn’t enough it can access right away. The research team looked at test results that show whether people have enough iron stored, as well as whether their bodies could effectively use available iron. If you don’t have enough iron stored, you have a condition called absolute iron deficiency. And if you have stored iron but problems using it, you have what’s called functional iron deficiency. The study found that an estimated 14% of adults have absolute iron deficiency, and another 15% have functional iron deficiency.

The findings, published in JAMA Network Open, are based on data from more than 8,000 people who had laboratory iron levels on file as part of the National Health and Nutrition Examination Survey that was done from 2017 to 2020.

Besides anemia, iron deficiency is linked to other serious health problems, including restless legs syndrome, mental and thinking difficulties, reduced physical abilities, and heart failure, the authors noted. The effects of iron deficiency can significantly impact a person’s quality of life.

Routine blood work as part of an annual physical doesn’t typically include a check of iron levels unless there is a cause for concern. The out-of-pocket cost without using insurance for a blood test to check iron levels is typically around $60. 

“This is a common yet underappreciated public health problem,” study author Leo Buckley, PharmD, MPH, a clinical pharmacology specialist at Brigham and Women’s Hospital in Boston, Massachusetts, told NBC News. “What’s unique about our study is we were looking at regular people who would not otherwise have been screened or tested.”

Treatment for low iron levels can include changes to your diet, as well as intravenous or oral supplements. Taking an iron supplement should be done under the guidance of a health care provider because of the risk of iron toxicity.

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA NETWORK OPEN

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Walking App Works Only if Users Think It Does

Article Type
Changed
Fri, 09/27/2024 - 11:37

 

TOPLINE:

Apps designed to increase physical activity may be useful in increasing daily step counts for users who believe the intervention beneficial, but not for those who do not. The app’s effectiveness is notably influenced by how users perceive its utility.

METHODOLOGY:

  • Researchers conducted a randomized controlled trial from February 2021 to May 2022 to evaluate the effectiveness of SNapp, an adaptive app designed to promote walking through tailored coaching content.
  • Overall, 176 adults (76% women; mean age, 56 years) were randomly assigned to use the app plus tailored coaching content (SNapp group; n = 87) or only the step counter app (control group; n = 89).
  • SNapp’s coaching content provided personalized feedback on step counts and recommendations for increasing walking, while also considering individual preferences for behavior change techniques.
  • The primary outcome was the daily step count recorded by the app, which was updated on an hourly basis in a database over an intervention period of 12 months.
  • Perceptions of ease of use and usefulness were assessed to determine their effect on the effectiveness of the app.

TAKEAWAY:

  • Intervention group participants used the app nearly 30% of days, while those using the app alone showed almost identical use.
  • The SNapp intervention did not significantly affect the step counts on average over time (B, −202.30; 95% CI, −889.7 to 485.1).
  • Perceived usefulness significantly moderated the intervention effect of SNapp (B, 344.38; 90% CI, 40.4-648.3), but perceived ease of use did not (B, 38.60; 90% CI, −276.5 to 353.7).
  • Among participants with a high perceived usefulness, the SNapp group had a higher median step count than the control group (median difference, 1260 steps; 90% CI, −3243.7 to 1298.2); however, this difference was not statistically significant.

IN PRACTICE:

“This study shows that perceived usefulness is also an important factor influencing behavioral effects. Hence, it is essential for apps to be perceived as useful to effectively improve users’ activity levels,” the authors wrote.

SOURCE:

The study was led by Anne L. Vos, PhD, of the Amsterdam School of Communication Research at the University of Amsterdam, in the Netherlands. It was published online on September 16, 2024, in the American Journal of Preventive Medicine.

LIMITATIONS:

The study’s recruitment strategy primarily attracted highly educated individuals, limiting generalizability. The app’s accuracy in measuring steps could be improved, as it sometimes underestimated step counts. Researchers also were unable to check if participants read messages from coaches.

DISCLOSURES:

The study was supported by grants from the Dutch Heart Foundation and the Netherlands Organisation for Health Research and Development. No relevant conflicts of interest were disclosed by the authors.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Apps designed to increase physical activity may be useful in increasing daily step counts for users who believe the intervention beneficial, but not for those who do not. The app’s effectiveness is notably influenced by how users perceive its utility.

METHODOLOGY:

  • Researchers conducted a randomized controlled trial from February 2021 to May 2022 to evaluate the effectiveness of SNapp, an adaptive app designed to promote walking through tailored coaching content.
  • Overall, 176 adults (76% women; mean age, 56 years) were randomly assigned to use the app plus tailored coaching content (SNapp group; n = 87) or only the step counter app (control group; n = 89).
  • SNapp’s coaching content provided personalized feedback on step counts and recommendations for increasing walking, while also considering individual preferences for behavior change techniques.
  • The primary outcome was the daily step count recorded by the app, which was updated on an hourly basis in a database over an intervention period of 12 months.
  • Perceptions of ease of use and usefulness were assessed to determine their effect on the effectiveness of the app.

TAKEAWAY:

  • Intervention group participants used the app nearly 30% of days, while those using the app alone showed almost identical use.
  • The SNapp intervention did not significantly affect the step counts on average over time (B, −202.30; 95% CI, −889.7 to 485.1).
  • Perceived usefulness significantly moderated the intervention effect of SNapp (B, 344.38; 90% CI, 40.4-648.3), but perceived ease of use did not (B, 38.60; 90% CI, −276.5 to 353.7).
  • Among participants with a high perceived usefulness, the SNapp group had a higher median step count than the control group (median difference, 1260 steps; 90% CI, −3243.7 to 1298.2); however, this difference was not statistically significant.

IN PRACTICE:

“This study shows that perceived usefulness is also an important factor influencing behavioral effects. Hence, it is essential for apps to be perceived as useful to effectively improve users’ activity levels,” the authors wrote.

SOURCE:

The study was led by Anne L. Vos, PhD, of the Amsterdam School of Communication Research at the University of Amsterdam, in the Netherlands. It was published online on September 16, 2024, in the American Journal of Preventive Medicine.

LIMITATIONS:

The study’s recruitment strategy primarily attracted highly educated individuals, limiting generalizability. The app’s accuracy in measuring steps could be improved, as it sometimes underestimated step counts. Researchers also were unable to check if participants read messages from coaches.

DISCLOSURES:

The study was supported by grants from the Dutch Heart Foundation and the Netherlands Organisation for Health Research and Development. No relevant conflicts of interest were disclosed by the authors.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Apps designed to increase physical activity may be useful in increasing daily step counts for users who believe the intervention beneficial, but not for those who do not. The app’s effectiveness is notably influenced by how users perceive its utility.

METHODOLOGY:

  • Researchers conducted a randomized controlled trial from February 2021 to May 2022 to evaluate the effectiveness of SNapp, an adaptive app designed to promote walking through tailored coaching content.
  • Overall, 176 adults (76% women; mean age, 56 years) were randomly assigned to use the app plus tailored coaching content (SNapp group; n = 87) or only the step counter app (control group; n = 89).
  • SNapp’s coaching content provided personalized feedback on step counts and recommendations for increasing walking, while also considering individual preferences for behavior change techniques.
  • The primary outcome was the daily step count recorded by the app, which was updated on an hourly basis in a database over an intervention period of 12 months.
  • Perceptions of ease of use and usefulness were assessed to determine their effect on the effectiveness of the app.

TAKEAWAY:

  • Intervention group participants used the app nearly 30% of days, while those using the app alone showed almost identical use.
  • The SNapp intervention did not significantly affect the step counts on average over time (B, −202.30; 95% CI, −889.7 to 485.1).
  • Perceived usefulness significantly moderated the intervention effect of SNapp (B, 344.38; 90% CI, 40.4-648.3), but perceived ease of use did not (B, 38.60; 90% CI, −276.5 to 353.7).
  • Among participants with a high perceived usefulness, the SNapp group had a higher median step count than the control group (median difference, 1260 steps; 90% CI, −3243.7 to 1298.2); however, this difference was not statistically significant.

IN PRACTICE:

“This study shows that perceived usefulness is also an important factor influencing behavioral effects. Hence, it is essential for apps to be perceived as useful to effectively improve users’ activity levels,” the authors wrote.

SOURCE:

The study was led by Anne L. Vos, PhD, of the Amsterdam School of Communication Research at the University of Amsterdam, in the Netherlands. It was published online on September 16, 2024, in the American Journal of Preventive Medicine.

LIMITATIONS:

The study’s recruitment strategy primarily attracted highly educated individuals, limiting generalizability. The app’s accuracy in measuring steps could be improved, as it sometimes underestimated step counts. Researchers also were unable to check if participants read messages from coaches.

DISCLOSURES:

The study was supported by grants from the Dutch Heart Foundation and the Netherlands Organisation for Health Research and Development. No relevant conflicts of interest were disclosed by the authors.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Call to Action’: Greater CVD Focus Urged for Type 1 Diabetes

Article Type
Changed
Fri, 09/27/2024 - 11:15

— Emerging data points to the urgent need for cardiovascular risk reduction in all adults with type 1 diabetes (T1D), including those who are young and those diagnosed in adulthood.

At the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting, two entire oral abstract sessions were devoted to research examining cardiovascular risk specifically in people with T1D. There is increasing evidence that as with type 2 diabetes (T2D), clinical visits need to focus on other cardiovascular risk factors and glucose.

Findings included the evidence of severe coronary artery disease (CAD) in asymptomatic adults with T1D, increased risks for mortality and cardiac events in people diagnosed with T1D in adulthood, and a greater cardiovascular risk for those with overweight/obesity and among those with more cumulative exposure to both hyperglycemia and dyslipidemia.

One speaker, Dr. Rebecka Johanna Bergdal, of the Folkhälsan Research Center and the University of Helsinki, Finland, issued a “call to action,” saying, “We call on healthcare professionals to continue supporting and encouraging individuals with T1D towards better management of diabetes, including both glucose and lipid management.”

Session Moderator Krzysztof Strojek, MD, PhD, head of the Department of Internal Medicine, Diabetology and Cardiometabolic Diseases at the Medical University of Silesia, Katowice, Poland, told this news organization that all the data point in the same direction for T1D management, to “look not only at A1c and blood glucose control but also lipids, hypertension, smoking status, all these risk factors recognized in type 2 ... are also important in T1D.”
 

The ‘Alarming’ Finding of CAD in Asymptomatic Patients

Michal Dubsky, MD, PhD, of the Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic, presented findings from 62 asymptomatic patients with T1D for > 10 years (mean, 36 years), with a mean A1c of 7.5% (58 mmol/mol), and no prior history of cardiovascular disease (CVD). They had slightly elevated CVD biomarkers, including a mean low-density lipoprotein (LDL) cholesterol level of 2.33 mmol/L, lipoprotein (a) level of 15 nmol/L, and N-terminal pro-B-type natriuretic peptide level of 125.3 ng/L. 

All underwent a noninvasive carotid ultrasound and coronary artery calcium (CAC) scoring. Of those, 12 patients had a CAC score > 400 and/or presence of two or more carotid plaques identified as high-risk.

Those 12 patients underwent coronary angiography and had a total of 29 vessels examined by optical coherence tomography (OCT), “an invasive intravascular method for assessing coronary atherosclerosis that is far more sensitive than standard coronary angiography, especially for the detection of high-risk vulnerable plaques without a hemodynamically significant stenosis,” Dr. Dubsky explained.

Coronary angiography showed obstructive CAD in 5 of the 12 patients. Their mean calcium score was 950 and mean number of carotid plaques was 2.8. Features associated with plaque vulnerability included microphage accumulation in 24 vessels, lipid-rich plaques in 23, spotty calcium in 19, and neovascularizations in 13.

Thin-cap fibroatheroma, a strong predictor of plaque rupture, was present in 7 of the 12 patients (58.3%), and four had features of very high-risk plaques, defined as thin-cap fibroatheroma with a minimal lumen area < 3.5 mm2, a lipid arch > 180 degrees, and macrophages. 

“Our study showed that asymptomatic T1D patients with high CAC score and carotid plaques had very severe OCT findings. We observed a significant proportion of high-risk lesions potentially associated with plaque rupture and risk of CV death. Therefore, we believe these patients should be treated as very high-risk with target LDL below 1.4 mmol/L (55 mg/dL), even though they are completely asymptomatic,” Dr. Dubsky concluded.

He added that because OCT is invasive and costly, the CAC score can be used to guide the decision for statin use, with any score above 100 considered elevated risk. 

Study coauthor Martin Haluzik, MD, professor of internal medicine in the Charles University, Prague, Czech Republic, told this news organization, “I think it’s very alarming because some of these are basically very healthy-looking young people, so you don’t really expect them to have significant cardiovascular complications already or significant plaques. I think it shows that we should be more proactive in looking into the risk of cardiovascular complications and in looking into the early cardiovascular changes.”
 

 

 

Later Diagnosis Doesn’t Always Protect: Risk Seen in Adult-Onset T1D

Yuxia Wei, a PhD student at the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, presented an analysis of data from Sweden’s national health databases comparing cardiovascular outcomes between 10,184 people diagnosed with T1D at ages 18-29 years, 30-39 years, and ≥ 40 years; another 375,523 people diagnosed with T2D at those ages; and 509,172 population controls matched for age, sex, and county.

Those diagnosed after age 40 years had higher A1c levels and were less likely to be using insulin pumps than those diagnosed at younger adult ages. 

Compared with population controls, at a median of about 7 years of follow-up, people with T1D had significantly higher all-cause mortality at all diagnosis age groups, with a hazard ratio of 1.71. This rose to 2.78 for those diagnosed at age 30-39 years.

Compared with those with T2D, the mortality risks weren’t significantly different at any age, but the risks for non-cardiovascular death, including from cancer and infection, were significantly higher among those diagnosed after age 40 years (1.31 overall). Those diagnosed with T1D at any adult age had lower risks for major cardiovascular events than those diagnosed with T2D. Hazard ratios ranged from 0.27 for those diagnosed at age 18-29 years to 0.78 for those diagnosed after the age of 40 years.

Smoking and A1c above target were the greatest contributors to mortality. Those two factors, along with body mass index (BMI), were the strongest contributors to major adverse cardiovascular events (MACE).

“Adult-onset T1D carries excess risk of death and cardiovascular disease, without obvious attenuation over age at diagnosis…Smoking, A1c, and BMI are the key factors to be managed to improve prognosis in adult-onset T1D,” Ms. Wei concluded.
 

BMI: Often Overlooked in T1D, but a Major CVD Risk Factor

Two studies examined the link between overweight/obesity and cardiovascular risk in T1D. One, by Laurence Salle, MCU PH, of the Endocrinology, Diabetes and Metabolic Diseases Department at CHU Limoges, France, was a prospective, longitudinal cohort study of 2367 people with T1D at 68 centers in France who didn’t have a cardiovascular history at baseline.

Of those, 51% had normal BMI (18.5-24.9), 31% had overweight (25-29.9), and 18% had obesity (≥ 30). Cardiovascular risk factors, including LDL cholesterol, triglycerides, and hypertension increased with an increasing BMI. The 10-year CVD risk was significantly higher for those with overweight (9.61%) and obesity (9.93%) than for those with normal weight (7.24%), in both men and women. 

However, BMI was found to be an independent predictor of 10-year high cardiovascular risk in men but not women, while waist:height ratio independently predicted risk in both men and women, Dr. Salle reported.

The second BMI study, from Enrique Soto-Pedre, MBBS, of the Division of Population Health and Genomics at the University of Dundee, Scotland, presented data on a retrospective follow-up from 1995 to 2019 of 1973 people with T1D aged > 18 years at diagnosis (42% women; mean age, 34.2 years; 18.9% had obesity.

After 10 years of follow-up, those with overweight and obesity had significantly higher odds of developing arterial hypertension, even among those taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, with statistically significant adjusted hazard ratios of 1.73 and 3.37 for the obese and overweight groups, respectively. 

MACE were significantly more common among those with obesity, with an adjusted hazard ratio of 2.95, as was acute myocardial infarction, 3.33. 

“These results emphasize the importance of incorporating weight management into the overall management of individuals with T1D. No one has doubts about weight management in T2D, but in type 1, it’s not so clear. One of the main [concerns] would be safety [in terms of hypoglycemia],” Dr. Soto-Pedre concluded. 
 

 

 

Call for Action: Cumulative Glucose and Lipid Exposures Increase Risk

Dr. Bergdal presented data on the effects of cumulative glycemia and lipids on the risk for CAD in 3495 adults with T1D who had been diagnosed prior to the age of 40 years. The history of CAD or stroke was exclusion criteria. There were a total of 534 CAD events within a median follow-up of 19.4 years.

Cumulative glycemia, LDL cholesterol, triglycerides, and non–high-density lipoprotein cholesterol exposures were all significantly associated with CAD risk (P < .001 for all). With an adjustment for confounders, the highest tertile of glycemia was associated with a twofold increased risk for CAD. Both hyperglycemia and dyslipidemia were independently associated with CAD risk, Dr. Bergdal reported. 

“It’s important to minimize the time spent above A1c 7%, and lipid management in T1D must not be forgotten,” she said, prior to issuing her call for action.

Dr. Haluzik reported receiving honoraria for talks and/or consultancy and/or research funding from Eli Lilly, Novo Nordisk, Sanofi, AstraZeneca, Mundipharma, Bristol Myers Squibb, Amgen, Boehringer Ingelheim, Janssen, Ypsomed, and Johnson & Johnson. The presenters had no disclosures.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

— Emerging data points to the urgent need for cardiovascular risk reduction in all adults with type 1 diabetes (T1D), including those who are young and those diagnosed in adulthood.

At the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting, two entire oral abstract sessions were devoted to research examining cardiovascular risk specifically in people with T1D. There is increasing evidence that as with type 2 diabetes (T2D), clinical visits need to focus on other cardiovascular risk factors and glucose.

Findings included the evidence of severe coronary artery disease (CAD) in asymptomatic adults with T1D, increased risks for mortality and cardiac events in people diagnosed with T1D in adulthood, and a greater cardiovascular risk for those with overweight/obesity and among those with more cumulative exposure to both hyperglycemia and dyslipidemia.

One speaker, Dr. Rebecka Johanna Bergdal, of the Folkhälsan Research Center and the University of Helsinki, Finland, issued a “call to action,” saying, “We call on healthcare professionals to continue supporting and encouraging individuals with T1D towards better management of diabetes, including both glucose and lipid management.”

Session Moderator Krzysztof Strojek, MD, PhD, head of the Department of Internal Medicine, Diabetology and Cardiometabolic Diseases at the Medical University of Silesia, Katowice, Poland, told this news organization that all the data point in the same direction for T1D management, to “look not only at A1c and blood glucose control but also lipids, hypertension, smoking status, all these risk factors recognized in type 2 ... are also important in T1D.”
 

The ‘Alarming’ Finding of CAD in Asymptomatic Patients

Michal Dubsky, MD, PhD, of the Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic, presented findings from 62 asymptomatic patients with T1D for > 10 years (mean, 36 years), with a mean A1c of 7.5% (58 mmol/mol), and no prior history of cardiovascular disease (CVD). They had slightly elevated CVD biomarkers, including a mean low-density lipoprotein (LDL) cholesterol level of 2.33 mmol/L, lipoprotein (a) level of 15 nmol/L, and N-terminal pro-B-type natriuretic peptide level of 125.3 ng/L. 

All underwent a noninvasive carotid ultrasound and coronary artery calcium (CAC) scoring. Of those, 12 patients had a CAC score > 400 and/or presence of two or more carotid plaques identified as high-risk.

Those 12 patients underwent coronary angiography and had a total of 29 vessels examined by optical coherence tomography (OCT), “an invasive intravascular method for assessing coronary atherosclerosis that is far more sensitive than standard coronary angiography, especially for the detection of high-risk vulnerable plaques without a hemodynamically significant stenosis,” Dr. Dubsky explained.

Coronary angiography showed obstructive CAD in 5 of the 12 patients. Their mean calcium score was 950 and mean number of carotid plaques was 2.8. Features associated with plaque vulnerability included microphage accumulation in 24 vessels, lipid-rich plaques in 23, spotty calcium in 19, and neovascularizations in 13.

Thin-cap fibroatheroma, a strong predictor of plaque rupture, was present in 7 of the 12 patients (58.3%), and four had features of very high-risk plaques, defined as thin-cap fibroatheroma with a minimal lumen area < 3.5 mm2, a lipid arch > 180 degrees, and macrophages. 

“Our study showed that asymptomatic T1D patients with high CAC score and carotid plaques had very severe OCT findings. We observed a significant proportion of high-risk lesions potentially associated with plaque rupture and risk of CV death. Therefore, we believe these patients should be treated as very high-risk with target LDL below 1.4 mmol/L (55 mg/dL), even though they are completely asymptomatic,” Dr. Dubsky concluded.

He added that because OCT is invasive and costly, the CAC score can be used to guide the decision for statin use, with any score above 100 considered elevated risk. 

Study coauthor Martin Haluzik, MD, professor of internal medicine in the Charles University, Prague, Czech Republic, told this news organization, “I think it’s very alarming because some of these are basically very healthy-looking young people, so you don’t really expect them to have significant cardiovascular complications already or significant plaques. I think it shows that we should be more proactive in looking into the risk of cardiovascular complications and in looking into the early cardiovascular changes.”
 

 

 

Later Diagnosis Doesn’t Always Protect: Risk Seen in Adult-Onset T1D

Yuxia Wei, a PhD student at the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, presented an analysis of data from Sweden’s national health databases comparing cardiovascular outcomes between 10,184 people diagnosed with T1D at ages 18-29 years, 30-39 years, and ≥ 40 years; another 375,523 people diagnosed with T2D at those ages; and 509,172 population controls matched for age, sex, and county.

Those diagnosed after age 40 years had higher A1c levels and were less likely to be using insulin pumps than those diagnosed at younger adult ages. 

Compared with population controls, at a median of about 7 years of follow-up, people with T1D had significantly higher all-cause mortality at all diagnosis age groups, with a hazard ratio of 1.71. This rose to 2.78 for those diagnosed at age 30-39 years.

Compared with those with T2D, the mortality risks weren’t significantly different at any age, but the risks for non-cardiovascular death, including from cancer and infection, were significantly higher among those diagnosed after age 40 years (1.31 overall). Those diagnosed with T1D at any adult age had lower risks for major cardiovascular events than those diagnosed with T2D. Hazard ratios ranged from 0.27 for those diagnosed at age 18-29 years to 0.78 for those diagnosed after the age of 40 years.

Smoking and A1c above target were the greatest contributors to mortality. Those two factors, along with body mass index (BMI), were the strongest contributors to major adverse cardiovascular events (MACE).

“Adult-onset T1D carries excess risk of death and cardiovascular disease, without obvious attenuation over age at diagnosis…Smoking, A1c, and BMI are the key factors to be managed to improve prognosis in adult-onset T1D,” Ms. Wei concluded.
 

BMI: Often Overlooked in T1D, but a Major CVD Risk Factor

Two studies examined the link between overweight/obesity and cardiovascular risk in T1D. One, by Laurence Salle, MCU PH, of the Endocrinology, Diabetes and Metabolic Diseases Department at CHU Limoges, France, was a prospective, longitudinal cohort study of 2367 people with T1D at 68 centers in France who didn’t have a cardiovascular history at baseline.

Of those, 51% had normal BMI (18.5-24.9), 31% had overweight (25-29.9), and 18% had obesity (≥ 30). Cardiovascular risk factors, including LDL cholesterol, triglycerides, and hypertension increased with an increasing BMI. The 10-year CVD risk was significantly higher for those with overweight (9.61%) and obesity (9.93%) than for those with normal weight (7.24%), in both men and women. 

However, BMI was found to be an independent predictor of 10-year high cardiovascular risk in men but not women, while waist:height ratio independently predicted risk in both men and women, Dr. Salle reported.

The second BMI study, from Enrique Soto-Pedre, MBBS, of the Division of Population Health and Genomics at the University of Dundee, Scotland, presented data on a retrospective follow-up from 1995 to 2019 of 1973 people with T1D aged > 18 years at diagnosis (42% women; mean age, 34.2 years; 18.9% had obesity.

After 10 years of follow-up, those with overweight and obesity had significantly higher odds of developing arterial hypertension, even among those taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, with statistically significant adjusted hazard ratios of 1.73 and 3.37 for the obese and overweight groups, respectively. 

MACE were significantly more common among those with obesity, with an adjusted hazard ratio of 2.95, as was acute myocardial infarction, 3.33. 

“These results emphasize the importance of incorporating weight management into the overall management of individuals with T1D. No one has doubts about weight management in T2D, but in type 1, it’s not so clear. One of the main [concerns] would be safety [in terms of hypoglycemia],” Dr. Soto-Pedre concluded. 
 

 

 

Call for Action: Cumulative Glucose and Lipid Exposures Increase Risk

Dr. Bergdal presented data on the effects of cumulative glycemia and lipids on the risk for CAD in 3495 adults with T1D who had been diagnosed prior to the age of 40 years. The history of CAD or stroke was exclusion criteria. There were a total of 534 CAD events within a median follow-up of 19.4 years.

Cumulative glycemia, LDL cholesterol, triglycerides, and non–high-density lipoprotein cholesterol exposures were all significantly associated with CAD risk (P < .001 for all). With an adjustment for confounders, the highest tertile of glycemia was associated with a twofold increased risk for CAD. Both hyperglycemia and dyslipidemia were independently associated with CAD risk, Dr. Bergdal reported. 

“It’s important to minimize the time spent above A1c 7%, and lipid management in T1D must not be forgotten,” she said, prior to issuing her call for action.

Dr. Haluzik reported receiving honoraria for talks and/or consultancy and/or research funding from Eli Lilly, Novo Nordisk, Sanofi, AstraZeneca, Mundipharma, Bristol Myers Squibb, Amgen, Boehringer Ingelheim, Janssen, Ypsomed, and Johnson & Johnson. The presenters had no disclosures.
 

A version of this article first appeared on Medscape.com.

— Emerging data points to the urgent need for cardiovascular risk reduction in all adults with type 1 diabetes (T1D), including those who are young and those diagnosed in adulthood.

At the European Association for the Study of Diabetes (EASD) 2024 Annual Meeting, two entire oral abstract sessions were devoted to research examining cardiovascular risk specifically in people with T1D. There is increasing evidence that as with type 2 diabetes (T2D), clinical visits need to focus on other cardiovascular risk factors and glucose.

Findings included the evidence of severe coronary artery disease (CAD) in asymptomatic adults with T1D, increased risks for mortality and cardiac events in people diagnosed with T1D in adulthood, and a greater cardiovascular risk for those with overweight/obesity and among those with more cumulative exposure to both hyperglycemia and dyslipidemia.

One speaker, Dr. Rebecka Johanna Bergdal, of the Folkhälsan Research Center and the University of Helsinki, Finland, issued a “call to action,” saying, “We call on healthcare professionals to continue supporting and encouraging individuals with T1D towards better management of diabetes, including both glucose and lipid management.”

Session Moderator Krzysztof Strojek, MD, PhD, head of the Department of Internal Medicine, Diabetology and Cardiometabolic Diseases at the Medical University of Silesia, Katowice, Poland, told this news organization that all the data point in the same direction for T1D management, to “look not only at A1c and blood glucose control but also lipids, hypertension, smoking status, all these risk factors recognized in type 2 ... are also important in T1D.”
 

The ‘Alarming’ Finding of CAD in Asymptomatic Patients

Michal Dubsky, MD, PhD, of the Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic, presented findings from 62 asymptomatic patients with T1D for > 10 years (mean, 36 years), with a mean A1c of 7.5% (58 mmol/mol), and no prior history of cardiovascular disease (CVD). They had slightly elevated CVD biomarkers, including a mean low-density lipoprotein (LDL) cholesterol level of 2.33 mmol/L, lipoprotein (a) level of 15 nmol/L, and N-terminal pro-B-type natriuretic peptide level of 125.3 ng/L. 

All underwent a noninvasive carotid ultrasound and coronary artery calcium (CAC) scoring. Of those, 12 patients had a CAC score > 400 and/or presence of two or more carotid plaques identified as high-risk.

Those 12 patients underwent coronary angiography and had a total of 29 vessels examined by optical coherence tomography (OCT), “an invasive intravascular method for assessing coronary atherosclerosis that is far more sensitive than standard coronary angiography, especially for the detection of high-risk vulnerable plaques without a hemodynamically significant stenosis,” Dr. Dubsky explained.

Coronary angiography showed obstructive CAD in 5 of the 12 patients. Their mean calcium score was 950 and mean number of carotid plaques was 2.8. Features associated with plaque vulnerability included microphage accumulation in 24 vessels, lipid-rich plaques in 23, spotty calcium in 19, and neovascularizations in 13.

Thin-cap fibroatheroma, a strong predictor of plaque rupture, was present in 7 of the 12 patients (58.3%), and four had features of very high-risk plaques, defined as thin-cap fibroatheroma with a minimal lumen area < 3.5 mm2, a lipid arch > 180 degrees, and macrophages. 

“Our study showed that asymptomatic T1D patients with high CAC score and carotid plaques had very severe OCT findings. We observed a significant proportion of high-risk lesions potentially associated with plaque rupture and risk of CV death. Therefore, we believe these patients should be treated as very high-risk with target LDL below 1.4 mmol/L (55 mg/dL), even though they are completely asymptomatic,” Dr. Dubsky concluded.

He added that because OCT is invasive and costly, the CAC score can be used to guide the decision for statin use, with any score above 100 considered elevated risk. 

Study coauthor Martin Haluzik, MD, professor of internal medicine in the Charles University, Prague, Czech Republic, told this news organization, “I think it’s very alarming because some of these are basically very healthy-looking young people, so you don’t really expect them to have significant cardiovascular complications already or significant plaques. I think it shows that we should be more proactive in looking into the risk of cardiovascular complications and in looking into the early cardiovascular changes.”
 

 

 

Later Diagnosis Doesn’t Always Protect: Risk Seen in Adult-Onset T1D

Yuxia Wei, a PhD student at the Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, presented an analysis of data from Sweden’s national health databases comparing cardiovascular outcomes between 10,184 people diagnosed with T1D at ages 18-29 years, 30-39 years, and ≥ 40 years; another 375,523 people diagnosed with T2D at those ages; and 509,172 population controls matched for age, sex, and county.

Those diagnosed after age 40 years had higher A1c levels and were less likely to be using insulin pumps than those diagnosed at younger adult ages. 

Compared with population controls, at a median of about 7 years of follow-up, people with T1D had significantly higher all-cause mortality at all diagnosis age groups, with a hazard ratio of 1.71. This rose to 2.78 for those diagnosed at age 30-39 years.

Compared with those with T2D, the mortality risks weren’t significantly different at any age, but the risks for non-cardiovascular death, including from cancer and infection, were significantly higher among those diagnosed after age 40 years (1.31 overall). Those diagnosed with T1D at any adult age had lower risks for major cardiovascular events than those diagnosed with T2D. Hazard ratios ranged from 0.27 for those diagnosed at age 18-29 years to 0.78 for those diagnosed after the age of 40 years.

Smoking and A1c above target were the greatest contributors to mortality. Those two factors, along with body mass index (BMI), were the strongest contributors to major adverse cardiovascular events (MACE).

“Adult-onset T1D carries excess risk of death and cardiovascular disease, without obvious attenuation over age at diagnosis…Smoking, A1c, and BMI are the key factors to be managed to improve prognosis in adult-onset T1D,” Ms. Wei concluded.
 

BMI: Often Overlooked in T1D, but a Major CVD Risk Factor

Two studies examined the link between overweight/obesity and cardiovascular risk in T1D. One, by Laurence Salle, MCU PH, of the Endocrinology, Diabetes and Metabolic Diseases Department at CHU Limoges, France, was a prospective, longitudinal cohort study of 2367 people with T1D at 68 centers in France who didn’t have a cardiovascular history at baseline.

Of those, 51% had normal BMI (18.5-24.9), 31% had overweight (25-29.9), and 18% had obesity (≥ 30). Cardiovascular risk factors, including LDL cholesterol, triglycerides, and hypertension increased with an increasing BMI. The 10-year CVD risk was significantly higher for those with overweight (9.61%) and obesity (9.93%) than for those with normal weight (7.24%), in both men and women. 

However, BMI was found to be an independent predictor of 10-year high cardiovascular risk in men but not women, while waist:height ratio independently predicted risk in both men and women, Dr. Salle reported.

The second BMI study, from Enrique Soto-Pedre, MBBS, of the Division of Population Health and Genomics at the University of Dundee, Scotland, presented data on a retrospective follow-up from 1995 to 2019 of 1973 people with T1D aged > 18 years at diagnosis (42% women; mean age, 34.2 years; 18.9% had obesity.

After 10 years of follow-up, those with overweight and obesity had significantly higher odds of developing arterial hypertension, even among those taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, with statistically significant adjusted hazard ratios of 1.73 and 3.37 for the obese and overweight groups, respectively. 

MACE were significantly more common among those with obesity, with an adjusted hazard ratio of 2.95, as was acute myocardial infarction, 3.33. 

“These results emphasize the importance of incorporating weight management into the overall management of individuals with T1D. No one has doubts about weight management in T2D, but in type 1, it’s not so clear. One of the main [concerns] would be safety [in terms of hypoglycemia],” Dr. Soto-Pedre concluded. 
 

 

 

Call for Action: Cumulative Glucose and Lipid Exposures Increase Risk

Dr. Bergdal presented data on the effects of cumulative glycemia and lipids on the risk for CAD in 3495 adults with T1D who had been diagnosed prior to the age of 40 years. The history of CAD or stroke was exclusion criteria. There were a total of 534 CAD events within a median follow-up of 19.4 years.

Cumulative glycemia, LDL cholesterol, triglycerides, and non–high-density lipoprotein cholesterol exposures were all significantly associated with CAD risk (P < .001 for all). With an adjustment for confounders, the highest tertile of glycemia was associated with a twofold increased risk for CAD. Both hyperglycemia and dyslipidemia were independently associated with CAD risk, Dr. Bergdal reported. 

“It’s important to minimize the time spent above A1c 7%, and lipid management in T1D must not be forgotten,” she said, prior to issuing her call for action.

Dr. Haluzik reported receiving honoraria for talks and/or consultancy and/or research funding from Eli Lilly, Novo Nordisk, Sanofi, AstraZeneca, Mundipharma, Bristol Myers Squibb, Amgen, Boehringer Ingelheim, Janssen, Ypsomed, and Johnson & Johnson. The presenters had no disclosures.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EASD 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Childhood-Onset Atopic Dermatitis Adds Burden in Adulthood

Article Type
Changed
Fri, 09/27/2024 - 10:39

— There is a mountain of evidence that atopic dermatitis (AD) exerts a large negative impact on quality of life, but a unique study with data from more than 30,000 individuals showed that adults whose AD started in childhood carry a far greater psychological and social burden throughout their life relative to AD starting after childhood.

These data, drawn from the ambitious Scars of Life (SOL) project, “suggest that childhood AD persisting into adulthood is its own phenotype,” reported Jonathan I. Silverberg, MD, PhD, director of clinical research, Department of Dermatology, George Washington University, Washington, DC.

Dr. Jonathan I. Silverberg, professor of dermatology at George Washington University, Washington, DC
Dr. Silverberg
Dr. Jonathan I. Silverberg

One reasonable message from these data is that the failure to achieve adequate control of AD in children, whether by a late start of systemic agents or other reasons, results in a greater lifetime burden of disease when the burden beyond physical symptoms is measured, according to Dr. Silverberg.
 

More Than 30,000 From Five Continents Participated

In the SOL project, which was designed to analyze how the age of AD onset affects the severity of symptoms and quality of life, completed questionnaires were collected from 30,801 individuals in 27 countries on five continents. The questions, which elicited data to measure the burden of AD, were developed in association with several professional and patient associations with an interest in AD, including the National Eczema Association.

The SOL project has produced an enormous amount of data in four distinct groups, but Dr. Silverberg, speaking in a late-breaking news session at the annual congress of the European Academy of Dermatology and Venereology, focused on a comparison between the 2875 participants who had AD in childhood that has persisted into adulthood and the 7383 adults with adult-onset AD. Data from the other two subsets in SOL — AD in childhood but not in adulthood and no AD in either phase of life — are expected to fuel an extended series of publications.

In the two groups, baseline characteristics were similar with about 60% reporting moderate to severe symptoms and a median age of about 37 years. The proportion of women was 61% in both groups.

Using the PUSH-D questionnaire, which Dr. Silverberg described as a validated tool for gauging a sense of stigmatization, the greater burden of AD was remarkably consistent for those with childhood-onset AD vs adult-onset AD. With higher scores representing a greater sense of stigmatization, the differences in the overall score (23.0 vs 18.1; P < .0001) were highly significant as was every other domain evaluated.

For all five social behavior domains, such as avoiding contact in public and wariness of approaching people spontaneously, having AD onset in childhood persisting into adulthood produced significantly higher scores than having AD onset in adulthood, with no exceptions (P < .001 for all).
 

AD From Childhood Consistently Results in Worse Outcomes

Providing examples for some of the other 12 domains, Dr. Silverberg maintained that feelings of shame and psychological discomfort were always greater in adults with AD persistent since childhood vs AD starting in adulthood. The P values for these outcomes, such as experiencing bias at work or reporting a sense that others avoided them, were typically highly significant (P < .001).

Compared with those whose AD started in adulthood, “adults with atopic eczema that started during childhood have significantly more difficulties in their life, including occupational relationships, daily life, personal life, and partner or family relationships,” Dr. Silverberg reported.

He said that the data were controlled for multiple confounders, particularly greater severity of AD. He acknowledged that childhood onset might be considered a surrogate for more severe disease, but the data were controlled for this possibility.

Despite the fact that there are “thousands of studies across all age groups showing the burden of AD,” Dr. Silverberg considers these data to be unique by emphasizing the burden of chronicity rather than the impact of AD in any single moment in time.

For those with chronic AD from childhood, “the effect is not just on physical health but a deep negative influence on psychological and social aspects of life,” Dr. Silverberg said, suggesting that the independent effects of chronicity might be worth studying across other dermatologic diseases.

“Regulatory agencies focus on what you can do in that moment of time, losing the bigger picture of how patients are affected chronically,” he said, adding that this is an area of clinical research that should be further explored.

What the data further suggest “is that the earlier we intervene, the more likely patients will do better long term,” he said.
 

Data Provide Evidence of Systemic Therapy in Kids

For Gudrun Ratzinger, MD, of the Department of Dermatology and Venerology at the Medical University of Innsbruck in Austria, these are valuable data.

“When I prescribe systemic therapies to children, I often get resistance from the healthcare system and even other colleagues,” said Dr. Ratzinger, who was asked to comment on the results. “We are at a teaching hospital, but I often find that when patients return to their home physician, the systemic therapies are stopped.”

In her own practice, she believes the most effective therapies should be introduced in children and adults when complete control is not achieved on first-line drugs. “These data are very helpful for me in explaining to others the importance of effective treatment of atopic dermatitis in children,” she said.

Dr. Silverberg reported financial relationships with more than 40 pharmaceutical companies, including those that make drugs for AD. Dr. Ratzinger reported financial relationships with AbbVie, Almirall, Boehringer Ingelheim, Eli Lilly, Janssen, Leo Pharma, Novartis, Pelpharma, Pfizer, and UCB.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

— There is a mountain of evidence that atopic dermatitis (AD) exerts a large negative impact on quality of life, but a unique study with data from more than 30,000 individuals showed that adults whose AD started in childhood carry a far greater psychological and social burden throughout their life relative to AD starting after childhood.

These data, drawn from the ambitious Scars of Life (SOL) project, “suggest that childhood AD persisting into adulthood is its own phenotype,” reported Jonathan I. Silverberg, MD, PhD, director of clinical research, Department of Dermatology, George Washington University, Washington, DC.

Dr. Jonathan I. Silverberg, professor of dermatology at George Washington University, Washington, DC
Dr. Silverberg
Dr. Jonathan I. Silverberg

One reasonable message from these data is that the failure to achieve adequate control of AD in children, whether by a late start of systemic agents or other reasons, results in a greater lifetime burden of disease when the burden beyond physical symptoms is measured, according to Dr. Silverberg.
 

More Than 30,000 From Five Continents Participated

In the SOL project, which was designed to analyze how the age of AD onset affects the severity of symptoms and quality of life, completed questionnaires were collected from 30,801 individuals in 27 countries on five continents. The questions, which elicited data to measure the burden of AD, were developed in association with several professional and patient associations with an interest in AD, including the National Eczema Association.

The SOL project has produced an enormous amount of data in four distinct groups, but Dr. Silverberg, speaking in a late-breaking news session at the annual congress of the European Academy of Dermatology and Venereology, focused on a comparison between the 2875 participants who had AD in childhood that has persisted into adulthood and the 7383 adults with adult-onset AD. Data from the other two subsets in SOL — AD in childhood but not in adulthood and no AD in either phase of life — are expected to fuel an extended series of publications.

In the two groups, baseline characteristics were similar with about 60% reporting moderate to severe symptoms and a median age of about 37 years. The proportion of women was 61% in both groups.

Using the PUSH-D questionnaire, which Dr. Silverberg described as a validated tool for gauging a sense of stigmatization, the greater burden of AD was remarkably consistent for those with childhood-onset AD vs adult-onset AD. With higher scores representing a greater sense of stigmatization, the differences in the overall score (23.0 vs 18.1; P < .0001) were highly significant as was every other domain evaluated.

For all five social behavior domains, such as avoiding contact in public and wariness of approaching people spontaneously, having AD onset in childhood persisting into adulthood produced significantly higher scores than having AD onset in adulthood, with no exceptions (P < .001 for all).
 

AD From Childhood Consistently Results in Worse Outcomes

Providing examples for some of the other 12 domains, Dr. Silverberg maintained that feelings of shame and psychological discomfort were always greater in adults with AD persistent since childhood vs AD starting in adulthood. The P values for these outcomes, such as experiencing bias at work or reporting a sense that others avoided them, were typically highly significant (P < .001).

Compared with those whose AD started in adulthood, “adults with atopic eczema that started during childhood have significantly more difficulties in their life, including occupational relationships, daily life, personal life, and partner or family relationships,” Dr. Silverberg reported.

He said that the data were controlled for multiple confounders, particularly greater severity of AD. He acknowledged that childhood onset might be considered a surrogate for more severe disease, but the data were controlled for this possibility.

Despite the fact that there are “thousands of studies across all age groups showing the burden of AD,” Dr. Silverberg considers these data to be unique by emphasizing the burden of chronicity rather than the impact of AD in any single moment in time.

For those with chronic AD from childhood, “the effect is not just on physical health but a deep negative influence on psychological and social aspects of life,” Dr. Silverberg said, suggesting that the independent effects of chronicity might be worth studying across other dermatologic diseases.

“Regulatory agencies focus on what you can do in that moment of time, losing the bigger picture of how patients are affected chronically,” he said, adding that this is an area of clinical research that should be further explored.

What the data further suggest “is that the earlier we intervene, the more likely patients will do better long term,” he said.
 

Data Provide Evidence of Systemic Therapy in Kids

For Gudrun Ratzinger, MD, of the Department of Dermatology and Venerology at the Medical University of Innsbruck in Austria, these are valuable data.

“When I prescribe systemic therapies to children, I often get resistance from the healthcare system and even other colleagues,” said Dr. Ratzinger, who was asked to comment on the results. “We are at a teaching hospital, but I often find that when patients return to their home physician, the systemic therapies are stopped.”

In her own practice, she believes the most effective therapies should be introduced in children and adults when complete control is not achieved on first-line drugs. “These data are very helpful for me in explaining to others the importance of effective treatment of atopic dermatitis in children,” she said.

Dr. Silverberg reported financial relationships with more than 40 pharmaceutical companies, including those that make drugs for AD. Dr. Ratzinger reported financial relationships with AbbVie, Almirall, Boehringer Ingelheim, Eli Lilly, Janssen, Leo Pharma, Novartis, Pelpharma, Pfizer, and UCB.

A version of this article first appeared on Medscape.com.

— There is a mountain of evidence that atopic dermatitis (AD) exerts a large negative impact on quality of life, but a unique study with data from more than 30,000 individuals showed that adults whose AD started in childhood carry a far greater psychological and social burden throughout their life relative to AD starting after childhood.

These data, drawn from the ambitious Scars of Life (SOL) project, “suggest that childhood AD persisting into adulthood is its own phenotype,” reported Jonathan I. Silverberg, MD, PhD, director of clinical research, Department of Dermatology, George Washington University, Washington, DC.

Dr. Jonathan I. Silverberg, professor of dermatology at George Washington University, Washington, DC
Dr. Silverberg
Dr. Jonathan I. Silverberg

One reasonable message from these data is that the failure to achieve adequate control of AD in children, whether by a late start of systemic agents or other reasons, results in a greater lifetime burden of disease when the burden beyond physical symptoms is measured, according to Dr. Silverberg.
 

More Than 30,000 From Five Continents Participated

In the SOL project, which was designed to analyze how the age of AD onset affects the severity of symptoms and quality of life, completed questionnaires were collected from 30,801 individuals in 27 countries on five continents. The questions, which elicited data to measure the burden of AD, were developed in association with several professional and patient associations with an interest in AD, including the National Eczema Association.

The SOL project has produced an enormous amount of data in four distinct groups, but Dr. Silverberg, speaking in a late-breaking news session at the annual congress of the European Academy of Dermatology and Venereology, focused on a comparison between the 2875 participants who had AD in childhood that has persisted into adulthood and the 7383 adults with adult-onset AD. Data from the other two subsets in SOL — AD in childhood but not in adulthood and no AD in either phase of life — are expected to fuel an extended series of publications.

In the two groups, baseline characteristics were similar with about 60% reporting moderate to severe symptoms and a median age of about 37 years. The proportion of women was 61% in both groups.

Using the PUSH-D questionnaire, which Dr. Silverberg described as a validated tool for gauging a sense of stigmatization, the greater burden of AD was remarkably consistent for those with childhood-onset AD vs adult-onset AD. With higher scores representing a greater sense of stigmatization, the differences in the overall score (23.0 vs 18.1; P < .0001) were highly significant as was every other domain evaluated.

For all five social behavior domains, such as avoiding contact in public and wariness of approaching people spontaneously, having AD onset in childhood persisting into adulthood produced significantly higher scores than having AD onset in adulthood, with no exceptions (P < .001 for all).
 

AD From Childhood Consistently Results in Worse Outcomes

Providing examples for some of the other 12 domains, Dr. Silverberg maintained that feelings of shame and psychological discomfort were always greater in adults with AD persistent since childhood vs AD starting in adulthood. The P values for these outcomes, such as experiencing bias at work or reporting a sense that others avoided them, were typically highly significant (P < .001).

Compared with those whose AD started in adulthood, “adults with atopic eczema that started during childhood have significantly more difficulties in their life, including occupational relationships, daily life, personal life, and partner or family relationships,” Dr. Silverberg reported.

He said that the data were controlled for multiple confounders, particularly greater severity of AD. He acknowledged that childhood onset might be considered a surrogate for more severe disease, but the data were controlled for this possibility.

Despite the fact that there are “thousands of studies across all age groups showing the burden of AD,” Dr. Silverberg considers these data to be unique by emphasizing the burden of chronicity rather than the impact of AD in any single moment in time.

For those with chronic AD from childhood, “the effect is not just on physical health but a deep negative influence on psychological and social aspects of life,” Dr. Silverberg said, suggesting that the independent effects of chronicity might be worth studying across other dermatologic diseases.

“Regulatory agencies focus on what you can do in that moment of time, losing the bigger picture of how patients are affected chronically,” he said, adding that this is an area of clinical research that should be further explored.

What the data further suggest “is that the earlier we intervene, the more likely patients will do better long term,” he said.
 

Data Provide Evidence of Systemic Therapy in Kids

For Gudrun Ratzinger, MD, of the Department of Dermatology and Venerology at the Medical University of Innsbruck in Austria, these are valuable data.

“When I prescribe systemic therapies to children, I often get resistance from the healthcare system and even other colleagues,” said Dr. Ratzinger, who was asked to comment on the results. “We are at a teaching hospital, but I often find that when patients return to their home physician, the systemic therapies are stopped.”

In her own practice, she believes the most effective therapies should be introduced in children and adults when complete control is not achieved on first-line drugs. “These data are very helpful for me in explaining to others the importance of effective treatment of atopic dermatitis in children,” she said.

Dr. Silverberg reported financial relationships with more than 40 pharmaceutical companies, including those that make drugs for AD. Dr. Ratzinger reported financial relationships with AbbVie, Almirall, Boehringer Ingelheim, Eli Lilly, Janssen, Leo Pharma, Novartis, Pelpharma, Pfizer, and UCB.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EADV 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Sex and Gender Influence Outcomes in Colorectal Cancer

Article Type
Changed
Fri, 09/27/2024 - 09:47

Not all patients with colorectal cancer are the same, and more research is needed to examine differences between patients according to their sex, gender, and even menopause status, according to experts speaking here at the European Society for Medical Oncology (ESMO) Annual Meeting 2024.

“The concepts of gender and sex are not at all new in oncology, but what is needed is a renewed focus on them and the prospective collection of data in this regard,” said Kathrin Heinrich, MD, of University Hospital LMU Munich, Germany.
 

Sex and Gender: What’s New? 

Speaking at the conference, Dr. Heinrich cited a 2020 study published in The Lancet that stated, “Sex and gender are the foundation of precision medicine, and their differences should guide decision-making processes to promote gender equity.”

Sex differences have clear biological and pathophysiological consequences in oncology. Available data show differences between men and women in terms of gene expression, epigenetics, metabolomics, tumor microenvironment, immune system, and microbiome. These are all critical for understanding tumor biology and identifying new treatments.

Colorectal cancer provides an excellent example of how sex differences can influence treatment outcomes.

From an incidence perspective, the numbers reported by the large epidemiological GLOBOCAN study are quite similar between the two sexes, with men accounting for 56% of patients and women for 44%.

However, there are noticeable differences in tumor characteristics, with women more frequently presenting with right-sided colon tumors and BRAF mutations; both features associated with a worse prognosis.

Sex also affects body composition, influencing the percentage of metabolically active body mass, which can alter the effectiveness and distribution of a drug and the necessary dose to achieve the desired effect.

“Despite this evidence, clinical practice often overlooks differences between the sexes when planning therapies,” Dr. Heinrich said, also recalling how in many cases the side effects of treatments — from chemotherapy to immunotherapy — differ in intensity and type between men and women.
 

Toward a More Targeted and Inclusive Approach

Sex is a well-defined concept from a biological standpoint and, consequently, the differences between the sexes are easy to identify. Analyzing gender differences is much more complex.

“It is not enough to tick the male or female box on a questionnaire. It is necessary to consider more complex aspects to measure, such as identity, role, and gender relations,” Dr. Heinrich said, also presenting a list of specific questionnaires to assess these components.

In today’s oncology, however, such questionnaires are mainly used to analyze secondary outcomes such as quality of life, while examples from other areas of medicine, particularly cardiology, show how questionnaires on gender can predict some clinical outcomes better than those on sex alone and that studies considering sex and gender are feasible.

Gender identity influences many aspects of health, such as attitudes toward prevention, the seeking of information and medical care, and risk behaviors. “The new approach to discussing sex and gender in oncology is to consider these factors in therapeutic decisions,” Dr. Heinrich said. “I hope that within a few years this will be fully achievable, thanks to the inclusion in our studies of gender scores, ad hoc patient-reported outcomes, and information related, for example, to menopausal status or the number of pregnancies,” she added.

To harness the differences between sex and gender in favor of the patient, however, it is also necessary to change the approach to clinical studies. Currently, data on these aspects are typically collected retrospectively. However, they should be integrated prospectively from the study’s beginning.

“We look at increasingly smaller subgroups of patients, at mutations affecting 1%-2% of our patients, but we do not collect data on sex or menopausal status, which are actually extremely simple to record,” Dr. Heinrich said, calling for more inclusive studies, especially involving the LGBTQI+ community, traditionally excluded from clinical trials and many services.

“Fortunately, we live in an era in which sensitivity towards this community is continuously increasing. We must gather information on this population, which fully belongs to what we scientifically define as the ‘real-world’ approach.”

Dr. Heinrich declared honoraria, consulting and advisory roles, and travel support from several companies, including Amgen, BMS, Merck, MSD, Roche-Janssen, Taiho, Servier, and Streamed Up.

This story was translated from Univadis Italy using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Not all patients with colorectal cancer are the same, and more research is needed to examine differences between patients according to their sex, gender, and even menopause status, according to experts speaking here at the European Society for Medical Oncology (ESMO) Annual Meeting 2024.

“The concepts of gender and sex are not at all new in oncology, but what is needed is a renewed focus on them and the prospective collection of data in this regard,” said Kathrin Heinrich, MD, of University Hospital LMU Munich, Germany.
 

Sex and Gender: What’s New? 

Speaking at the conference, Dr. Heinrich cited a 2020 study published in The Lancet that stated, “Sex and gender are the foundation of precision medicine, and their differences should guide decision-making processes to promote gender equity.”

Sex differences have clear biological and pathophysiological consequences in oncology. Available data show differences between men and women in terms of gene expression, epigenetics, metabolomics, tumor microenvironment, immune system, and microbiome. These are all critical for understanding tumor biology and identifying new treatments.

Colorectal cancer provides an excellent example of how sex differences can influence treatment outcomes.

From an incidence perspective, the numbers reported by the large epidemiological GLOBOCAN study are quite similar between the two sexes, with men accounting for 56% of patients and women for 44%.

However, there are noticeable differences in tumor characteristics, with women more frequently presenting with right-sided colon tumors and BRAF mutations; both features associated with a worse prognosis.

Sex also affects body composition, influencing the percentage of metabolically active body mass, which can alter the effectiveness and distribution of a drug and the necessary dose to achieve the desired effect.

“Despite this evidence, clinical practice often overlooks differences between the sexes when planning therapies,” Dr. Heinrich said, also recalling how in many cases the side effects of treatments — from chemotherapy to immunotherapy — differ in intensity and type between men and women.
 

Toward a More Targeted and Inclusive Approach

Sex is a well-defined concept from a biological standpoint and, consequently, the differences between the sexes are easy to identify. Analyzing gender differences is much more complex.

“It is not enough to tick the male or female box on a questionnaire. It is necessary to consider more complex aspects to measure, such as identity, role, and gender relations,” Dr. Heinrich said, also presenting a list of specific questionnaires to assess these components.

In today’s oncology, however, such questionnaires are mainly used to analyze secondary outcomes such as quality of life, while examples from other areas of medicine, particularly cardiology, show how questionnaires on gender can predict some clinical outcomes better than those on sex alone and that studies considering sex and gender are feasible.

Gender identity influences many aspects of health, such as attitudes toward prevention, the seeking of information and medical care, and risk behaviors. “The new approach to discussing sex and gender in oncology is to consider these factors in therapeutic decisions,” Dr. Heinrich said. “I hope that within a few years this will be fully achievable, thanks to the inclusion in our studies of gender scores, ad hoc patient-reported outcomes, and information related, for example, to menopausal status or the number of pregnancies,” she added.

To harness the differences between sex and gender in favor of the patient, however, it is also necessary to change the approach to clinical studies. Currently, data on these aspects are typically collected retrospectively. However, they should be integrated prospectively from the study’s beginning.

“We look at increasingly smaller subgroups of patients, at mutations affecting 1%-2% of our patients, but we do not collect data on sex or menopausal status, which are actually extremely simple to record,” Dr. Heinrich said, calling for more inclusive studies, especially involving the LGBTQI+ community, traditionally excluded from clinical trials and many services.

“Fortunately, we live in an era in which sensitivity towards this community is continuously increasing. We must gather information on this population, which fully belongs to what we scientifically define as the ‘real-world’ approach.”

Dr. Heinrich declared honoraria, consulting and advisory roles, and travel support from several companies, including Amgen, BMS, Merck, MSD, Roche-Janssen, Taiho, Servier, and Streamed Up.

This story was translated from Univadis Italy using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Not all patients with colorectal cancer are the same, and more research is needed to examine differences between patients according to their sex, gender, and even menopause status, according to experts speaking here at the European Society for Medical Oncology (ESMO) Annual Meeting 2024.

“The concepts of gender and sex are not at all new in oncology, but what is needed is a renewed focus on them and the prospective collection of data in this regard,” said Kathrin Heinrich, MD, of University Hospital LMU Munich, Germany.
 

Sex and Gender: What’s New? 

Speaking at the conference, Dr. Heinrich cited a 2020 study published in The Lancet that stated, “Sex and gender are the foundation of precision medicine, and their differences should guide decision-making processes to promote gender equity.”

Sex differences have clear biological and pathophysiological consequences in oncology. Available data show differences between men and women in terms of gene expression, epigenetics, metabolomics, tumor microenvironment, immune system, and microbiome. These are all critical for understanding tumor biology and identifying new treatments.

Colorectal cancer provides an excellent example of how sex differences can influence treatment outcomes.

From an incidence perspective, the numbers reported by the large epidemiological GLOBOCAN study are quite similar between the two sexes, with men accounting for 56% of patients and women for 44%.

However, there are noticeable differences in tumor characteristics, with women more frequently presenting with right-sided colon tumors and BRAF mutations; both features associated with a worse prognosis.

Sex also affects body composition, influencing the percentage of metabolically active body mass, which can alter the effectiveness and distribution of a drug and the necessary dose to achieve the desired effect.

“Despite this evidence, clinical practice often overlooks differences between the sexes when planning therapies,” Dr. Heinrich said, also recalling how in many cases the side effects of treatments — from chemotherapy to immunotherapy — differ in intensity and type between men and women.
 

Toward a More Targeted and Inclusive Approach

Sex is a well-defined concept from a biological standpoint and, consequently, the differences between the sexes are easy to identify. Analyzing gender differences is much more complex.

“It is not enough to tick the male or female box on a questionnaire. It is necessary to consider more complex aspects to measure, such as identity, role, and gender relations,” Dr. Heinrich said, also presenting a list of specific questionnaires to assess these components.

In today’s oncology, however, such questionnaires are mainly used to analyze secondary outcomes such as quality of life, while examples from other areas of medicine, particularly cardiology, show how questionnaires on gender can predict some clinical outcomes better than those on sex alone and that studies considering sex and gender are feasible.

Gender identity influences many aspects of health, such as attitudes toward prevention, the seeking of information and medical care, and risk behaviors. “The new approach to discussing sex and gender in oncology is to consider these factors in therapeutic decisions,” Dr. Heinrich said. “I hope that within a few years this will be fully achievable, thanks to the inclusion in our studies of gender scores, ad hoc patient-reported outcomes, and information related, for example, to menopausal status or the number of pregnancies,” she added.

To harness the differences between sex and gender in favor of the patient, however, it is also necessary to change the approach to clinical studies. Currently, data on these aspects are typically collected retrospectively. However, they should be integrated prospectively from the study’s beginning.

“We look at increasingly smaller subgroups of patients, at mutations affecting 1%-2% of our patients, but we do not collect data on sex or menopausal status, which are actually extremely simple to record,” Dr. Heinrich said, calling for more inclusive studies, especially involving the LGBTQI+ community, traditionally excluded from clinical trials and many services.

“Fortunately, we live in an era in which sensitivity towards this community is continuously increasing. We must gather information on this population, which fully belongs to what we scientifically define as the ‘real-world’ approach.”

Dr. Heinrich declared honoraria, consulting and advisory roles, and travel support from several companies, including Amgen, BMS, Merck, MSD, Roche-Janssen, Taiho, Servier, and Streamed Up.

This story was translated from Univadis Italy using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ESMO CONGRESS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Nasal Staph Aureus Carriage Linked to Surgical Infections

Article Type
Changed
Thu, 09/26/2024 - 16:11
Display Headline
Nasal Staph Aureus Carriage Linked to Surgical Infections

Nasal Staphylococcus aureus (SA) carriage is associated with SA surgical site and bloodstream infections following a surgical procedure, according to findings from a new prospective, multicenter clinical study published in the August issue of Open Forum Infectious Diseases.

“This was a pan-European study with many hospitals, many different clinical settings, and as far as I’m aware, it hasn’t been done before. [The new study] covers a lot of European countries and a lot of surgical specialties,” said lead author Jan Kluytmans, MD. The study also captures the current state of preventive strategies in surgery, such as changes in air flow, dress, and skin preparation, he added.

The study included 5004 patients from 33 hospitals in ten European countries, of whom 67.3% were found to be SA carriers. The median age was 65 years, and 49.8% of patients were male. Open cardiac, and knee and hip prosthesis surgeries made up the largest fraction, but there were 12 types of surgery included in the study.

There were 100 SA surgical site or blood infections. The researchers found an association between surgical site or blood infection and SA carriage at any site (adjusted hazard ratio [aHR], 4.6; 95% CI, 2.1-10.0) and nasal SA carriage (aHR, 4.2; 95% CI, 2.0-8.6). Extranasal SA carriage was not associated with an increased infection risk.

Each 1-unit increase in nasal bacteria was associated with an increase in infection risk (aHR, 1.23; 95% CI, 1.05-1.43).

A strength of the study is that it is the largest prospective study yet conducted on SA carriage in surgical patients, but the researchers were unable to do a subgroup of methicillin-resistant SA (MRSA) due to small numbers of infections.

The study confirms the value of the decolonization strategy, which the World Health Organization has endorsed with the highest level of scientific evidence that is available in preventive strategies in surgery. WHO strongly recommends decolonization for cardiothoracic and orthopedic surgery using intranasal applications of mupirocin 2% ointment with or without a combination of chlorhexidine gluconate body wash. It has a conditional recommendation for a similar procedure before other types of surgery.

However, “It is not widely practiced, and although that was not a surprise to me, I think it’s really disappointing to see that proven effective strategies are not being practiced,” said Dr. Kluytmans, professor of medical microbiology at University Medical Center Utrecht, Utrecht University, the Netherlands. “If I would come into surgery being a carrier, and not be decolonized, I would really be quite angry because it puts you at risk, which is preventable. I think that’s something we owe to our patients,” he said.

He said that some may have concerns about the potential for decolonization to contribute to antibiotic resistance, but the short-term prophylaxis — typically a few days — should not foster resistance, according to Dr. Kluytmans. “If you use it short term, just before surgery, it has been shown in many studies that resistance isn’t a big problem and it can be monitored.”

The link specifically to SA nasal carriage is a mystery, according to Dr. Kluytmans. “It puzzles me still how it gets from the nares to the wound during surgery. So that’s my million-dollar question that I would like to resolve. We would like to study it, but we haven’t quite a bright idea how to do that,” he said.

The results are compelling, according to Heather Evans, MD, who was asked for comment. “On the face of it, this looks like a no-brainer. We should be decolonizing all patients that go to the operating room, and it’s not a terribly unpleasant thing for a patient to undergo to have decolonization done. Particularly for patients who are at higher risk for having a severe complication, like someone that has an operation that’s involving an implant, for example, I think it really makes a lot of sense to do this low-cost intervention for those patients,” said Dr. Evans, professor of medicine at The Medical University of South Carolina as well as the president of the Surgical Infection Society.

She noted that many facilities test for methicillin-resistant SA, but usual not SA more broadly. “This is a very interesting and compelling study that makes us rethink that, and maybe it isn’t even worth testing to see if you have staph aureus, maybe we should just be putting Betadine in everyone’s nostrils when they come to the operating room. It just seems like it would be a pretty low-cost intervention and something that could potentially have a big impact,” said Dr. Evans.

Although she was impressed by the study, Dr. Evans noted that the researchers tested for carriage at sites unrelated to the surgical site. “It really made me wonder if it would have added even more credibility to the study if there had been a sample taken after surgical prep was done to demonstrate that there is actually no staph aureus present on the skin at the time that the wound was made,” she said.

The question ties into the recent “Trojan horse” hypothesis, which suggests that endemic carriage of bacteria is responsible for most surgical site infections, rather than the long-held belief that operating room contamination is to blame. “That would sort of fly with this study, that the patient is walking around with Staph aureus and not necessarily on their skin or at their surgical site, but it’s endemic in their body,” said Dr. Evans.

Dr. Kluytmans and Dr. Evans have no relevant financial disclosures.

Publications
Topics
Sections

Nasal Staphylococcus aureus (SA) carriage is associated with SA surgical site and bloodstream infections following a surgical procedure, according to findings from a new prospective, multicenter clinical study published in the August issue of Open Forum Infectious Diseases.

“This was a pan-European study with many hospitals, many different clinical settings, and as far as I’m aware, it hasn’t been done before. [The new study] covers a lot of European countries and a lot of surgical specialties,” said lead author Jan Kluytmans, MD. The study also captures the current state of preventive strategies in surgery, such as changes in air flow, dress, and skin preparation, he added.

The study included 5004 patients from 33 hospitals in ten European countries, of whom 67.3% were found to be SA carriers. The median age was 65 years, and 49.8% of patients were male. Open cardiac, and knee and hip prosthesis surgeries made up the largest fraction, but there were 12 types of surgery included in the study.

There were 100 SA surgical site or blood infections. The researchers found an association between surgical site or blood infection and SA carriage at any site (adjusted hazard ratio [aHR], 4.6; 95% CI, 2.1-10.0) and nasal SA carriage (aHR, 4.2; 95% CI, 2.0-8.6). Extranasal SA carriage was not associated with an increased infection risk.

Each 1-unit increase in nasal bacteria was associated with an increase in infection risk (aHR, 1.23; 95% CI, 1.05-1.43).

A strength of the study is that it is the largest prospective study yet conducted on SA carriage in surgical patients, but the researchers were unable to do a subgroup of methicillin-resistant SA (MRSA) due to small numbers of infections.

The study confirms the value of the decolonization strategy, which the World Health Organization has endorsed with the highest level of scientific evidence that is available in preventive strategies in surgery. WHO strongly recommends decolonization for cardiothoracic and orthopedic surgery using intranasal applications of mupirocin 2% ointment with or without a combination of chlorhexidine gluconate body wash. It has a conditional recommendation for a similar procedure before other types of surgery.

However, “It is not widely practiced, and although that was not a surprise to me, I think it’s really disappointing to see that proven effective strategies are not being practiced,” said Dr. Kluytmans, professor of medical microbiology at University Medical Center Utrecht, Utrecht University, the Netherlands. “If I would come into surgery being a carrier, and not be decolonized, I would really be quite angry because it puts you at risk, which is preventable. I think that’s something we owe to our patients,” he said.

He said that some may have concerns about the potential for decolonization to contribute to antibiotic resistance, but the short-term prophylaxis — typically a few days — should not foster resistance, according to Dr. Kluytmans. “If you use it short term, just before surgery, it has been shown in many studies that resistance isn’t a big problem and it can be monitored.”

The link specifically to SA nasal carriage is a mystery, according to Dr. Kluytmans. “It puzzles me still how it gets from the nares to the wound during surgery. So that’s my million-dollar question that I would like to resolve. We would like to study it, but we haven’t quite a bright idea how to do that,” he said.

The results are compelling, according to Heather Evans, MD, who was asked for comment. “On the face of it, this looks like a no-brainer. We should be decolonizing all patients that go to the operating room, and it’s not a terribly unpleasant thing for a patient to undergo to have decolonization done. Particularly for patients who are at higher risk for having a severe complication, like someone that has an operation that’s involving an implant, for example, I think it really makes a lot of sense to do this low-cost intervention for those patients,” said Dr. Evans, professor of medicine at The Medical University of South Carolina as well as the president of the Surgical Infection Society.

She noted that many facilities test for methicillin-resistant SA, but usual not SA more broadly. “This is a very interesting and compelling study that makes us rethink that, and maybe it isn’t even worth testing to see if you have staph aureus, maybe we should just be putting Betadine in everyone’s nostrils when they come to the operating room. It just seems like it would be a pretty low-cost intervention and something that could potentially have a big impact,” said Dr. Evans.

Although she was impressed by the study, Dr. Evans noted that the researchers tested for carriage at sites unrelated to the surgical site. “It really made me wonder if it would have added even more credibility to the study if there had been a sample taken after surgical prep was done to demonstrate that there is actually no staph aureus present on the skin at the time that the wound was made,” she said.

The question ties into the recent “Trojan horse” hypothesis, which suggests that endemic carriage of bacteria is responsible for most surgical site infections, rather than the long-held belief that operating room contamination is to blame. “That would sort of fly with this study, that the patient is walking around with Staph aureus and not necessarily on their skin or at their surgical site, but it’s endemic in their body,” said Dr. Evans.

Dr. Kluytmans and Dr. Evans have no relevant financial disclosures.

Nasal Staphylococcus aureus (SA) carriage is associated with SA surgical site and bloodstream infections following a surgical procedure, according to findings from a new prospective, multicenter clinical study published in the August issue of Open Forum Infectious Diseases.

“This was a pan-European study with many hospitals, many different clinical settings, and as far as I’m aware, it hasn’t been done before. [The new study] covers a lot of European countries and a lot of surgical specialties,” said lead author Jan Kluytmans, MD. The study also captures the current state of preventive strategies in surgery, such as changes in air flow, dress, and skin preparation, he added.

The study included 5004 patients from 33 hospitals in ten European countries, of whom 67.3% were found to be SA carriers. The median age was 65 years, and 49.8% of patients were male. Open cardiac, and knee and hip prosthesis surgeries made up the largest fraction, but there were 12 types of surgery included in the study.

There were 100 SA surgical site or blood infections. The researchers found an association between surgical site or blood infection and SA carriage at any site (adjusted hazard ratio [aHR], 4.6; 95% CI, 2.1-10.0) and nasal SA carriage (aHR, 4.2; 95% CI, 2.0-8.6). Extranasal SA carriage was not associated with an increased infection risk.

Each 1-unit increase in nasal bacteria was associated with an increase in infection risk (aHR, 1.23; 95% CI, 1.05-1.43).

A strength of the study is that it is the largest prospective study yet conducted on SA carriage in surgical patients, but the researchers were unable to do a subgroup of methicillin-resistant SA (MRSA) due to small numbers of infections.

The study confirms the value of the decolonization strategy, which the World Health Organization has endorsed with the highest level of scientific evidence that is available in preventive strategies in surgery. WHO strongly recommends decolonization for cardiothoracic and orthopedic surgery using intranasal applications of mupirocin 2% ointment with or without a combination of chlorhexidine gluconate body wash. It has a conditional recommendation for a similar procedure before other types of surgery.

However, “It is not widely practiced, and although that was not a surprise to me, I think it’s really disappointing to see that proven effective strategies are not being practiced,” said Dr. Kluytmans, professor of medical microbiology at University Medical Center Utrecht, Utrecht University, the Netherlands. “If I would come into surgery being a carrier, and not be decolonized, I would really be quite angry because it puts you at risk, which is preventable. I think that’s something we owe to our patients,” he said.

He said that some may have concerns about the potential for decolonization to contribute to antibiotic resistance, but the short-term prophylaxis — typically a few days — should not foster resistance, according to Dr. Kluytmans. “If you use it short term, just before surgery, it has been shown in many studies that resistance isn’t a big problem and it can be monitored.”

The link specifically to SA nasal carriage is a mystery, according to Dr. Kluytmans. “It puzzles me still how it gets from the nares to the wound during surgery. So that’s my million-dollar question that I would like to resolve. We would like to study it, but we haven’t quite a bright idea how to do that,” he said.

The results are compelling, according to Heather Evans, MD, who was asked for comment. “On the face of it, this looks like a no-brainer. We should be decolonizing all patients that go to the operating room, and it’s not a terribly unpleasant thing for a patient to undergo to have decolonization done. Particularly for patients who are at higher risk for having a severe complication, like someone that has an operation that’s involving an implant, for example, I think it really makes a lot of sense to do this low-cost intervention for those patients,” said Dr. Evans, professor of medicine at The Medical University of South Carolina as well as the president of the Surgical Infection Society.

She noted that many facilities test for methicillin-resistant SA, but usual not SA more broadly. “This is a very interesting and compelling study that makes us rethink that, and maybe it isn’t even worth testing to see if you have staph aureus, maybe we should just be putting Betadine in everyone’s nostrils when they come to the operating room. It just seems like it would be a pretty low-cost intervention and something that could potentially have a big impact,” said Dr. Evans.

Although she was impressed by the study, Dr. Evans noted that the researchers tested for carriage at sites unrelated to the surgical site. “It really made me wonder if it would have added even more credibility to the study if there had been a sample taken after surgical prep was done to demonstrate that there is actually no staph aureus present on the skin at the time that the wound was made,” she said.

The question ties into the recent “Trojan horse” hypothesis, which suggests that endemic carriage of bacteria is responsible for most surgical site infections, rather than the long-held belief that operating room contamination is to blame. “That would sort of fly with this study, that the patient is walking around with Staph aureus and not necessarily on their skin or at their surgical site, but it’s endemic in their body,” said Dr. Evans.

Dr. Kluytmans and Dr. Evans have no relevant financial disclosures.

Publications
Publications
Topics
Article Type
Display Headline
Nasal Staph Aureus Carriage Linked to Surgical Infections
Display Headline
Nasal Staph Aureus Carriage Linked to Surgical Infections
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How the Future of Medicine Will Revolve Around Our Gut

Article Type
Changed
Thu, 09/26/2024 - 16:04

Meet your new patients.

You can’t see them, but trillions — maybe quadrillions — of them travel in and out of your practice every day. They’re hungry, mysterious, community-oriented, and small. Very, very small.

They’re the microbes occupying your current patients’ guts.

Someday soon, you’ll prescribe medicine not just for humans but also for these microbes.

“I am convinced in the future our medicine cabinets are going to have not just medications like a statin for treating us, but [also] pills that treat and inhibit an enzyme in our microbes and elicit a health benefit in some chronic disease,” said Stanley Hazen, MD, PhD, co-section head of Preventive Cardiology & Rehabilitation and director of the Center for Microbiome & Human Health at Cleveland Clinic, Cleveland, Ohio.

Evidence is mounting that the gut microbiome influences just about every major human disease. These trillions of microbes use our food to generate substances called metabolites that can protect or harm our health, with consequences reaching far beyond our gastrointestinal tracts.

Research has linked microbial metabolites to diabetes, cardiovascular disease, liver disease, obesity, high blood pressure, neurological disorders, depression, cancer, and more. Gastroenterologist Christopher Damman, MD, a clinical associate professor at the University of Washington Medical Center, Seattle, calls it a “growing theme” in microbiome science.

Now scientists are developing treatments targeting gut microbial pathways, designed to eliminate the bad metabolites and boost the good metabolites.

One close to human therapeutic intervention is an oral treatment from Dr. Hazen’s lab targeting the metabolite trimethylamine N-oxide (TMAO), a predictor of and contributor to both cardiovascular disease and chronic kidney disease. The drug, which blocks TMAO formation, is nearing clinical trials, Dr. Hazen said.

The advantage is safety. By targeting the microbe instead of, say, an enzyme, the host (your patient) must absorb little if any drug.

Implications for the future of medicine are huge. “Gut microbial pathways contribute to diabetes, obesity, virtually everything,” Dr. Hazen said. “Therapies that target gut microbiome processes will probably even be used for psychiatric disorders within, I’ll say, 10 or 20 years.”
 

The Science

About 100 trillion strains of bacteria live in our guts. As humans have evolved, so have they.

Between 70% and 90% come from the phyla Firmicutes and Bacteroidetes, with person-to-person variation shaped by genetics, environment, and lifestyle.

“Everyone’s microbiome is subtly different,” said Dr. Hazen. “So the combination of what they’re making is different. All these different biologically active compounds are influencing us in subtly different ways.”

How it works: When you eat, your microbes eat, breaking down food into metabolites that interact with the thin layer of epithelial cells lining your gut. Some can be absorbed through the lining and into your bloodstream, a phenomenon known as “leaky gut.” Once in your blood, they can trigger irritation and inflammation, potentially leading to a wide variety of health issues, from gas and bloating to autoimmune conditions and mood disorders.

“On the other side of the epithelial lining, you have some of the largest concentrations of immune cells,” said Narendra Kumar, PhD, associate professor of pharmaceutical sciences at Texas A&M University, College Station, Texas.

Metabolites can influence how these immune cells work, possibly explaining why each person’s immune system behaves distinctively.

Of the 1000-plus metabolites linked to the gut microbiome, scientists have identified several that matter.

Short-chain fatty acids. When we eat fiber, colon bacteria ferment it into the beneficial short-chain fatty acids acetate, propionate, and butyrate. These bind to receptors in muscle, liver, and fat tissue, affecting the secretion of gut hormones and peptides related to appetite, inflammation, energy expenditure, and fat oxidation.

Butyrate has been linked to health benefits. It supports the integrity of the gut’s lining, stifling pathogenic gut bacteria, fighting cancer-promoting inflammation, and protecting against obesity and diabetes. It can function as a prebiotic, helping beneficial bacteria thrive. And recent studies linked an abundance of butyrate-producing bacteria with reduced bone fracture risk and hospitalization for infectious disease.

TMAO and phenylacetylglutamine. When we eat foods rich in animal proteins — think eggs, milk, fish, and especially red meat — some gut bacteria convert nutrients like choline and L-carnitine into TMAO and phenylalanine into phenylacetylglutamine. Research conducted by Dr. Hazen’s lab and replicated by others has linked both metabolites to heart problems.

In a landmark study from Dr. Hazen’s group, healthy adults who went on to develop coronary artery disease had significantly higher plasma TMAO levels than those who did not wind up with the condition. The association remained strong, even after controlling for risk factors like age, sex, smoking, high blood pressure, and high cholesterol.

In preclinical studies, elevated TMAO enhanced cardiovascular disease. TMAO-producing microbes also accentuated cardiovascular disease phenotypes in mouse models, while blocking these pathways inhibited the phenotypes.

Research suggests TMAO may harm cardiomyocytes (cells that contract and relax the heart) in dozens of ways, such as activating the expression of proteins to promote hypertrophy and fibrosis, decreasing mitochondrial function, and disrupting calcium signaling.

Another study linked phenylacetylglutamine levels to cardiac event risk in patients with heart failure. Recent mechanistic investigations suggest the metabolite alters signaling in a beta-adrenergic receptor involved in our fight-or-flight response, said Hazen.

“It’s like a rheostat on the light switch, a dimmer switch, and it’s what’s called a negative allosteric modulator,” he said. “It’s the first time that this type of behavior has ever been shown to be present for a gut microbial metabolite and a host receptor.”

Tryptophan metabolites. Microbes in your colon can convert the amino acid tryptophan, also found in animal-based foods, into neurotransmitters like serotonin and melatonin.

“The enteric nervous system, the nervous system around the gut, is immense,” said James Versalovic, MD, PhD, professor of pathology and immunology at Baylor College of Medicine, Houston. “The gut-brain axis has become a very fertile area of research.”

Lesser-known tryptophan metabolites — like indole, tryptamine, and indoleethanol — have been linked to benefits like fortifying the gut barrier, promoting the release of glucagon-like peptide 1 to reduce appetite, and protecting the liver from hepatitis. However, indole can also spur the production of indoxyl sulfate, a toxin linked to chronic kidney disease. 

Bile acid byproducts. Your gut bugs also feast on (and transform) bile acids before they reabsorb and travel back to the liver.

Research is gaining traction on these secondary bile acids, which can affect inflammation and immune function in helpful and harmful ways.

One area of interest is how microbes break down hormones in bile. A recent study from Harvard showed that gut microbes convert corticoid hormones in bile into progestins, which could affect postpartum depression risk. And researchers are exploring the estrobolome — a gut microbial community dedicated to breaking down estrogen into its active form so it can be reabsorbed.

“Depending on the bacteria that you have, more or less can be recirculated back into your blood,” said Beatriz Peñalver Bernabé, PhD, an assistant professor of biomedical engineering and urology at the University of Illinois Chicago. “So you may be producing the same amount of estrogen, but depending on the bacteria you have, the real free estrogen that can bind to your cells may be very different.”

The gut microbiome can also regulate testosterone, with studies showing microbial differences in men with high testosterone vs those with less.
 

 

 

What Patients Can Do Now

Advances in the field of microbiome research — and the related “gut health” wellness craze — have spawned all kinds of new microbiome-based products: Like over-the-counter probiotic supplements and at-home test kits, which let you send a stool sample for analysis to reveal microbiome health and personalized diet recommendations.

But the science behind these tests is still evolving, said Dr. Damman. “The clinical inferences and applications are still pretty limited.”

For most people, the first step to fostering healthier microbial metabolites is much simpler: Diversify your diet.

“A lot of folks are missing that diversity,” Dr. Damman said.

“Eat foods and experiment with foods that you might not eat all the time,” especially fruits, vegetables, nuts, seeds, and beans.

Another strategy: Eat foods with probiotic bacteria. “I view it as an insurance policy,” said Dr. Versalovic, “fortifying my gut with probiotics, with daily yogurt, for example, at breakfast.”

Fermented foods like kimchi and kombucha can also increase microbial diversity and can even contain health-promoting postbiotics, research shows.

As for probiotic supplements, the jury’s still out.

Certain strains of probiotic bacteria may be beneficial for some patients, like those with diarrhea, Crohn’s disease, and irritable bowel syndrome, according to World Gastroenterology Organisation guidelines.

As with other interventions, individual responses can vary. A Stanford study showed that some people with metabolic syndrome improved when taking a probiotic, while others didn’t. Both groups had key differences in gut bacteria and dietary habits.

For best results, such microbiome-based interventions will need to be personalized, experts say. And the technology to do that is coming sooner than you might think.
 

Microbiome’s Medical Future: ‘We Are on the Cusp of a New Era’

In just a few years, artificial intelligence (AI) models could predict gut microbial composition based on data such as dietary habits and household characteristics, Dr. Kumar said.

Advancements in metabolomics and bioinformatics could soon help physicians and patients personalize their treatment approaches, said Dr. Damman.

One focus will be on fortifying the gut with whatever it lacks.

“In those individuals where certain microbes are missing, (a) how could we add them back potentially in a rational, science-driven way, and (b) maybe some of those factors that the microbes are producing out the other ends, you could give directly,” said Dr. Damman.

For example, multiple companies make butyrate as a dietary supplement, although the research is too early to support widespread use. Another option could be eating something that spurs butyrate production. One small study found that a fiber supplement formulated to increase butyrate levels in the colon reduced participants’ systolic blood pressure by an average of six points.

Another option could be synbiotics, products that combine bacteria and the food source they feed on. “If you just give a diet-based therapy, it is not going to work as much. Because what if that diet needs certain bacteria to have these beneficial metabolites?” said Ashutosh Mangalam, PhD, associate professor of pathology at the University of Iowa Carver College of Medicine, Iowa City.

Dr. Mangalam studies links between bacterial metabolism of phytoestrogens in soy foods and multiple sclerosis (MS) development. He is using AI to understand differences in metabolites in patients with MS vs healthy controls to determine how to target them.

Gut microbial metabolites could also affect disease screening and intervention. What if gut microbe sequencing could predict a pregnant person’s risk of developing depression, something now assessed through simple questionnaires?

“Imagine that your doctor says, ‘Okay, give me a poop sample,’ ” Dr. Bernabé said. “Then they phenotype it, and then they put it in your electronic medical record, and they say, ‘Well, you have high likelihood of having a mood disorder down the line in your pregnancy. Why don’t we directly refer you to a provider now so you can follow up?’ ”

Research is already underway to understand how metabolites might be linked to pregnancy outcomes, complex regional pain syndrome, and anxiety. Researchers are also investigating whether supplementing our diets with things like prebiotic fibers, apple polyphenols, or tomato paste might influence metabolites. And fecal transplants that shift the gut microbiome and metabolites could have potential in diseases like unexplained atherosclerosis, post-COVID syndrome, and hidradenitis suppurativa.

Dr. Hazen’s discovery linking TMAO with cardiovascular risk has already changed clinical practice. A blood TMAO test can help identify patients at risk who may not have traditional risk factors. “Millions have been done,” Dr. Hazen said.

Meanwhile, his drug targeting the TMAO pathway inches closer to clinical trials.

“In an animal model, we elicit improvement in heart failure, renal disease, atherosclerosis, thrombosis, aortic aneurysm, and obesity,” Dr. Hazen said. The first clinical trials will focus on renal disease.

As with any drug, the road to approval takes time. And success is not guaranteed.

But Dr. Hazen for one is optimistic.

“We are on the cusp of a new era,” Dr. Hazen said. “Like when humans first discovered insulin and glucagon were hormones that impact sugar metabolism. We now recognize myriad new ‘hormones’ in the form of gut microbiome metabolites that impact our physiology and susceptibility to diseases.”
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Meet your new patients.

You can’t see them, but trillions — maybe quadrillions — of them travel in and out of your practice every day. They’re hungry, mysterious, community-oriented, and small. Very, very small.

They’re the microbes occupying your current patients’ guts.

Someday soon, you’ll prescribe medicine not just for humans but also for these microbes.

“I am convinced in the future our medicine cabinets are going to have not just medications like a statin for treating us, but [also] pills that treat and inhibit an enzyme in our microbes and elicit a health benefit in some chronic disease,” said Stanley Hazen, MD, PhD, co-section head of Preventive Cardiology & Rehabilitation and director of the Center for Microbiome & Human Health at Cleveland Clinic, Cleveland, Ohio.

Evidence is mounting that the gut microbiome influences just about every major human disease. These trillions of microbes use our food to generate substances called metabolites that can protect or harm our health, with consequences reaching far beyond our gastrointestinal tracts.

Research has linked microbial metabolites to diabetes, cardiovascular disease, liver disease, obesity, high blood pressure, neurological disorders, depression, cancer, and more. Gastroenterologist Christopher Damman, MD, a clinical associate professor at the University of Washington Medical Center, Seattle, calls it a “growing theme” in microbiome science.

Now scientists are developing treatments targeting gut microbial pathways, designed to eliminate the bad metabolites and boost the good metabolites.

One close to human therapeutic intervention is an oral treatment from Dr. Hazen’s lab targeting the metabolite trimethylamine N-oxide (TMAO), a predictor of and contributor to both cardiovascular disease and chronic kidney disease. The drug, which blocks TMAO formation, is nearing clinical trials, Dr. Hazen said.

The advantage is safety. By targeting the microbe instead of, say, an enzyme, the host (your patient) must absorb little if any drug.

Implications for the future of medicine are huge. “Gut microbial pathways contribute to diabetes, obesity, virtually everything,” Dr. Hazen said. “Therapies that target gut microbiome processes will probably even be used for psychiatric disorders within, I’ll say, 10 or 20 years.”
 

The Science

About 100 trillion strains of bacteria live in our guts. As humans have evolved, so have they.

Between 70% and 90% come from the phyla Firmicutes and Bacteroidetes, with person-to-person variation shaped by genetics, environment, and lifestyle.

“Everyone’s microbiome is subtly different,” said Dr. Hazen. “So the combination of what they’re making is different. All these different biologically active compounds are influencing us in subtly different ways.”

How it works: When you eat, your microbes eat, breaking down food into metabolites that interact with the thin layer of epithelial cells lining your gut. Some can be absorbed through the lining and into your bloodstream, a phenomenon known as “leaky gut.” Once in your blood, they can trigger irritation and inflammation, potentially leading to a wide variety of health issues, from gas and bloating to autoimmune conditions and mood disorders.

“On the other side of the epithelial lining, you have some of the largest concentrations of immune cells,” said Narendra Kumar, PhD, associate professor of pharmaceutical sciences at Texas A&M University, College Station, Texas.

Metabolites can influence how these immune cells work, possibly explaining why each person’s immune system behaves distinctively.

Of the 1000-plus metabolites linked to the gut microbiome, scientists have identified several that matter.

Short-chain fatty acids. When we eat fiber, colon bacteria ferment it into the beneficial short-chain fatty acids acetate, propionate, and butyrate. These bind to receptors in muscle, liver, and fat tissue, affecting the secretion of gut hormones and peptides related to appetite, inflammation, energy expenditure, and fat oxidation.

Butyrate has been linked to health benefits. It supports the integrity of the gut’s lining, stifling pathogenic gut bacteria, fighting cancer-promoting inflammation, and protecting against obesity and diabetes. It can function as a prebiotic, helping beneficial bacteria thrive. And recent studies linked an abundance of butyrate-producing bacteria with reduced bone fracture risk and hospitalization for infectious disease.

TMAO and phenylacetylglutamine. When we eat foods rich in animal proteins — think eggs, milk, fish, and especially red meat — some gut bacteria convert nutrients like choline and L-carnitine into TMAO and phenylalanine into phenylacetylglutamine. Research conducted by Dr. Hazen’s lab and replicated by others has linked both metabolites to heart problems.

In a landmark study from Dr. Hazen’s group, healthy adults who went on to develop coronary artery disease had significantly higher plasma TMAO levels than those who did not wind up with the condition. The association remained strong, even after controlling for risk factors like age, sex, smoking, high blood pressure, and high cholesterol.

In preclinical studies, elevated TMAO enhanced cardiovascular disease. TMAO-producing microbes also accentuated cardiovascular disease phenotypes in mouse models, while blocking these pathways inhibited the phenotypes.

Research suggests TMAO may harm cardiomyocytes (cells that contract and relax the heart) in dozens of ways, such as activating the expression of proteins to promote hypertrophy and fibrosis, decreasing mitochondrial function, and disrupting calcium signaling.

Another study linked phenylacetylglutamine levels to cardiac event risk in patients with heart failure. Recent mechanistic investigations suggest the metabolite alters signaling in a beta-adrenergic receptor involved in our fight-or-flight response, said Hazen.

“It’s like a rheostat on the light switch, a dimmer switch, and it’s what’s called a negative allosteric modulator,” he said. “It’s the first time that this type of behavior has ever been shown to be present for a gut microbial metabolite and a host receptor.”

Tryptophan metabolites. Microbes in your colon can convert the amino acid tryptophan, also found in animal-based foods, into neurotransmitters like serotonin and melatonin.

“The enteric nervous system, the nervous system around the gut, is immense,” said James Versalovic, MD, PhD, professor of pathology and immunology at Baylor College of Medicine, Houston. “The gut-brain axis has become a very fertile area of research.”

Lesser-known tryptophan metabolites — like indole, tryptamine, and indoleethanol — have been linked to benefits like fortifying the gut barrier, promoting the release of glucagon-like peptide 1 to reduce appetite, and protecting the liver from hepatitis. However, indole can also spur the production of indoxyl sulfate, a toxin linked to chronic kidney disease. 

Bile acid byproducts. Your gut bugs also feast on (and transform) bile acids before they reabsorb and travel back to the liver.

Research is gaining traction on these secondary bile acids, which can affect inflammation and immune function in helpful and harmful ways.

One area of interest is how microbes break down hormones in bile. A recent study from Harvard showed that gut microbes convert corticoid hormones in bile into progestins, which could affect postpartum depression risk. And researchers are exploring the estrobolome — a gut microbial community dedicated to breaking down estrogen into its active form so it can be reabsorbed.

“Depending on the bacteria that you have, more or less can be recirculated back into your blood,” said Beatriz Peñalver Bernabé, PhD, an assistant professor of biomedical engineering and urology at the University of Illinois Chicago. “So you may be producing the same amount of estrogen, but depending on the bacteria you have, the real free estrogen that can bind to your cells may be very different.”

The gut microbiome can also regulate testosterone, with studies showing microbial differences in men with high testosterone vs those with less.
 

 

 

What Patients Can Do Now

Advances in the field of microbiome research — and the related “gut health” wellness craze — have spawned all kinds of new microbiome-based products: Like over-the-counter probiotic supplements and at-home test kits, which let you send a stool sample for analysis to reveal microbiome health and personalized diet recommendations.

But the science behind these tests is still evolving, said Dr. Damman. “The clinical inferences and applications are still pretty limited.”

For most people, the first step to fostering healthier microbial metabolites is much simpler: Diversify your diet.

“A lot of folks are missing that diversity,” Dr. Damman said.

“Eat foods and experiment with foods that you might not eat all the time,” especially fruits, vegetables, nuts, seeds, and beans.

Another strategy: Eat foods with probiotic bacteria. “I view it as an insurance policy,” said Dr. Versalovic, “fortifying my gut with probiotics, with daily yogurt, for example, at breakfast.”

Fermented foods like kimchi and kombucha can also increase microbial diversity and can even contain health-promoting postbiotics, research shows.

As for probiotic supplements, the jury’s still out.

Certain strains of probiotic bacteria may be beneficial for some patients, like those with diarrhea, Crohn’s disease, and irritable bowel syndrome, according to World Gastroenterology Organisation guidelines.

As with other interventions, individual responses can vary. A Stanford study showed that some people with metabolic syndrome improved when taking a probiotic, while others didn’t. Both groups had key differences in gut bacteria and dietary habits.

For best results, such microbiome-based interventions will need to be personalized, experts say. And the technology to do that is coming sooner than you might think.
 

Microbiome’s Medical Future: ‘We Are on the Cusp of a New Era’

In just a few years, artificial intelligence (AI) models could predict gut microbial composition based on data such as dietary habits and household characteristics, Dr. Kumar said.

Advancements in metabolomics and bioinformatics could soon help physicians and patients personalize their treatment approaches, said Dr. Damman.

One focus will be on fortifying the gut with whatever it lacks.

“In those individuals where certain microbes are missing, (a) how could we add them back potentially in a rational, science-driven way, and (b) maybe some of those factors that the microbes are producing out the other ends, you could give directly,” said Dr. Damman.

For example, multiple companies make butyrate as a dietary supplement, although the research is too early to support widespread use. Another option could be eating something that spurs butyrate production. One small study found that a fiber supplement formulated to increase butyrate levels in the colon reduced participants’ systolic blood pressure by an average of six points.

Another option could be synbiotics, products that combine bacteria and the food source they feed on. “If you just give a diet-based therapy, it is not going to work as much. Because what if that diet needs certain bacteria to have these beneficial metabolites?” said Ashutosh Mangalam, PhD, associate professor of pathology at the University of Iowa Carver College of Medicine, Iowa City.

Dr. Mangalam studies links between bacterial metabolism of phytoestrogens in soy foods and multiple sclerosis (MS) development. He is using AI to understand differences in metabolites in patients with MS vs healthy controls to determine how to target them.

Gut microbial metabolites could also affect disease screening and intervention. What if gut microbe sequencing could predict a pregnant person’s risk of developing depression, something now assessed through simple questionnaires?

“Imagine that your doctor says, ‘Okay, give me a poop sample,’ ” Dr. Bernabé said. “Then they phenotype it, and then they put it in your electronic medical record, and they say, ‘Well, you have high likelihood of having a mood disorder down the line in your pregnancy. Why don’t we directly refer you to a provider now so you can follow up?’ ”

Research is already underway to understand how metabolites might be linked to pregnancy outcomes, complex regional pain syndrome, and anxiety. Researchers are also investigating whether supplementing our diets with things like prebiotic fibers, apple polyphenols, or tomato paste might influence metabolites. And fecal transplants that shift the gut microbiome and metabolites could have potential in diseases like unexplained atherosclerosis, post-COVID syndrome, and hidradenitis suppurativa.

Dr. Hazen’s discovery linking TMAO with cardiovascular risk has already changed clinical practice. A blood TMAO test can help identify patients at risk who may not have traditional risk factors. “Millions have been done,” Dr. Hazen said.

Meanwhile, his drug targeting the TMAO pathway inches closer to clinical trials.

“In an animal model, we elicit improvement in heart failure, renal disease, atherosclerosis, thrombosis, aortic aneurysm, and obesity,” Dr. Hazen said. The first clinical trials will focus on renal disease.

As with any drug, the road to approval takes time. And success is not guaranteed.

But Dr. Hazen for one is optimistic.

“We are on the cusp of a new era,” Dr. Hazen said. “Like when humans first discovered insulin and glucagon were hormones that impact sugar metabolism. We now recognize myriad new ‘hormones’ in the form of gut microbiome metabolites that impact our physiology and susceptibility to diseases.”
 

A version of this article first appeared on Medscape.com.

Meet your new patients.

You can’t see them, but trillions — maybe quadrillions — of them travel in and out of your practice every day. They’re hungry, mysterious, community-oriented, and small. Very, very small.

They’re the microbes occupying your current patients’ guts.

Someday soon, you’ll prescribe medicine not just for humans but also for these microbes.

“I am convinced in the future our medicine cabinets are going to have not just medications like a statin for treating us, but [also] pills that treat and inhibit an enzyme in our microbes and elicit a health benefit in some chronic disease,” said Stanley Hazen, MD, PhD, co-section head of Preventive Cardiology & Rehabilitation and director of the Center for Microbiome & Human Health at Cleveland Clinic, Cleveland, Ohio.

Evidence is mounting that the gut microbiome influences just about every major human disease. These trillions of microbes use our food to generate substances called metabolites that can protect or harm our health, with consequences reaching far beyond our gastrointestinal tracts.

Research has linked microbial metabolites to diabetes, cardiovascular disease, liver disease, obesity, high blood pressure, neurological disorders, depression, cancer, and more. Gastroenterologist Christopher Damman, MD, a clinical associate professor at the University of Washington Medical Center, Seattle, calls it a “growing theme” in microbiome science.

Now scientists are developing treatments targeting gut microbial pathways, designed to eliminate the bad metabolites and boost the good metabolites.

One close to human therapeutic intervention is an oral treatment from Dr. Hazen’s lab targeting the metabolite trimethylamine N-oxide (TMAO), a predictor of and contributor to both cardiovascular disease and chronic kidney disease. The drug, which blocks TMAO formation, is nearing clinical trials, Dr. Hazen said.

The advantage is safety. By targeting the microbe instead of, say, an enzyme, the host (your patient) must absorb little if any drug.

Implications for the future of medicine are huge. “Gut microbial pathways contribute to diabetes, obesity, virtually everything,” Dr. Hazen said. “Therapies that target gut microbiome processes will probably even be used for psychiatric disorders within, I’ll say, 10 or 20 years.”
 

The Science

About 100 trillion strains of bacteria live in our guts. As humans have evolved, so have they.

Between 70% and 90% come from the phyla Firmicutes and Bacteroidetes, with person-to-person variation shaped by genetics, environment, and lifestyle.

“Everyone’s microbiome is subtly different,” said Dr. Hazen. “So the combination of what they’re making is different. All these different biologically active compounds are influencing us in subtly different ways.”

How it works: When you eat, your microbes eat, breaking down food into metabolites that interact with the thin layer of epithelial cells lining your gut. Some can be absorbed through the lining and into your bloodstream, a phenomenon known as “leaky gut.” Once in your blood, they can trigger irritation and inflammation, potentially leading to a wide variety of health issues, from gas and bloating to autoimmune conditions and mood disorders.

“On the other side of the epithelial lining, you have some of the largest concentrations of immune cells,” said Narendra Kumar, PhD, associate professor of pharmaceutical sciences at Texas A&M University, College Station, Texas.

Metabolites can influence how these immune cells work, possibly explaining why each person’s immune system behaves distinctively.

Of the 1000-plus metabolites linked to the gut microbiome, scientists have identified several that matter.

Short-chain fatty acids. When we eat fiber, colon bacteria ferment it into the beneficial short-chain fatty acids acetate, propionate, and butyrate. These bind to receptors in muscle, liver, and fat tissue, affecting the secretion of gut hormones and peptides related to appetite, inflammation, energy expenditure, and fat oxidation.

Butyrate has been linked to health benefits. It supports the integrity of the gut’s lining, stifling pathogenic gut bacteria, fighting cancer-promoting inflammation, and protecting against obesity and diabetes. It can function as a prebiotic, helping beneficial bacteria thrive. And recent studies linked an abundance of butyrate-producing bacteria with reduced bone fracture risk and hospitalization for infectious disease.

TMAO and phenylacetylglutamine. When we eat foods rich in animal proteins — think eggs, milk, fish, and especially red meat — some gut bacteria convert nutrients like choline and L-carnitine into TMAO and phenylalanine into phenylacetylglutamine. Research conducted by Dr. Hazen’s lab and replicated by others has linked both metabolites to heart problems.

In a landmark study from Dr. Hazen’s group, healthy adults who went on to develop coronary artery disease had significantly higher plasma TMAO levels than those who did not wind up with the condition. The association remained strong, even after controlling for risk factors like age, sex, smoking, high blood pressure, and high cholesterol.

In preclinical studies, elevated TMAO enhanced cardiovascular disease. TMAO-producing microbes also accentuated cardiovascular disease phenotypes in mouse models, while blocking these pathways inhibited the phenotypes.

Research suggests TMAO may harm cardiomyocytes (cells that contract and relax the heart) in dozens of ways, such as activating the expression of proteins to promote hypertrophy and fibrosis, decreasing mitochondrial function, and disrupting calcium signaling.

Another study linked phenylacetylglutamine levels to cardiac event risk in patients with heart failure. Recent mechanistic investigations suggest the metabolite alters signaling in a beta-adrenergic receptor involved in our fight-or-flight response, said Hazen.

“It’s like a rheostat on the light switch, a dimmer switch, and it’s what’s called a negative allosteric modulator,” he said. “It’s the first time that this type of behavior has ever been shown to be present for a gut microbial metabolite and a host receptor.”

Tryptophan metabolites. Microbes in your colon can convert the amino acid tryptophan, also found in animal-based foods, into neurotransmitters like serotonin and melatonin.

“The enteric nervous system, the nervous system around the gut, is immense,” said James Versalovic, MD, PhD, professor of pathology and immunology at Baylor College of Medicine, Houston. “The gut-brain axis has become a very fertile area of research.”

Lesser-known tryptophan metabolites — like indole, tryptamine, and indoleethanol — have been linked to benefits like fortifying the gut barrier, promoting the release of glucagon-like peptide 1 to reduce appetite, and protecting the liver from hepatitis. However, indole can also spur the production of indoxyl sulfate, a toxin linked to chronic kidney disease. 

Bile acid byproducts. Your gut bugs also feast on (and transform) bile acids before they reabsorb and travel back to the liver.

Research is gaining traction on these secondary bile acids, which can affect inflammation and immune function in helpful and harmful ways.

One area of interest is how microbes break down hormones in bile. A recent study from Harvard showed that gut microbes convert corticoid hormones in bile into progestins, which could affect postpartum depression risk. And researchers are exploring the estrobolome — a gut microbial community dedicated to breaking down estrogen into its active form so it can be reabsorbed.

“Depending on the bacteria that you have, more or less can be recirculated back into your blood,” said Beatriz Peñalver Bernabé, PhD, an assistant professor of biomedical engineering and urology at the University of Illinois Chicago. “So you may be producing the same amount of estrogen, but depending on the bacteria you have, the real free estrogen that can bind to your cells may be very different.”

The gut microbiome can also regulate testosterone, with studies showing microbial differences in men with high testosterone vs those with less.
 

 

 

What Patients Can Do Now

Advances in the field of microbiome research — and the related “gut health” wellness craze — have spawned all kinds of new microbiome-based products: Like over-the-counter probiotic supplements and at-home test kits, which let you send a stool sample for analysis to reveal microbiome health and personalized diet recommendations.

But the science behind these tests is still evolving, said Dr. Damman. “The clinical inferences and applications are still pretty limited.”

For most people, the first step to fostering healthier microbial metabolites is much simpler: Diversify your diet.

“A lot of folks are missing that diversity,” Dr. Damman said.

“Eat foods and experiment with foods that you might not eat all the time,” especially fruits, vegetables, nuts, seeds, and beans.

Another strategy: Eat foods with probiotic bacteria. “I view it as an insurance policy,” said Dr. Versalovic, “fortifying my gut with probiotics, with daily yogurt, for example, at breakfast.”

Fermented foods like kimchi and kombucha can also increase microbial diversity and can even contain health-promoting postbiotics, research shows.

As for probiotic supplements, the jury’s still out.

Certain strains of probiotic bacteria may be beneficial for some patients, like those with diarrhea, Crohn’s disease, and irritable bowel syndrome, according to World Gastroenterology Organisation guidelines.

As with other interventions, individual responses can vary. A Stanford study showed that some people with metabolic syndrome improved when taking a probiotic, while others didn’t. Both groups had key differences in gut bacteria and dietary habits.

For best results, such microbiome-based interventions will need to be personalized, experts say. And the technology to do that is coming sooner than you might think.
 

Microbiome’s Medical Future: ‘We Are on the Cusp of a New Era’

In just a few years, artificial intelligence (AI) models could predict gut microbial composition based on data such as dietary habits and household characteristics, Dr. Kumar said.

Advancements in metabolomics and bioinformatics could soon help physicians and patients personalize their treatment approaches, said Dr. Damman.

One focus will be on fortifying the gut with whatever it lacks.

“In those individuals where certain microbes are missing, (a) how could we add them back potentially in a rational, science-driven way, and (b) maybe some of those factors that the microbes are producing out the other ends, you could give directly,” said Dr. Damman.

For example, multiple companies make butyrate as a dietary supplement, although the research is too early to support widespread use. Another option could be eating something that spurs butyrate production. One small study found that a fiber supplement formulated to increase butyrate levels in the colon reduced participants’ systolic blood pressure by an average of six points.

Another option could be synbiotics, products that combine bacteria and the food source they feed on. “If you just give a diet-based therapy, it is not going to work as much. Because what if that diet needs certain bacteria to have these beneficial metabolites?” said Ashutosh Mangalam, PhD, associate professor of pathology at the University of Iowa Carver College of Medicine, Iowa City.

Dr. Mangalam studies links between bacterial metabolism of phytoestrogens in soy foods and multiple sclerosis (MS) development. He is using AI to understand differences in metabolites in patients with MS vs healthy controls to determine how to target them.

Gut microbial metabolites could also affect disease screening and intervention. What if gut microbe sequencing could predict a pregnant person’s risk of developing depression, something now assessed through simple questionnaires?

“Imagine that your doctor says, ‘Okay, give me a poop sample,’ ” Dr. Bernabé said. “Then they phenotype it, and then they put it in your electronic medical record, and they say, ‘Well, you have high likelihood of having a mood disorder down the line in your pregnancy. Why don’t we directly refer you to a provider now so you can follow up?’ ”

Research is already underway to understand how metabolites might be linked to pregnancy outcomes, complex regional pain syndrome, and anxiety. Researchers are also investigating whether supplementing our diets with things like prebiotic fibers, apple polyphenols, or tomato paste might influence metabolites. And fecal transplants that shift the gut microbiome and metabolites could have potential in diseases like unexplained atherosclerosis, post-COVID syndrome, and hidradenitis suppurativa.

Dr. Hazen’s discovery linking TMAO with cardiovascular risk has already changed clinical practice. A blood TMAO test can help identify patients at risk who may not have traditional risk factors. “Millions have been done,” Dr. Hazen said.

Meanwhile, his drug targeting the TMAO pathway inches closer to clinical trials.

“In an animal model, we elicit improvement in heart failure, renal disease, atherosclerosis, thrombosis, aortic aneurysm, and obesity,” Dr. Hazen said. The first clinical trials will focus on renal disease.

As with any drug, the road to approval takes time. And success is not guaranteed.

But Dr. Hazen for one is optimistic.

“We are on the cusp of a new era,” Dr. Hazen said. “Like when humans first discovered insulin and glucagon were hormones that impact sugar metabolism. We now recognize myriad new ‘hormones’ in the form of gut microbiome metabolites that impact our physiology and susceptibility to diseases.”
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Who’s an Anesthesiologist? Turf War Sparks Trademark Dispute

Article Type
Changed
Thu, 09/26/2024 - 13:52

 

The turf war between two types of anesthesia providers is escalating: The American Society of Anesthesiologists (ASA) has filed a trademark complaint against the recently renamed American Association of Nurse Anesthesiology (AANA), alleging its use of the word “anesthesiology” is “deceptively misdescriptive.”

At issue: Who can be called an anesthesiologist?

In its complaint, filed in June 2024 with the US Trademark Trial and Appeal Board, the 54,000-member physician society seeks to deny the nurse group the registration of its trademark. If ASA wins, it could sue AANA in federal court.

AANA denied the physicians’ allegations in its recent response to the complaint.

The dispute between the two associations comes at a time when physicians are facing challenges from providers such as nurse practitioners and physician assistants who seek new titles and more autonomy in medical decision-making.
 

A Controversial Name Change

In 2021, the 61,000-member AANA changed its name from the American Association of Nurse Anesthetists, saying the change “clarifies the role of its members.

The ASA declared it was “gravely concerned” by the name change, which “confuses patients and creates discord in the care setting, ultimately risking patient safety.

“ ’Anesthesiologist’ has always been used to differentiate physicians trained in the science and study of anesthesiology from nonphysicians, including nurse anesthetists,” the physicians’ group said in a news release.

Chicago Intellectual Property Attorney Laura M. Schaefer, who represents AANA, told this news organization that certified registered nurse anesthetists (CRNAs) — “also known as nurse anesthesiologists or nurse anesthetists — have a 150-year track record of administering safe, effective anesthesia to patients in need of care. Not only are CRNAs highly trained and capable, they also use the exact same techniques to provide anesthesia as other anesthesiology professionals.”

Ms. Schaefer declined to comment further, and ASA declined to comment at all, citing pending litigation.

The scope of practice of nurse anesthetists has long been disputed. In mid-September, California health officials clarified what nurse anesthetists can do on the job after complaints about lack of oversight, The Modesto Bee reported.

According to nursing education site NurseJournal.org, CRNAs and anesthesiologists “perform many of the same duties,” although CRNAs are in more demand. Also, the site says some states require CRNAs to be supervised by anesthesiologists.

“It is possible that scope of practice debates are increasing in prominence due to the increase in demand for healthcare services, coupled with workforce shortages in certain areas,” Alice Chen, PhD, MBA, vice dean for research at the USC Sol Price School of Public Policy in Los Angeles, told this news organization. “For example, during COVID, the federal government temporarily expanded scope of practice to help address healthcare needs.”

She added her group’s research has shown that despite the large stakes perceived by both sides of the debate, changes in practice behavior were actually quite small in states that allowed CRNAs to practice without supervision.

“In fact, we found only modest reduction in anesthesiologist billing for supervision, and we did not find an increase in the supply of anesthesia care,” she noted.

Trademark law specialists told this news organization that they couldn’t predict which way the board will rule. However, they noted potential weaknesses of the ASA’s case.

Rebecca Tushnet, JD, a professor at Harvard Law School, Cambridge, Massachusetts, explained that a trademark “can’t misrepresent those goods or services in a way that deceives consumers.” However, if insurers, doctors, and hospitals are considered the “consumers” — and not patients — “then confusion is probably less likely because they will have relevant expertise to distinguish among groups.”

Christine Farley, JD, LLM, JSD, professor at American University Washington College of Law, said attacking the AANA’s trademark as deceptive may be one of the ASA’s strongest arguments. The suggestion, she said, is that “nurse anesthesiologist” is an oxymoron, like “jumbo shrimp.”

On the other hand, she said it’s not clear that people will miss the word “nurse” in AANA’s name and say, “ ’Well, obviously these people are doctors.’ So that that’s an uphill battle.”

What happens now? The Trademark Trial and Appeal Board will decide whether AANA’s trademark application should be granted or denied, said Kayla Jimenez, JD, a San Diego trademark attorney and adjunct law professor at the University of San Diego. The entire process can take 2-3 years, she said.

The board “cannot award attorneys’ fees or force a party to stop using a trademark,” she said. “You would have to go file a lawsuit in federal court if that is your endgame.” Also, she said, the board’s ultimate decision can be appealed in federal court.

Eric Goldman, JD, MBA, associate dean for research and professor at Santa Clara University School of Law, Santa Clara, California, doesn’t expect the trademark case will spell the end of this dispute.

“ASA is signaling that it will challenge AANA’s use of the term in multiple battlegrounds,” he said. “I see this as a move by ASA to contest AANA in every potentially relevant venue, even if neither side can score a knockout blow in the Trademark Trial and Appeal Board.”

Dr. Chen, Ms. Farley, Ms. Jimenez, and Mr. Goldman had no disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

The turf war between two types of anesthesia providers is escalating: The American Society of Anesthesiologists (ASA) has filed a trademark complaint against the recently renamed American Association of Nurse Anesthesiology (AANA), alleging its use of the word “anesthesiology” is “deceptively misdescriptive.”

At issue: Who can be called an anesthesiologist?

In its complaint, filed in June 2024 with the US Trademark Trial and Appeal Board, the 54,000-member physician society seeks to deny the nurse group the registration of its trademark. If ASA wins, it could sue AANA in federal court.

AANA denied the physicians’ allegations in its recent response to the complaint.

The dispute between the two associations comes at a time when physicians are facing challenges from providers such as nurse practitioners and physician assistants who seek new titles and more autonomy in medical decision-making.
 

A Controversial Name Change

In 2021, the 61,000-member AANA changed its name from the American Association of Nurse Anesthetists, saying the change “clarifies the role of its members.

The ASA declared it was “gravely concerned” by the name change, which “confuses patients and creates discord in the care setting, ultimately risking patient safety.

“ ’Anesthesiologist’ has always been used to differentiate physicians trained in the science and study of anesthesiology from nonphysicians, including nurse anesthetists,” the physicians’ group said in a news release.

Chicago Intellectual Property Attorney Laura M. Schaefer, who represents AANA, told this news organization that certified registered nurse anesthetists (CRNAs) — “also known as nurse anesthesiologists or nurse anesthetists — have a 150-year track record of administering safe, effective anesthesia to patients in need of care. Not only are CRNAs highly trained and capable, they also use the exact same techniques to provide anesthesia as other anesthesiology professionals.”

Ms. Schaefer declined to comment further, and ASA declined to comment at all, citing pending litigation.

The scope of practice of nurse anesthetists has long been disputed. In mid-September, California health officials clarified what nurse anesthetists can do on the job after complaints about lack of oversight, The Modesto Bee reported.

According to nursing education site NurseJournal.org, CRNAs and anesthesiologists “perform many of the same duties,” although CRNAs are in more demand. Also, the site says some states require CRNAs to be supervised by anesthesiologists.

“It is possible that scope of practice debates are increasing in prominence due to the increase in demand for healthcare services, coupled with workforce shortages in certain areas,” Alice Chen, PhD, MBA, vice dean for research at the USC Sol Price School of Public Policy in Los Angeles, told this news organization. “For example, during COVID, the federal government temporarily expanded scope of practice to help address healthcare needs.”

She added her group’s research has shown that despite the large stakes perceived by both sides of the debate, changes in practice behavior were actually quite small in states that allowed CRNAs to practice without supervision.

“In fact, we found only modest reduction in anesthesiologist billing for supervision, and we did not find an increase in the supply of anesthesia care,” she noted.

Trademark law specialists told this news organization that they couldn’t predict which way the board will rule. However, they noted potential weaknesses of the ASA’s case.

Rebecca Tushnet, JD, a professor at Harvard Law School, Cambridge, Massachusetts, explained that a trademark “can’t misrepresent those goods or services in a way that deceives consumers.” However, if insurers, doctors, and hospitals are considered the “consumers” — and not patients — “then confusion is probably less likely because they will have relevant expertise to distinguish among groups.”

Christine Farley, JD, LLM, JSD, professor at American University Washington College of Law, said attacking the AANA’s trademark as deceptive may be one of the ASA’s strongest arguments. The suggestion, she said, is that “nurse anesthesiologist” is an oxymoron, like “jumbo shrimp.”

On the other hand, she said it’s not clear that people will miss the word “nurse” in AANA’s name and say, “ ’Well, obviously these people are doctors.’ So that that’s an uphill battle.”

What happens now? The Trademark Trial and Appeal Board will decide whether AANA’s trademark application should be granted or denied, said Kayla Jimenez, JD, a San Diego trademark attorney and adjunct law professor at the University of San Diego. The entire process can take 2-3 years, she said.

The board “cannot award attorneys’ fees or force a party to stop using a trademark,” she said. “You would have to go file a lawsuit in federal court if that is your endgame.” Also, she said, the board’s ultimate decision can be appealed in federal court.

Eric Goldman, JD, MBA, associate dean for research and professor at Santa Clara University School of Law, Santa Clara, California, doesn’t expect the trademark case will spell the end of this dispute.

“ASA is signaling that it will challenge AANA’s use of the term in multiple battlegrounds,” he said. “I see this as a move by ASA to contest AANA in every potentially relevant venue, even if neither side can score a knockout blow in the Trademark Trial and Appeal Board.”

Dr. Chen, Ms. Farley, Ms. Jimenez, and Mr. Goldman had no disclosures. 
 

A version of this article appeared on Medscape.com.

 

The turf war between two types of anesthesia providers is escalating: The American Society of Anesthesiologists (ASA) has filed a trademark complaint against the recently renamed American Association of Nurse Anesthesiology (AANA), alleging its use of the word “anesthesiology” is “deceptively misdescriptive.”

At issue: Who can be called an anesthesiologist?

In its complaint, filed in June 2024 with the US Trademark Trial and Appeal Board, the 54,000-member physician society seeks to deny the nurse group the registration of its trademark. If ASA wins, it could sue AANA in federal court.

AANA denied the physicians’ allegations in its recent response to the complaint.

The dispute between the two associations comes at a time when physicians are facing challenges from providers such as nurse practitioners and physician assistants who seek new titles and more autonomy in medical decision-making.
 

A Controversial Name Change

In 2021, the 61,000-member AANA changed its name from the American Association of Nurse Anesthetists, saying the change “clarifies the role of its members.

The ASA declared it was “gravely concerned” by the name change, which “confuses patients and creates discord in the care setting, ultimately risking patient safety.

“ ’Anesthesiologist’ has always been used to differentiate physicians trained in the science and study of anesthesiology from nonphysicians, including nurse anesthetists,” the physicians’ group said in a news release.

Chicago Intellectual Property Attorney Laura M. Schaefer, who represents AANA, told this news organization that certified registered nurse anesthetists (CRNAs) — “also known as nurse anesthesiologists or nurse anesthetists — have a 150-year track record of administering safe, effective anesthesia to patients in need of care. Not only are CRNAs highly trained and capable, they also use the exact same techniques to provide anesthesia as other anesthesiology professionals.”

Ms. Schaefer declined to comment further, and ASA declined to comment at all, citing pending litigation.

The scope of practice of nurse anesthetists has long been disputed. In mid-September, California health officials clarified what nurse anesthetists can do on the job after complaints about lack of oversight, The Modesto Bee reported.

According to nursing education site NurseJournal.org, CRNAs and anesthesiologists “perform many of the same duties,” although CRNAs are in more demand. Also, the site says some states require CRNAs to be supervised by anesthesiologists.

“It is possible that scope of practice debates are increasing in prominence due to the increase in demand for healthcare services, coupled with workforce shortages in certain areas,” Alice Chen, PhD, MBA, vice dean for research at the USC Sol Price School of Public Policy in Los Angeles, told this news organization. “For example, during COVID, the federal government temporarily expanded scope of practice to help address healthcare needs.”

She added her group’s research has shown that despite the large stakes perceived by both sides of the debate, changes in practice behavior were actually quite small in states that allowed CRNAs to practice without supervision.

“In fact, we found only modest reduction in anesthesiologist billing for supervision, and we did not find an increase in the supply of anesthesia care,” she noted.

Trademark law specialists told this news organization that they couldn’t predict which way the board will rule. However, they noted potential weaknesses of the ASA’s case.

Rebecca Tushnet, JD, a professor at Harvard Law School, Cambridge, Massachusetts, explained that a trademark “can’t misrepresent those goods or services in a way that deceives consumers.” However, if insurers, doctors, and hospitals are considered the “consumers” — and not patients — “then confusion is probably less likely because they will have relevant expertise to distinguish among groups.”

Christine Farley, JD, LLM, JSD, professor at American University Washington College of Law, said attacking the AANA’s trademark as deceptive may be one of the ASA’s strongest arguments. The suggestion, she said, is that “nurse anesthesiologist” is an oxymoron, like “jumbo shrimp.”

On the other hand, she said it’s not clear that people will miss the word “nurse” in AANA’s name and say, “ ’Well, obviously these people are doctors.’ So that that’s an uphill battle.”

What happens now? The Trademark Trial and Appeal Board will decide whether AANA’s trademark application should be granted or denied, said Kayla Jimenez, JD, a San Diego trademark attorney and adjunct law professor at the University of San Diego. The entire process can take 2-3 years, she said.

The board “cannot award attorneys’ fees or force a party to stop using a trademark,” she said. “You would have to go file a lawsuit in federal court if that is your endgame.” Also, she said, the board’s ultimate decision can be appealed in federal court.

Eric Goldman, JD, MBA, associate dean for research and professor at Santa Clara University School of Law, Santa Clara, California, doesn’t expect the trademark case will spell the end of this dispute.

“ASA is signaling that it will challenge AANA’s use of the term in multiple battlegrounds,” he said. “I see this as a move by ASA to contest AANA in every potentially relevant venue, even if neither side can score a knockout blow in the Trademark Trial and Appeal Board.”

Dr. Chen, Ms. Farley, Ms. Jimenez, and Mr. Goldman had no disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article