Neurology Reviews covers innovative and emerging news in neurology and neuroscience every month, with a focus on practical approaches to treating Parkinson's disease, epilepsy, headache, stroke, multiple sclerosis, Alzheimer's disease, and other neurologic disorders.

Top Sections
Literature Review
Expert Commentary
Expert Interview
nr
Main menu
NR Main Menu
Explore menu
NR Explore Menu
Proclivity ID
18828001
Unpublish
Negative Keywords
Ocrevus PML
PML
Progressive multifocal leukoencephalopathy
Rituxan
Altmetric
DSM Affiliated
Display in offset block
QuickLearn Excluded Topics/Sections
Best Practices
CME
CME Supplements
Education Center
Medical Education Library
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
Clinical
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 08:59
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 08:59
Current Issue
Title
Neurology Reviews
Description

The leading independent newspaper covering neurology news and commentary.

Current Issue Reference

The Disturbing Sexual Trend With Real Health Consequences

Article Type
Changed
Thu, 07/25/2024 - 09:57

This transcript has been edited for clarity. 

Rachel S. Rubin, MD: I have an interesting topic for you — kind of shocking, actually. Some of you may have read a story earlier this year in The New York Times about the alarming rise among young people of choking or strangulation during sex. I spoke recently with Dr. Debby Herbenick about this concerning and violent trend. Dr. Herbenick is a well-known sexuality researcher and professor at the Indiana University School of Public Health. Welcome, Dr. Herbenick. Can you tell us about your research into this new trend?

Debby Herbenick, PhD: This is some of the most important research that I’ve done. I’ve been studying sexual behaviors and trends for about 14 years in terms of nationally representative studies that we do. Over time, we noticed a trend of increasing prevalence of rough sex practices. 

Now, there’s always been a lot of sexual diversity in the world throughout history. But the main trend that we have focused on in recent years that is important for everyone in medicine to know about is this rapid increase — actually, a really big increase — in what people call “sexual choking,” even though it’s a form of strangulation. The increase is mostly seen in teenagers and young adults. 

We’ve done US nationally representative surveys as well as college campus representative surveys. We find that consistently across four campus representative surveys that 64% of women report having ever been choked during sex, and around 1 in 3 women (aged 18-24 years) throughout the whole country report having been choked during their most recent sexual activity with another person. They call it choking, but because it involves usually one hand — sometimes two hands or a forearm or an object, like a belt or a cord to tie around the neck — it is technically strangulation, because it’s external pressure to the neck to reduce or stop airflow or blood flow. 

Dr. Rubin: These numbers are staggering, right? Everyone listening now is taking care of someone who has been strangled as a form of sexual pleasure. What does this mean from a safety perspective? And as doctors who are working these patients up for migraines and other health problems, what is the research showing? 

Dr. Herbenick: We certainly are seeing people report recurrent headaches and ringing in the ears. There are things we’ve just barely scratched the surface on. Those of us working in this space believe that for anybody coming in for an unexplained stroke (for example, under age 50), you might consider some imaging to see if they have a dissection. We are hearing about people who, when you really probe to find out whether they’ve had pressure on the neck, they report that indeed that they have. So, we have to be thinking about neurologic symptoms. We know that they’re experiencing these at a pretty high rate. 

For people who are engaging in these practices, they should know about the health risks, but we find that most don’t. They may have heard that if it’s really intense high pressure, that in rare cases people can die, but most have never heard of anything in between. So, they’re not necessarily connecting their voice hoarseness, or the recurrent headaches or the sensitivity to light they are having, to an experience of being choked. We need to be paying attention to neurologic symptoms. 

Most physicians I speak with at conferences say that where they feel like they can step into this conversation is through anticipatory guidance and letting their patients know that they may have heard about this trend, and a lot of people are talking about the health consequences, and I want to share some information with you — not coming at it from a place of shame or judgment, but providing some information so that [patients] actually get some medical facts about this that could be lifesaving. 

Dr. Rubin: I see such a big gap in my medical training. I was taught to say, “Hey, do you smoke, do you drink, do you do drugs? Do you have sex? Men, women, or both?”And that’s it. And then maybe use birth control, and don’t get an STD, thinking about herpes, syphilis, gonorrhea, and chlamydia. We weren’t really trained to talk to patients about what kind of sex they are having, or how to talk to patients in a way that is open-minded but also safety-conscious and how the concept of safe sex is more than wear a condom and use birth control.

This idea of rough sex practices and how to talk to teenagers — maybe our pediatricians should be talking about this. Where do we start in terms of how to bring up these conversations and with what level of detail? 

Dr. Herbenick: We find that some young people are already being asked about some of the effects that might be showing on their bodies. It might be that their provider notices some bruising, or marks on their bodies from other types of rough sex practices like hitting and spanking. So that could be an entry point there. Choking is far more prevalent than slapping, so if you’re seeing some marks on the body, then it’s also a good time to ask about other practices they might be engaging in, especially higher risk ones like choking or strangulation. It’s offering some information and even saying, “Look, I’m not here to shame or judge you. I just want you to have some information about this” and giving them an opportunity to ask questions, too. 

We have found that almost nobody talks with their nurse or doctor, even if they have symptoms after being choked or strangled during sex. Just 1% of women with choking-related symptoms, 7% of men, and far fewer trans and nonbinary young people report talking with a nurse or doctor, mostly because they say it doesn’t seem like a big deal. The symptoms got better quickly. Sometimes they’re afraid of being shamed for their sexual behavior, and that’s why they say they don’t talk with somebody. 

They need some type of open-door anticipatory guidance as a way forward. Not everyone is comfortable directly asking whether a patient is engaging in this, but at least letting people know that you’ve heard of this behavior and providing some medical facts can give us a step forward with creating these conversations. 

Dr. Rubin: Can you tell us where is this research going in terms of next steps? Other things that you’re looking at? And what are you excited about? 

Dr. Herbenick: I’m excited about some work I did with a collaborator and colleague of mine, Dr. Keisuke Kawata, that he led a couple of years ago. He’s a neuroscientist. We were looking at potential cumulative effects on the brain. Now we’re taking some of that research into its next steps. We’re also doing more focused studies on other health consequences and hopefully finding out how we can test different educational messages and get people to learn more fact-based information about this, and then see if that is effective in prevention. 

Dr. Rubin: It sounds like a public health campaign is really needed about how to get the word out there about the health consequences of these activities. We’re asking people often enough. In my clinic, I try to keep it open-ended — tell me what sex looks like. What does it look like, and what do you want it to look like? Because I see a lot of people with problems, but if they don’t bring it to me, I don’t necessarily bring it up to them. Until I heard your lecture, and I thought, oh my gosh, I’m not even asking the right questions. Are you hopeful that there will be more public health messaging out there? 

Dr. Herbenick: I am. Years ago, when the child and adolescent choking game became a thing, the Centers for Disease Control and Prevention (CDC) issued reports about it and warnings to parents. And this is a far, far higher prevalence than that ever was. So, I would love to see organizations like the CDC and medical groups getting involved and educating their members and making statements. This is really impacting a huge generation of girls and women, because when it happens during sex between women and men, the choking is mostly happening to the girls and women. It’s also prevalent among sexual minority individuals. But we are talking about this whole generation of young women and what’s happening to their bodies and their brain health. We really need to step into this conversation. 

Dr. Rubin: Very few of us are sexual medicine–trained physicians, and very few of us feel confident and comfortable talking about sexual health issues. But people are getting hurt. People are having real consequences of these behaviors because of our lack of education, knowledge, and even discussion around it. So thank you for doing this research, because had you not done this research, we wouldn’t have found out that 64% of people are engaging in these types of activities. That is not rare.

Dr. Rubin is an assistant clinical professor, Department of Urology, at Georgetown University, Washington. She reported conflicts of interest with Sprout, Maternal Medical, Absorption Pharmaceuticals, GSK, and Endo.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity. 

Rachel S. Rubin, MD: I have an interesting topic for you — kind of shocking, actually. Some of you may have read a story earlier this year in The New York Times about the alarming rise among young people of choking or strangulation during sex. I spoke recently with Dr. Debby Herbenick about this concerning and violent trend. Dr. Herbenick is a well-known sexuality researcher and professor at the Indiana University School of Public Health. Welcome, Dr. Herbenick. Can you tell us about your research into this new trend?

Debby Herbenick, PhD: This is some of the most important research that I’ve done. I’ve been studying sexual behaviors and trends for about 14 years in terms of nationally representative studies that we do. Over time, we noticed a trend of increasing prevalence of rough sex practices. 

Now, there’s always been a lot of sexual diversity in the world throughout history. But the main trend that we have focused on in recent years that is important for everyone in medicine to know about is this rapid increase — actually, a really big increase — in what people call “sexual choking,” even though it’s a form of strangulation. The increase is mostly seen in teenagers and young adults. 

We’ve done US nationally representative surveys as well as college campus representative surveys. We find that consistently across four campus representative surveys that 64% of women report having ever been choked during sex, and around 1 in 3 women (aged 18-24 years) throughout the whole country report having been choked during their most recent sexual activity with another person. They call it choking, but because it involves usually one hand — sometimes two hands or a forearm or an object, like a belt or a cord to tie around the neck — it is technically strangulation, because it’s external pressure to the neck to reduce or stop airflow or blood flow. 

Dr. Rubin: These numbers are staggering, right? Everyone listening now is taking care of someone who has been strangled as a form of sexual pleasure. What does this mean from a safety perspective? And as doctors who are working these patients up for migraines and other health problems, what is the research showing? 

Dr. Herbenick: We certainly are seeing people report recurrent headaches and ringing in the ears. There are things we’ve just barely scratched the surface on. Those of us working in this space believe that for anybody coming in for an unexplained stroke (for example, under age 50), you might consider some imaging to see if they have a dissection. We are hearing about people who, when you really probe to find out whether they’ve had pressure on the neck, they report that indeed that they have. So, we have to be thinking about neurologic symptoms. We know that they’re experiencing these at a pretty high rate. 

For people who are engaging in these practices, they should know about the health risks, but we find that most don’t. They may have heard that if it’s really intense high pressure, that in rare cases people can die, but most have never heard of anything in between. So, they’re not necessarily connecting their voice hoarseness, or the recurrent headaches or the sensitivity to light they are having, to an experience of being choked. We need to be paying attention to neurologic symptoms. 

Most physicians I speak with at conferences say that where they feel like they can step into this conversation is through anticipatory guidance and letting their patients know that they may have heard about this trend, and a lot of people are talking about the health consequences, and I want to share some information with you — not coming at it from a place of shame or judgment, but providing some information so that [patients] actually get some medical facts about this that could be lifesaving. 

Dr. Rubin: I see such a big gap in my medical training. I was taught to say, “Hey, do you smoke, do you drink, do you do drugs? Do you have sex? Men, women, or both?”And that’s it. And then maybe use birth control, and don’t get an STD, thinking about herpes, syphilis, gonorrhea, and chlamydia. We weren’t really trained to talk to patients about what kind of sex they are having, or how to talk to patients in a way that is open-minded but also safety-conscious and how the concept of safe sex is more than wear a condom and use birth control.

This idea of rough sex practices and how to talk to teenagers — maybe our pediatricians should be talking about this. Where do we start in terms of how to bring up these conversations and with what level of detail? 

Dr. Herbenick: We find that some young people are already being asked about some of the effects that might be showing on their bodies. It might be that their provider notices some bruising, or marks on their bodies from other types of rough sex practices like hitting and spanking. So that could be an entry point there. Choking is far more prevalent than slapping, so if you’re seeing some marks on the body, then it’s also a good time to ask about other practices they might be engaging in, especially higher risk ones like choking or strangulation. It’s offering some information and even saying, “Look, I’m not here to shame or judge you. I just want you to have some information about this” and giving them an opportunity to ask questions, too. 

We have found that almost nobody talks with their nurse or doctor, even if they have symptoms after being choked or strangled during sex. Just 1% of women with choking-related symptoms, 7% of men, and far fewer trans and nonbinary young people report talking with a nurse or doctor, mostly because they say it doesn’t seem like a big deal. The symptoms got better quickly. Sometimes they’re afraid of being shamed for their sexual behavior, and that’s why they say they don’t talk with somebody. 

They need some type of open-door anticipatory guidance as a way forward. Not everyone is comfortable directly asking whether a patient is engaging in this, but at least letting people know that you’ve heard of this behavior and providing some medical facts can give us a step forward with creating these conversations. 

Dr. Rubin: Can you tell us where is this research going in terms of next steps? Other things that you’re looking at? And what are you excited about? 

Dr. Herbenick: I’m excited about some work I did with a collaborator and colleague of mine, Dr. Keisuke Kawata, that he led a couple of years ago. He’s a neuroscientist. We were looking at potential cumulative effects on the brain. Now we’re taking some of that research into its next steps. We’re also doing more focused studies on other health consequences and hopefully finding out how we can test different educational messages and get people to learn more fact-based information about this, and then see if that is effective in prevention. 

Dr. Rubin: It sounds like a public health campaign is really needed about how to get the word out there about the health consequences of these activities. We’re asking people often enough. In my clinic, I try to keep it open-ended — tell me what sex looks like. What does it look like, and what do you want it to look like? Because I see a lot of people with problems, but if they don’t bring it to me, I don’t necessarily bring it up to them. Until I heard your lecture, and I thought, oh my gosh, I’m not even asking the right questions. Are you hopeful that there will be more public health messaging out there? 

Dr. Herbenick: I am. Years ago, when the child and adolescent choking game became a thing, the Centers for Disease Control and Prevention (CDC) issued reports about it and warnings to parents. And this is a far, far higher prevalence than that ever was. So, I would love to see organizations like the CDC and medical groups getting involved and educating their members and making statements. This is really impacting a huge generation of girls and women, because when it happens during sex between women and men, the choking is mostly happening to the girls and women. It’s also prevalent among sexual minority individuals. But we are talking about this whole generation of young women and what’s happening to their bodies and their brain health. We really need to step into this conversation. 

Dr. Rubin: Very few of us are sexual medicine–trained physicians, and very few of us feel confident and comfortable talking about sexual health issues. But people are getting hurt. People are having real consequences of these behaviors because of our lack of education, knowledge, and even discussion around it. So thank you for doing this research, because had you not done this research, we wouldn’t have found out that 64% of people are engaging in these types of activities. That is not rare.

Dr. Rubin is an assistant clinical professor, Department of Urology, at Georgetown University, Washington. She reported conflicts of interest with Sprout, Maternal Medical, Absorption Pharmaceuticals, GSK, and Endo.

A version of this article first appeared on Medscape.com.

This transcript has been edited for clarity. 

Rachel S. Rubin, MD: I have an interesting topic for you — kind of shocking, actually. Some of you may have read a story earlier this year in The New York Times about the alarming rise among young people of choking or strangulation during sex. I spoke recently with Dr. Debby Herbenick about this concerning and violent trend. Dr. Herbenick is a well-known sexuality researcher and professor at the Indiana University School of Public Health. Welcome, Dr. Herbenick. Can you tell us about your research into this new trend?

Debby Herbenick, PhD: This is some of the most important research that I’ve done. I’ve been studying sexual behaviors and trends for about 14 years in terms of nationally representative studies that we do. Over time, we noticed a trend of increasing prevalence of rough sex practices. 

Now, there’s always been a lot of sexual diversity in the world throughout history. But the main trend that we have focused on in recent years that is important for everyone in medicine to know about is this rapid increase — actually, a really big increase — in what people call “sexual choking,” even though it’s a form of strangulation. The increase is mostly seen in teenagers and young adults. 

We’ve done US nationally representative surveys as well as college campus representative surveys. We find that consistently across four campus representative surveys that 64% of women report having ever been choked during sex, and around 1 in 3 women (aged 18-24 years) throughout the whole country report having been choked during their most recent sexual activity with another person. They call it choking, but because it involves usually one hand — sometimes two hands or a forearm or an object, like a belt or a cord to tie around the neck — it is technically strangulation, because it’s external pressure to the neck to reduce or stop airflow or blood flow. 

Dr. Rubin: These numbers are staggering, right? Everyone listening now is taking care of someone who has been strangled as a form of sexual pleasure. What does this mean from a safety perspective? And as doctors who are working these patients up for migraines and other health problems, what is the research showing? 

Dr. Herbenick: We certainly are seeing people report recurrent headaches and ringing in the ears. There are things we’ve just barely scratched the surface on. Those of us working in this space believe that for anybody coming in for an unexplained stroke (for example, under age 50), you might consider some imaging to see if they have a dissection. We are hearing about people who, when you really probe to find out whether they’ve had pressure on the neck, they report that indeed that they have. So, we have to be thinking about neurologic symptoms. We know that they’re experiencing these at a pretty high rate. 

For people who are engaging in these practices, they should know about the health risks, but we find that most don’t. They may have heard that if it’s really intense high pressure, that in rare cases people can die, but most have never heard of anything in between. So, they’re not necessarily connecting their voice hoarseness, or the recurrent headaches or the sensitivity to light they are having, to an experience of being choked. We need to be paying attention to neurologic symptoms. 

Most physicians I speak with at conferences say that where they feel like they can step into this conversation is through anticipatory guidance and letting their patients know that they may have heard about this trend, and a lot of people are talking about the health consequences, and I want to share some information with you — not coming at it from a place of shame or judgment, but providing some information so that [patients] actually get some medical facts about this that could be lifesaving. 

Dr. Rubin: I see such a big gap in my medical training. I was taught to say, “Hey, do you smoke, do you drink, do you do drugs? Do you have sex? Men, women, or both?”And that’s it. And then maybe use birth control, and don’t get an STD, thinking about herpes, syphilis, gonorrhea, and chlamydia. We weren’t really trained to talk to patients about what kind of sex they are having, or how to talk to patients in a way that is open-minded but also safety-conscious and how the concept of safe sex is more than wear a condom and use birth control.

This idea of rough sex practices and how to talk to teenagers — maybe our pediatricians should be talking about this. Where do we start in terms of how to bring up these conversations and with what level of detail? 

Dr. Herbenick: We find that some young people are already being asked about some of the effects that might be showing on their bodies. It might be that their provider notices some bruising, or marks on their bodies from other types of rough sex practices like hitting and spanking. So that could be an entry point there. Choking is far more prevalent than slapping, so if you’re seeing some marks on the body, then it’s also a good time to ask about other practices they might be engaging in, especially higher risk ones like choking or strangulation. It’s offering some information and even saying, “Look, I’m not here to shame or judge you. I just want you to have some information about this” and giving them an opportunity to ask questions, too. 

We have found that almost nobody talks with their nurse or doctor, even if they have symptoms after being choked or strangled during sex. Just 1% of women with choking-related symptoms, 7% of men, and far fewer trans and nonbinary young people report talking with a nurse or doctor, mostly because they say it doesn’t seem like a big deal. The symptoms got better quickly. Sometimes they’re afraid of being shamed for their sexual behavior, and that’s why they say they don’t talk with somebody. 

They need some type of open-door anticipatory guidance as a way forward. Not everyone is comfortable directly asking whether a patient is engaging in this, but at least letting people know that you’ve heard of this behavior and providing some medical facts can give us a step forward with creating these conversations. 

Dr. Rubin: Can you tell us where is this research going in terms of next steps? Other things that you’re looking at? And what are you excited about? 

Dr. Herbenick: I’m excited about some work I did with a collaborator and colleague of mine, Dr. Keisuke Kawata, that he led a couple of years ago. He’s a neuroscientist. We were looking at potential cumulative effects on the brain. Now we’re taking some of that research into its next steps. We’re also doing more focused studies on other health consequences and hopefully finding out how we can test different educational messages and get people to learn more fact-based information about this, and then see if that is effective in prevention. 

Dr. Rubin: It sounds like a public health campaign is really needed about how to get the word out there about the health consequences of these activities. We’re asking people often enough. In my clinic, I try to keep it open-ended — tell me what sex looks like. What does it look like, and what do you want it to look like? Because I see a lot of people with problems, but if they don’t bring it to me, I don’t necessarily bring it up to them. Until I heard your lecture, and I thought, oh my gosh, I’m not even asking the right questions. Are you hopeful that there will be more public health messaging out there? 

Dr. Herbenick: I am. Years ago, when the child and adolescent choking game became a thing, the Centers for Disease Control and Prevention (CDC) issued reports about it and warnings to parents. And this is a far, far higher prevalence than that ever was. So, I would love to see organizations like the CDC and medical groups getting involved and educating their members and making statements. This is really impacting a huge generation of girls and women, because when it happens during sex between women and men, the choking is mostly happening to the girls and women. It’s also prevalent among sexual minority individuals. But we are talking about this whole generation of young women and what’s happening to their bodies and their brain health. We really need to step into this conversation. 

Dr. Rubin: Very few of us are sexual medicine–trained physicians, and very few of us feel confident and comfortable talking about sexual health issues. But people are getting hurt. People are having real consequences of these behaviors because of our lack of education, knowledge, and even discussion around it. So thank you for doing this research, because had you not done this research, we wouldn’t have found out that 64% of people are engaging in these types of activities. That is not rare.

Dr. Rubin is an assistant clinical professor, Department of Urology, at Georgetown University, Washington. She reported conflicts of interest with Sprout, Maternal Medical, Absorption Pharmaceuticals, GSK, and Endo.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Atogepant May Prevent Rebound Headache From Medication Overuse in Chronic Migraine

Article Type
Changed
Mon, 07/29/2024 - 15:15

The oral calcitonin gene-related peptide receptor antagonist atogepant is effective in preventing rebound headache related to medication overuse in patients with chronic migraine (CM), new research suggested.

Results of a subgroup analysis of a phase 3, 12-week randomized, double-blind, placebo-controlled trial showed up to a 62% reduction in the proportion of atogepant-treated participants who met acute medication overuse criteria.

“Based on our findings, treatment with atogepant may potentially decrease the risk of developing rebound headache by reducing the use of pain medications,” principal investigator Peter Goadsby, MD, PhD, of King’s College London, London, England, said in a news release.

The study was published online in Neurology.
 

Effective Prevention Needed

Acute treatments for migraine can mitigate symptoms and reduce disability but can also be ineffective and even result in increased dosing and overuse of these medications, the investigators noted.

Acute medication overuse is defined as “taking simple analgesics for ≥ 15 days per month or taking triptans, ergots, opioids, or combinations of medications for ≥ 10 days per month.”

“There is a high prevalence of pain medication overuse among people with migraine as they try to manage what are often debilitating symptoms,” Dr. Goadsby said. “However, medication overuse can lead to more headaches, called rebound headaches, so more effective preventive treatments are needed.”

Atogepant was developed for migraine prevention in adults. It had been studied in the phase 3 PROGRESS trial, which showed it significantly reduced monthly migraine days (MMDs) compared with placebo during the 12-week trial.

The new subgroup analysis of the study focused specifically on the efficacy and safety of atogepant vs placebo in participants with CM with, and without, medication overuse.

Participants (mean age, 42.1 years; 87.6% women) were randomized to receive either atogepant 30 mg twice daily (n = 253), atogepant 60 mg once daily (n = 256), or placebo (n = 240), with baseline demographics and clinical characteristics similar across all treatment arms. A total of 66.2% met baseline acute medication overuse criteria.

Participants were asked to record migraine and headache experiences in an electronic diary.
 

‘Effective and Safe’

Participants in both atogepant groups experienced fewer monthly headache days (MHDs) than those in the placebo group, with a least squares mean difference (LSMD) of −2.7 (95% confidence interval [CI], −4.0 to −1.4) in the atogepant 30 mg twice daily group and −1.9 (95% CI, −3.2 to −0.6) in the atogepant 60 mg once daily group.

MHDs were also reduced in both treatment groups, with LSMDs of −2.8 (95% CI, −4.0 to −1.5) and −2.1 (95% CI, −3.3 to −0.8), respectively. Mean acute medication use days were lower in both the treatment groups, with LSMDs of −2.8 (95% CI, −4.1 to −1.6) and −2.6 (95% CI, −3.9 to −1.3), respectively.

A higher proportion of participants achieved a ≥ 50% reduction in MMDs with atogepant 30 mg twice daily (odds ratio [OR], 2.5; 95% CI, 1.5-4.0) and atogepant 60 mg once daily (OR, 2.3; 95% CI, 1.4-3.7).

Notably, the researchers found a 52.1%-61.9% reduction in the proportion of atogepant-treated participants meeting acute medication overuse criteria during the study period vs 38.3% in the placebo group.

Similar results were observed in the subgroup without acute medication overuse.

Treatment-emergent adverse events were reported by 55.8% of participants treated with atogepant 30 mg twice daily, 66.1% with atogepant 60 mg once daily, and 48.5% with placebo in the acute medication overuse subgroup, with similar reports in the non-overuse subgroup.

A limitation cited by the authors was that participants’ self-report of migraines and headaches via electronic diaries might have been inaccurate.

Nevertheless, they concluded that the results showed atogepant to be an “effective and safe” preventive treatment for patients with CM with, and without, acute medication overuse.

AbbVie funded this study and participated in the study design, research, analysis, data collection, interpretation of data, reviewing, and approval of the publication. No honoraria or payments were made for authorship. Dr. Goadsby received personal fees from AbbVie during the conduct of the study, and over the last 36 months, he received a research grant from Celgene; personal fees from Aeon Biopharma, Amgen, CoolTechLLC, Dr. Reddy’s, Eli Lilly and Company, Epalex, Lundbeck, Novartis, Pfizer, Praxis, Sanofi, Satsuma, ShiraTronics, Teva Pharmaceuticals, and Tremeau; personal fees for advice through Gerson Lehrman Group, Guidepoint, SAI Med Partners, and Vector Metric; fees for educational materials from CME Outfitters; and publishing royalties or fees from Massachusetts Medical Society, Oxford University Press, UpToDate, and Wolters Kluwer. The other authors’ disclosures are listed on the original paper.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The oral calcitonin gene-related peptide receptor antagonist atogepant is effective in preventing rebound headache related to medication overuse in patients with chronic migraine (CM), new research suggested.

Results of a subgroup analysis of a phase 3, 12-week randomized, double-blind, placebo-controlled trial showed up to a 62% reduction in the proportion of atogepant-treated participants who met acute medication overuse criteria.

“Based on our findings, treatment with atogepant may potentially decrease the risk of developing rebound headache by reducing the use of pain medications,” principal investigator Peter Goadsby, MD, PhD, of King’s College London, London, England, said in a news release.

The study was published online in Neurology.
 

Effective Prevention Needed

Acute treatments for migraine can mitigate symptoms and reduce disability but can also be ineffective and even result in increased dosing and overuse of these medications, the investigators noted.

Acute medication overuse is defined as “taking simple analgesics for ≥ 15 days per month or taking triptans, ergots, opioids, or combinations of medications for ≥ 10 days per month.”

“There is a high prevalence of pain medication overuse among people with migraine as they try to manage what are often debilitating symptoms,” Dr. Goadsby said. “However, medication overuse can lead to more headaches, called rebound headaches, so more effective preventive treatments are needed.”

Atogepant was developed for migraine prevention in adults. It had been studied in the phase 3 PROGRESS trial, which showed it significantly reduced monthly migraine days (MMDs) compared with placebo during the 12-week trial.

The new subgroup analysis of the study focused specifically on the efficacy and safety of atogepant vs placebo in participants with CM with, and without, medication overuse.

Participants (mean age, 42.1 years; 87.6% women) were randomized to receive either atogepant 30 mg twice daily (n = 253), atogepant 60 mg once daily (n = 256), or placebo (n = 240), with baseline demographics and clinical characteristics similar across all treatment arms. A total of 66.2% met baseline acute medication overuse criteria.

Participants were asked to record migraine and headache experiences in an electronic diary.
 

‘Effective and Safe’

Participants in both atogepant groups experienced fewer monthly headache days (MHDs) than those in the placebo group, with a least squares mean difference (LSMD) of −2.7 (95% confidence interval [CI], −4.0 to −1.4) in the atogepant 30 mg twice daily group and −1.9 (95% CI, −3.2 to −0.6) in the atogepant 60 mg once daily group.

MHDs were also reduced in both treatment groups, with LSMDs of −2.8 (95% CI, −4.0 to −1.5) and −2.1 (95% CI, −3.3 to −0.8), respectively. Mean acute medication use days were lower in both the treatment groups, with LSMDs of −2.8 (95% CI, −4.1 to −1.6) and −2.6 (95% CI, −3.9 to −1.3), respectively.

A higher proportion of participants achieved a ≥ 50% reduction in MMDs with atogepant 30 mg twice daily (odds ratio [OR], 2.5; 95% CI, 1.5-4.0) and atogepant 60 mg once daily (OR, 2.3; 95% CI, 1.4-3.7).

Notably, the researchers found a 52.1%-61.9% reduction in the proportion of atogepant-treated participants meeting acute medication overuse criteria during the study period vs 38.3% in the placebo group.

Similar results were observed in the subgroup without acute medication overuse.

Treatment-emergent adverse events were reported by 55.8% of participants treated with atogepant 30 mg twice daily, 66.1% with atogepant 60 mg once daily, and 48.5% with placebo in the acute medication overuse subgroup, with similar reports in the non-overuse subgroup.

A limitation cited by the authors was that participants’ self-report of migraines and headaches via electronic diaries might have been inaccurate.

Nevertheless, they concluded that the results showed atogepant to be an “effective and safe” preventive treatment for patients with CM with, and without, acute medication overuse.

AbbVie funded this study and participated in the study design, research, analysis, data collection, interpretation of data, reviewing, and approval of the publication. No honoraria or payments were made for authorship. Dr. Goadsby received personal fees from AbbVie during the conduct of the study, and over the last 36 months, he received a research grant from Celgene; personal fees from Aeon Biopharma, Amgen, CoolTechLLC, Dr. Reddy’s, Eli Lilly and Company, Epalex, Lundbeck, Novartis, Pfizer, Praxis, Sanofi, Satsuma, ShiraTronics, Teva Pharmaceuticals, and Tremeau; personal fees for advice through Gerson Lehrman Group, Guidepoint, SAI Med Partners, and Vector Metric; fees for educational materials from CME Outfitters; and publishing royalties or fees from Massachusetts Medical Society, Oxford University Press, UpToDate, and Wolters Kluwer. The other authors’ disclosures are listed on the original paper.

A version of this article first appeared on Medscape.com.

The oral calcitonin gene-related peptide receptor antagonist atogepant is effective in preventing rebound headache related to medication overuse in patients with chronic migraine (CM), new research suggested.

Results of a subgroup analysis of a phase 3, 12-week randomized, double-blind, placebo-controlled trial showed up to a 62% reduction in the proportion of atogepant-treated participants who met acute medication overuse criteria.

“Based on our findings, treatment with atogepant may potentially decrease the risk of developing rebound headache by reducing the use of pain medications,” principal investigator Peter Goadsby, MD, PhD, of King’s College London, London, England, said in a news release.

The study was published online in Neurology.
 

Effective Prevention Needed

Acute treatments for migraine can mitigate symptoms and reduce disability but can also be ineffective and even result in increased dosing and overuse of these medications, the investigators noted.

Acute medication overuse is defined as “taking simple analgesics for ≥ 15 days per month or taking triptans, ergots, opioids, or combinations of medications for ≥ 10 days per month.”

“There is a high prevalence of pain medication overuse among people with migraine as they try to manage what are often debilitating symptoms,” Dr. Goadsby said. “However, medication overuse can lead to more headaches, called rebound headaches, so more effective preventive treatments are needed.”

Atogepant was developed for migraine prevention in adults. It had been studied in the phase 3 PROGRESS trial, which showed it significantly reduced monthly migraine days (MMDs) compared with placebo during the 12-week trial.

The new subgroup analysis of the study focused specifically on the efficacy and safety of atogepant vs placebo in participants with CM with, and without, medication overuse.

Participants (mean age, 42.1 years; 87.6% women) were randomized to receive either atogepant 30 mg twice daily (n = 253), atogepant 60 mg once daily (n = 256), or placebo (n = 240), with baseline demographics and clinical characteristics similar across all treatment arms. A total of 66.2% met baseline acute medication overuse criteria.

Participants were asked to record migraine and headache experiences in an electronic diary.
 

‘Effective and Safe’

Participants in both atogepant groups experienced fewer monthly headache days (MHDs) than those in the placebo group, with a least squares mean difference (LSMD) of −2.7 (95% confidence interval [CI], −4.0 to −1.4) in the atogepant 30 mg twice daily group and −1.9 (95% CI, −3.2 to −0.6) in the atogepant 60 mg once daily group.

MHDs were also reduced in both treatment groups, with LSMDs of −2.8 (95% CI, −4.0 to −1.5) and −2.1 (95% CI, −3.3 to −0.8), respectively. Mean acute medication use days were lower in both the treatment groups, with LSMDs of −2.8 (95% CI, −4.1 to −1.6) and −2.6 (95% CI, −3.9 to −1.3), respectively.

A higher proportion of participants achieved a ≥ 50% reduction in MMDs with atogepant 30 mg twice daily (odds ratio [OR], 2.5; 95% CI, 1.5-4.0) and atogepant 60 mg once daily (OR, 2.3; 95% CI, 1.4-3.7).

Notably, the researchers found a 52.1%-61.9% reduction in the proportion of atogepant-treated participants meeting acute medication overuse criteria during the study period vs 38.3% in the placebo group.

Similar results were observed in the subgroup without acute medication overuse.

Treatment-emergent adverse events were reported by 55.8% of participants treated with atogepant 30 mg twice daily, 66.1% with atogepant 60 mg once daily, and 48.5% with placebo in the acute medication overuse subgroup, with similar reports in the non-overuse subgroup.

A limitation cited by the authors was that participants’ self-report of migraines and headaches via electronic diaries might have been inaccurate.

Nevertheless, they concluded that the results showed atogepant to be an “effective and safe” preventive treatment for patients with CM with, and without, acute medication overuse.

AbbVie funded this study and participated in the study design, research, analysis, data collection, interpretation of data, reviewing, and approval of the publication. No honoraria or payments were made for authorship. Dr. Goadsby received personal fees from AbbVie during the conduct of the study, and over the last 36 months, he received a research grant from Celgene; personal fees from Aeon Biopharma, Amgen, CoolTechLLC, Dr. Reddy’s, Eli Lilly and Company, Epalex, Lundbeck, Novartis, Pfizer, Praxis, Sanofi, Satsuma, ShiraTronics, Teva Pharmaceuticals, and Tremeau; personal fees for advice through Gerson Lehrman Group, Guidepoint, SAI Med Partners, and Vector Metric; fees for educational materials from CME Outfitters; and publishing royalties or fees from Massachusetts Medical Society, Oxford University Press, UpToDate, and Wolters Kluwer. The other authors’ disclosures are listed on the original paper.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Treatable Condition Misdiagnosed as Dementia in Almost 13% of Cases

Article Type
Changed
Tue, 07/23/2024 - 10:36

Patients with dementia may instead have hepatic encephalopathy and should be screened with the Fibrosis-4 (FIB-4) index for cirrhosis, one of the main causes of the condition, new research suggests.

The study of more than 68,000 individuals in the general population diagnosed with dementia between 2009 and 2019 found that almost 13% had FIB-4 scores indicative of cirrhosis and potential hepatic encephalopathy.

The findings, recently published online in The American Journal of Medicine, corroborate and extend the researchers’ previous work, which showed that about 10% of US veterans with a dementia diagnosis may in fact have hepatic encephalopathy.

“We need to increase awareness that cirrhosis and related brain complications are common, silent, but treatable when found,” said corresponding author Jasmohan Bajaj, MD, of Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia. “Moreover, these are being increasingly diagnosed in older individuals.”

“Cirrhosis can also predispose patients to liver cancer and other complications, so diagnosing it in all patients is important, regardless of the hepatic encephalopathy-dementia connection,” he said.
 

FIB-4 Is Key

Dr. Bajaj and colleagues analyzed data from 72 healthcare centers on 68,807 nonveteran patients diagnosed with dementia at two or more physician visits between 2009 and 2019. Patients had no prior cirrhosis diagnosis, the mean age was 73 years, 44.7% were men, and 78% were White.

The team measured the prevalence of two high FIB-4 scores (> 2.67 and > 3.25), selected for their strong predictive value for advanced cirrhosis. Researchers also examined associations between high scores and multiple comorbidities and demographic factors.

Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and platelet labs were collected up to 2 years after the index dementia diagnosis because they are used to calculate FIB-4.

The mean FIB-4 score was 1.78, mean ALT was 23.72 U/L, mean AST was 27.42 U/L, and mean platelets were 243.51 × 109/µL.

A total of 8683 participants (12.8%) had a FIB-4 score greater than 2.67 and 5185 (7.6%) had a score greater than 3.25.

In multivariable logistic regression models, FIB-4 greater than 3.25 was associated with viral hepatitis (odds ratio [OR], 2.23), congestive heart failure (OR,1.73), HIV (OR, 1.72), male gender (OR, 1.42), alcohol use disorder (OR, 1.39), and chronic kidney disease (OR, 1.38).

FIB-4 greater than 3.25 was inversely associated with White race (OR, 0.76) and diabetes (OR, 0.82).

The associations were similar when using a threshold score of greater than 2.67.

“With the aging population, including those with cirrhosis, the potential for overlap between hepatic encephalopathy and dementia has risen and should be considered in the differential diagnosis,” the authors wrote. “Undiagnosed cirrhosis and potential hepatic encephalopathy can be a treatable cause of or contributor towards cognitive impairment in patients diagnosed with dementia.”

Providers should use the FIB-4 index as a screening tool to detect cirrhosis in patients with dementia, they concluded.

The team’s next steps will include investigating barriers to the use of FIB-4 among practitioners, Dr. Bajaj said.

Incorporating use of the FIB-4 index into screening guidelines “with input from all stakeholders, including geriatricians, primary care providers, and neurologists … would greatly expand the diagnosis of cirrhosis and potentially hepatic encephalopathy in dementia patients,” Dr. Bajaj said.

The study had a few limitations, including the selected centers in the cohort database, lack of chart review to confirm diagnoses in individual cases, and the use of a modified FIB-4, with age capped at 65 years.
 

 

 

‘Easy to Miss’

Commenting on the research, Nancy Reau, MD, section chief of hepatology at Rush University Medical Center in Chicago, said that it is easy for physicians to miss asymptomatic liver disease that could progress and lead to cognitive decline.

“Most of my patients are already labeled with liver disease; however, it is not uncommon to receive a patient from another specialist who felt their presentation was more consistent with liver disease than the issue they were referred for,” she said.

Still, even in metabolic dysfunction–associated steatotic liver disease, which affects nearly one third of the population, the condition isn’t advanced enough in most patients to cause symptoms similar to those of dementia, said Dr. Reau, who was not associated with the study.

“It is more important for specialists in neurology to exclude liver disease and for hepatologists or gastroenterologists to be equipped with tools to exclude alternative explanations for neurocognitive presentations,” she said. “It is important to not label a patient as having HE and then miss alternative explanations.”

“Every presentation has a differential diagnosis. Using easy tools like FIB-4 can make sure you don’t miss liver disease as a contributing factor in a patient that presents with neurocognitive symptoms,” Dr. Reau said.

This work was partly supported by grants from Department of Veterans Affairs merit review program and the National Institutes of Health’s National Center for Advancing Translational Science. Dr. Bajaj and Dr. Reau reported no conflicts of interest.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Patients with dementia may instead have hepatic encephalopathy and should be screened with the Fibrosis-4 (FIB-4) index for cirrhosis, one of the main causes of the condition, new research suggests.

The study of more than 68,000 individuals in the general population diagnosed with dementia between 2009 and 2019 found that almost 13% had FIB-4 scores indicative of cirrhosis and potential hepatic encephalopathy.

The findings, recently published online in The American Journal of Medicine, corroborate and extend the researchers’ previous work, which showed that about 10% of US veterans with a dementia diagnosis may in fact have hepatic encephalopathy.

“We need to increase awareness that cirrhosis and related brain complications are common, silent, but treatable when found,” said corresponding author Jasmohan Bajaj, MD, of Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia. “Moreover, these are being increasingly diagnosed in older individuals.”

“Cirrhosis can also predispose patients to liver cancer and other complications, so diagnosing it in all patients is important, regardless of the hepatic encephalopathy-dementia connection,” he said.
 

FIB-4 Is Key

Dr. Bajaj and colleagues analyzed data from 72 healthcare centers on 68,807 nonveteran patients diagnosed with dementia at two or more physician visits between 2009 and 2019. Patients had no prior cirrhosis diagnosis, the mean age was 73 years, 44.7% were men, and 78% were White.

The team measured the prevalence of two high FIB-4 scores (> 2.67 and > 3.25), selected for their strong predictive value for advanced cirrhosis. Researchers also examined associations between high scores and multiple comorbidities and demographic factors.

Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and platelet labs were collected up to 2 years after the index dementia diagnosis because they are used to calculate FIB-4.

The mean FIB-4 score was 1.78, mean ALT was 23.72 U/L, mean AST was 27.42 U/L, and mean platelets were 243.51 × 109/µL.

A total of 8683 participants (12.8%) had a FIB-4 score greater than 2.67 and 5185 (7.6%) had a score greater than 3.25.

In multivariable logistic regression models, FIB-4 greater than 3.25 was associated with viral hepatitis (odds ratio [OR], 2.23), congestive heart failure (OR,1.73), HIV (OR, 1.72), male gender (OR, 1.42), alcohol use disorder (OR, 1.39), and chronic kidney disease (OR, 1.38).

FIB-4 greater than 3.25 was inversely associated with White race (OR, 0.76) and diabetes (OR, 0.82).

The associations were similar when using a threshold score of greater than 2.67.

“With the aging population, including those with cirrhosis, the potential for overlap between hepatic encephalopathy and dementia has risen and should be considered in the differential diagnosis,” the authors wrote. “Undiagnosed cirrhosis and potential hepatic encephalopathy can be a treatable cause of or contributor towards cognitive impairment in patients diagnosed with dementia.”

Providers should use the FIB-4 index as a screening tool to detect cirrhosis in patients with dementia, they concluded.

The team’s next steps will include investigating barriers to the use of FIB-4 among practitioners, Dr. Bajaj said.

Incorporating use of the FIB-4 index into screening guidelines “with input from all stakeholders, including geriatricians, primary care providers, and neurologists … would greatly expand the diagnosis of cirrhosis and potentially hepatic encephalopathy in dementia patients,” Dr. Bajaj said.

The study had a few limitations, including the selected centers in the cohort database, lack of chart review to confirm diagnoses in individual cases, and the use of a modified FIB-4, with age capped at 65 years.
 

 

 

‘Easy to Miss’

Commenting on the research, Nancy Reau, MD, section chief of hepatology at Rush University Medical Center in Chicago, said that it is easy for physicians to miss asymptomatic liver disease that could progress and lead to cognitive decline.

“Most of my patients are already labeled with liver disease; however, it is not uncommon to receive a patient from another specialist who felt their presentation was more consistent with liver disease than the issue they were referred for,” she said.

Still, even in metabolic dysfunction–associated steatotic liver disease, which affects nearly one third of the population, the condition isn’t advanced enough in most patients to cause symptoms similar to those of dementia, said Dr. Reau, who was not associated with the study.

“It is more important for specialists in neurology to exclude liver disease and for hepatologists or gastroenterologists to be equipped with tools to exclude alternative explanations for neurocognitive presentations,” she said. “It is important to not label a patient as having HE and then miss alternative explanations.”

“Every presentation has a differential diagnosis. Using easy tools like FIB-4 can make sure you don’t miss liver disease as a contributing factor in a patient that presents with neurocognitive symptoms,” Dr. Reau said.

This work was partly supported by grants from Department of Veterans Affairs merit review program and the National Institutes of Health’s National Center for Advancing Translational Science. Dr. Bajaj and Dr. Reau reported no conflicts of interest.
 

A version of this article appeared on Medscape.com.

Patients with dementia may instead have hepatic encephalopathy and should be screened with the Fibrosis-4 (FIB-4) index for cirrhosis, one of the main causes of the condition, new research suggests.

The study of more than 68,000 individuals in the general population diagnosed with dementia between 2009 and 2019 found that almost 13% had FIB-4 scores indicative of cirrhosis and potential hepatic encephalopathy.

The findings, recently published online in The American Journal of Medicine, corroborate and extend the researchers’ previous work, which showed that about 10% of US veterans with a dementia diagnosis may in fact have hepatic encephalopathy.

“We need to increase awareness that cirrhosis and related brain complications are common, silent, but treatable when found,” said corresponding author Jasmohan Bajaj, MD, of Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia. “Moreover, these are being increasingly diagnosed in older individuals.”

“Cirrhosis can also predispose patients to liver cancer and other complications, so diagnosing it in all patients is important, regardless of the hepatic encephalopathy-dementia connection,” he said.
 

FIB-4 Is Key

Dr. Bajaj and colleagues analyzed data from 72 healthcare centers on 68,807 nonveteran patients diagnosed with dementia at two or more physician visits between 2009 and 2019. Patients had no prior cirrhosis diagnosis, the mean age was 73 years, 44.7% were men, and 78% were White.

The team measured the prevalence of two high FIB-4 scores (> 2.67 and > 3.25), selected for their strong predictive value for advanced cirrhosis. Researchers also examined associations between high scores and multiple comorbidities and demographic factors.

Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and platelet labs were collected up to 2 years after the index dementia diagnosis because they are used to calculate FIB-4.

The mean FIB-4 score was 1.78, mean ALT was 23.72 U/L, mean AST was 27.42 U/L, and mean platelets were 243.51 × 109/µL.

A total of 8683 participants (12.8%) had a FIB-4 score greater than 2.67 and 5185 (7.6%) had a score greater than 3.25.

In multivariable logistic regression models, FIB-4 greater than 3.25 was associated with viral hepatitis (odds ratio [OR], 2.23), congestive heart failure (OR,1.73), HIV (OR, 1.72), male gender (OR, 1.42), alcohol use disorder (OR, 1.39), and chronic kidney disease (OR, 1.38).

FIB-4 greater than 3.25 was inversely associated with White race (OR, 0.76) and diabetes (OR, 0.82).

The associations were similar when using a threshold score of greater than 2.67.

“With the aging population, including those with cirrhosis, the potential for overlap between hepatic encephalopathy and dementia has risen and should be considered in the differential diagnosis,” the authors wrote. “Undiagnosed cirrhosis and potential hepatic encephalopathy can be a treatable cause of or contributor towards cognitive impairment in patients diagnosed with dementia.”

Providers should use the FIB-4 index as a screening tool to detect cirrhosis in patients with dementia, they concluded.

The team’s next steps will include investigating barriers to the use of FIB-4 among practitioners, Dr. Bajaj said.

Incorporating use of the FIB-4 index into screening guidelines “with input from all stakeholders, including geriatricians, primary care providers, and neurologists … would greatly expand the diagnosis of cirrhosis and potentially hepatic encephalopathy in dementia patients,” Dr. Bajaj said.

The study had a few limitations, including the selected centers in the cohort database, lack of chart review to confirm diagnoses in individual cases, and the use of a modified FIB-4, with age capped at 65 years.
 

 

 

‘Easy to Miss’

Commenting on the research, Nancy Reau, MD, section chief of hepatology at Rush University Medical Center in Chicago, said that it is easy for physicians to miss asymptomatic liver disease that could progress and lead to cognitive decline.

“Most of my patients are already labeled with liver disease; however, it is not uncommon to receive a patient from another specialist who felt their presentation was more consistent with liver disease than the issue they were referred for,” she said.

Still, even in metabolic dysfunction–associated steatotic liver disease, which affects nearly one third of the population, the condition isn’t advanced enough in most patients to cause symptoms similar to those of dementia, said Dr. Reau, who was not associated with the study.

“It is more important for specialists in neurology to exclude liver disease and for hepatologists or gastroenterologists to be equipped with tools to exclude alternative explanations for neurocognitive presentations,” she said. “It is important to not label a patient as having HE and then miss alternative explanations.”

“Every presentation has a differential diagnosis. Using easy tools like FIB-4 can make sure you don’t miss liver disease as a contributing factor in a patient that presents with neurocognitive symptoms,” Dr. Reau said.

This work was partly supported by grants from Department of Veterans Affairs merit review program and the National Institutes of Health’s National Center for Advancing Translational Science. Dr. Bajaj and Dr. Reau reported no conflicts of interest.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

From the American Journal of Medicine

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Greater Transparency of Oncologists’ Pharma Relationships Needed

Article Type
Changed
Wed, 07/31/2024 - 09:12

Three-quarters of oncologists participating in a recent global survey failed to identify one or more situations representing a conflict of interest, according to a new study.

The findings reflect limited awareness in low-income countries about what scenarios constitute a conflict of interest, first author, Khalid El Bairi, MD, said during an interview. “There is a lack of training in ethics and integrity in medical schools [in countries in Africa], so people are not informed about conflicts of interest,” continued Dr. El Bairi, who presented the new research at the annual meeting of the American Society of Clinical Oncology. “There is also a lack of policies in universities and hospitals to guide clinicians about conflict of interest reporting.”

Overall, 58.5% of survey participants categorized honoraria as a conflict of interest that required disclosure, while 50% said the same of gifts from pharmaceutical representatives, and 44.5% identified travel grants for attending conferences as conflicts of interests. The report was published in JCO Global Oncology. Less often considered conflicts of interest were personal and institutional research funding, trips to conferences, consulting or advisory roles, food and beverages, expert testimony, and sample drugs provided by the pharmaceutical industry.

Just 24% of participants indicated that all of the listed items were deemed conflicts of interest. The survey — called Oncology Transparency Under Scrutiny and Tracking, or ONCOTRUST-1 — considered the perceptions of 200 oncologists, about 70% of whom practice in low- and middle-income countries.

What’s more, 37.5% of respondents identified fear of losing financial support as a reason not to report a conflict of interest. Still, 75% indicated that industry-sponsored speaking does not affect treatment decisions, and 60% said conflicts of interest do not impair objective appraisal of clinical trials.

Dr. El Bairi, a research associate in the department of medical oncology at Mohammed VI University Hospital, Oujda, Morocco, and his colleagues undertook the study in part because of an editorial published in The Lancet Oncology last year. First author Fidel Rubagumya, MD, a consultant oncologist and director of research at Rwanda Military Hospital, Kigali, and colleagues called for more research on the ties between oncologists and industry in Africa. The ONCOTRUST-1 findings set the stage for a planned follow-up study, which aims to compare views surrounding conflicts of interests between oncologists in different economic settings.
 

Open Payments Houses US Physicians’ Conflicts of Interest

To be sure, many authors of research published in major US journals are based outside of the United States. According to JAMA Network Open, 69% of submissions to the journal are from international authors. However, Dr. El Bairi also raised other potential signs of industry influence that he said need global discussion, such as the role of pharmaceutical companies in presentations of clinical trial findings at large cancer societies’ conferences, a shift toward progression-free survival as the endpoint in clinical cancer trials, and the rise of third-party writing assistance.

“There are two sides of the story,” Dr. El Bairi said. “The good side is that unfortunately, sometimes [industry money is] the only way for African oncologists to go abroad for training, to conferences for their continuous medical education. The bad is now we may harm patients, we might harm science by having conflicts of interest not reported.”

Unlike other countries, the United States has plentiful data on the scale of physicians’ financial conflicts of interest in the form of the Open Payments platform. Championed by Sen. Chuck Grassley (R-Iowa), the federal repository of payments to doctors and teaching hospitals by drug and medical device companies was established as part of the Affordable Care Act (ACA).

The health care reform law, which passed in 2010, requires pharmaceutical companies and medical device makers to report this information.

From 2013 to 2021, the pharmaceutical and medical device industry paid physicians $12.1 billion, according to a research letter published in JAMA in March of 2024 that reviewed Open Payments data.

Ranked by specialty, hematologists and oncologists received the fourth-largest amount of money in aggregate, the study shows. Their total of $825.8 million trailed only physicians in orthopedics ($1.36 billion), neurology and psychiatry ($1.32 billion) and cardiology ($1.29 billion). What’s more, this specialty had the biggest share of physicians taking industry money, with 74.2% of hematologists and oncologists receiving payments.

The payments from industry include fees for consulting services and speaking, as well as food and beverages, travel and lodging, education, gifts, grants, and honoraria.

Joseph S. Ross, MD, MHS, one of the JAMA study’s coauthors, said in an interview that the continued prevalence of such funding runs counter to the expectation behind the measure, which was that transparency would lead to physicians’ becoming less likely to accept a payment.

“We as a profession need to take a cold hard look in the mirror,” he said, referring to physicians in general.

Dr. Ross, professor of medicine at Yale University School of Medicine, New Haven, Connecticut, said he hopes that the profession will self-police, and that patients will make a bigger deal of the issue. Still, he acknowledged that “the vast majority” of patient advocacy groups, too, are funded by the pharmaceutical industry.
 

 

 

Exposing Industry Payments May Have Perverse Effect

A growing body of research explores the effect that physicians’ financial relationships with pharmaceutical companies can have on their prescribing practices. Indeed, oncologists taking industry payments seem to be more likely to prescribe nonrecommended and low-value drugs in some clinical settings, according to a study published in The BMJ last year.

That study’s first author, Aaron P. Mitchell, MD, a medical oncologist and assistant attending physician at Memorial Sloan Kettering Cancer Center, New York City, suggested in an interview that exposing industry payments to the sunlight may have had a perverse effect on physicians.

“There’s this idea of having license to do something,” Dr. Mitchell said, speaking broadly about human psychology rather than drawing on empirical data. “You might feel a little less bad about then prescribing more of that company’s drug, because the disclosure has already been done.”

The influence of pharmaceutical industry money on oncologists goes beyond what’s prescribed to which treatments get studied, approved, and recommended by guidelines, Dr. Mitchell said. He was also first author of a 2016 paper published in JAMA Oncology that found 86% of authors of the National Comprehensive Cancer Network guidelines had at least one conflict of interest reported on Open Systems in 2014.

Meanwhile, the fact that physicians’ payments from industry are a matter of public record on Open Systems has not guaranteed that doctors will disclose their conflicts of interest in other forums. A study published in JAMA earlier this year, for which Dr. Mitchell served as first author, found that almost one in three physicians endorsing drugs and devices on the social media platform X failed to disclose that the manufacturer paid them.

The lack of disclosure seems to extend beyond social media. A 2018 study published in JAMA Oncology found that 32% of oncologist authors of clinical drug trials for drugs approved over a 20-month period from 2016 to 2017 did not fully disclose payments from the trial sponsor when checked against the Open Payments database.

A lion’s share of industry payments within oncology appears to be going to a small group of high-profile physicians, suggested a 2022 study published in JCO Oncology Practice. It found that just 1% of all US oncologists accounted for 37% of industry payments, with each receiving more than $100,000 a year.
 

Experts: Professional Societies Should Further Limit Industry Payments

While partnerships between drug companies and physicians are necessary and have often been positive, more than disclosure is needed to minimize the risk of patient harm, according to an editorial published in March in JCO Oncology Practice. In it, Nina Niu Sanford, MD, a radiation oncologist UT Southwestern Medical Center, Dallas, and Bishal Gyawali, MD, PhD, a medical oncologist at Queen’s University, Kingston, Ontario, Canada, argue that following a specific blueprint could help mitigate financial conflicts of interest.

For starters, Dr. Sanford and Dr. Gyawali contend in the editorial that the maximum general payment NCCN members are allowed to receive from industry should be $0, compared with a current bar of $20,000 from a single entity or $50,000 from all external entities combined. They also urge professional societies to follow the current policy of the American Society of Clinical Oncology and ban members serving in their leadership from receiving any general payments from the industry.

The authors further suggest that investigators of clinical trials should be barred from holding stock for the drug or product while it is under study and that editorialists should not have conflicts of interest with the company whose drug or product they are discussing.

Pharmaceutical money can harm patients in ways that are not always obvious, Dr. Gyawali said in an interview.

“It can dominate the conversation by removing critical viewpoints from these top people about certain drugs,” he said. “It’s not always about saying good things about the drug.”

For instance, he suggested, a doctor receiving payments from Pfizer might openly criticize perceived flaws in drugs from other companies but refrain from weighing in negatively on a Pfizer drug.

From 2016 to 2018, industry made general payments to more than 52,000 physicians for 137 unique cancer drugs, according to a separate 2021 study published in the Journal of Cancer Policy, for which Dr. Gyawali served as one of the coauthors.

The results suggest that pharmaceutical money affects the entire cancer system, not relatively few oncology leaders. The amounts and dollar values grew each year covered by the study, to nearly 466,000 payments totaling $98.5 million in 2018.

Adriane Fugh-Berman, MD, professor of pharmacology and physiology at Georgetown University, Washington, DC, and director of PharmedOut, a Georgetown-based project that advances evidence-based prescribing and educates healthcare professionals about pharmaceutical marketing practices, has called for a ban on industry gifts to physicians.

When a publication asks physicians to disclose relevant conflicts of interest, physicians may choose not to disclose, because they don’t feel that their conflicts are relevant, Dr. Fugh-Berman said. Drug and device makers have also grown sophisticated about how they work with physicians, she suggested. “It’s illegal to market a drug before it comes on the market, but it’s not illegal to market the disease,” said Dr. Fugh-Berman, noting that drugmakers often work on long timelines.

“The doctor is going around saying we don’t have good therapies. They’re not pushing a drug. And so they feel totally fine about it.”

Anecdotally, Dr. Fugh-Berman noted that, if anything, speaking fees and similar payments only improve doctors’ reputations. She said that’s especially true if the physicians are paid by multiple companies, on the supposed theory that their conflicts of interest cancel each other out.

“I’m not defending this,” added Dr. Fugh-Berman, observing that, at the end of the day, such conflicts may go against the interests of patients.

“Sometimes the best drugs are older, generic, cheap drugs, and if oncologists or other specialists are only choosing among the most promoted drugs, they’re not necessarily choosing the best drugs.”

Beyond any prestige, doctors have other possible nonfinancial incentives for receiving industry payments. “It’s the relationships,” Dr. Fugh-Berman said. “Companies are very good at offering friendship.”

Dr. El Bairi reported NCODA leadership and honoraria along with expert testimony through techspert.io. Dr. Ross reported that he is a deputy editor of JAMA but was not involved in decisions regarding acceptance of or the review of the manuscript he authored and discussed in this article. Dr. Ross also reported receiving grants from the Food and Drug Administration, Johnson & Johnson, the Medical Device Innovation Consortium, the Agency for Healthcare Research and Quality, and the National Heart, Lung, and Blood Institute. He was an expert witness in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen that was settled in 2022. Dr. Mitchell reported no relevant financial relationships. Dr. Gyawali reported a consulting or advisory role with Vivio Health. Dr. Fugh-Berman reported being an expert witness for plaintiffs in complaints about drug and device marketing practices.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Three-quarters of oncologists participating in a recent global survey failed to identify one or more situations representing a conflict of interest, according to a new study.

The findings reflect limited awareness in low-income countries about what scenarios constitute a conflict of interest, first author, Khalid El Bairi, MD, said during an interview. “There is a lack of training in ethics and integrity in medical schools [in countries in Africa], so people are not informed about conflicts of interest,” continued Dr. El Bairi, who presented the new research at the annual meeting of the American Society of Clinical Oncology. “There is also a lack of policies in universities and hospitals to guide clinicians about conflict of interest reporting.”

Overall, 58.5% of survey participants categorized honoraria as a conflict of interest that required disclosure, while 50% said the same of gifts from pharmaceutical representatives, and 44.5% identified travel grants for attending conferences as conflicts of interests. The report was published in JCO Global Oncology. Less often considered conflicts of interest were personal and institutional research funding, trips to conferences, consulting or advisory roles, food and beverages, expert testimony, and sample drugs provided by the pharmaceutical industry.

Just 24% of participants indicated that all of the listed items were deemed conflicts of interest. The survey — called Oncology Transparency Under Scrutiny and Tracking, or ONCOTRUST-1 — considered the perceptions of 200 oncologists, about 70% of whom practice in low- and middle-income countries.

What’s more, 37.5% of respondents identified fear of losing financial support as a reason not to report a conflict of interest. Still, 75% indicated that industry-sponsored speaking does not affect treatment decisions, and 60% said conflicts of interest do not impair objective appraisal of clinical trials.

Dr. El Bairi, a research associate in the department of medical oncology at Mohammed VI University Hospital, Oujda, Morocco, and his colleagues undertook the study in part because of an editorial published in The Lancet Oncology last year. First author Fidel Rubagumya, MD, a consultant oncologist and director of research at Rwanda Military Hospital, Kigali, and colleagues called for more research on the ties between oncologists and industry in Africa. The ONCOTRUST-1 findings set the stage for a planned follow-up study, which aims to compare views surrounding conflicts of interests between oncologists in different economic settings.
 

Open Payments Houses US Physicians’ Conflicts of Interest

To be sure, many authors of research published in major US journals are based outside of the United States. According to JAMA Network Open, 69% of submissions to the journal are from international authors. However, Dr. El Bairi also raised other potential signs of industry influence that he said need global discussion, such as the role of pharmaceutical companies in presentations of clinical trial findings at large cancer societies’ conferences, a shift toward progression-free survival as the endpoint in clinical cancer trials, and the rise of third-party writing assistance.

“There are two sides of the story,” Dr. El Bairi said. “The good side is that unfortunately, sometimes [industry money is] the only way for African oncologists to go abroad for training, to conferences for their continuous medical education. The bad is now we may harm patients, we might harm science by having conflicts of interest not reported.”

Unlike other countries, the United States has plentiful data on the scale of physicians’ financial conflicts of interest in the form of the Open Payments platform. Championed by Sen. Chuck Grassley (R-Iowa), the federal repository of payments to doctors and teaching hospitals by drug and medical device companies was established as part of the Affordable Care Act (ACA).

The health care reform law, which passed in 2010, requires pharmaceutical companies and medical device makers to report this information.

From 2013 to 2021, the pharmaceutical and medical device industry paid physicians $12.1 billion, according to a research letter published in JAMA in March of 2024 that reviewed Open Payments data.

Ranked by specialty, hematologists and oncologists received the fourth-largest amount of money in aggregate, the study shows. Their total of $825.8 million trailed only physicians in orthopedics ($1.36 billion), neurology and psychiatry ($1.32 billion) and cardiology ($1.29 billion). What’s more, this specialty had the biggest share of physicians taking industry money, with 74.2% of hematologists and oncologists receiving payments.

The payments from industry include fees for consulting services and speaking, as well as food and beverages, travel and lodging, education, gifts, grants, and honoraria.

Joseph S. Ross, MD, MHS, one of the JAMA study’s coauthors, said in an interview that the continued prevalence of such funding runs counter to the expectation behind the measure, which was that transparency would lead to physicians’ becoming less likely to accept a payment.

“We as a profession need to take a cold hard look in the mirror,” he said, referring to physicians in general.

Dr. Ross, professor of medicine at Yale University School of Medicine, New Haven, Connecticut, said he hopes that the profession will self-police, and that patients will make a bigger deal of the issue. Still, he acknowledged that “the vast majority” of patient advocacy groups, too, are funded by the pharmaceutical industry.
 

 

 

Exposing Industry Payments May Have Perverse Effect

A growing body of research explores the effect that physicians’ financial relationships with pharmaceutical companies can have on their prescribing practices. Indeed, oncologists taking industry payments seem to be more likely to prescribe nonrecommended and low-value drugs in some clinical settings, according to a study published in The BMJ last year.

That study’s first author, Aaron P. Mitchell, MD, a medical oncologist and assistant attending physician at Memorial Sloan Kettering Cancer Center, New York City, suggested in an interview that exposing industry payments to the sunlight may have had a perverse effect on physicians.

“There’s this idea of having license to do something,” Dr. Mitchell said, speaking broadly about human psychology rather than drawing on empirical data. “You might feel a little less bad about then prescribing more of that company’s drug, because the disclosure has already been done.”

The influence of pharmaceutical industry money on oncologists goes beyond what’s prescribed to which treatments get studied, approved, and recommended by guidelines, Dr. Mitchell said. He was also first author of a 2016 paper published in JAMA Oncology that found 86% of authors of the National Comprehensive Cancer Network guidelines had at least one conflict of interest reported on Open Systems in 2014.

Meanwhile, the fact that physicians’ payments from industry are a matter of public record on Open Systems has not guaranteed that doctors will disclose their conflicts of interest in other forums. A study published in JAMA earlier this year, for which Dr. Mitchell served as first author, found that almost one in three physicians endorsing drugs and devices on the social media platform X failed to disclose that the manufacturer paid them.

The lack of disclosure seems to extend beyond social media. A 2018 study published in JAMA Oncology found that 32% of oncologist authors of clinical drug trials for drugs approved over a 20-month period from 2016 to 2017 did not fully disclose payments from the trial sponsor when checked against the Open Payments database.

A lion’s share of industry payments within oncology appears to be going to a small group of high-profile physicians, suggested a 2022 study published in JCO Oncology Practice. It found that just 1% of all US oncologists accounted for 37% of industry payments, with each receiving more than $100,000 a year.
 

Experts: Professional Societies Should Further Limit Industry Payments

While partnerships between drug companies and physicians are necessary and have often been positive, more than disclosure is needed to minimize the risk of patient harm, according to an editorial published in March in JCO Oncology Practice. In it, Nina Niu Sanford, MD, a radiation oncologist UT Southwestern Medical Center, Dallas, and Bishal Gyawali, MD, PhD, a medical oncologist at Queen’s University, Kingston, Ontario, Canada, argue that following a specific blueprint could help mitigate financial conflicts of interest.

For starters, Dr. Sanford and Dr. Gyawali contend in the editorial that the maximum general payment NCCN members are allowed to receive from industry should be $0, compared with a current bar of $20,000 from a single entity or $50,000 from all external entities combined. They also urge professional societies to follow the current policy of the American Society of Clinical Oncology and ban members serving in their leadership from receiving any general payments from the industry.

The authors further suggest that investigators of clinical trials should be barred from holding stock for the drug or product while it is under study and that editorialists should not have conflicts of interest with the company whose drug or product they are discussing.

Pharmaceutical money can harm patients in ways that are not always obvious, Dr. Gyawali said in an interview.

“It can dominate the conversation by removing critical viewpoints from these top people about certain drugs,” he said. “It’s not always about saying good things about the drug.”

For instance, he suggested, a doctor receiving payments from Pfizer might openly criticize perceived flaws in drugs from other companies but refrain from weighing in negatively on a Pfizer drug.

From 2016 to 2018, industry made general payments to more than 52,000 physicians for 137 unique cancer drugs, according to a separate 2021 study published in the Journal of Cancer Policy, for which Dr. Gyawali served as one of the coauthors.

The results suggest that pharmaceutical money affects the entire cancer system, not relatively few oncology leaders. The amounts and dollar values grew each year covered by the study, to nearly 466,000 payments totaling $98.5 million in 2018.

Adriane Fugh-Berman, MD, professor of pharmacology and physiology at Georgetown University, Washington, DC, and director of PharmedOut, a Georgetown-based project that advances evidence-based prescribing and educates healthcare professionals about pharmaceutical marketing practices, has called for a ban on industry gifts to physicians.

When a publication asks physicians to disclose relevant conflicts of interest, physicians may choose not to disclose, because they don’t feel that their conflicts are relevant, Dr. Fugh-Berman said. Drug and device makers have also grown sophisticated about how they work with physicians, she suggested. “It’s illegal to market a drug before it comes on the market, but it’s not illegal to market the disease,” said Dr. Fugh-Berman, noting that drugmakers often work on long timelines.

“The doctor is going around saying we don’t have good therapies. They’re not pushing a drug. And so they feel totally fine about it.”

Anecdotally, Dr. Fugh-Berman noted that, if anything, speaking fees and similar payments only improve doctors’ reputations. She said that’s especially true if the physicians are paid by multiple companies, on the supposed theory that their conflicts of interest cancel each other out.

“I’m not defending this,” added Dr. Fugh-Berman, observing that, at the end of the day, such conflicts may go against the interests of patients.

“Sometimes the best drugs are older, generic, cheap drugs, and if oncologists or other specialists are only choosing among the most promoted drugs, they’re not necessarily choosing the best drugs.”

Beyond any prestige, doctors have other possible nonfinancial incentives for receiving industry payments. “It’s the relationships,” Dr. Fugh-Berman said. “Companies are very good at offering friendship.”

Dr. El Bairi reported NCODA leadership and honoraria along with expert testimony through techspert.io. Dr. Ross reported that he is a deputy editor of JAMA but was not involved in decisions regarding acceptance of or the review of the manuscript he authored and discussed in this article. Dr. Ross also reported receiving grants from the Food and Drug Administration, Johnson & Johnson, the Medical Device Innovation Consortium, the Agency for Healthcare Research and Quality, and the National Heart, Lung, and Blood Institute. He was an expert witness in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen that was settled in 2022. Dr. Mitchell reported no relevant financial relationships. Dr. Gyawali reported a consulting or advisory role with Vivio Health. Dr. Fugh-Berman reported being an expert witness for plaintiffs in complaints about drug and device marketing practices.

Three-quarters of oncologists participating in a recent global survey failed to identify one or more situations representing a conflict of interest, according to a new study.

The findings reflect limited awareness in low-income countries about what scenarios constitute a conflict of interest, first author, Khalid El Bairi, MD, said during an interview. “There is a lack of training in ethics and integrity in medical schools [in countries in Africa], so people are not informed about conflicts of interest,” continued Dr. El Bairi, who presented the new research at the annual meeting of the American Society of Clinical Oncology. “There is also a lack of policies in universities and hospitals to guide clinicians about conflict of interest reporting.”

Overall, 58.5% of survey participants categorized honoraria as a conflict of interest that required disclosure, while 50% said the same of gifts from pharmaceutical representatives, and 44.5% identified travel grants for attending conferences as conflicts of interests. The report was published in JCO Global Oncology. Less often considered conflicts of interest were personal and institutional research funding, trips to conferences, consulting or advisory roles, food and beverages, expert testimony, and sample drugs provided by the pharmaceutical industry.

Just 24% of participants indicated that all of the listed items were deemed conflicts of interest. The survey — called Oncology Transparency Under Scrutiny and Tracking, or ONCOTRUST-1 — considered the perceptions of 200 oncologists, about 70% of whom practice in low- and middle-income countries.

What’s more, 37.5% of respondents identified fear of losing financial support as a reason not to report a conflict of interest. Still, 75% indicated that industry-sponsored speaking does not affect treatment decisions, and 60% said conflicts of interest do not impair objective appraisal of clinical trials.

Dr. El Bairi, a research associate in the department of medical oncology at Mohammed VI University Hospital, Oujda, Morocco, and his colleagues undertook the study in part because of an editorial published in The Lancet Oncology last year. First author Fidel Rubagumya, MD, a consultant oncologist and director of research at Rwanda Military Hospital, Kigali, and colleagues called for more research on the ties between oncologists and industry in Africa. The ONCOTRUST-1 findings set the stage for a planned follow-up study, which aims to compare views surrounding conflicts of interests between oncologists in different economic settings.
 

Open Payments Houses US Physicians’ Conflicts of Interest

To be sure, many authors of research published in major US journals are based outside of the United States. According to JAMA Network Open, 69% of submissions to the journal are from international authors. However, Dr. El Bairi also raised other potential signs of industry influence that he said need global discussion, such as the role of pharmaceutical companies in presentations of clinical trial findings at large cancer societies’ conferences, a shift toward progression-free survival as the endpoint in clinical cancer trials, and the rise of third-party writing assistance.

“There are two sides of the story,” Dr. El Bairi said. “The good side is that unfortunately, sometimes [industry money is] the only way for African oncologists to go abroad for training, to conferences for their continuous medical education. The bad is now we may harm patients, we might harm science by having conflicts of interest not reported.”

Unlike other countries, the United States has plentiful data on the scale of physicians’ financial conflicts of interest in the form of the Open Payments platform. Championed by Sen. Chuck Grassley (R-Iowa), the federal repository of payments to doctors and teaching hospitals by drug and medical device companies was established as part of the Affordable Care Act (ACA).

The health care reform law, which passed in 2010, requires pharmaceutical companies and medical device makers to report this information.

From 2013 to 2021, the pharmaceutical and medical device industry paid physicians $12.1 billion, according to a research letter published in JAMA in March of 2024 that reviewed Open Payments data.

Ranked by specialty, hematologists and oncologists received the fourth-largest amount of money in aggregate, the study shows. Their total of $825.8 million trailed only physicians in orthopedics ($1.36 billion), neurology and psychiatry ($1.32 billion) and cardiology ($1.29 billion). What’s more, this specialty had the biggest share of physicians taking industry money, with 74.2% of hematologists and oncologists receiving payments.

The payments from industry include fees for consulting services and speaking, as well as food and beverages, travel and lodging, education, gifts, grants, and honoraria.

Joseph S. Ross, MD, MHS, one of the JAMA study’s coauthors, said in an interview that the continued prevalence of such funding runs counter to the expectation behind the measure, which was that transparency would lead to physicians’ becoming less likely to accept a payment.

“We as a profession need to take a cold hard look in the mirror,” he said, referring to physicians in general.

Dr. Ross, professor of medicine at Yale University School of Medicine, New Haven, Connecticut, said he hopes that the profession will self-police, and that patients will make a bigger deal of the issue. Still, he acknowledged that “the vast majority” of patient advocacy groups, too, are funded by the pharmaceutical industry.
 

 

 

Exposing Industry Payments May Have Perverse Effect

A growing body of research explores the effect that physicians’ financial relationships with pharmaceutical companies can have on their prescribing practices. Indeed, oncologists taking industry payments seem to be more likely to prescribe nonrecommended and low-value drugs in some clinical settings, according to a study published in The BMJ last year.

That study’s first author, Aaron P. Mitchell, MD, a medical oncologist and assistant attending physician at Memorial Sloan Kettering Cancer Center, New York City, suggested in an interview that exposing industry payments to the sunlight may have had a perverse effect on physicians.

“There’s this idea of having license to do something,” Dr. Mitchell said, speaking broadly about human psychology rather than drawing on empirical data. “You might feel a little less bad about then prescribing more of that company’s drug, because the disclosure has already been done.”

The influence of pharmaceutical industry money on oncologists goes beyond what’s prescribed to which treatments get studied, approved, and recommended by guidelines, Dr. Mitchell said. He was also first author of a 2016 paper published in JAMA Oncology that found 86% of authors of the National Comprehensive Cancer Network guidelines had at least one conflict of interest reported on Open Systems in 2014.

Meanwhile, the fact that physicians’ payments from industry are a matter of public record on Open Systems has not guaranteed that doctors will disclose their conflicts of interest in other forums. A study published in JAMA earlier this year, for which Dr. Mitchell served as first author, found that almost one in three physicians endorsing drugs and devices on the social media platform X failed to disclose that the manufacturer paid them.

The lack of disclosure seems to extend beyond social media. A 2018 study published in JAMA Oncology found that 32% of oncologist authors of clinical drug trials for drugs approved over a 20-month period from 2016 to 2017 did not fully disclose payments from the trial sponsor when checked against the Open Payments database.

A lion’s share of industry payments within oncology appears to be going to a small group of high-profile physicians, suggested a 2022 study published in JCO Oncology Practice. It found that just 1% of all US oncologists accounted for 37% of industry payments, with each receiving more than $100,000 a year.
 

Experts: Professional Societies Should Further Limit Industry Payments

While partnerships between drug companies and physicians are necessary and have often been positive, more than disclosure is needed to minimize the risk of patient harm, according to an editorial published in March in JCO Oncology Practice. In it, Nina Niu Sanford, MD, a radiation oncologist UT Southwestern Medical Center, Dallas, and Bishal Gyawali, MD, PhD, a medical oncologist at Queen’s University, Kingston, Ontario, Canada, argue that following a specific blueprint could help mitigate financial conflicts of interest.

For starters, Dr. Sanford and Dr. Gyawali contend in the editorial that the maximum general payment NCCN members are allowed to receive from industry should be $0, compared with a current bar of $20,000 from a single entity or $50,000 from all external entities combined. They also urge professional societies to follow the current policy of the American Society of Clinical Oncology and ban members serving in their leadership from receiving any general payments from the industry.

The authors further suggest that investigators of clinical trials should be barred from holding stock for the drug or product while it is under study and that editorialists should not have conflicts of interest with the company whose drug or product they are discussing.

Pharmaceutical money can harm patients in ways that are not always obvious, Dr. Gyawali said in an interview.

“It can dominate the conversation by removing critical viewpoints from these top people about certain drugs,” he said. “It’s not always about saying good things about the drug.”

For instance, he suggested, a doctor receiving payments from Pfizer might openly criticize perceived flaws in drugs from other companies but refrain from weighing in negatively on a Pfizer drug.

From 2016 to 2018, industry made general payments to more than 52,000 physicians for 137 unique cancer drugs, according to a separate 2021 study published in the Journal of Cancer Policy, for which Dr. Gyawali served as one of the coauthors.

The results suggest that pharmaceutical money affects the entire cancer system, not relatively few oncology leaders. The amounts and dollar values grew each year covered by the study, to nearly 466,000 payments totaling $98.5 million in 2018.

Adriane Fugh-Berman, MD, professor of pharmacology and physiology at Georgetown University, Washington, DC, and director of PharmedOut, a Georgetown-based project that advances evidence-based prescribing and educates healthcare professionals about pharmaceutical marketing practices, has called for a ban on industry gifts to physicians.

When a publication asks physicians to disclose relevant conflicts of interest, physicians may choose not to disclose, because they don’t feel that their conflicts are relevant, Dr. Fugh-Berman said. Drug and device makers have also grown sophisticated about how they work with physicians, she suggested. “It’s illegal to market a drug before it comes on the market, but it’s not illegal to market the disease,” said Dr. Fugh-Berman, noting that drugmakers often work on long timelines.

“The doctor is going around saying we don’t have good therapies. They’re not pushing a drug. And so they feel totally fine about it.”

Anecdotally, Dr. Fugh-Berman noted that, if anything, speaking fees and similar payments only improve doctors’ reputations. She said that’s especially true if the physicians are paid by multiple companies, on the supposed theory that their conflicts of interest cancel each other out.

“I’m not defending this,” added Dr. Fugh-Berman, observing that, at the end of the day, such conflicts may go against the interests of patients.

“Sometimes the best drugs are older, generic, cheap drugs, and if oncologists or other specialists are only choosing among the most promoted drugs, they’re not necessarily choosing the best drugs.”

Beyond any prestige, doctors have other possible nonfinancial incentives for receiving industry payments. “It’s the relationships,” Dr. Fugh-Berman said. “Companies are very good at offering friendship.”

Dr. El Bairi reported NCODA leadership and honoraria along with expert testimony through techspert.io. Dr. Ross reported that he is a deputy editor of JAMA but was not involved in decisions regarding acceptance of or the review of the manuscript he authored and discussed in this article. Dr. Ross also reported receiving grants from the Food and Drug Administration, Johnson & Johnson, the Medical Device Innovation Consortium, the Agency for Healthcare Research and Quality, and the National Heart, Lung, and Blood Institute. He was an expert witness in a qui tam suit alleging violations of the False Claims Act and Anti-Kickback Statute against Biogen that was settled in 2022. Dr. Mitchell reported no relevant financial relationships. Dr. Gyawali reported a consulting or advisory role with Vivio Health. Dr. Fugh-Berman reported being an expert witness for plaintiffs in complaints about drug and device marketing practices.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ASCO 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Moderate Exercise in Midlife Linked to Lower Risk for ALS

Article Type
Changed
Mon, 07/22/2024 - 12:33

Moderate exercise in midlife is associated with a reduced risk for amyotrophic lateral sclerosis (ALS) later in life, but this benefit appears to be limited to men, findings from a large prospective study showed.

Men who reported moderate levels of physical activity had a 29% lower risk for ALS, whereas those with high levels of physical activity had a 41% lower risk for the disease.

The findings were published online in Neurology.
 

Conflicting Findings

Several famous athletes have died of ALS, including the baseball player Lou Gehrig (for whom the disease is named), football players Dwight Clark, Steve Gleason, and Kevin Turner, and the boxer Ezzard Charles. This has led some scientists to speculate that intense physical activity may play a role in the development of the disease.

Anders M. Vaage, MD, noted there have been conflicting findings in previous studies on the topic, with results showing both increased and reduced ALS risks with increasing levels of physical activity.

In one study, researchers followed more than 212,000 Swedish cross-country skiers and more than 500,000 Swedish individuals in the general population for 20 years and found that strenuous cross-country skiing was associated with a higher risk for ALS but only among the best skiers; recreational skiers appeared to have a reduced risk.

“Our study does not necessarily contradict previous studies with findings of an increased ALS risk with extreme or intense levels of physical activity in athletes, as this study reflects more moderate levels of physical activity and fitness in the total population,” said Dr. Vaage.

To further explore the association, the researchers followed 373,700 individuals who participated in a cardiovascular health survey for an average of 27 years. When the survey began, most participants were 40-42 years old.

Participants were followed until the date of ALS diagnosis, ALS death, death from other causes, emigration, or the end of study in August 2021.

Participants answered questions about physical activity levels, smoking status, and other issues relating to cardiovascular health, and participants’ resting heart rate was measured and divided into quartiles of 31-65 beats per minute (BPM), 66-74 BPM, 75-81 BPM, or 82-100 BPM.

Participants self-reported their physical activity over the past year, classifying it into one of four categories: Sedentary, at least 4 hours per week of walking or cycling, at least 4 hours per week of recreational sports or heavy gardening, or regular participation in intense training or sports competitions several times per week.

Only a few participants reported the highest level of physical activity, so researchers combined the third and fourth categories into a single high-activity group.

Of the total study cohort, 504 participants developed ALS. Of those who developed the disease, 59% were men.

Researchers found that of the 41,898 male participants with the highest level of physical activity, 63 developed ALS. In comparison, of the 76,769 male participants who reported an intermediate level of physical activity, 131 developed ALS. Among the 29,468 male participants who reported the lowest level of physical activity, 68 developed ALS.
 

No Link in Women?

After adjusting for smoking, body mass index, and other risk factors, investigators found that men with moderate physical activity levels had a 29% lower risk for ALS compared with those with low physical activity levels, whereas those with the highest activity levels had a 41% lower risk.

In addition, men in the lowest of the four categories of resting heart rate had a 32% reduced risk for ALS compared with men with a higher resting heart rate.

Investigators are unclear why there was a lack of association between physical activity and resting heart rate and ALS risk in women.

“There are known sex differences in ALS, which includes a sex ratio with male preponderance, and there are also sex differences in response to physical exercise. Perhaps underlying mechanisms herein can explain the difference observed between males and females in the study,” Dr. Vaage said. He noted that future research should explore this difference.

Study limitations included the absence of data on physical trauma and head trauma, which have been linked with increased ALS risk. In addition, there were no data on genotype.

In an accompanying editorial, Pamela Shaw, MD, and Johnathan Cooper-Knock, BMBCh, PhD, of the University of Sheffield, Sheffield, England, described the research as a “valuable contribution to the field and potentially provides some reassurance that mild/moderate levels of physical activity in middle age do not increase the risk for ALS but may instead have a beneficial protective effect.” 

Future research on exercise in ALS, they add, should consider sex differences, capture the most extreme physical activity levels, and identify any genetic factors that may mediate the association between intense exercise and ALS.

No targeted funding was reported. Dr. Vaage reported receiving funding from ALS Laboratory Group Norway.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Moderate exercise in midlife is associated with a reduced risk for amyotrophic lateral sclerosis (ALS) later in life, but this benefit appears to be limited to men, findings from a large prospective study showed.

Men who reported moderate levels of physical activity had a 29% lower risk for ALS, whereas those with high levels of physical activity had a 41% lower risk for the disease.

The findings were published online in Neurology.
 

Conflicting Findings

Several famous athletes have died of ALS, including the baseball player Lou Gehrig (for whom the disease is named), football players Dwight Clark, Steve Gleason, and Kevin Turner, and the boxer Ezzard Charles. This has led some scientists to speculate that intense physical activity may play a role in the development of the disease.

Anders M. Vaage, MD, noted there have been conflicting findings in previous studies on the topic, with results showing both increased and reduced ALS risks with increasing levels of physical activity.

In one study, researchers followed more than 212,000 Swedish cross-country skiers and more than 500,000 Swedish individuals in the general population for 20 years and found that strenuous cross-country skiing was associated with a higher risk for ALS but only among the best skiers; recreational skiers appeared to have a reduced risk.

“Our study does not necessarily contradict previous studies with findings of an increased ALS risk with extreme or intense levels of physical activity in athletes, as this study reflects more moderate levels of physical activity and fitness in the total population,” said Dr. Vaage.

To further explore the association, the researchers followed 373,700 individuals who participated in a cardiovascular health survey for an average of 27 years. When the survey began, most participants were 40-42 years old.

Participants were followed until the date of ALS diagnosis, ALS death, death from other causes, emigration, or the end of study in August 2021.

Participants answered questions about physical activity levels, smoking status, and other issues relating to cardiovascular health, and participants’ resting heart rate was measured and divided into quartiles of 31-65 beats per minute (BPM), 66-74 BPM, 75-81 BPM, or 82-100 BPM.

Participants self-reported their physical activity over the past year, classifying it into one of four categories: Sedentary, at least 4 hours per week of walking or cycling, at least 4 hours per week of recreational sports or heavy gardening, or regular participation in intense training or sports competitions several times per week.

Only a few participants reported the highest level of physical activity, so researchers combined the third and fourth categories into a single high-activity group.

Of the total study cohort, 504 participants developed ALS. Of those who developed the disease, 59% were men.

Researchers found that of the 41,898 male participants with the highest level of physical activity, 63 developed ALS. In comparison, of the 76,769 male participants who reported an intermediate level of physical activity, 131 developed ALS. Among the 29,468 male participants who reported the lowest level of physical activity, 68 developed ALS.
 

No Link in Women?

After adjusting for smoking, body mass index, and other risk factors, investigators found that men with moderate physical activity levels had a 29% lower risk for ALS compared with those with low physical activity levels, whereas those with the highest activity levels had a 41% lower risk.

In addition, men in the lowest of the four categories of resting heart rate had a 32% reduced risk for ALS compared with men with a higher resting heart rate.

Investigators are unclear why there was a lack of association between physical activity and resting heart rate and ALS risk in women.

“There are known sex differences in ALS, which includes a sex ratio with male preponderance, and there are also sex differences in response to physical exercise. Perhaps underlying mechanisms herein can explain the difference observed between males and females in the study,” Dr. Vaage said. He noted that future research should explore this difference.

Study limitations included the absence of data on physical trauma and head trauma, which have been linked with increased ALS risk. In addition, there were no data on genotype.

In an accompanying editorial, Pamela Shaw, MD, and Johnathan Cooper-Knock, BMBCh, PhD, of the University of Sheffield, Sheffield, England, described the research as a “valuable contribution to the field and potentially provides some reassurance that mild/moderate levels of physical activity in middle age do not increase the risk for ALS but may instead have a beneficial protective effect.” 

Future research on exercise in ALS, they add, should consider sex differences, capture the most extreme physical activity levels, and identify any genetic factors that may mediate the association between intense exercise and ALS.

No targeted funding was reported. Dr. Vaage reported receiving funding from ALS Laboratory Group Norway.

A version of this article first appeared on Medscape.com.

Moderate exercise in midlife is associated with a reduced risk for amyotrophic lateral sclerosis (ALS) later in life, but this benefit appears to be limited to men, findings from a large prospective study showed.

Men who reported moderate levels of physical activity had a 29% lower risk for ALS, whereas those with high levels of physical activity had a 41% lower risk for the disease.

The findings were published online in Neurology.
 

Conflicting Findings

Several famous athletes have died of ALS, including the baseball player Lou Gehrig (for whom the disease is named), football players Dwight Clark, Steve Gleason, and Kevin Turner, and the boxer Ezzard Charles. This has led some scientists to speculate that intense physical activity may play a role in the development of the disease.

Anders M. Vaage, MD, noted there have been conflicting findings in previous studies on the topic, with results showing both increased and reduced ALS risks with increasing levels of physical activity.

In one study, researchers followed more than 212,000 Swedish cross-country skiers and more than 500,000 Swedish individuals in the general population for 20 years and found that strenuous cross-country skiing was associated with a higher risk for ALS but only among the best skiers; recreational skiers appeared to have a reduced risk.

“Our study does not necessarily contradict previous studies with findings of an increased ALS risk with extreme or intense levels of physical activity in athletes, as this study reflects more moderate levels of physical activity and fitness in the total population,” said Dr. Vaage.

To further explore the association, the researchers followed 373,700 individuals who participated in a cardiovascular health survey for an average of 27 years. When the survey began, most participants were 40-42 years old.

Participants were followed until the date of ALS diagnosis, ALS death, death from other causes, emigration, or the end of study in August 2021.

Participants answered questions about physical activity levels, smoking status, and other issues relating to cardiovascular health, and participants’ resting heart rate was measured and divided into quartiles of 31-65 beats per minute (BPM), 66-74 BPM, 75-81 BPM, or 82-100 BPM.

Participants self-reported their physical activity over the past year, classifying it into one of four categories: Sedentary, at least 4 hours per week of walking or cycling, at least 4 hours per week of recreational sports or heavy gardening, or regular participation in intense training or sports competitions several times per week.

Only a few participants reported the highest level of physical activity, so researchers combined the third and fourth categories into a single high-activity group.

Of the total study cohort, 504 participants developed ALS. Of those who developed the disease, 59% were men.

Researchers found that of the 41,898 male participants with the highest level of physical activity, 63 developed ALS. In comparison, of the 76,769 male participants who reported an intermediate level of physical activity, 131 developed ALS. Among the 29,468 male participants who reported the lowest level of physical activity, 68 developed ALS.
 

No Link in Women?

After adjusting for smoking, body mass index, and other risk factors, investigators found that men with moderate physical activity levels had a 29% lower risk for ALS compared with those with low physical activity levels, whereas those with the highest activity levels had a 41% lower risk.

In addition, men in the lowest of the four categories of resting heart rate had a 32% reduced risk for ALS compared with men with a higher resting heart rate.

Investigators are unclear why there was a lack of association between physical activity and resting heart rate and ALS risk in women.

“There are known sex differences in ALS, which includes a sex ratio with male preponderance, and there are also sex differences in response to physical exercise. Perhaps underlying mechanisms herein can explain the difference observed between males and females in the study,” Dr. Vaage said. He noted that future research should explore this difference.

Study limitations included the absence of data on physical trauma and head trauma, which have been linked with increased ALS risk. In addition, there were no data on genotype.

In an accompanying editorial, Pamela Shaw, MD, and Johnathan Cooper-Knock, BMBCh, PhD, of the University of Sheffield, Sheffield, England, described the research as a “valuable contribution to the field and potentially provides some reassurance that mild/moderate levels of physical activity in middle age do not increase the risk for ALS but may instead have a beneficial protective effect.” 

Future research on exercise in ALS, they add, should consider sex differences, capture the most extreme physical activity levels, and identify any genetic factors that may mediate the association between intense exercise and ALS.

No targeted funding was reported. Dr. Vaage reported receiving funding from ALS Laboratory Group Norway.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

More Illnesses Possible Related Linked to Counterfeit Botulinum Toxin Reported

Article Type
Changed
Mon, 07/22/2024 - 09:56

In March 2024, four women in Tennessee and three in New York City fell ill after receiving botulinum neurotoxin (BoNT) injections in nonmedical settings, and four of the women required hospitalization — two in the intensive care unit. None of the cases required intubation, according to an announcement of an investigation into these reports in by the Centers for Disease Control and Prevention (CDC).

The report, published online in the Morbidity and Mortality Weekly Report, notes that the four patients in Tennessee received counterfeit BoNT, while product information was not available for the three cases in New York City. “However, one person reported paying less than US wholesale acquisition cost for the administered product, and another reported that the product had been purchased overseas,” the authors of the report wrote. The development underscores that BoNT injections “should be administered only by licensed and trained providers using recommended doses of FDA [Food and Drug Admininstration]-approved products.”

This report follows a CDC advisory published in April 2024 of at least 22 people from 11 states who reported serious reactions after receiving botulinum toxin injections from unlicensed or untrained individuals or in nonhealthcare settings, such as homes and spas.



The median age of the women in the July report was 48 years, and signs and symptoms included ptosis, dry mouth, dysphagia, shortness of breath, and weakness. Onset occurred between February 23 and March 7, 2024.

“This investigation did not determine why these illnesses occurred after cosmetic BoNT injections; potential reasons might include use of counterfeit BoNT, which might be more potent or contain harmful additional ingredients or higher susceptibility to BoNT effects among some persons,” the investigators wrote. They recommended further studies to describe the clinical spectrum of cosmetic BoNT injection effects such as severity of signs and symptoms.

For cases of suspected systemic botulism, the CDC recommends calling the local or state health department for consultation and antitoxin release (as well as information on reporting adverse events). Alternatively, the 24/7 phone number for the CDC clinical botulism service is 770-488-7100.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

In March 2024, four women in Tennessee and three in New York City fell ill after receiving botulinum neurotoxin (BoNT) injections in nonmedical settings, and four of the women required hospitalization — two in the intensive care unit. None of the cases required intubation, according to an announcement of an investigation into these reports in by the Centers for Disease Control and Prevention (CDC).

The report, published online in the Morbidity and Mortality Weekly Report, notes that the four patients in Tennessee received counterfeit BoNT, while product information was not available for the three cases in New York City. “However, one person reported paying less than US wholesale acquisition cost for the administered product, and another reported that the product had been purchased overseas,” the authors of the report wrote. The development underscores that BoNT injections “should be administered only by licensed and trained providers using recommended doses of FDA [Food and Drug Admininstration]-approved products.”

This report follows a CDC advisory published in April 2024 of at least 22 people from 11 states who reported serious reactions after receiving botulinum toxin injections from unlicensed or untrained individuals or in nonhealthcare settings, such as homes and spas.



The median age of the women in the July report was 48 years, and signs and symptoms included ptosis, dry mouth, dysphagia, shortness of breath, and weakness. Onset occurred between February 23 and March 7, 2024.

“This investigation did not determine why these illnesses occurred after cosmetic BoNT injections; potential reasons might include use of counterfeit BoNT, which might be more potent or contain harmful additional ingredients or higher susceptibility to BoNT effects among some persons,” the investigators wrote. They recommended further studies to describe the clinical spectrum of cosmetic BoNT injection effects such as severity of signs and symptoms.

For cases of suspected systemic botulism, the CDC recommends calling the local or state health department for consultation and antitoxin release (as well as information on reporting adverse events). Alternatively, the 24/7 phone number for the CDC clinical botulism service is 770-488-7100.

A version of this article first appeared on Medscape.com.

In March 2024, four women in Tennessee and three in New York City fell ill after receiving botulinum neurotoxin (BoNT) injections in nonmedical settings, and four of the women required hospitalization — two in the intensive care unit. None of the cases required intubation, according to an announcement of an investigation into these reports in by the Centers for Disease Control and Prevention (CDC).

The report, published online in the Morbidity and Mortality Weekly Report, notes that the four patients in Tennessee received counterfeit BoNT, while product information was not available for the three cases in New York City. “However, one person reported paying less than US wholesale acquisition cost for the administered product, and another reported that the product had been purchased overseas,” the authors of the report wrote. The development underscores that BoNT injections “should be administered only by licensed and trained providers using recommended doses of FDA [Food and Drug Admininstration]-approved products.”

This report follows a CDC advisory published in April 2024 of at least 22 people from 11 states who reported serious reactions after receiving botulinum toxin injections from unlicensed or untrained individuals or in nonhealthcare settings, such as homes and spas.



The median age of the women in the July report was 48 years, and signs and symptoms included ptosis, dry mouth, dysphagia, shortness of breath, and weakness. Onset occurred between February 23 and March 7, 2024.

“This investigation did not determine why these illnesses occurred after cosmetic BoNT injections; potential reasons might include use of counterfeit BoNT, which might be more potent or contain harmful additional ingredients or higher susceptibility to BoNT effects among some persons,” the investigators wrote. They recommended further studies to describe the clinical spectrum of cosmetic BoNT injection effects such as severity of signs and symptoms.

For cases of suspected systemic botulism, the CDC recommends calling the local or state health department for consultation and antitoxin release (as well as information on reporting adverse events). Alternatively, the 24/7 phone number for the CDC clinical botulism service is 770-488-7100.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE MMWR

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Primary Care Internal Medicine Is Dead

Article Type
Changed
Thu, 08/22/2024 - 19:03
An autobiographical story that affects us all

 

Editor’s Note: This piece was originally published in Dr. Glasser’s bimonthly column in The Jolt, a nonprofit online news organization based in Olympia, Washington. She was inspired to write her story after meeting Christine Laine, MD, one of three female physician presenters at the Sommer Lectures in Portland, Oregon, in May 2024. The article has been edited lightly from the original

Primary care internal medicine — the medical field I chose, loved, and practiced for four decades — is dead. 

The grief and shock I feel about this is personal and transpersonal. The loss of internists (internal medicine physicians) practicing primary care is a major loss to us all. 

From the 1970s to roughly 2020, there were three groups of primary care physicians: family practice, pediatricians, and internists. In their 3-year residencies (after 4 years of medical school), pediatricians trained to care for children and adolescents; internists for adults; and FPs for children, adults, and women and pregnancy. Family practitioners are the most general of the generalists, whereas the others’ training involves comprehensive care of complex patients in their age groups.

How and when the field of primary care internal medicine flourished is my story. 

I was one of those kids who was hyperfocused on science, math, and the human body. By the end of high school, I was considering medicine for my career. 

To learn more, I volunteered at the local hospital. In my typical style, I requested not to be one of those candy stripers serving drinks on the wards. Instead, they put me in the emergency department, where I would transport patients and clean the stretchers. There I was free to watch whatever was going on if I did not interfere with the staff. On my first shift, a 20-year-old drowning victim arrived by ambulance. I watched the entire unsuccessful resuscitation and as shocked and saddened as I was, I knew (in the way only a headstrong 18-year-old can) that medicine was for me. 

It was a fortuitous time to graduate as a female pre-med student. 

In 1975, our country was in the midst of the women’s movement and a national effort to train primary care physicians. I was accepted to my state medical school. The University of Massachusetts Medical School had been established a few years earlier, with its main purpose to train primary care physicians and spread them around the state (especially out of the Boston metropolitan area). The curriculum was designed to expose students to primary care from year one. I was assigned to shadow a general practice physician in inner-city Springfield who saw over 50 patients a day! The patients knew they could see and afford him, so they crammed into his waiting room until their name was called in order of their arrival. No appointments necessary. His chart notes were a few scribbled sentences. I didn’t see myself in that practice exactly, but his work ethic and dedication inspired me. 

Over half of our graduating class chose to train in primary care specialties, and most stayed in-state. It turned out to be a good bet on the part of the government of Massachusetts. 

When I applied for residency in 1980, several internal medicine programs had a focus on primary care, which was my goal. I matched at Providence St. Vincent Hospital in Portland, Oregon, and moved across the country to the Pacific Northwest, never to look back. There, my attendings were doctors like I wanted to be: primary care internists in the community, not in academia. It was the perfect choice and an excellent training program. 

In 1984, I hung out my private practice internal medicine shingle in Hillsboro, Oregon, across the street from the community hospital. My primary care internal medicine colleagues and I shared weekend calls and admitted and cared for our patients in the hospital, and when they were discharged. That is now called “continuity of care.” It was a time when we ate in the doctors’ lounge together, met in hallways, and informally consulted each other about our patients. These were called “curbside consults.” They were invaluable to our ability to provide comprehensive care to our patients in primary care, led to fewer specialty referrals, and were free. That would now be called interprofessional communication and collegiality. 

“Burnout” was not a word you heard. We were busy and happy doing what we had spent 12 years of our precious youth to prepare for. 

What did internists offer to primary care? That also is part of my story. 

When I moved to Olympia, I took a position in the women’s health clinic at the American Lake Veterans Administration Medical Center. 

We were a small group: two family practice doctors, three nurse practitioners, and me, the only internist. Many of our patients were sick and complex. Two of the nurse practitioners (NPs) asked me to take their most complicated patients. Being comfortable with complexity as an internist, I said yes. 

One of the NPs was inappropriately hired, as she had experience in women’s health. She came to me freaked out: “Oh my God, I have no idea how to manage COPD!” The other wanted simpler patients. I don’t blame them for the patient transfers. NPs typically have 3 years of training before they practice, in contrast to primary care physicians’ 8. 

Guess who made friends with the custodian, staying until 8 p.m. most evenings, and who left by 5:30 p.m. 

What was I doing in those extra hours? I was trudging through clerical, yet important, tasks my medical assistant and transcriptionist used to do in private practice. In the 30 minutes allotted for the patient, I needed to focus entirely on them and their multiple complex medical problems. 

What is lost with the death of primary care internal medicine? 

At the recent Sommer Memorial Lectures in Portland, Steven D. Freer, MD, the current director of the residency program where I trained, has not had a single of his eight annual internal medicine graduates choose primary care in several years. Half (two of four) of those in my year did: One went to Tillamook, an underserved area on the Oregon coast, and I to Hillsboro. 

What are internal medicine training graduates doing now? They are becoming hospitalists or, more often, specialists in cardiology, pulmonology, nephrology, oncology, and other more lucrative fields of medicine. 

Why are they not choosing primary care? As when the University of Massachusetts Medical School was established, a shortage of primary care physicians persists and probably is more severe than it was in the 1970s. Massachusetts was proactive. We are already years behind catching up. The shortage is no longer in rural areas alone. 

Christine Laine, MD, who is editor in chief of Annals of Internal Medicine and spoke at the Sommer Memorial Lectures, lives in Philadelphia. Even there, she has lost her own primary care internal medicine physician and cannot find another primary care physician (much less an internist) for herself. 

Washington State, where I live, scores a D grade for our primary care staffing statewide. 

Is there hope for the future of primary care in general? Or for the restoration of primary care internal medicine? 

Maybe. I was relieved to hear from Dr. Freer and Dr. Laine that efforts are beginning to revive the field. 

Just like internists’ patients, the potential restoration of the field will be complex and multilayered. It will require new laws, policies, residency programs, and incentives for students, including debt reduction. Administrative burdens will need to be reduced; de-corporatization and restoring healthcare leadership to those with in-depth medical training will need to be a part of the solution as well. 

Let’s all hope the new resuscitation efforts will be successful for the field of primary care in general and primary care internal medicine specifically. It will be good for healthcare and for your patients! 

Many work for large systems in which they feel powerless to effect change.

Dr. Glasser is a retired internal medicine physician in Olympia, Washington. She can be reached at drdebra@theJOLTnews.com.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections
An autobiographical story that affects us all
An autobiographical story that affects us all

 

Editor’s Note: This piece was originally published in Dr. Glasser’s bimonthly column in The Jolt, a nonprofit online news organization based in Olympia, Washington. She was inspired to write her story after meeting Christine Laine, MD, one of three female physician presenters at the Sommer Lectures in Portland, Oregon, in May 2024. The article has been edited lightly from the original

Primary care internal medicine — the medical field I chose, loved, and practiced for four decades — is dead. 

The grief and shock I feel about this is personal and transpersonal. The loss of internists (internal medicine physicians) practicing primary care is a major loss to us all. 

From the 1970s to roughly 2020, there were three groups of primary care physicians: family practice, pediatricians, and internists. In their 3-year residencies (after 4 years of medical school), pediatricians trained to care for children and adolescents; internists for adults; and FPs for children, adults, and women and pregnancy. Family practitioners are the most general of the generalists, whereas the others’ training involves comprehensive care of complex patients in their age groups.

How and when the field of primary care internal medicine flourished is my story. 

I was one of those kids who was hyperfocused on science, math, and the human body. By the end of high school, I was considering medicine for my career. 

To learn more, I volunteered at the local hospital. In my typical style, I requested not to be one of those candy stripers serving drinks on the wards. Instead, they put me in the emergency department, where I would transport patients and clean the stretchers. There I was free to watch whatever was going on if I did not interfere with the staff. On my first shift, a 20-year-old drowning victim arrived by ambulance. I watched the entire unsuccessful resuscitation and as shocked and saddened as I was, I knew (in the way only a headstrong 18-year-old can) that medicine was for me. 

It was a fortuitous time to graduate as a female pre-med student. 

In 1975, our country was in the midst of the women’s movement and a national effort to train primary care physicians. I was accepted to my state medical school. The University of Massachusetts Medical School had been established a few years earlier, with its main purpose to train primary care physicians and spread them around the state (especially out of the Boston metropolitan area). The curriculum was designed to expose students to primary care from year one. I was assigned to shadow a general practice physician in inner-city Springfield who saw over 50 patients a day! The patients knew they could see and afford him, so they crammed into his waiting room until their name was called in order of their arrival. No appointments necessary. His chart notes were a few scribbled sentences. I didn’t see myself in that practice exactly, but his work ethic and dedication inspired me. 

Over half of our graduating class chose to train in primary care specialties, and most stayed in-state. It turned out to be a good bet on the part of the government of Massachusetts. 

When I applied for residency in 1980, several internal medicine programs had a focus on primary care, which was my goal. I matched at Providence St. Vincent Hospital in Portland, Oregon, and moved across the country to the Pacific Northwest, never to look back. There, my attendings were doctors like I wanted to be: primary care internists in the community, not in academia. It was the perfect choice and an excellent training program. 

In 1984, I hung out my private practice internal medicine shingle in Hillsboro, Oregon, across the street from the community hospital. My primary care internal medicine colleagues and I shared weekend calls and admitted and cared for our patients in the hospital, and when they were discharged. That is now called “continuity of care.” It was a time when we ate in the doctors’ lounge together, met in hallways, and informally consulted each other about our patients. These were called “curbside consults.” They were invaluable to our ability to provide comprehensive care to our patients in primary care, led to fewer specialty referrals, and were free. That would now be called interprofessional communication and collegiality. 

“Burnout” was not a word you heard. We were busy and happy doing what we had spent 12 years of our precious youth to prepare for. 

What did internists offer to primary care? That also is part of my story. 

When I moved to Olympia, I took a position in the women’s health clinic at the American Lake Veterans Administration Medical Center. 

We were a small group: two family practice doctors, three nurse practitioners, and me, the only internist. Many of our patients were sick and complex. Two of the nurse practitioners (NPs) asked me to take their most complicated patients. Being comfortable with complexity as an internist, I said yes. 

One of the NPs was inappropriately hired, as she had experience in women’s health. She came to me freaked out: “Oh my God, I have no idea how to manage COPD!” The other wanted simpler patients. I don’t blame them for the patient transfers. NPs typically have 3 years of training before they practice, in contrast to primary care physicians’ 8. 

Guess who made friends with the custodian, staying until 8 p.m. most evenings, and who left by 5:30 p.m. 

What was I doing in those extra hours? I was trudging through clerical, yet important, tasks my medical assistant and transcriptionist used to do in private practice. In the 30 minutes allotted for the patient, I needed to focus entirely on them and their multiple complex medical problems. 

What is lost with the death of primary care internal medicine? 

At the recent Sommer Memorial Lectures in Portland, Steven D. Freer, MD, the current director of the residency program where I trained, has not had a single of his eight annual internal medicine graduates choose primary care in several years. Half (two of four) of those in my year did: One went to Tillamook, an underserved area on the Oregon coast, and I to Hillsboro. 

What are internal medicine training graduates doing now? They are becoming hospitalists or, more often, specialists in cardiology, pulmonology, nephrology, oncology, and other more lucrative fields of medicine. 

Why are they not choosing primary care? As when the University of Massachusetts Medical School was established, a shortage of primary care physicians persists and probably is more severe than it was in the 1970s. Massachusetts was proactive. We are already years behind catching up. The shortage is no longer in rural areas alone. 

Christine Laine, MD, who is editor in chief of Annals of Internal Medicine and spoke at the Sommer Memorial Lectures, lives in Philadelphia. Even there, she has lost her own primary care internal medicine physician and cannot find another primary care physician (much less an internist) for herself. 

Washington State, where I live, scores a D grade for our primary care staffing statewide. 

Is there hope for the future of primary care in general? Or for the restoration of primary care internal medicine? 

Maybe. I was relieved to hear from Dr. Freer and Dr. Laine that efforts are beginning to revive the field. 

Just like internists’ patients, the potential restoration of the field will be complex and multilayered. It will require new laws, policies, residency programs, and incentives for students, including debt reduction. Administrative burdens will need to be reduced; de-corporatization and restoring healthcare leadership to those with in-depth medical training will need to be a part of the solution as well. 

Let’s all hope the new resuscitation efforts will be successful for the field of primary care in general and primary care internal medicine specifically. It will be good for healthcare and for your patients! 

Many work for large systems in which they feel powerless to effect change.

Dr. Glasser is a retired internal medicine physician in Olympia, Washington. She can be reached at drdebra@theJOLTnews.com.

A version of this article appeared on Medscape.com.

 

Editor’s Note: This piece was originally published in Dr. Glasser’s bimonthly column in The Jolt, a nonprofit online news organization based in Olympia, Washington. She was inspired to write her story after meeting Christine Laine, MD, one of three female physician presenters at the Sommer Lectures in Portland, Oregon, in May 2024. The article has been edited lightly from the original

Primary care internal medicine — the medical field I chose, loved, and practiced for four decades — is dead. 

The grief and shock I feel about this is personal and transpersonal. The loss of internists (internal medicine physicians) practicing primary care is a major loss to us all. 

From the 1970s to roughly 2020, there were three groups of primary care physicians: family practice, pediatricians, and internists. In their 3-year residencies (after 4 years of medical school), pediatricians trained to care for children and adolescents; internists for adults; and FPs for children, adults, and women and pregnancy. Family practitioners are the most general of the generalists, whereas the others’ training involves comprehensive care of complex patients in their age groups.

How and when the field of primary care internal medicine flourished is my story. 

I was one of those kids who was hyperfocused on science, math, and the human body. By the end of high school, I was considering medicine for my career. 

To learn more, I volunteered at the local hospital. In my typical style, I requested not to be one of those candy stripers serving drinks on the wards. Instead, they put me in the emergency department, where I would transport patients and clean the stretchers. There I was free to watch whatever was going on if I did not interfere with the staff. On my first shift, a 20-year-old drowning victim arrived by ambulance. I watched the entire unsuccessful resuscitation and as shocked and saddened as I was, I knew (in the way only a headstrong 18-year-old can) that medicine was for me. 

It was a fortuitous time to graduate as a female pre-med student. 

In 1975, our country was in the midst of the women’s movement and a national effort to train primary care physicians. I was accepted to my state medical school. The University of Massachusetts Medical School had been established a few years earlier, with its main purpose to train primary care physicians and spread them around the state (especially out of the Boston metropolitan area). The curriculum was designed to expose students to primary care from year one. I was assigned to shadow a general practice physician in inner-city Springfield who saw over 50 patients a day! The patients knew they could see and afford him, so they crammed into his waiting room until their name was called in order of their arrival. No appointments necessary. His chart notes were a few scribbled sentences. I didn’t see myself in that practice exactly, but his work ethic and dedication inspired me. 

Over half of our graduating class chose to train in primary care specialties, and most stayed in-state. It turned out to be a good bet on the part of the government of Massachusetts. 

When I applied for residency in 1980, several internal medicine programs had a focus on primary care, which was my goal. I matched at Providence St. Vincent Hospital in Portland, Oregon, and moved across the country to the Pacific Northwest, never to look back. There, my attendings were doctors like I wanted to be: primary care internists in the community, not in academia. It was the perfect choice and an excellent training program. 

In 1984, I hung out my private practice internal medicine shingle in Hillsboro, Oregon, across the street from the community hospital. My primary care internal medicine colleagues and I shared weekend calls and admitted and cared for our patients in the hospital, and when they were discharged. That is now called “continuity of care.” It was a time when we ate in the doctors’ lounge together, met in hallways, and informally consulted each other about our patients. These were called “curbside consults.” They were invaluable to our ability to provide comprehensive care to our patients in primary care, led to fewer specialty referrals, and were free. That would now be called interprofessional communication and collegiality. 

“Burnout” was not a word you heard. We were busy and happy doing what we had spent 12 years of our precious youth to prepare for. 

What did internists offer to primary care? That also is part of my story. 

When I moved to Olympia, I took a position in the women’s health clinic at the American Lake Veterans Administration Medical Center. 

We were a small group: two family practice doctors, three nurse practitioners, and me, the only internist. Many of our patients were sick and complex. Two of the nurse practitioners (NPs) asked me to take their most complicated patients. Being comfortable with complexity as an internist, I said yes. 

One of the NPs was inappropriately hired, as she had experience in women’s health. She came to me freaked out: “Oh my God, I have no idea how to manage COPD!” The other wanted simpler patients. I don’t blame them for the patient transfers. NPs typically have 3 years of training before they practice, in contrast to primary care physicians’ 8. 

Guess who made friends with the custodian, staying until 8 p.m. most evenings, and who left by 5:30 p.m. 

What was I doing in those extra hours? I was trudging through clerical, yet important, tasks my medical assistant and transcriptionist used to do in private practice. In the 30 minutes allotted for the patient, I needed to focus entirely on them and their multiple complex medical problems. 

What is lost with the death of primary care internal medicine? 

At the recent Sommer Memorial Lectures in Portland, Steven D. Freer, MD, the current director of the residency program where I trained, has not had a single of his eight annual internal medicine graduates choose primary care in several years. Half (two of four) of those in my year did: One went to Tillamook, an underserved area on the Oregon coast, and I to Hillsboro. 

What are internal medicine training graduates doing now? They are becoming hospitalists or, more often, specialists in cardiology, pulmonology, nephrology, oncology, and other more lucrative fields of medicine. 

Why are they not choosing primary care? As when the University of Massachusetts Medical School was established, a shortage of primary care physicians persists and probably is more severe than it was in the 1970s. Massachusetts was proactive. We are already years behind catching up. The shortage is no longer in rural areas alone. 

Christine Laine, MD, who is editor in chief of Annals of Internal Medicine and spoke at the Sommer Memorial Lectures, lives in Philadelphia. Even there, she has lost her own primary care internal medicine physician and cannot find another primary care physician (much less an internist) for herself. 

Washington State, where I live, scores a D grade for our primary care staffing statewide. 

Is there hope for the future of primary care in general? Or for the restoration of primary care internal medicine? 

Maybe. I was relieved to hear from Dr. Freer and Dr. Laine that efforts are beginning to revive the field. 

Just like internists’ patients, the potential restoration of the field will be complex and multilayered. It will require new laws, policies, residency programs, and incentives for students, including debt reduction. Administrative burdens will need to be reduced; de-corporatization and restoring healthcare leadership to those with in-depth medical training will need to be a part of the solution as well. 

Let’s all hope the new resuscitation efforts will be successful for the field of primary care in general and primary care internal medicine specifically. It will be good for healthcare and for your patients! 

Many work for large systems in which they feel powerless to effect change.

Dr. Glasser is a retired internal medicine physician in Olympia, Washington. She can be reached at drdebra@theJOLTnews.com.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Thu, 08/22/2024 - 19:03
Un-Gate On Date
Thu, 08/22/2024 - 19:03
Use ProPublica
CFC Schedule Remove Status
Thu, 08/22/2024 - 19:03
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Thu, 08/22/2024 - 19:03

In Some Patients, Antiseizure Medications Can Cause Severe Skin Reactions

Article Type
Changed
Thu, 07/18/2024 - 10:53

Avoiding severe skin reactions to antiseizure medications (ASMs) requires assessing patient risk factors and prescribing lower-risk drugs wherever possible, according to authors of a recent review. And if putting higher-risk patients on drugs most associated with human leukocyte antigen (HLA)–related reaction risk before test results are available, authors advised starting at low doses and titrating slowly.

“When someone is having a seizure drug prescribed,” said senior author Ram Mani, MD, MSCE, chief of epilepsy at Rutgers Robert Wood Johnson Medical School in New Brunswick, New Jersey, “it’s often a tense clinical situation because the patient has either had the first few seizures of their life, or they’ve had a worsening in their seizures.”

Ram Mani, MD, MSCE, is chief of epilepsy at Rutgers Robert Wood Johnson Medical School in New Brunswick, New Jersey.
courtesy Rutgers Robert Wood Johnson Medical School
Dr. Ram Mani

To help physicians optimize choices, Dr. Mani and colleagues reviewed literature regarding 31 ASMs. Their study was published in Current Treatment Options in Neurology.

Overall, said Dr. Mani, incidence of benign skin reactions such as morbilliform exanthematous eruptions, which account for 95% of cutaneous adverse drug reactions (CADRs), ranges from a few percent up to 15%. “It’s a somewhat common occurrence. Fortunately, the reactions that can lead to morbidity and mortality are fairly rare.”
 

Severe Cutaneous Adverse Reactions

Among the five ASMs approved by the Food and Drug Administration since 2018, cenobamate has sparked the greatest concern. In early clinical development for epilepsy, a fast titration schedule (starting at 50 mg/day and increasing by 50 mg every 2 weeks to at least 200 mg/day) resulted in three cases of drug reaction with eosinophilia and systemic symptoms (DRESS, also called drug-induced hypersensitivity reaction/DIHS), including one fatal case. Based on a phase 3 trial, the drug’s manufacturer now recommends starting at 12.5 mg and titrating more slowly.

DRESS/DIHS appears within 2-6 weeks of drug exposure. Along with malaise, fever, and conjunctivitis, symptoms can include skin eruptions ranging from morbilliform to hemorrhagic and bullous. “Facial edema and early facial rash are classic findings,” the authors added. DRESS also can involve painful lymphadenopathy and potentially life-threatening damage to the liver, heart, and other organs.

Stevens-Johnson syndrome (SJS), which is characterized by detached skin measuring less than 10% of the entire body surface area, typically happens within the first month of drug exposure. Flu-like symptoms can appear 1-3 days before erythematous to dusky macules, commonly on the chest, as well as cutaneous and mucosal erosions. Along with the skin and conjunctiva, SJS can affect the eyes, lungs, liver, bone marrow, and gastrointestinal tract.

When patients present with possible DRESS or SJS, the authors recommended inpatient multidisciplinary care. Having ready access to blood tests can help assess severity and prognosis, Dr. Mani explained. Inpatient evaluation and treatment also may allow faster access to other specialists as needed, and monitoring of potential seizure exacerbation in patients with uncontrolled seizures for whom the drug provided benefit but required abrupt discontinuation.

Often, he added, all hope is not lost for future use of the medication after a minor skin reaction. A case series and literature review of mild lamotrigine-associated CADRs showed that most patients could reintroduce and titrate lamotrigine by waiting at least 4 weeks, beginning at 5 mg/day, and gradually increasing to 25 mg/day.
 

 

 

Identifying Those at Risk

With millions of patients being newly prescribed ASMs annually, accurately screening out all people at risk of severe cutaneous adverse reactions based on available genetic information is impossible. The complexity of evolving recommendations for HLA testing makes them hard to remember, Dr. Mani said. “Development and better use of clinical decision support systems can help.”

Accordingly, he starts with a thorough history and physical examination, inquiring about prior skin reactions or hypersensitivity, which are risk factors for future reactions to drugs such as carbamazepine, phenytoin, phenobarbital, oxcarbazepine, lamotrigine, rufinamide, and zonisamide. “Most of the medicines that the HLA tests are being done for are not the initial medicines I typically prescribe for a patient with newly diagnosed epilepsy,” said Dr. Mani. For ASM-naive patients with moderate or high risk of skin hypersensitivity reactions, he usually starts with lacosamide, levetiracetam, or brivaracetam. Additional low-risk drugs he considers in more complex cases include valproate, topiramate, and clobazam.

Only if a patient’s initial ASM causes problems will Dr. Mani consider higher-risk options and order HLA tests for patients belonging to indicated groups — such as testing for HLA-B*15:02 in Asian patients being considered for carbamazepine. About once weekly, he must put a patient on a potentially higher-risk drug before test results are available. If after a thorough risk-benefit discussion, he and the patient agree that the higher-risk drug is warranted, Dr. Mani starts at a lower-than-labeled dose, with a slower titration schedule that typically extends the ramp-up period by 1 week.

Fortunately, Dr. Mani said that, in 20 years of practice, he has seen more misdiagnoses — involving rashes from poison ivy, viral infections, or allergies — than actual ASM-induced reactions. “That’s why the patient, family, and practitioner need to be open-minded about what could be causing the rash.”

Dr. Mani reported no relevant conflicts. The study authors reported no funding sources.

Publications
Topics
Sections

Avoiding severe skin reactions to antiseizure medications (ASMs) requires assessing patient risk factors and prescribing lower-risk drugs wherever possible, according to authors of a recent review. And if putting higher-risk patients on drugs most associated with human leukocyte antigen (HLA)–related reaction risk before test results are available, authors advised starting at low doses and titrating slowly.

“When someone is having a seizure drug prescribed,” said senior author Ram Mani, MD, MSCE, chief of epilepsy at Rutgers Robert Wood Johnson Medical School in New Brunswick, New Jersey, “it’s often a tense clinical situation because the patient has either had the first few seizures of their life, or they’ve had a worsening in their seizures.”

Ram Mani, MD, MSCE, is chief of epilepsy at Rutgers Robert Wood Johnson Medical School in New Brunswick, New Jersey.
courtesy Rutgers Robert Wood Johnson Medical School
Dr. Ram Mani

To help physicians optimize choices, Dr. Mani and colleagues reviewed literature regarding 31 ASMs. Their study was published in Current Treatment Options in Neurology.

Overall, said Dr. Mani, incidence of benign skin reactions such as morbilliform exanthematous eruptions, which account for 95% of cutaneous adverse drug reactions (CADRs), ranges from a few percent up to 15%. “It’s a somewhat common occurrence. Fortunately, the reactions that can lead to morbidity and mortality are fairly rare.”
 

Severe Cutaneous Adverse Reactions

Among the five ASMs approved by the Food and Drug Administration since 2018, cenobamate has sparked the greatest concern. In early clinical development for epilepsy, a fast titration schedule (starting at 50 mg/day and increasing by 50 mg every 2 weeks to at least 200 mg/day) resulted in three cases of drug reaction with eosinophilia and systemic symptoms (DRESS, also called drug-induced hypersensitivity reaction/DIHS), including one fatal case. Based on a phase 3 trial, the drug’s manufacturer now recommends starting at 12.5 mg and titrating more slowly.

DRESS/DIHS appears within 2-6 weeks of drug exposure. Along with malaise, fever, and conjunctivitis, symptoms can include skin eruptions ranging from morbilliform to hemorrhagic and bullous. “Facial edema and early facial rash are classic findings,” the authors added. DRESS also can involve painful lymphadenopathy and potentially life-threatening damage to the liver, heart, and other organs.

Stevens-Johnson syndrome (SJS), which is characterized by detached skin measuring less than 10% of the entire body surface area, typically happens within the first month of drug exposure. Flu-like symptoms can appear 1-3 days before erythematous to dusky macules, commonly on the chest, as well as cutaneous and mucosal erosions. Along with the skin and conjunctiva, SJS can affect the eyes, lungs, liver, bone marrow, and gastrointestinal tract.

When patients present with possible DRESS or SJS, the authors recommended inpatient multidisciplinary care. Having ready access to blood tests can help assess severity and prognosis, Dr. Mani explained. Inpatient evaluation and treatment also may allow faster access to other specialists as needed, and monitoring of potential seizure exacerbation in patients with uncontrolled seizures for whom the drug provided benefit but required abrupt discontinuation.

Often, he added, all hope is not lost for future use of the medication after a minor skin reaction. A case series and literature review of mild lamotrigine-associated CADRs showed that most patients could reintroduce and titrate lamotrigine by waiting at least 4 weeks, beginning at 5 mg/day, and gradually increasing to 25 mg/day.
 

 

 

Identifying Those at Risk

With millions of patients being newly prescribed ASMs annually, accurately screening out all people at risk of severe cutaneous adverse reactions based on available genetic information is impossible. The complexity of evolving recommendations for HLA testing makes them hard to remember, Dr. Mani said. “Development and better use of clinical decision support systems can help.”

Accordingly, he starts with a thorough history and physical examination, inquiring about prior skin reactions or hypersensitivity, which are risk factors for future reactions to drugs such as carbamazepine, phenytoin, phenobarbital, oxcarbazepine, lamotrigine, rufinamide, and zonisamide. “Most of the medicines that the HLA tests are being done for are not the initial medicines I typically prescribe for a patient with newly diagnosed epilepsy,” said Dr. Mani. For ASM-naive patients with moderate or high risk of skin hypersensitivity reactions, he usually starts with lacosamide, levetiracetam, or brivaracetam. Additional low-risk drugs he considers in more complex cases include valproate, topiramate, and clobazam.

Only if a patient’s initial ASM causes problems will Dr. Mani consider higher-risk options and order HLA tests for patients belonging to indicated groups — such as testing for HLA-B*15:02 in Asian patients being considered for carbamazepine. About once weekly, he must put a patient on a potentially higher-risk drug before test results are available. If after a thorough risk-benefit discussion, he and the patient agree that the higher-risk drug is warranted, Dr. Mani starts at a lower-than-labeled dose, with a slower titration schedule that typically extends the ramp-up period by 1 week.

Fortunately, Dr. Mani said that, in 20 years of practice, he has seen more misdiagnoses — involving rashes from poison ivy, viral infections, or allergies — than actual ASM-induced reactions. “That’s why the patient, family, and practitioner need to be open-minded about what could be causing the rash.”

Dr. Mani reported no relevant conflicts. The study authors reported no funding sources.

Avoiding severe skin reactions to antiseizure medications (ASMs) requires assessing patient risk factors and prescribing lower-risk drugs wherever possible, according to authors of a recent review. And if putting higher-risk patients on drugs most associated with human leukocyte antigen (HLA)–related reaction risk before test results are available, authors advised starting at low doses and titrating slowly.

“When someone is having a seizure drug prescribed,” said senior author Ram Mani, MD, MSCE, chief of epilepsy at Rutgers Robert Wood Johnson Medical School in New Brunswick, New Jersey, “it’s often a tense clinical situation because the patient has either had the first few seizures of their life, or they’ve had a worsening in their seizures.”

Ram Mani, MD, MSCE, is chief of epilepsy at Rutgers Robert Wood Johnson Medical School in New Brunswick, New Jersey.
courtesy Rutgers Robert Wood Johnson Medical School
Dr. Ram Mani

To help physicians optimize choices, Dr. Mani and colleagues reviewed literature regarding 31 ASMs. Their study was published in Current Treatment Options in Neurology.

Overall, said Dr. Mani, incidence of benign skin reactions such as morbilliform exanthematous eruptions, which account for 95% of cutaneous adverse drug reactions (CADRs), ranges from a few percent up to 15%. “It’s a somewhat common occurrence. Fortunately, the reactions that can lead to morbidity and mortality are fairly rare.”
 

Severe Cutaneous Adverse Reactions

Among the five ASMs approved by the Food and Drug Administration since 2018, cenobamate has sparked the greatest concern. In early clinical development for epilepsy, a fast titration schedule (starting at 50 mg/day and increasing by 50 mg every 2 weeks to at least 200 mg/day) resulted in three cases of drug reaction with eosinophilia and systemic symptoms (DRESS, also called drug-induced hypersensitivity reaction/DIHS), including one fatal case. Based on a phase 3 trial, the drug’s manufacturer now recommends starting at 12.5 mg and titrating more slowly.

DRESS/DIHS appears within 2-6 weeks of drug exposure. Along with malaise, fever, and conjunctivitis, symptoms can include skin eruptions ranging from morbilliform to hemorrhagic and bullous. “Facial edema and early facial rash are classic findings,” the authors added. DRESS also can involve painful lymphadenopathy and potentially life-threatening damage to the liver, heart, and other organs.

Stevens-Johnson syndrome (SJS), which is characterized by detached skin measuring less than 10% of the entire body surface area, typically happens within the first month of drug exposure. Flu-like symptoms can appear 1-3 days before erythematous to dusky macules, commonly on the chest, as well as cutaneous and mucosal erosions. Along with the skin and conjunctiva, SJS can affect the eyes, lungs, liver, bone marrow, and gastrointestinal tract.

When patients present with possible DRESS or SJS, the authors recommended inpatient multidisciplinary care. Having ready access to blood tests can help assess severity and prognosis, Dr. Mani explained. Inpatient evaluation and treatment also may allow faster access to other specialists as needed, and monitoring of potential seizure exacerbation in patients with uncontrolled seizures for whom the drug provided benefit but required abrupt discontinuation.

Often, he added, all hope is not lost for future use of the medication after a minor skin reaction. A case series and literature review of mild lamotrigine-associated CADRs showed that most patients could reintroduce and titrate lamotrigine by waiting at least 4 weeks, beginning at 5 mg/day, and gradually increasing to 25 mg/day.
 

 

 

Identifying Those at Risk

With millions of patients being newly prescribed ASMs annually, accurately screening out all people at risk of severe cutaneous adverse reactions based on available genetic information is impossible. The complexity of evolving recommendations for HLA testing makes them hard to remember, Dr. Mani said. “Development and better use of clinical decision support systems can help.”

Accordingly, he starts with a thorough history and physical examination, inquiring about prior skin reactions or hypersensitivity, which are risk factors for future reactions to drugs such as carbamazepine, phenytoin, phenobarbital, oxcarbazepine, lamotrigine, rufinamide, and zonisamide. “Most of the medicines that the HLA tests are being done for are not the initial medicines I typically prescribe for a patient with newly diagnosed epilepsy,” said Dr. Mani. For ASM-naive patients with moderate or high risk of skin hypersensitivity reactions, he usually starts with lacosamide, levetiracetam, or brivaracetam. Additional low-risk drugs he considers in more complex cases include valproate, topiramate, and clobazam.

Only if a patient’s initial ASM causes problems will Dr. Mani consider higher-risk options and order HLA tests for patients belonging to indicated groups — such as testing for HLA-B*15:02 in Asian patients being considered for carbamazepine. About once weekly, he must put a patient on a potentially higher-risk drug before test results are available. If after a thorough risk-benefit discussion, he and the patient agree that the higher-risk drug is warranted, Dr. Mani starts at a lower-than-labeled dose, with a slower titration schedule that typically extends the ramp-up period by 1 week.

Fortunately, Dr. Mani said that, in 20 years of practice, he has seen more misdiagnoses — involving rashes from poison ivy, viral infections, or allergies — than actual ASM-induced reactions. “That’s why the patient, family, and practitioner need to be open-minded about what could be causing the rash.”

Dr. Mani reported no relevant conflicts. The study authors reported no funding sources.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CURRENT TREATMENT OPTIONS IN NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

TBI Significantly Increases Mortality Rate Among Veterans With Epilepsy

Article Type
Changed
Thu, 07/18/2024 - 10:11

Veterans diagnosed with epilepsy have a significantly higher mortality rate if they experience a traumatic brain injury either before or within 6 months of an epilepsy diagnosis, according to recent research published in Epilepsia.

In a retrospective cohort study, Ali Roghani, PhD, of the division of epidemiology at the University of Utah School of Medicine in Salt Lake City, and colleagues evaluated 938,890 veterans between 2000 and 2019 in the Defense Health Agency and the Veterans Health Administration who served in the US military after the September 11 attacks. Overall, 27,436 veterans met criteria for a diagnosis of epilepsy, 264,890 had received a diagnosis for a traumatic brain injury (TBI), and the remaining patients had neither epilepsy nor TBI.

Among the veterans with no epilepsy, 248,714 veterans had a TBI diagnosis, while in the group of patients with epilepsy, 10,358 veterans experienced a TBI before their epilepsy diagnosis, 1598 were diagnosed with a TBI within 6 months of epilepsy, and 4310 veterans had a TBI 6 months after an epilepsy diagnosis. The researchers assessed all-cause mortality in each group, calculating cumulative mortality rates compared with the group of veterans who had no TBI and no epilepsy diagnosis.

Dr. Roghani and colleagues found a significantly higher mortality rate among veterans who developed epilepsy compared with a control group with neither epilepsy nor TBI (6.26% vs. 1.12%; P < .01), with a majority of veterans in the group who died being White (67.4%) men (89.9%). Compared with veterans who were deceased, nondeceased veterans were significantly more likely to have a history of being deployed (70.7% vs. 64.8%; P < .001), were less likely to be in the army (52.2% vs. 55.0%; P < .001), and were more likely to reach the rank of officer or warrant officer (8.1% vs. 7.6%; P = .014).

There were also significant differences in clinical characteristics between nondeceased and deceased veterans, including a higher rate of substance abuse disorder, smoking history, cardiovascular disease, stroke, transient ischemic attack, cancer, liver disease, kidney disease, or other injury as well as overdose, suicidal ideation, and homelessness. “Most clinical conditions were significantly different between deceased and nondeceased in part due to the large cohort size,” the researchers said.

After performing Cox regression analyses, the researchers found a higher mortality risk in veterans with epilepsy and/or TBIs among those who developed a TBI within 6 months of an epilepsy diagnosis (hazard ratio [HR], 5.02; 95% CI, 4.21-5.99), had a TBI prior to epilepsy (HR, 4.25; 95% CI, 3.89-4.58), had epilepsy alone (HR, 4.00; 95% CI, 3.67-4.36), had a TBI more than 6 months after an epilepsy diagnosis (HR, 2.49; 95% CI, 2.17-2.85), and those who had epilepsy alone (HR, 1.30; 95% CI, 1.25-1.36) compared with veterans who had neither epilepsy nor a TBI.

“The temporal relationship with TBI that occurred within 6 months after epilepsy diagnosis may suggest an increased vulnerability to accidents, severe injuries, or TBI resulting from seizures, potentially elevating mortality risk,” Dr. Roghani and colleagues wrote.

The researchers said the results “raise concerns” about the subgroup of patients who are diagnosed with epilepsy close to experiencing a TBI.

“Our results provide information regarding the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans, which highlights the need for enhanced primary prevention, such as more access to health care among people with epilepsy and TBI,” they said. “Given the rising incidence of TBI in both the military and civilian populations, these findings suggest close monitoring might be crucial to develop effective prevention strategies for long-term complications, particularly [post-traumatic epilepsy].”
 

 

 

Reevaluating the Treatment of Epilepsy

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York, who was not involved with the study, said in an interview that TBIs have been studied more closely since the beginning of conflicts in the Middle East, particularly in Iran and Afghanistan, where “newer artillery causes more diffuse traumatic injury to the brain and the body than the effects of more typical weaponry.”

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York
Northwell Health
Dr. Juliann Paolicchi


The study by Roghani and colleagues, she said, “is groundbreaking in that it looks at the connection and timing of these two disruptive forces, epilepsy and TBI, on the brain,” she said. “The study reveals that timing is everything: The combination of two disrupting circuitry effects in proximity can have a deadly effect. The summation is greater than either alone in veterans, and has significant effects on the brain’s ability to sustain the functions that keep us alive.”

The 6 months following either a diagnosis of epilepsy or TBI is “crucial,” Dr. Paolicchi noted. “Military and private citizens should be closely monitored during this period, and the results suggest they should refrain from activities that could predispose to further brain injury.”

In addition, current standards for treatment of epilepsy may need to be reevaluated, she said. “Patients are not always treated with a seizure medication after a first seizure, but perhaps, especially in patients at higher risk for brain injury such as the military and athletes, that policy warrants further examination.”

The findings by Roghani and colleagues may also extend to other groups, such as evaluating athletes after a concussion, patients after they are in a motor vehicle accident, and infants with traumatic brain injury, Dr. Paolicchi said. “The results suggest a reexamining of the proximity [of TBI] and epilepsy in these and other areas,” she noted.

The authors reported personal and institutional relationships in the form of research support and other financial compensation from AbbVie, Biohaven, CURE, Department of Defense, Department of Veterans Affairs (VA), Eisai, Engage, National Institutes of Health, Sanofi, SCS Consulting, Sunovion, and UCB. This study was supported by funding from the Department of Defense, VA Health Systems, and the VA HSR&D Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation. Dr. Paolicchi reports no relevant conflicts of interest.

Publications
Topics
Sections

Veterans diagnosed with epilepsy have a significantly higher mortality rate if they experience a traumatic brain injury either before or within 6 months of an epilepsy diagnosis, according to recent research published in Epilepsia.

In a retrospective cohort study, Ali Roghani, PhD, of the division of epidemiology at the University of Utah School of Medicine in Salt Lake City, and colleagues evaluated 938,890 veterans between 2000 and 2019 in the Defense Health Agency and the Veterans Health Administration who served in the US military after the September 11 attacks. Overall, 27,436 veterans met criteria for a diagnosis of epilepsy, 264,890 had received a diagnosis for a traumatic brain injury (TBI), and the remaining patients had neither epilepsy nor TBI.

Among the veterans with no epilepsy, 248,714 veterans had a TBI diagnosis, while in the group of patients with epilepsy, 10,358 veterans experienced a TBI before their epilepsy diagnosis, 1598 were diagnosed with a TBI within 6 months of epilepsy, and 4310 veterans had a TBI 6 months after an epilepsy diagnosis. The researchers assessed all-cause mortality in each group, calculating cumulative mortality rates compared with the group of veterans who had no TBI and no epilepsy diagnosis.

Dr. Roghani and colleagues found a significantly higher mortality rate among veterans who developed epilepsy compared with a control group with neither epilepsy nor TBI (6.26% vs. 1.12%; P < .01), with a majority of veterans in the group who died being White (67.4%) men (89.9%). Compared with veterans who were deceased, nondeceased veterans were significantly more likely to have a history of being deployed (70.7% vs. 64.8%; P < .001), were less likely to be in the army (52.2% vs. 55.0%; P < .001), and were more likely to reach the rank of officer or warrant officer (8.1% vs. 7.6%; P = .014).

There were also significant differences in clinical characteristics between nondeceased and deceased veterans, including a higher rate of substance abuse disorder, smoking history, cardiovascular disease, stroke, transient ischemic attack, cancer, liver disease, kidney disease, or other injury as well as overdose, suicidal ideation, and homelessness. “Most clinical conditions were significantly different between deceased and nondeceased in part due to the large cohort size,” the researchers said.

After performing Cox regression analyses, the researchers found a higher mortality risk in veterans with epilepsy and/or TBIs among those who developed a TBI within 6 months of an epilepsy diagnosis (hazard ratio [HR], 5.02; 95% CI, 4.21-5.99), had a TBI prior to epilepsy (HR, 4.25; 95% CI, 3.89-4.58), had epilepsy alone (HR, 4.00; 95% CI, 3.67-4.36), had a TBI more than 6 months after an epilepsy diagnosis (HR, 2.49; 95% CI, 2.17-2.85), and those who had epilepsy alone (HR, 1.30; 95% CI, 1.25-1.36) compared with veterans who had neither epilepsy nor a TBI.

“The temporal relationship with TBI that occurred within 6 months after epilepsy diagnosis may suggest an increased vulnerability to accidents, severe injuries, or TBI resulting from seizures, potentially elevating mortality risk,” Dr. Roghani and colleagues wrote.

The researchers said the results “raise concerns” about the subgroup of patients who are diagnosed with epilepsy close to experiencing a TBI.

“Our results provide information regarding the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans, which highlights the need for enhanced primary prevention, such as more access to health care among people with epilepsy and TBI,” they said. “Given the rising incidence of TBI in both the military and civilian populations, these findings suggest close monitoring might be crucial to develop effective prevention strategies for long-term complications, particularly [post-traumatic epilepsy].”
 

 

 

Reevaluating the Treatment of Epilepsy

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York, who was not involved with the study, said in an interview that TBIs have been studied more closely since the beginning of conflicts in the Middle East, particularly in Iran and Afghanistan, where “newer artillery causes more diffuse traumatic injury to the brain and the body than the effects of more typical weaponry.”

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York
Northwell Health
Dr. Juliann Paolicchi


The study by Roghani and colleagues, she said, “is groundbreaking in that it looks at the connection and timing of these two disruptive forces, epilepsy and TBI, on the brain,” she said. “The study reveals that timing is everything: The combination of two disrupting circuitry effects in proximity can have a deadly effect. The summation is greater than either alone in veterans, and has significant effects on the brain’s ability to sustain the functions that keep us alive.”

The 6 months following either a diagnosis of epilepsy or TBI is “crucial,” Dr. Paolicchi noted. “Military and private citizens should be closely monitored during this period, and the results suggest they should refrain from activities that could predispose to further brain injury.”

In addition, current standards for treatment of epilepsy may need to be reevaluated, she said. “Patients are not always treated with a seizure medication after a first seizure, but perhaps, especially in patients at higher risk for brain injury such as the military and athletes, that policy warrants further examination.”

The findings by Roghani and colleagues may also extend to other groups, such as evaluating athletes after a concussion, patients after they are in a motor vehicle accident, and infants with traumatic brain injury, Dr. Paolicchi said. “The results suggest a reexamining of the proximity [of TBI] and epilepsy in these and other areas,” she noted.

The authors reported personal and institutional relationships in the form of research support and other financial compensation from AbbVie, Biohaven, CURE, Department of Defense, Department of Veterans Affairs (VA), Eisai, Engage, National Institutes of Health, Sanofi, SCS Consulting, Sunovion, and UCB. This study was supported by funding from the Department of Defense, VA Health Systems, and the VA HSR&D Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation. Dr. Paolicchi reports no relevant conflicts of interest.

Veterans diagnosed with epilepsy have a significantly higher mortality rate if they experience a traumatic brain injury either before or within 6 months of an epilepsy diagnosis, according to recent research published in Epilepsia.

In a retrospective cohort study, Ali Roghani, PhD, of the division of epidemiology at the University of Utah School of Medicine in Salt Lake City, and colleagues evaluated 938,890 veterans between 2000 and 2019 in the Defense Health Agency and the Veterans Health Administration who served in the US military after the September 11 attacks. Overall, 27,436 veterans met criteria for a diagnosis of epilepsy, 264,890 had received a diagnosis for a traumatic brain injury (TBI), and the remaining patients had neither epilepsy nor TBI.

Among the veterans with no epilepsy, 248,714 veterans had a TBI diagnosis, while in the group of patients with epilepsy, 10,358 veterans experienced a TBI before their epilepsy diagnosis, 1598 were diagnosed with a TBI within 6 months of epilepsy, and 4310 veterans had a TBI 6 months after an epilepsy diagnosis. The researchers assessed all-cause mortality in each group, calculating cumulative mortality rates compared with the group of veterans who had no TBI and no epilepsy diagnosis.

Dr. Roghani and colleagues found a significantly higher mortality rate among veterans who developed epilepsy compared with a control group with neither epilepsy nor TBI (6.26% vs. 1.12%; P < .01), with a majority of veterans in the group who died being White (67.4%) men (89.9%). Compared with veterans who were deceased, nondeceased veterans were significantly more likely to have a history of being deployed (70.7% vs. 64.8%; P < .001), were less likely to be in the army (52.2% vs. 55.0%; P < .001), and were more likely to reach the rank of officer or warrant officer (8.1% vs. 7.6%; P = .014).

There were also significant differences in clinical characteristics between nondeceased and deceased veterans, including a higher rate of substance abuse disorder, smoking history, cardiovascular disease, stroke, transient ischemic attack, cancer, liver disease, kidney disease, or other injury as well as overdose, suicidal ideation, and homelessness. “Most clinical conditions were significantly different between deceased and nondeceased in part due to the large cohort size,” the researchers said.

After performing Cox regression analyses, the researchers found a higher mortality risk in veterans with epilepsy and/or TBIs among those who developed a TBI within 6 months of an epilepsy diagnosis (hazard ratio [HR], 5.02; 95% CI, 4.21-5.99), had a TBI prior to epilepsy (HR, 4.25; 95% CI, 3.89-4.58), had epilepsy alone (HR, 4.00; 95% CI, 3.67-4.36), had a TBI more than 6 months after an epilepsy diagnosis (HR, 2.49; 95% CI, 2.17-2.85), and those who had epilepsy alone (HR, 1.30; 95% CI, 1.25-1.36) compared with veterans who had neither epilepsy nor a TBI.

“The temporal relationship with TBI that occurred within 6 months after epilepsy diagnosis may suggest an increased vulnerability to accidents, severe injuries, or TBI resulting from seizures, potentially elevating mortality risk,” Dr. Roghani and colleagues wrote.

The researchers said the results “raise concerns” about the subgroup of patients who are diagnosed with epilepsy close to experiencing a TBI.

“Our results provide information regarding the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans, which highlights the need for enhanced primary prevention, such as more access to health care among people with epilepsy and TBI,” they said. “Given the rising incidence of TBI in both the military and civilian populations, these findings suggest close monitoring might be crucial to develop effective prevention strategies for long-term complications, particularly [post-traumatic epilepsy].”
 

 

 

Reevaluating the Treatment of Epilepsy

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York, who was not involved with the study, said in an interview that TBIs have been studied more closely since the beginning of conflicts in the Middle East, particularly in Iran and Afghanistan, where “newer artillery causes more diffuse traumatic injury to the brain and the body than the effects of more typical weaponry.”

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York
Northwell Health
Dr. Juliann Paolicchi


The study by Roghani and colleagues, she said, “is groundbreaking in that it looks at the connection and timing of these two disruptive forces, epilepsy and TBI, on the brain,” she said. “The study reveals that timing is everything: The combination of two disrupting circuitry effects in proximity can have a deadly effect. The summation is greater than either alone in veterans, and has significant effects on the brain’s ability to sustain the functions that keep us alive.”

The 6 months following either a diagnosis of epilepsy or TBI is “crucial,” Dr. Paolicchi noted. “Military and private citizens should be closely monitored during this period, and the results suggest they should refrain from activities that could predispose to further brain injury.”

In addition, current standards for treatment of epilepsy may need to be reevaluated, she said. “Patients are not always treated with a seizure medication after a first seizure, but perhaps, especially in patients at higher risk for brain injury such as the military and athletes, that policy warrants further examination.”

The findings by Roghani and colleagues may also extend to other groups, such as evaluating athletes after a concussion, patients after they are in a motor vehicle accident, and infants with traumatic brain injury, Dr. Paolicchi said. “The results suggest a reexamining of the proximity [of TBI] and epilepsy in these and other areas,” she noted.

The authors reported personal and institutional relationships in the form of research support and other financial compensation from AbbVie, Biohaven, CURE, Department of Defense, Department of Veterans Affairs (VA), Eisai, Engage, National Institutes of Health, Sanofi, SCS Consulting, Sunovion, and UCB. This study was supported by funding from the Department of Defense, VA Health Systems, and the VA HSR&D Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation. Dr. Paolicchi reports no relevant conflicts of interest.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EPILEPSIA

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Scientist Aims to Unravel Long COVID’s Neurologic Impacts

Article Type
Changed
Wed, 07/17/2024 - 16:35

 

Neurologic symptoms of long COVID are vast, common, hard to treat, disabling, and can mimic dozens of other syndromes, with some symptoms as serious as those seen in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and postural orthostatic tachycardia syndrome (POTS).

Now, recent evidence has suggested long COVID is primarily an autonomic nervous system disorder.

Patients with long COVID increasingly complain of extreme fatigue, brain fog, cognitive issues, dizziness, irregular heart rhythms, and high or low blood pressure, all features seen with dysautonomia — dysregulation of the autonomic nervous system.

Their lives may never be the same.

Lindsay S. McAlpine, MD, a specialist in the neurologic sequelae of COVID-19 at the Yale School of Medicine and director of the Yale NeuroCOVID Clinic, New Haven, Connecticut, treats patients who struggle with neurologic symptoms even after disease recovery.

“Some people have the brain fog and the shortness of breath; some have the palpitations and the headaches ... it’s kind of a mix and match,” she said.

Dr. McAlpine’s research has been slowly building up into what could bring about a significant breakthrough in treating some of the most misunderstood and difficult-to-treat symptoms of long COVID.
 

The Effect of Vascular Inflammation on Long COVID

The National Institute of Neurological Disorders and Stroke recently awarded her a 5-year K23 grant to support her ongoing study, “Magnetic Resonance Imaging Biomarkers of Post-COVID-19 Cerebral Microvascular Dysfunction.”

Using advanced MRI techniques to identify microvascular dysfunction biomarkers in the brain, McAlpine hopes to unearth and better understand the pathophysiology behind neurologic issues post-COVID.

Dr. McAlpine said, “What we’re seeing is that there’s a unique signature of vascular inflammation in long COVID that is distinct from acute COVID. And it has to do with endothelial apathy and platelet dysfunction.”

She’s also looking into whether microvascular dysfunction could increase one’s risk for small vessel disease. Her research is quantitatively building an overall pathophysiology piece by piece.

“We’re quantifying cognitive dysfunction and using objective testing ... a very rigorous 3-hour protocol to really identify the patterns of weakness until we find deficits in memory working and declarative memory, deficits in executive functioning, and others. Those are the three pieces that I’m trying to piece together: The MRI, the blood work, and the cognitive testing,” she said.

Ultimately, Dr. McAlpine believes long COVID will eventually be classified as a peripheral autonomic disorder. The damage being wrought to the whole body also damages the brain’s vasculature, and Dr. McAlpine’s MRI techniques probe at this connection.

“Some of my MRI techniques are dependent on the very subtle changes in blood flow to different regions in response to demand. Brain fog has been a key symptom of POTS and ME/CFS. And it’s now a key symptom of long COVID ... what I’m looking at in some of my studies is how and in which parts of the brain are affected by this,” she said.

Dr. McAlpine’s interest in COVID’s effect on our nervous system goes back all the way to the first wave of patients with COVID, where she noticed an unusually high incidence of ischemic stroke.

“We recognized that COVID really has a huge impact on the vessels ... there’s quite a bit of vascular inflammation. In terms of neurology, we were seeing quite a bit of ischemic stroke, which is unusual,” she said.

Patients don’t normally present with stroke while infected with a virus. Seeking answers, she conducted a stroke study in patients with acute COVID and found profound endotheliopathy — damage to key cells in the lining of blood vessels — leading to a cascade of dysfunction and clotting.
 

 

 

A Constellation of Neuropsychiatric Symptoms

In early June, Dr. McAlpine gave a presentation of her research at the Demystifying Long COVID North American Conference 2024 in Boston. She’s been hard at work in extrapolating the causes of neuropsychiatric long COVID, a tangled web of symptoms seen in patients with long COVID that range from cognitive dysfunction to headaches, neuropathy, mental health, and the aforementioned dysautonomia.

Amid the sea of neurologic long COVID symptoms, she said “symptoms that are mixing and matching are very similar. So, I wanted to specifically look at a symptom that I could definitely isolate to the brain, and that is brain fog and cognitive dysfunction and impairment.”

In September 2021, the journal Translational Psychiatry published a study titled “Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions.”

Going back all the way to the first cases of COVID in March 2020, the initial symptoms most patients complained of during an acute viral infection were around the respiratory system. Yet delirium, confusion, and neurocognitive disorders were also reported, puzzling experts and inciting a well-founded fear among many.

Even worse, after recovery, these neuropsychiatric symptoms persisted. The study found that coronavirus was able to invade the central nervous system through blood vessels and neuronal retrograde pathways, leading to brain injury and dysfunction of the cardiorespiratory center in the brainstem.

The study concluded by reporting that neuroimaging and neurochemical evidence indicated neuroimmune dysfunction and brain injury in severe patients with COVID-19. Suggested treatments included immunosuppressive therapies, vaccines to target the coronavirus’ spike protein, and pharmacological agents to improve endothelial integrity.

But there was still much that was unknown, and the study’s authors stressed the need for multidisciplinary research going forward.
 

How Immune Dysfunction Plays a Role

Similarly, Dr. McAlpine and her research team are still trying to sift their way through this opaque web to see why long COVID can cause autoimmune flare-ups.

In a study published in April, Dr. McAlpine and others found that small fiber neuropathy (SFN) after COVID is autoimmune-mediated and a dysfunction of the immune system.

Notably, they found that SFN could be a key pathologic finding in long COVID. SFN before the pandemic had been linked to ME/CFS and POTS, and the basic hypothesis revolved around an inflammatory immune response during a viral illness that may lead to immune dysregulation (dysimmunity) and damage to small fiber nerves.

But much still remains to be answered.

“We’ve seen quite a bit of that, but we still haven’t figured it out,” Dr. McAlpine said. “My big question is, how is this autonomic dysfunction related to the immune dysfunction, and how is that related to the vascular inflammation? There’s quite a bit of overlap in individuals with autoimmune disease and those who go on to develop this long COVID,” she added.

Still, a large portion of patients with long COVID don’t show autoimmune dysfunction, and those patients lack common biomarkers for an autoimmune condition.

“When we look at the spinal fluid in those individuals [with multiple sclerosis or a neuroinfectious disease], there’s inflammation going on ... the white blood cell count is elevated, the protein is elevated, the antibodies, the bands are elevated. I’ve been seeing long COVID patients now for 4 years, and their presentation is so distinctly different compared to my individuals that I see my patients with MS, or a neuroinfectious disease,” she said.

The mechanisms behind how all of this is interlaced remain unclear, and there may not be a one-size-fits-all treatment or definite pathogenesis for everyone.

“It’s that intersection of the immune system and the vessel wall ... Next is to figure out what do we treat, what are the targets, all of that, but there’s so many different presentations, and everybody has kind of a unique case,” she said.
 

 

 

How Physician Can Treat Common Symptoms Now

Though a cure for symptoms still eludes the scientific community, recent evidence has suggested that a combination of N-acetyl cysteine (NAC) and guanfacine has been successful in easing neurologic symptoms.

In November 2023, Arman Fesharaki-Zadeh, MD, PhD, a Yale Medicine behavioral neurologist and neuropsychiatrist, published a small study in Neuroimmunology Reports with his colleague, Yale neuroscientist Amy Arnsten, PhD. The two researchers showed how among 12 patients given 600 mg NAC daily, along with 1 mg guanfacine (increased to 2 mg after a month if well-tolerated), eight demonstrated improved cognitive abilities.

In patients who stayed on guanfacine + NAC, improved working memory, concentration, and executive functions were seen.

Also, they resumed their normal work schedule. Interruption and inability to work has been a significant factor in the lower quality-of-life long COVID patients experience.

Placebo-controlled trials will be needed going forward, but their small study has established safety and could open up a larger study in the future. For the moment, NAC can be gotten over the counter, and patients could get a prescription off-label from their doctor.

Dr. McAlpine has seen this combination work well for her own patients at Yale’s NeuroCOVID clinic.

Additionally, lifestyle practices such as quitting tobacco, increased exercise, exercising the mind, lowering alcohol intake, and even vitamin D supplementation (1000-2000 IU daily) could prove beneficial in tamping down persistent brain fog.

Vitamin D supports brain and nerve function through its reduction of brain aging biomarkers, regulating genes important for brain function, activating and deactivating enzymes important for neurotransmitter synthesis, and supporting neuronal growth and survival.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Neurologic symptoms of long COVID are vast, common, hard to treat, disabling, and can mimic dozens of other syndromes, with some symptoms as serious as those seen in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and postural orthostatic tachycardia syndrome (POTS).

Now, recent evidence has suggested long COVID is primarily an autonomic nervous system disorder.

Patients with long COVID increasingly complain of extreme fatigue, brain fog, cognitive issues, dizziness, irregular heart rhythms, and high or low blood pressure, all features seen with dysautonomia — dysregulation of the autonomic nervous system.

Their lives may never be the same.

Lindsay S. McAlpine, MD, a specialist in the neurologic sequelae of COVID-19 at the Yale School of Medicine and director of the Yale NeuroCOVID Clinic, New Haven, Connecticut, treats patients who struggle with neurologic symptoms even after disease recovery.

“Some people have the brain fog and the shortness of breath; some have the palpitations and the headaches ... it’s kind of a mix and match,” she said.

Dr. McAlpine’s research has been slowly building up into what could bring about a significant breakthrough in treating some of the most misunderstood and difficult-to-treat symptoms of long COVID.
 

The Effect of Vascular Inflammation on Long COVID

The National Institute of Neurological Disorders and Stroke recently awarded her a 5-year K23 grant to support her ongoing study, “Magnetic Resonance Imaging Biomarkers of Post-COVID-19 Cerebral Microvascular Dysfunction.”

Using advanced MRI techniques to identify microvascular dysfunction biomarkers in the brain, McAlpine hopes to unearth and better understand the pathophysiology behind neurologic issues post-COVID.

Dr. McAlpine said, “What we’re seeing is that there’s a unique signature of vascular inflammation in long COVID that is distinct from acute COVID. And it has to do with endothelial apathy and platelet dysfunction.”

She’s also looking into whether microvascular dysfunction could increase one’s risk for small vessel disease. Her research is quantitatively building an overall pathophysiology piece by piece.

“We’re quantifying cognitive dysfunction and using objective testing ... a very rigorous 3-hour protocol to really identify the patterns of weakness until we find deficits in memory working and declarative memory, deficits in executive functioning, and others. Those are the three pieces that I’m trying to piece together: The MRI, the blood work, and the cognitive testing,” she said.

Ultimately, Dr. McAlpine believes long COVID will eventually be classified as a peripheral autonomic disorder. The damage being wrought to the whole body also damages the brain’s vasculature, and Dr. McAlpine’s MRI techniques probe at this connection.

“Some of my MRI techniques are dependent on the very subtle changes in blood flow to different regions in response to demand. Brain fog has been a key symptom of POTS and ME/CFS. And it’s now a key symptom of long COVID ... what I’m looking at in some of my studies is how and in which parts of the brain are affected by this,” she said.

Dr. McAlpine’s interest in COVID’s effect on our nervous system goes back all the way to the first wave of patients with COVID, where she noticed an unusually high incidence of ischemic stroke.

“We recognized that COVID really has a huge impact on the vessels ... there’s quite a bit of vascular inflammation. In terms of neurology, we were seeing quite a bit of ischemic stroke, which is unusual,” she said.

Patients don’t normally present with stroke while infected with a virus. Seeking answers, she conducted a stroke study in patients with acute COVID and found profound endotheliopathy — damage to key cells in the lining of blood vessels — leading to a cascade of dysfunction and clotting.
 

 

 

A Constellation of Neuropsychiatric Symptoms

In early June, Dr. McAlpine gave a presentation of her research at the Demystifying Long COVID North American Conference 2024 in Boston. She’s been hard at work in extrapolating the causes of neuropsychiatric long COVID, a tangled web of symptoms seen in patients with long COVID that range from cognitive dysfunction to headaches, neuropathy, mental health, and the aforementioned dysautonomia.

Amid the sea of neurologic long COVID symptoms, she said “symptoms that are mixing and matching are very similar. So, I wanted to specifically look at a symptom that I could definitely isolate to the brain, and that is brain fog and cognitive dysfunction and impairment.”

In September 2021, the journal Translational Psychiatry published a study titled “Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions.”

Going back all the way to the first cases of COVID in March 2020, the initial symptoms most patients complained of during an acute viral infection were around the respiratory system. Yet delirium, confusion, and neurocognitive disorders were also reported, puzzling experts and inciting a well-founded fear among many.

Even worse, after recovery, these neuropsychiatric symptoms persisted. The study found that coronavirus was able to invade the central nervous system through blood vessels and neuronal retrograde pathways, leading to brain injury and dysfunction of the cardiorespiratory center in the brainstem.

The study concluded by reporting that neuroimaging and neurochemical evidence indicated neuroimmune dysfunction and brain injury in severe patients with COVID-19. Suggested treatments included immunosuppressive therapies, vaccines to target the coronavirus’ spike protein, and pharmacological agents to improve endothelial integrity.

But there was still much that was unknown, and the study’s authors stressed the need for multidisciplinary research going forward.
 

How Immune Dysfunction Plays a Role

Similarly, Dr. McAlpine and her research team are still trying to sift their way through this opaque web to see why long COVID can cause autoimmune flare-ups.

In a study published in April, Dr. McAlpine and others found that small fiber neuropathy (SFN) after COVID is autoimmune-mediated and a dysfunction of the immune system.

Notably, they found that SFN could be a key pathologic finding in long COVID. SFN before the pandemic had been linked to ME/CFS and POTS, and the basic hypothesis revolved around an inflammatory immune response during a viral illness that may lead to immune dysregulation (dysimmunity) and damage to small fiber nerves.

But much still remains to be answered.

“We’ve seen quite a bit of that, but we still haven’t figured it out,” Dr. McAlpine said. “My big question is, how is this autonomic dysfunction related to the immune dysfunction, and how is that related to the vascular inflammation? There’s quite a bit of overlap in individuals with autoimmune disease and those who go on to develop this long COVID,” she added.

Still, a large portion of patients with long COVID don’t show autoimmune dysfunction, and those patients lack common biomarkers for an autoimmune condition.

“When we look at the spinal fluid in those individuals [with multiple sclerosis or a neuroinfectious disease], there’s inflammation going on ... the white blood cell count is elevated, the protein is elevated, the antibodies, the bands are elevated. I’ve been seeing long COVID patients now for 4 years, and their presentation is so distinctly different compared to my individuals that I see my patients with MS, or a neuroinfectious disease,” she said.

The mechanisms behind how all of this is interlaced remain unclear, and there may not be a one-size-fits-all treatment or definite pathogenesis for everyone.

“It’s that intersection of the immune system and the vessel wall ... Next is to figure out what do we treat, what are the targets, all of that, but there’s so many different presentations, and everybody has kind of a unique case,” she said.
 

 

 

How Physician Can Treat Common Symptoms Now

Though a cure for symptoms still eludes the scientific community, recent evidence has suggested that a combination of N-acetyl cysteine (NAC) and guanfacine has been successful in easing neurologic symptoms.

In November 2023, Arman Fesharaki-Zadeh, MD, PhD, a Yale Medicine behavioral neurologist and neuropsychiatrist, published a small study in Neuroimmunology Reports with his colleague, Yale neuroscientist Amy Arnsten, PhD. The two researchers showed how among 12 patients given 600 mg NAC daily, along with 1 mg guanfacine (increased to 2 mg after a month if well-tolerated), eight demonstrated improved cognitive abilities.

In patients who stayed on guanfacine + NAC, improved working memory, concentration, and executive functions were seen.

Also, they resumed their normal work schedule. Interruption and inability to work has been a significant factor in the lower quality-of-life long COVID patients experience.

Placebo-controlled trials will be needed going forward, but their small study has established safety and could open up a larger study in the future. For the moment, NAC can be gotten over the counter, and patients could get a prescription off-label from their doctor.

Dr. McAlpine has seen this combination work well for her own patients at Yale’s NeuroCOVID clinic.

Additionally, lifestyle practices such as quitting tobacco, increased exercise, exercising the mind, lowering alcohol intake, and even vitamin D supplementation (1000-2000 IU daily) could prove beneficial in tamping down persistent brain fog.

Vitamin D supports brain and nerve function through its reduction of brain aging biomarkers, regulating genes important for brain function, activating and deactivating enzymes important for neurotransmitter synthesis, and supporting neuronal growth and survival.

A version of this article first appeared on Medscape.com.

 

Neurologic symptoms of long COVID are vast, common, hard to treat, disabling, and can mimic dozens of other syndromes, with some symptoms as serious as those seen in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and postural orthostatic tachycardia syndrome (POTS).

Now, recent evidence has suggested long COVID is primarily an autonomic nervous system disorder.

Patients with long COVID increasingly complain of extreme fatigue, brain fog, cognitive issues, dizziness, irregular heart rhythms, and high or low blood pressure, all features seen with dysautonomia — dysregulation of the autonomic nervous system.

Their lives may never be the same.

Lindsay S. McAlpine, MD, a specialist in the neurologic sequelae of COVID-19 at the Yale School of Medicine and director of the Yale NeuroCOVID Clinic, New Haven, Connecticut, treats patients who struggle with neurologic symptoms even after disease recovery.

“Some people have the brain fog and the shortness of breath; some have the palpitations and the headaches ... it’s kind of a mix and match,” she said.

Dr. McAlpine’s research has been slowly building up into what could bring about a significant breakthrough in treating some of the most misunderstood and difficult-to-treat symptoms of long COVID.
 

The Effect of Vascular Inflammation on Long COVID

The National Institute of Neurological Disorders and Stroke recently awarded her a 5-year K23 grant to support her ongoing study, “Magnetic Resonance Imaging Biomarkers of Post-COVID-19 Cerebral Microvascular Dysfunction.”

Using advanced MRI techniques to identify microvascular dysfunction biomarkers in the brain, McAlpine hopes to unearth and better understand the pathophysiology behind neurologic issues post-COVID.

Dr. McAlpine said, “What we’re seeing is that there’s a unique signature of vascular inflammation in long COVID that is distinct from acute COVID. And it has to do with endothelial apathy and platelet dysfunction.”

She’s also looking into whether microvascular dysfunction could increase one’s risk for small vessel disease. Her research is quantitatively building an overall pathophysiology piece by piece.

“We’re quantifying cognitive dysfunction and using objective testing ... a very rigorous 3-hour protocol to really identify the patterns of weakness until we find deficits in memory working and declarative memory, deficits in executive functioning, and others. Those are the three pieces that I’m trying to piece together: The MRI, the blood work, and the cognitive testing,” she said.

Ultimately, Dr. McAlpine believes long COVID will eventually be classified as a peripheral autonomic disorder. The damage being wrought to the whole body also damages the brain’s vasculature, and Dr. McAlpine’s MRI techniques probe at this connection.

“Some of my MRI techniques are dependent on the very subtle changes in blood flow to different regions in response to demand. Brain fog has been a key symptom of POTS and ME/CFS. And it’s now a key symptom of long COVID ... what I’m looking at in some of my studies is how and in which parts of the brain are affected by this,” she said.

Dr. McAlpine’s interest in COVID’s effect on our nervous system goes back all the way to the first wave of patients with COVID, where she noticed an unusually high incidence of ischemic stroke.

“We recognized that COVID really has a huge impact on the vessels ... there’s quite a bit of vascular inflammation. In terms of neurology, we were seeing quite a bit of ischemic stroke, which is unusual,” she said.

Patients don’t normally present with stroke while infected with a virus. Seeking answers, she conducted a stroke study in patients with acute COVID and found profound endotheliopathy — damage to key cells in the lining of blood vessels — leading to a cascade of dysfunction and clotting.
 

 

 

A Constellation of Neuropsychiatric Symptoms

In early June, Dr. McAlpine gave a presentation of her research at the Demystifying Long COVID North American Conference 2024 in Boston. She’s been hard at work in extrapolating the causes of neuropsychiatric long COVID, a tangled web of symptoms seen in patients with long COVID that range from cognitive dysfunction to headaches, neuropathy, mental health, and the aforementioned dysautonomia.

Amid the sea of neurologic long COVID symptoms, she said “symptoms that are mixing and matching are very similar. So, I wanted to specifically look at a symptom that I could definitely isolate to the brain, and that is brain fog and cognitive dysfunction and impairment.”

In September 2021, the journal Translational Psychiatry published a study titled “Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions.”

Going back all the way to the first cases of COVID in March 2020, the initial symptoms most patients complained of during an acute viral infection were around the respiratory system. Yet delirium, confusion, and neurocognitive disorders were also reported, puzzling experts and inciting a well-founded fear among many.

Even worse, after recovery, these neuropsychiatric symptoms persisted. The study found that coronavirus was able to invade the central nervous system through blood vessels and neuronal retrograde pathways, leading to brain injury and dysfunction of the cardiorespiratory center in the brainstem.

The study concluded by reporting that neuroimaging and neurochemical evidence indicated neuroimmune dysfunction and brain injury in severe patients with COVID-19. Suggested treatments included immunosuppressive therapies, vaccines to target the coronavirus’ spike protein, and pharmacological agents to improve endothelial integrity.

But there was still much that was unknown, and the study’s authors stressed the need for multidisciplinary research going forward.
 

How Immune Dysfunction Plays a Role

Similarly, Dr. McAlpine and her research team are still trying to sift their way through this opaque web to see why long COVID can cause autoimmune flare-ups.

In a study published in April, Dr. McAlpine and others found that small fiber neuropathy (SFN) after COVID is autoimmune-mediated and a dysfunction of the immune system.

Notably, they found that SFN could be a key pathologic finding in long COVID. SFN before the pandemic had been linked to ME/CFS and POTS, and the basic hypothesis revolved around an inflammatory immune response during a viral illness that may lead to immune dysregulation (dysimmunity) and damage to small fiber nerves.

But much still remains to be answered.

“We’ve seen quite a bit of that, but we still haven’t figured it out,” Dr. McAlpine said. “My big question is, how is this autonomic dysfunction related to the immune dysfunction, and how is that related to the vascular inflammation? There’s quite a bit of overlap in individuals with autoimmune disease and those who go on to develop this long COVID,” she added.

Still, a large portion of patients with long COVID don’t show autoimmune dysfunction, and those patients lack common biomarkers for an autoimmune condition.

“When we look at the spinal fluid in those individuals [with multiple sclerosis or a neuroinfectious disease], there’s inflammation going on ... the white blood cell count is elevated, the protein is elevated, the antibodies, the bands are elevated. I’ve been seeing long COVID patients now for 4 years, and their presentation is so distinctly different compared to my individuals that I see my patients with MS, or a neuroinfectious disease,” she said.

The mechanisms behind how all of this is interlaced remain unclear, and there may not be a one-size-fits-all treatment or definite pathogenesis for everyone.

“It’s that intersection of the immune system and the vessel wall ... Next is to figure out what do we treat, what are the targets, all of that, but there’s so many different presentations, and everybody has kind of a unique case,” she said.
 

 

 

How Physician Can Treat Common Symptoms Now

Though a cure for symptoms still eludes the scientific community, recent evidence has suggested that a combination of N-acetyl cysteine (NAC) and guanfacine has been successful in easing neurologic symptoms.

In November 2023, Arman Fesharaki-Zadeh, MD, PhD, a Yale Medicine behavioral neurologist and neuropsychiatrist, published a small study in Neuroimmunology Reports with his colleague, Yale neuroscientist Amy Arnsten, PhD. The two researchers showed how among 12 patients given 600 mg NAC daily, along with 1 mg guanfacine (increased to 2 mg after a month if well-tolerated), eight demonstrated improved cognitive abilities.

In patients who stayed on guanfacine + NAC, improved working memory, concentration, and executive functions were seen.

Also, they resumed their normal work schedule. Interruption and inability to work has been a significant factor in the lower quality-of-life long COVID patients experience.

Placebo-controlled trials will be needed going forward, but their small study has established safety and could open up a larger study in the future. For the moment, NAC can be gotten over the counter, and patients could get a prescription off-label from their doctor.

Dr. McAlpine has seen this combination work well for her own patients at Yale’s NeuroCOVID clinic.

Additionally, lifestyle practices such as quitting tobacco, increased exercise, exercising the mind, lowering alcohol intake, and even vitamin D supplementation (1000-2000 IU daily) could prove beneficial in tamping down persistent brain fog.

Vitamin D supports brain and nerve function through its reduction of brain aging biomarkers, regulating genes important for brain function, activating and deactivating enzymes important for neurotransmitter synthesis, and supporting neuronal growth and survival.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article