Neurology Reviews covers innovative and emerging news in neurology and neuroscience every month, with a focus on practical approaches to treating Parkinson's disease, epilepsy, headache, stroke, multiple sclerosis, Alzheimer's disease, and other neurologic disorders.

Top Sections
Literature Review
Expert Commentary
Expert Interview
nr
Main menu
NR Main Menu
Explore menu
NR Explore Menu
Proclivity ID
18828001
Unpublish
Negative Keywords
Ocrevus PML
PML
Progressive multifocal leukoencephalopathy
Rituxan
Altmetric
DSM Affiliated
Display in offset block
QuickLearn Excluded Topics/Sections
Best Practices
CME
CME Supplements
Education Center
Medical Education Library
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
Clinical
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Thu, 08/01/2024 - 08:59
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Challenge Center
Disable Inline Native ads
survey writer start date
Thu, 08/01/2024 - 08:59
Current Issue
Title
Neurology Reviews
Description

The leading independent newspaper covering neurology news and commentary.

Current Issue Reference

Thanks, But No Thanks

Article Type
Changed
Mon, 07/01/2024 - 11:03

She was young, neatly dressed, professional. I don’t remember her name, though she handed me a business card as soon as I stepped up to the front window.

I thought she was a new drug rep to my territory, and I usually try to say “hi” when they first come in. They’re just doing their job, and I don’t mind chatting for a few minutes.

Dr. Allan M. Block, a neurologist in Scottsdale, Arizona.
Dr. Allan M. Block

But she, as it turned out, was here for a whole new thing. Taking out a glossy brochure, she dived into a spiel about my offering a medical credit card through my office. I would get paid quickly, I might even get some extra money from patient interest payments, it is convenient for patients, win-win situation all around, yadda yadda yadda.

I smiled, thanked her for coming in, but told her this wasn’t a good fit for my practice.

I’m well aware that keeping a small practice afloat ain’t easy. Medicine is one of the few fields (unless you’re strictly doing cash pay) where we can’t raise prices to keep up with inflation. Well, we can, but what we get paid won’t change. That’s the nature of dealing with Medicare and insurance. What you charge and what you’ll get (and have to accept) are generally not the same.

But even so, I try to stick with what I know — being a neurologist. I’m not here to offer a range of financial services. I have neither the time, nor interest, to run a patient’s copay while trying to sell them on a medical credit card.

For that matter I’m not going to set up shop selling vitamin supplements, hangover-curing infusions, endorsing products on X, or any of the other dubious things touted as “thinking outside the box” ways to increase revenue.

I suppose some will say I’m old-fashioned, or this is why my practice operates on a thin margin, or that I’m focusing more on patients than business. I don’t mind. Caring for patients is why I’m here.

I also hear the argument that if I don’t market a medical credit card (or whatever), someone else will. That’s fine. Let them. I wish them good luck. It’s just not for me.

Like I’ve said in the past, I’m an old dog, but a happy one. I’ll leave the new tricks to someone else.
 

Dr. Block has a solo neurology practice in Scottsdale, Arizona.

Publications
Topics
Sections

She was young, neatly dressed, professional. I don’t remember her name, though she handed me a business card as soon as I stepped up to the front window.

I thought she was a new drug rep to my territory, and I usually try to say “hi” when they first come in. They’re just doing their job, and I don’t mind chatting for a few minutes.

Dr. Allan M. Block, a neurologist in Scottsdale, Arizona.
Dr. Allan M. Block

But she, as it turned out, was here for a whole new thing. Taking out a glossy brochure, she dived into a spiel about my offering a medical credit card through my office. I would get paid quickly, I might even get some extra money from patient interest payments, it is convenient for patients, win-win situation all around, yadda yadda yadda.

I smiled, thanked her for coming in, but told her this wasn’t a good fit for my practice.

I’m well aware that keeping a small practice afloat ain’t easy. Medicine is one of the few fields (unless you’re strictly doing cash pay) where we can’t raise prices to keep up with inflation. Well, we can, but what we get paid won’t change. That’s the nature of dealing with Medicare and insurance. What you charge and what you’ll get (and have to accept) are generally not the same.

But even so, I try to stick with what I know — being a neurologist. I’m not here to offer a range of financial services. I have neither the time, nor interest, to run a patient’s copay while trying to sell them on a medical credit card.

For that matter I’m not going to set up shop selling vitamin supplements, hangover-curing infusions, endorsing products on X, or any of the other dubious things touted as “thinking outside the box” ways to increase revenue.

I suppose some will say I’m old-fashioned, or this is why my practice operates on a thin margin, or that I’m focusing more on patients than business. I don’t mind. Caring for patients is why I’m here.

I also hear the argument that if I don’t market a medical credit card (or whatever), someone else will. That’s fine. Let them. I wish them good luck. It’s just not for me.

Like I’ve said in the past, I’m an old dog, but a happy one. I’ll leave the new tricks to someone else.
 

Dr. Block has a solo neurology practice in Scottsdale, Arizona.

She was young, neatly dressed, professional. I don’t remember her name, though she handed me a business card as soon as I stepped up to the front window.

I thought she was a new drug rep to my territory, and I usually try to say “hi” when they first come in. They’re just doing their job, and I don’t mind chatting for a few minutes.

Dr. Allan M. Block, a neurologist in Scottsdale, Arizona.
Dr. Allan M. Block

But she, as it turned out, was here for a whole new thing. Taking out a glossy brochure, she dived into a spiel about my offering a medical credit card through my office. I would get paid quickly, I might even get some extra money from patient interest payments, it is convenient for patients, win-win situation all around, yadda yadda yadda.

I smiled, thanked her for coming in, but told her this wasn’t a good fit for my practice.

I’m well aware that keeping a small practice afloat ain’t easy. Medicine is one of the few fields (unless you’re strictly doing cash pay) where we can’t raise prices to keep up with inflation. Well, we can, but what we get paid won’t change. That’s the nature of dealing with Medicare and insurance. What you charge and what you’ll get (and have to accept) are generally not the same.

But even so, I try to stick with what I know — being a neurologist. I’m not here to offer a range of financial services. I have neither the time, nor interest, to run a patient’s copay while trying to sell them on a medical credit card.

For that matter I’m not going to set up shop selling vitamin supplements, hangover-curing infusions, endorsing products on X, or any of the other dubious things touted as “thinking outside the box” ways to increase revenue.

I suppose some will say I’m old-fashioned, or this is why my practice operates on a thin margin, or that I’m focusing more on patients than business. I don’t mind. Caring for patients is why I’m here.

I also hear the argument that if I don’t market a medical credit card (or whatever), someone else will. That’s fine. Let them. I wish them good luck. It’s just not for me.

Like I’ve said in the past, I’m an old dog, but a happy one. I’ll leave the new tricks to someone else.
 

Dr. Block has a solo neurology practice in Scottsdale, Arizona.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Eptinezumab Inhibitor Fails Cluster Headache Test

Article Type
Changed
Mon, 07/01/2024 - 10:23

In the phase 3 ALLEVIATE study, eptinezumab (Vyepti, Lundbeck) failed to achieve a statistically significant improvement in the primary outcome of reducing the number of weekly attacks from week 1 to week 2 in patients with episodic cluster headache. However, the drug met secondary outcomes of reduction in weekly attacks, mean change in baseline pain, and Patient Global Impression of Change (PGIC) score.

Eptinezumab is the latest of multiple anti–calcitonin gene-related peptide (CGRP) therapies to fail in the clinic against episodic cluster headache, all using weekly attacks as a primary endpoint, though therapies also scored positive results for secondary endpoints, according to Stewart Tepper, MD, who presented the study results at the annual meeting of the American Headache Society

Dr. Stewart J. Tepper, professor of neurology and director of the headache clinic at Dartmouth University in Hanover, N.H.
Bruce Jancin/MDedge News
Dr. Stewart J. Tepper

Eptinezumab is already approved for migraine, and is fully bioavailable by the end of an infusion. “That was why we thought this might be a really interesting treatment for prevention of cluster headache,” said Dr. Tepper, who is VP of external research at the New England Institute for Neurology and Headache in Stamford, Connecticut.
 

Are We Looking at the Wrong Endpoint?

Secondary endpoints offered more encouragement. “For each week, the eptinezumab looked either numerically higher than the placebo or nominal statistical significance was achieved. By week 4, two-thirds of the patients had at least a 50% reduction in their number of weekly cluster attacks. Then the average pain intensity for the day and the patient global impression of change were all in favor of eptinezumab. That made us interested in whether we’re missing something, whether this is maybe not the correct endpoint to be looking at,” said Dr. Tepper.

He suggested that it may be time for the Food and Drug Administration (FDA) to reconsider the endpoints used in clinical trials for cluster headaches.

Study criteria included cluster periods that lasted at least 6 weeks, and at least 1 year since the diagnosis of episodic cluster headache. The study enrolled patients who were out of their cluster period, who underwent a second screening of 7-14 days after they entered a new cycle. After that, they were randomized to an injection of placebo or 400 mg eptinezumab, and followed for 4 weeks. After 4 weeks, all patients received an injection of 400 mg eptinezumab and placebo patients were crossed over to eptinezumab and followed out to 24 weeks.

The study population included 231 patients (78% male; mean age, 44 years), with a mean of 2.7 cluster headache attacks per day an average duration of 62 minutes per attack. The worst pain was reported as excruciating in 59% of participants.

The mean change in number of weekly attacks in weeks 1 and 2, compared with baseline, was not statistically significant (–4.6 with eptinezumab, –4.6 with placebo; P = .5048). More patients in the eptinezumab group had a 50% or greater reduction in attack frequency in weeks 3 (50.9% vs 37.3%; P < .05), week 3 (62.5% vs 43.8%; P < .01), and week 4 (66.7% vs 50.5%; P < .01). The difference in mean change in pain from baseline became statistically significant at week 3 and 4 (P < .01). There were also statistically significant differences in PGIC score at weeks 1, 2, and 4. The frequency of any treatment-emergent adverse event was similar in the eptinezumab and placebo groups (25.0% vs 26.5%), and only one led to treatment withdrawal in the eptinezumab group (0.9%).
 

 

 

Thoughts on Redesigning Cluster Headache Clinical Trials

During the Q&A session, Andrea Harriott, MD, PhD, a neurologist at Massachusetts General Hospital, Boston, and the session’s moderator, asked Dr. Tepper for his thoughts on how to design a good cluster headache trial. “I think we should go to the regulators and say we’re looking at the wrong outcome measure, and that we should use responder rate as the primary endpoint. That’s my guess. I think after four failed cluster studies for anti-CGRP therapies in terms of primary endpoint, all of which suggest some benefit, I think maybe we are looking at the wrong endpoint,” said Dr. Tepper.

Dr. Tepper was also asked about the potential for comparative efficacy trials testing anti-CGRP versus usual therapy, or usual therapy combined with antibodies against usual therapy. He noted that he had coauthored a recent commentary that responded to International Headache Society 2022 guidelines for randomized, placebo-controlled trials in cluster headache. “We actually did suggest comparative effectiveness [trials], both for recruitment and for compassion, but one of the problems is that verapamil is not even FDA approved for cluster headache in the US, and galcanezumab (Emgality, Eli Lilly) [is not approved] in the EU, so it becomes difficult from a regulatory standpoint to set that up, and you have to have buy in from regulatory authorities,” said Dr. Tepper.

Dr. Tepper has financial relationships with many pharmaceutical companies, including consulting for/advising Lundbeck, which funded the study. Dr. Harriott has served on the scientific advisory board of Theranica and has an authorship agreement with AbbVie.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

In the phase 3 ALLEVIATE study, eptinezumab (Vyepti, Lundbeck) failed to achieve a statistically significant improvement in the primary outcome of reducing the number of weekly attacks from week 1 to week 2 in patients with episodic cluster headache. However, the drug met secondary outcomes of reduction in weekly attacks, mean change in baseline pain, and Patient Global Impression of Change (PGIC) score.

Eptinezumab is the latest of multiple anti–calcitonin gene-related peptide (CGRP) therapies to fail in the clinic against episodic cluster headache, all using weekly attacks as a primary endpoint, though therapies also scored positive results for secondary endpoints, according to Stewart Tepper, MD, who presented the study results at the annual meeting of the American Headache Society

Dr. Stewart J. Tepper, professor of neurology and director of the headache clinic at Dartmouth University in Hanover, N.H.
Bruce Jancin/MDedge News
Dr. Stewart J. Tepper

Eptinezumab is already approved for migraine, and is fully bioavailable by the end of an infusion. “That was why we thought this might be a really interesting treatment for prevention of cluster headache,” said Dr. Tepper, who is VP of external research at the New England Institute for Neurology and Headache in Stamford, Connecticut.
 

Are We Looking at the Wrong Endpoint?

Secondary endpoints offered more encouragement. “For each week, the eptinezumab looked either numerically higher than the placebo or nominal statistical significance was achieved. By week 4, two-thirds of the patients had at least a 50% reduction in their number of weekly cluster attacks. Then the average pain intensity for the day and the patient global impression of change were all in favor of eptinezumab. That made us interested in whether we’re missing something, whether this is maybe not the correct endpoint to be looking at,” said Dr. Tepper.

He suggested that it may be time for the Food and Drug Administration (FDA) to reconsider the endpoints used in clinical trials for cluster headaches.

Study criteria included cluster periods that lasted at least 6 weeks, and at least 1 year since the diagnosis of episodic cluster headache. The study enrolled patients who were out of their cluster period, who underwent a second screening of 7-14 days after they entered a new cycle. After that, they were randomized to an injection of placebo or 400 mg eptinezumab, and followed for 4 weeks. After 4 weeks, all patients received an injection of 400 mg eptinezumab and placebo patients were crossed over to eptinezumab and followed out to 24 weeks.

The study population included 231 patients (78% male; mean age, 44 years), with a mean of 2.7 cluster headache attacks per day an average duration of 62 minutes per attack. The worst pain was reported as excruciating in 59% of participants.

The mean change in number of weekly attacks in weeks 1 and 2, compared with baseline, was not statistically significant (–4.6 with eptinezumab, –4.6 with placebo; P = .5048). More patients in the eptinezumab group had a 50% or greater reduction in attack frequency in weeks 3 (50.9% vs 37.3%; P < .05), week 3 (62.5% vs 43.8%; P < .01), and week 4 (66.7% vs 50.5%; P < .01). The difference in mean change in pain from baseline became statistically significant at week 3 and 4 (P < .01). There were also statistically significant differences in PGIC score at weeks 1, 2, and 4. The frequency of any treatment-emergent adverse event was similar in the eptinezumab and placebo groups (25.0% vs 26.5%), and only one led to treatment withdrawal in the eptinezumab group (0.9%).
 

 

 

Thoughts on Redesigning Cluster Headache Clinical Trials

During the Q&A session, Andrea Harriott, MD, PhD, a neurologist at Massachusetts General Hospital, Boston, and the session’s moderator, asked Dr. Tepper for his thoughts on how to design a good cluster headache trial. “I think we should go to the regulators and say we’re looking at the wrong outcome measure, and that we should use responder rate as the primary endpoint. That’s my guess. I think after four failed cluster studies for anti-CGRP therapies in terms of primary endpoint, all of which suggest some benefit, I think maybe we are looking at the wrong endpoint,” said Dr. Tepper.

Dr. Tepper was also asked about the potential for comparative efficacy trials testing anti-CGRP versus usual therapy, or usual therapy combined with antibodies against usual therapy. He noted that he had coauthored a recent commentary that responded to International Headache Society 2022 guidelines for randomized, placebo-controlled trials in cluster headache. “We actually did suggest comparative effectiveness [trials], both for recruitment and for compassion, but one of the problems is that verapamil is not even FDA approved for cluster headache in the US, and galcanezumab (Emgality, Eli Lilly) [is not approved] in the EU, so it becomes difficult from a regulatory standpoint to set that up, and you have to have buy in from regulatory authorities,” said Dr. Tepper.

Dr. Tepper has financial relationships with many pharmaceutical companies, including consulting for/advising Lundbeck, which funded the study. Dr. Harriott has served on the scientific advisory board of Theranica and has an authorship agreement with AbbVie.

In the phase 3 ALLEVIATE study, eptinezumab (Vyepti, Lundbeck) failed to achieve a statistically significant improvement in the primary outcome of reducing the number of weekly attacks from week 1 to week 2 in patients with episodic cluster headache. However, the drug met secondary outcomes of reduction in weekly attacks, mean change in baseline pain, and Patient Global Impression of Change (PGIC) score.

Eptinezumab is the latest of multiple anti–calcitonin gene-related peptide (CGRP) therapies to fail in the clinic against episodic cluster headache, all using weekly attacks as a primary endpoint, though therapies also scored positive results for secondary endpoints, according to Stewart Tepper, MD, who presented the study results at the annual meeting of the American Headache Society

Dr. Stewart J. Tepper, professor of neurology and director of the headache clinic at Dartmouth University in Hanover, N.H.
Bruce Jancin/MDedge News
Dr. Stewart J. Tepper

Eptinezumab is already approved for migraine, and is fully bioavailable by the end of an infusion. “That was why we thought this might be a really interesting treatment for prevention of cluster headache,” said Dr. Tepper, who is VP of external research at the New England Institute for Neurology and Headache in Stamford, Connecticut.
 

Are We Looking at the Wrong Endpoint?

Secondary endpoints offered more encouragement. “For each week, the eptinezumab looked either numerically higher than the placebo or nominal statistical significance was achieved. By week 4, two-thirds of the patients had at least a 50% reduction in their number of weekly cluster attacks. Then the average pain intensity for the day and the patient global impression of change were all in favor of eptinezumab. That made us interested in whether we’re missing something, whether this is maybe not the correct endpoint to be looking at,” said Dr. Tepper.

He suggested that it may be time for the Food and Drug Administration (FDA) to reconsider the endpoints used in clinical trials for cluster headaches.

Study criteria included cluster periods that lasted at least 6 weeks, and at least 1 year since the diagnosis of episodic cluster headache. The study enrolled patients who were out of their cluster period, who underwent a second screening of 7-14 days after they entered a new cycle. After that, they were randomized to an injection of placebo or 400 mg eptinezumab, and followed for 4 weeks. After 4 weeks, all patients received an injection of 400 mg eptinezumab and placebo patients were crossed over to eptinezumab and followed out to 24 weeks.

The study population included 231 patients (78% male; mean age, 44 years), with a mean of 2.7 cluster headache attacks per day an average duration of 62 minutes per attack. The worst pain was reported as excruciating in 59% of participants.

The mean change in number of weekly attacks in weeks 1 and 2, compared with baseline, was not statistically significant (–4.6 with eptinezumab, –4.6 with placebo; P = .5048). More patients in the eptinezumab group had a 50% or greater reduction in attack frequency in weeks 3 (50.9% vs 37.3%; P < .05), week 3 (62.5% vs 43.8%; P < .01), and week 4 (66.7% vs 50.5%; P < .01). The difference in mean change in pain from baseline became statistically significant at week 3 and 4 (P < .01). There were also statistically significant differences in PGIC score at weeks 1, 2, and 4. The frequency of any treatment-emergent adverse event was similar in the eptinezumab and placebo groups (25.0% vs 26.5%), and only one led to treatment withdrawal in the eptinezumab group (0.9%).
 

 

 

Thoughts on Redesigning Cluster Headache Clinical Trials

During the Q&A session, Andrea Harriott, MD, PhD, a neurologist at Massachusetts General Hospital, Boston, and the session’s moderator, asked Dr. Tepper for his thoughts on how to design a good cluster headache trial. “I think we should go to the regulators and say we’re looking at the wrong outcome measure, and that we should use responder rate as the primary endpoint. That’s my guess. I think after four failed cluster studies for anti-CGRP therapies in terms of primary endpoint, all of which suggest some benefit, I think maybe we are looking at the wrong endpoint,” said Dr. Tepper.

Dr. Tepper was also asked about the potential for comparative efficacy trials testing anti-CGRP versus usual therapy, or usual therapy combined with antibodies against usual therapy. He noted that he had coauthored a recent commentary that responded to International Headache Society 2022 guidelines for randomized, placebo-controlled trials in cluster headache. “We actually did suggest comparative effectiveness [trials], both for recruitment and for compassion, but one of the problems is that verapamil is not even FDA approved for cluster headache in the US, and galcanezumab (Emgality, Eli Lilly) [is not approved] in the EU, so it becomes difficult from a regulatory standpoint to set that up, and you have to have buy in from regulatory authorities,” said Dr. Tepper.

Dr. Tepper has financial relationships with many pharmaceutical companies, including consulting for/advising Lundbeck, which funded the study. Dr. Harriott has served on the scientific advisory board of Theranica and has an authorship agreement with AbbVie.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AHS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA Proposes that Interchangeability Status for Biosimilars Doesn’t Need Switching Studies

Article Type
Changed
Fri, 06/28/2024 - 14:34

The Food and Drug Administration (FDA) has issued new draft guidance that does not require additional switching studies for biosimilars seeking interchangeability. These studies were previously recommended to demonstrate that switching between the biosimilar and its reference product showed no greater risk than using the reference product alone.

“The recommendations in today’s draft guidance, when finalized, will provide clarity and transparency about the FDA’s thinking and align the review and approval process with existing and emerging science,” said Sarah Yim, MD, director of the FDA’s Office of Therapeutic Biologics and Biosimilars in a statement on June 20. “We have gained valuable experience reviewing both biosimilar and interchangeable biosimilar medications over the past 10 years. Both biosimilars and interchangeable biosimilars meet the same high standard of biosimilarity for FDA approval and both are as safe and effective as the reference product.”

An interchangeable status allows a biosimilar product to be swapped with the reference product without involvement from the prescribing provider, depending on state law.

While switching studies were not required under previous FDA guidance, the 2019 document did state that the agency “expects that applications generally will include data from a switching study or studies in one or more appropriate conditions of use.”

However, of the 13 biosimilars that received interchangeability status, 9 did not include switching study data.

“Experience has shown that, for the products approved as biosimilars to date, the risk in terms of safety or diminished efficacy is insignificant following single or multiple switches between a reference product and a biosimilar product,” the FDA stated. The agency’s investigators also conducted a systematic review of switching studies, which found no differences in risk for death, serious adverse events, and treatment discontinuations in participants switched between biosimilars and reference products and those that remained on reference products.

“Additionally, today’s analytical tools can accurately evaluate the structure and effects [of] biologic products, both in the lab (in vitro) and in living organisms (in vivo) with more precision and sensitivity than switching studies,” the agency noted.

The FDA is now calling for commentary on these draft recommendations to be submitted by Aug. 20, 2024.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The Food and Drug Administration (FDA) has issued new draft guidance that does not require additional switching studies for biosimilars seeking interchangeability. These studies were previously recommended to demonstrate that switching between the biosimilar and its reference product showed no greater risk than using the reference product alone.

“The recommendations in today’s draft guidance, when finalized, will provide clarity and transparency about the FDA’s thinking and align the review and approval process with existing and emerging science,” said Sarah Yim, MD, director of the FDA’s Office of Therapeutic Biologics and Biosimilars in a statement on June 20. “We have gained valuable experience reviewing both biosimilar and interchangeable biosimilar medications over the past 10 years. Both biosimilars and interchangeable biosimilars meet the same high standard of biosimilarity for FDA approval and both are as safe and effective as the reference product.”

An interchangeable status allows a biosimilar product to be swapped with the reference product without involvement from the prescribing provider, depending on state law.

While switching studies were not required under previous FDA guidance, the 2019 document did state that the agency “expects that applications generally will include data from a switching study or studies in one or more appropriate conditions of use.”

However, of the 13 biosimilars that received interchangeability status, 9 did not include switching study data.

“Experience has shown that, for the products approved as biosimilars to date, the risk in terms of safety or diminished efficacy is insignificant following single or multiple switches between a reference product and a biosimilar product,” the FDA stated. The agency’s investigators also conducted a systematic review of switching studies, which found no differences in risk for death, serious adverse events, and treatment discontinuations in participants switched between biosimilars and reference products and those that remained on reference products.

“Additionally, today’s analytical tools can accurately evaluate the structure and effects [of] biologic products, both in the lab (in vitro) and in living organisms (in vivo) with more precision and sensitivity than switching studies,” the agency noted.

The FDA is now calling for commentary on these draft recommendations to be submitted by Aug. 20, 2024.

A version of this article first appeared on Medscape.com.

The Food and Drug Administration (FDA) has issued new draft guidance that does not require additional switching studies for biosimilars seeking interchangeability. These studies were previously recommended to demonstrate that switching between the biosimilar and its reference product showed no greater risk than using the reference product alone.

“The recommendations in today’s draft guidance, when finalized, will provide clarity and transparency about the FDA’s thinking and align the review and approval process with existing and emerging science,” said Sarah Yim, MD, director of the FDA’s Office of Therapeutic Biologics and Biosimilars in a statement on June 20. “We have gained valuable experience reviewing both biosimilar and interchangeable biosimilar medications over the past 10 years. Both biosimilars and interchangeable biosimilars meet the same high standard of biosimilarity for FDA approval and both are as safe and effective as the reference product.”

An interchangeable status allows a biosimilar product to be swapped with the reference product without involvement from the prescribing provider, depending on state law.

While switching studies were not required under previous FDA guidance, the 2019 document did state that the agency “expects that applications generally will include data from a switching study or studies in one or more appropriate conditions of use.”

However, of the 13 biosimilars that received interchangeability status, 9 did not include switching study data.

“Experience has shown that, for the products approved as biosimilars to date, the risk in terms of safety or diminished efficacy is insignificant following single or multiple switches between a reference product and a biosimilar product,” the FDA stated. The agency’s investigators also conducted a systematic review of switching studies, which found no differences in risk for death, serious adverse events, and treatment discontinuations in participants switched between biosimilars and reference products and those that remained on reference products.

“Additionally, today’s analytical tools can accurately evaluate the structure and effects [of] biologic products, both in the lab (in vitro) and in living organisms (in vivo) with more precision and sensitivity than switching studies,” the agency noted.

The FDA is now calling for commentary on these draft recommendations to be submitted by Aug. 20, 2024.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Prostate Meds Tied to Reduced Risk for Lewy Body Dementia

Article Type
Changed
Fri, 06/28/2024 - 11:35

Certain medications that are used to treat benign prostatic hyperplasia (BPH) are associated with a reduced risk for dementia with Lewy bodies (DLB), the second most common neurodegenerative type of dementia after Alzheimer’s disease.

Investigators found older men taking alpha-1 blockers terazosin, doxazosin, or alfuzosin (Tz/Dz/Az) were 40% less likely to develop DLB than those taking tamsulosin and 37% less likely than men taking the 5-alpha reductase inhibitors (5ARI) finasteride and dutasteride.

“These results are exciting because right now there are no drugs to prevent or treat dementia with Lewy bodies,” study investigator Jacob E. Simmering, PhD, of the University of Iowa in Iowa City, said in a press release. “If we can determine that an existing drug can offer protection against this debilitating disease, that has the potential to greatly reduce its effects.”

The findings were published online in Neurology.
 

Increasing ATP Neuroprotective?

In recent years, investigators have speculated that improving metabolic activity in the brain may reduce the risk for Parkinson’s disease (PD). 

In previous studies, the use of Tz/Dz/Az resulted in the activation of phosphoglycerate kinase-1 (PKG1), which increases the availability of adenosine triphosphate (ATP).

There have been case reports of PD being linked to mutations affecting PGK1. Researchers speculate that increased ATP availability in neurons resulting from the activation of PKG1 allows cells to better adapt to aging and synuclein aggregation.

To investigate whether glycolysis-enhancing drugs might be neuroprotective in those with DLB, investigators conducted a retrospective cohort study using a commercial health insurance claims database and a Medicare supplemental health claims database to follow a sample of men aged > 40 years taking Tz, Dz, or Az (n = 126,313), tamsulosin (n = 437,035), or a 5ARI (n = 80,158) for BPH.

Tamsulosin and 5ARI medications do not activate PKG1, so investigators used them as comparators to Tz/Dz/Az. Participants were followed from the medication initiation date until the end of enrollment in the claims databases.

After following claimants for an average of 3 years, 195 participants developed DLB who were taking Tz, Dz, or Az, a rate of 5.21 cases per 10,000 people per year.

During the follow-up period, 1286 participants taking tamsulosin developed DLB, a rate of 10.8 per 10,000 people per year, and among those taking 5ARIs, 193 cases of DLB were reported, a rate of 7.8 per 10,000 people per year.

After matching the groups by age and other health conditions that may explain differences in rates of DLB, men taking Tz/Dz/Az had a 60% lower risk than those taking tamsulosin (P < .001) and a 37% lower risk for developing DLB than those taking the 5ARI medications (P = .012).

“This emerging evidence of a protective association across a spectrum of diseases suggests a broad neuroprotective effect for Tz/Dz/Az, consistent with our hypothesized mechanism that activation of PGK1 increases brain ATP and mitigates neurodegeneration,” the authors wrote.

Study limitations include excluding women from the study, so the findings cannot be generalized to women. Claims analyses were limited to administrative data that could have been incorrect, and the analyses did not include medication dosages.

No study funding or author disclosures were reported.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Certain medications that are used to treat benign prostatic hyperplasia (BPH) are associated with a reduced risk for dementia with Lewy bodies (DLB), the second most common neurodegenerative type of dementia after Alzheimer’s disease.

Investigators found older men taking alpha-1 blockers terazosin, doxazosin, or alfuzosin (Tz/Dz/Az) were 40% less likely to develop DLB than those taking tamsulosin and 37% less likely than men taking the 5-alpha reductase inhibitors (5ARI) finasteride and dutasteride.

“These results are exciting because right now there are no drugs to prevent or treat dementia with Lewy bodies,” study investigator Jacob E. Simmering, PhD, of the University of Iowa in Iowa City, said in a press release. “If we can determine that an existing drug can offer protection against this debilitating disease, that has the potential to greatly reduce its effects.”

The findings were published online in Neurology.
 

Increasing ATP Neuroprotective?

In recent years, investigators have speculated that improving metabolic activity in the brain may reduce the risk for Parkinson’s disease (PD). 

In previous studies, the use of Tz/Dz/Az resulted in the activation of phosphoglycerate kinase-1 (PKG1), which increases the availability of adenosine triphosphate (ATP).

There have been case reports of PD being linked to mutations affecting PGK1. Researchers speculate that increased ATP availability in neurons resulting from the activation of PKG1 allows cells to better adapt to aging and synuclein aggregation.

To investigate whether glycolysis-enhancing drugs might be neuroprotective in those with DLB, investigators conducted a retrospective cohort study using a commercial health insurance claims database and a Medicare supplemental health claims database to follow a sample of men aged > 40 years taking Tz, Dz, or Az (n = 126,313), tamsulosin (n = 437,035), or a 5ARI (n = 80,158) for BPH.

Tamsulosin and 5ARI medications do not activate PKG1, so investigators used them as comparators to Tz/Dz/Az. Participants were followed from the medication initiation date until the end of enrollment in the claims databases.

After following claimants for an average of 3 years, 195 participants developed DLB who were taking Tz, Dz, or Az, a rate of 5.21 cases per 10,000 people per year.

During the follow-up period, 1286 participants taking tamsulosin developed DLB, a rate of 10.8 per 10,000 people per year, and among those taking 5ARIs, 193 cases of DLB were reported, a rate of 7.8 per 10,000 people per year.

After matching the groups by age and other health conditions that may explain differences in rates of DLB, men taking Tz/Dz/Az had a 60% lower risk than those taking tamsulosin (P < .001) and a 37% lower risk for developing DLB than those taking the 5ARI medications (P = .012).

“This emerging evidence of a protective association across a spectrum of diseases suggests a broad neuroprotective effect for Tz/Dz/Az, consistent with our hypothesized mechanism that activation of PGK1 increases brain ATP and mitigates neurodegeneration,” the authors wrote.

Study limitations include excluding women from the study, so the findings cannot be generalized to women. Claims analyses were limited to administrative data that could have been incorrect, and the analyses did not include medication dosages.

No study funding or author disclosures were reported.

A version of this article first appeared on Medscape.com.

Certain medications that are used to treat benign prostatic hyperplasia (BPH) are associated with a reduced risk for dementia with Lewy bodies (DLB), the second most common neurodegenerative type of dementia after Alzheimer’s disease.

Investigators found older men taking alpha-1 blockers terazosin, doxazosin, or alfuzosin (Tz/Dz/Az) were 40% less likely to develop DLB than those taking tamsulosin and 37% less likely than men taking the 5-alpha reductase inhibitors (5ARI) finasteride and dutasteride.

“These results are exciting because right now there are no drugs to prevent or treat dementia with Lewy bodies,” study investigator Jacob E. Simmering, PhD, of the University of Iowa in Iowa City, said in a press release. “If we can determine that an existing drug can offer protection against this debilitating disease, that has the potential to greatly reduce its effects.”

The findings were published online in Neurology.
 

Increasing ATP Neuroprotective?

In recent years, investigators have speculated that improving metabolic activity in the brain may reduce the risk for Parkinson’s disease (PD). 

In previous studies, the use of Tz/Dz/Az resulted in the activation of phosphoglycerate kinase-1 (PKG1), which increases the availability of adenosine triphosphate (ATP).

There have been case reports of PD being linked to mutations affecting PGK1. Researchers speculate that increased ATP availability in neurons resulting from the activation of PKG1 allows cells to better adapt to aging and synuclein aggregation.

To investigate whether glycolysis-enhancing drugs might be neuroprotective in those with DLB, investigators conducted a retrospective cohort study using a commercial health insurance claims database and a Medicare supplemental health claims database to follow a sample of men aged > 40 years taking Tz, Dz, or Az (n = 126,313), tamsulosin (n = 437,035), or a 5ARI (n = 80,158) for BPH.

Tamsulosin and 5ARI medications do not activate PKG1, so investigators used them as comparators to Tz/Dz/Az. Participants were followed from the medication initiation date until the end of enrollment in the claims databases.

After following claimants for an average of 3 years, 195 participants developed DLB who were taking Tz, Dz, or Az, a rate of 5.21 cases per 10,000 people per year.

During the follow-up period, 1286 participants taking tamsulosin developed DLB, a rate of 10.8 per 10,000 people per year, and among those taking 5ARIs, 193 cases of DLB were reported, a rate of 7.8 per 10,000 people per year.

After matching the groups by age and other health conditions that may explain differences in rates of DLB, men taking Tz/Dz/Az had a 60% lower risk than those taking tamsulosin (P < .001) and a 37% lower risk for developing DLB than those taking the 5ARI medications (P = .012).

“This emerging evidence of a protective association across a spectrum of diseases suggests a broad neuroprotective effect for Tz/Dz/Az, consistent with our hypothesized mechanism that activation of PGK1 increases brain ATP and mitigates neurodegeneration,” the authors wrote.

Study limitations include excluding women from the study, so the findings cannot be generalized to women. Claims analyses were limited to administrative data that could have been incorrect, and the analyses did not include medication dosages.

No study funding or author disclosures were reported.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Insight Into CVD, Stroke Risk in Migraine

Article Type
Changed
Thu, 06/27/2024 - 16:12

– Researchers are unraveling the complex relationship between cardiovascular (CV)- and stroke-related outcomes in migraine with, and without, aura.

Early results of one study suggest that aura increases the risk for major adverse cerebrovascular and CV events (MACE) in those with migraine, and that this risk is particularly high in men.

“We confirmed that aura increases the risk for these cerebrovascular and cardiovascular outcomes in people with migraine and that there’s an increased risk of these MACE events in men with migraine,” said study investigator Gina Dumkrieger, PhD, principal data science analyst and assistant professor of neurology, Mayo Clinic, Phoenix, Arizona.

The findings were presented at the annual meeting of the American Headache Society.
 

Few Data on Migraine and Stroke Risk

The extent to which migraine increases the risk for stroke CV outcomes has not been extensively studied.

“We’re trying to find out whether migraine-related factors make it more likely that you’re going to have one of these events,” said Dr. Dumkrieger. “Knowing a particular factor increases the risk is something patients and medical providers would want to know.”

Using Mayo Clinic electronic health records, which cover all three sites (Florida, Minnesota, and Arizona), researchers identified individuals with migraine using diagnostic codes. They also looked at data on sex, race, and the presence of aura.

They investigated whether a history of MACE risk factors — including atrial fibrillation, diabetes, hyperlipidemia, hypertension, and tobacco use — affected risk and the potential interaction of aura with these risk factors.

MACE events included cerebral infarction, intracerebral hemorrhage, and acute myocardial infarction.

The analysis included 130,126 participants (80% women, 95% White individuals). Of these, 6% experienced a MACE event, and 94% did not.

“We confirmed that aura does increase the risk for a MACE event, and all of the known risk factors that we included were also significant,” said Dr. Dumkrieger.

Odds ratios (ORs) were 3.82 for atrial fibrillation, 3.11 for hypertension, and 3.06 for hyperlipidemia.

It was surprising, said Dr. Dumkrieger, that male sex was tied to an increased risk for a MACE event (OR, 1.40). “This is not something that was known before,” she said.

The link between migraine and ischemic stroke, particularly with aura, was stronger in women — particularly young women.

Investigators also found an interaction between male sex and aura, when it comes to MACE outcomes, said Dr. Dumkrieger. “Males in general are at higher risk, and people with aura are at higher risk. Males with aura are also at higher risk, but maybe not as much as you would think they would be. It’s not a purely additive thing. This is something we need to look into more,” she said. 

The study also revealed an interaction between aura and hypertension as well as aura and tobacco use, but here too, it was not an additive risk, said Dr. Dumkrieger. However, she added, the presence of aura does not moderate the risk for hyperlipidemia, diabetes, or atrial fibrillation.

The research also showed a significant interaction between male sex and Black race which was additive. “There’s apparently increased risk if you are male and Black or African American that’s greater than what you would expect. We should be especially concerned about these individuals,” she said.
 

 

 

Unanswered Questions

The current analysis is part of a larger study that will more closely examine these relationships. “We want to learn, for example, why aura moderates some of the risk factors but not others,” said Dr. Dumkrieger.

The researchers also plan to investigate other migraine features, including headache frequency, and headache sensations such as pulsating or throbbing.

Dr. Dumkrieger was an investigator of another study, also presented at the AHS meeting, that’s investigating the role of migraine-specific features and imaging results in the complex interrelationship between migraine and MACE risk.

That study, which also used the Mayo Clinic electronic health record data, included 60,454 migraine patients diagnosed with migraine after 2010.

Researchers divided participants into those with a MACE outcome (1107) and those without such an outcome (59,347) after at least 2 years of follow-up. They created a propensity cohort of individuals matched for age and risk factors for MACE outcome.

The final cohort consisted of 575 patients with and 652 patients without MACE outcome.

One of the most interesting early results from this study was that those with a MACE outcome had significantly more white matter hyperintensities than those with no MACE outcome, at 64% versus 51%, respectively. 

This and other findings need to be validated in a different cohort with an electronic health records database from another institution. In future, the team plans to focus on identifying specific migraine features and medications and their relative contributions to MACE risk in migraine patients.

Yet another study featured at the AHS meeting confirmed the increased risk for stroke among migraine patients using a large database with over 410,000 subjects.

Results showed stroke was more than three times more common in those with a migraine diagnosis than in those without (risk ratio, [RR] 3.23; P < .001). The RR for hemorrhagic stroke (3.15) was comparable with that of ischemic stroke (3.20).

The overall stroke RR for chronic migraine versus controls without migraine was 3.68 (P < .001). The RR for migraine with aura versus migraine without aura was 1.37 (P < .001).
 

Useful Data

Commenting on the research, Juliana VanderPluym, MD, a headache specialist at the Mayo Clinic, Phoenix, Arizona, described this new information as “very useful.”

The fact that there are more white matter lesions on MRI scans in migraine patients with MACE needs further exploration, said Dr. VanderPluym.

“Understanding how much of that relates to migraine, how much relates to other comorbid conditions, and what this all means together, is very important, particularly because MACE can be life-threatening and life-altering,” she added.

Learning how migraine medications may impact MACE risk is also something that needs to be examined in greater depth, she said. “I would think that migraines that are controlled might have a different risk for MACE than uncontrolled migraine,” she said.

The investigators reported no relevant financial conflicts of interest.

A version of this article first appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

– Researchers are unraveling the complex relationship between cardiovascular (CV)- and stroke-related outcomes in migraine with, and without, aura.

Early results of one study suggest that aura increases the risk for major adverse cerebrovascular and CV events (MACE) in those with migraine, and that this risk is particularly high in men.

“We confirmed that aura increases the risk for these cerebrovascular and cardiovascular outcomes in people with migraine and that there’s an increased risk of these MACE events in men with migraine,” said study investigator Gina Dumkrieger, PhD, principal data science analyst and assistant professor of neurology, Mayo Clinic, Phoenix, Arizona.

The findings were presented at the annual meeting of the American Headache Society.
 

Few Data on Migraine and Stroke Risk

The extent to which migraine increases the risk for stroke CV outcomes has not been extensively studied.

“We’re trying to find out whether migraine-related factors make it more likely that you’re going to have one of these events,” said Dr. Dumkrieger. “Knowing a particular factor increases the risk is something patients and medical providers would want to know.”

Using Mayo Clinic electronic health records, which cover all three sites (Florida, Minnesota, and Arizona), researchers identified individuals with migraine using diagnostic codes. They also looked at data on sex, race, and the presence of aura.

They investigated whether a history of MACE risk factors — including atrial fibrillation, diabetes, hyperlipidemia, hypertension, and tobacco use — affected risk and the potential interaction of aura with these risk factors.

MACE events included cerebral infarction, intracerebral hemorrhage, and acute myocardial infarction.

The analysis included 130,126 participants (80% women, 95% White individuals). Of these, 6% experienced a MACE event, and 94% did not.

“We confirmed that aura does increase the risk for a MACE event, and all of the known risk factors that we included were also significant,” said Dr. Dumkrieger.

Odds ratios (ORs) were 3.82 for atrial fibrillation, 3.11 for hypertension, and 3.06 for hyperlipidemia.

It was surprising, said Dr. Dumkrieger, that male sex was tied to an increased risk for a MACE event (OR, 1.40). “This is not something that was known before,” she said.

The link between migraine and ischemic stroke, particularly with aura, was stronger in women — particularly young women.

Investigators also found an interaction between male sex and aura, when it comes to MACE outcomes, said Dr. Dumkrieger. “Males in general are at higher risk, and people with aura are at higher risk. Males with aura are also at higher risk, but maybe not as much as you would think they would be. It’s not a purely additive thing. This is something we need to look into more,” she said. 

The study also revealed an interaction between aura and hypertension as well as aura and tobacco use, but here too, it was not an additive risk, said Dr. Dumkrieger. However, she added, the presence of aura does not moderate the risk for hyperlipidemia, diabetes, or atrial fibrillation.

The research also showed a significant interaction between male sex and Black race which was additive. “There’s apparently increased risk if you are male and Black or African American that’s greater than what you would expect. We should be especially concerned about these individuals,” she said.
 

 

 

Unanswered Questions

The current analysis is part of a larger study that will more closely examine these relationships. “We want to learn, for example, why aura moderates some of the risk factors but not others,” said Dr. Dumkrieger.

The researchers also plan to investigate other migraine features, including headache frequency, and headache sensations such as pulsating or throbbing.

Dr. Dumkrieger was an investigator of another study, also presented at the AHS meeting, that’s investigating the role of migraine-specific features and imaging results in the complex interrelationship between migraine and MACE risk.

That study, which also used the Mayo Clinic electronic health record data, included 60,454 migraine patients diagnosed with migraine after 2010.

Researchers divided participants into those with a MACE outcome (1107) and those without such an outcome (59,347) after at least 2 years of follow-up. They created a propensity cohort of individuals matched for age and risk factors for MACE outcome.

The final cohort consisted of 575 patients with and 652 patients without MACE outcome.

One of the most interesting early results from this study was that those with a MACE outcome had significantly more white matter hyperintensities than those with no MACE outcome, at 64% versus 51%, respectively. 

This and other findings need to be validated in a different cohort with an electronic health records database from another institution. In future, the team plans to focus on identifying specific migraine features and medications and their relative contributions to MACE risk in migraine patients.

Yet another study featured at the AHS meeting confirmed the increased risk for stroke among migraine patients using a large database with over 410,000 subjects.

Results showed stroke was more than three times more common in those with a migraine diagnosis than in those without (risk ratio, [RR] 3.23; P < .001). The RR for hemorrhagic stroke (3.15) was comparable with that of ischemic stroke (3.20).

The overall stroke RR for chronic migraine versus controls without migraine was 3.68 (P < .001). The RR for migraine with aura versus migraine without aura was 1.37 (P < .001).
 

Useful Data

Commenting on the research, Juliana VanderPluym, MD, a headache specialist at the Mayo Clinic, Phoenix, Arizona, described this new information as “very useful.”

The fact that there are more white matter lesions on MRI scans in migraine patients with MACE needs further exploration, said Dr. VanderPluym.

“Understanding how much of that relates to migraine, how much relates to other comorbid conditions, and what this all means together, is very important, particularly because MACE can be life-threatening and life-altering,” she added.

Learning how migraine medications may impact MACE risk is also something that needs to be examined in greater depth, she said. “I would think that migraines that are controlled might have a different risk for MACE than uncontrolled migraine,” she said.

The investigators reported no relevant financial conflicts of interest.

A version of this article first appeared on Medscape.com.

– Researchers are unraveling the complex relationship between cardiovascular (CV)- and stroke-related outcomes in migraine with, and without, aura.

Early results of one study suggest that aura increases the risk for major adverse cerebrovascular and CV events (MACE) in those with migraine, and that this risk is particularly high in men.

“We confirmed that aura increases the risk for these cerebrovascular and cardiovascular outcomes in people with migraine and that there’s an increased risk of these MACE events in men with migraine,” said study investigator Gina Dumkrieger, PhD, principal data science analyst and assistant professor of neurology, Mayo Clinic, Phoenix, Arizona.

The findings were presented at the annual meeting of the American Headache Society.
 

Few Data on Migraine and Stroke Risk

The extent to which migraine increases the risk for stroke CV outcomes has not been extensively studied.

“We’re trying to find out whether migraine-related factors make it more likely that you’re going to have one of these events,” said Dr. Dumkrieger. “Knowing a particular factor increases the risk is something patients and medical providers would want to know.”

Using Mayo Clinic electronic health records, which cover all three sites (Florida, Minnesota, and Arizona), researchers identified individuals with migraine using diagnostic codes. They also looked at data on sex, race, and the presence of aura.

They investigated whether a history of MACE risk factors — including atrial fibrillation, diabetes, hyperlipidemia, hypertension, and tobacco use — affected risk and the potential interaction of aura with these risk factors.

MACE events included cerebral infarction, intracerebral hemorrhage, and acute myocardial infarction.

The analysis included 130,126 participants (80% women, 95% White individuals). Of these, 6% experienced a MACE event, and 94% did not.

“We confirmed that aura does increase the risk for a MACE event, and all of the known risk factors that we included were also significant,” said Dr. Dumkrieger.

Odds ratios (ORs) were 3.82 for atrial fibrillation, 3.11 for hypertension, and 3.06 for hyperlipidemia.

It was surprising, said Dr. Dumkrieger, that male sex was tied to an increased risk for a MACE event (OR, 1.40). “This is not something that was known before,” she said.

The link between migraine and ischemic stroke, particularly with aura, was stronger in women — particularly young women.

Investigators also found an interaction between male sex and aura, when it comes to MACE outcomes, said Dr. Dumkrieger. “Males in general are at higher risk, and people with aura are at higher risk. Males with aura are also at higher risk, but maybe not as much as you would think they would be. It’s not a purely additive thing. This is something we need to look into more,” she said. 

The study also revealed an interaction between aura and hypertension as well as aura and tobacco use, but here too, it was not an additive risk, said Dr. Dumkrieger. However, she added, the presence of aura does not moderate the risk for hyperlipidemia, diabetes, or atrial fibrillation.

The research also showed a significant interaction between male sex and Black race which was additive. “There’s apparently increased risk if you are male and Black or African American that’s greater than what you would expect. We should be especially concerned about these individuals,” she said.
 

 

 

Unanswered Questions

The current analysis is part of a larger study that will more closely examine these relationships. “We want to learn, for example, why aura moderates some of the risk factors but not others,” said Dr. Dumkrieger.

The researchers also plan to investigate other migraine features, including headache frequency, and headache sensations such as pulsating or throbbing.

Dr. Dumkrieger was an investigator of another study, also presented at the AHS meeting, that’s investigating the role of migraine-specific features and imaging results in the complex interrelationship between migraine and MACE risk.

That study, which also used the Mayo Clinic electronic health record data, included 60,454 migraine patients diagnosed with migraine after 2010.

Researchers divided participants into those with a MACE outcome (1107) and those without such an outcome (59,347) after at least 2 years of follow-up. They created a propensity cohort of individuals matched for age and risk factors for MACE outcome.

The final cohort consisted of 575 patients with and 652 patients without MACE outcome.

One of the most interesting early results from this study was that those with a MACE outcome had significantly more white matter hyperintensities than those with no MACE outcome, at 64% versus 51%, respectively. 

This and other findings need to be validated in a different cohort with an electronic health records database from another institution. In future, the team plans to focus on identifying specific migraine features and medications and their relative contributions to MACE risk in migraine patients.

Yet another study featured at the AHS meeting confirmed the increased risk for stroke among migraine patients using a large database with over 410,000 subjects.

Results showed stroke was more than three times more common in those with a migraine diagnosis than in those without (risk ratio, [RR] 3.23; P < .001). The RR for hemorrhagic stroke (3.15) was comparable with that of ischemic stroke (3.20).

The overall stroke RR for chronic migraine versus controls without migraine was 3.68 (P < .001). The RR for migraine with aura versus migraine without aura was 1.37 (P < .001).
 

Useful Data

Commenting on the research, Juliana VanderPluym, MD, a headache specialist at the Mayo Clinic, Phoenix, Arizona, described this new information as “very useful.”

The fact that there are more white matter lesions on MRI scans in migraine patients with MACE needs further exploration, said Dr. VanderPluym.

“Understanding how much of that relates to migraine, how much relates to other comorbid conditions, and what this all means together, is very important, particularly because MACE can be life-threatening and life-altering,” she added.

Learning how migraine medications may impact MACE risk is also something that needs to be examined in greater depth, she said. “I would think that migraines that are controlled might have a different risk for MACE than uncontrolled migraine,” she said.

The investigators reported no relevant financial conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AHS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How to Make Life Decisions

Article Type
Changed
Wed, 06/26/2024 - 13:34

Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.”

In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, is there a best way to go about making big life decisions?

The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem.

Jeffrey Benabio, MD, MBA
Jeffrey Benabio, MD, MBA
Dr. Jeffrey Benabio

The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly.

Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “Tales of the City” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady).



This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “Middlemarch is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible.

My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.

Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.

Publications
Topics
Sections

Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.”

In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, is there a best way to go about making big life decisions?

The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem.

Jeffrey Benabio, MD, MBA
Jeffrey Benabio, MD, MBA
Dr. Jeffrey Benabio

The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly.

Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “Tales of the City” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady).



This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “Middlemarch is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible.

My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.

Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.

Halifax, Nova Scotia; American Samoa; Queens, New York; Lansing, Michigan; Gurugram, India. I often ask patients where they’re from. Practicing in San Diego, the answers are a geography lesson. People from around the world come here. I sometimes add the more interesting question: How’d you end up here? Many took the three highways to San Diego: the Navy, the defense industry (like General Dynamics), or followed a partner. My Queens patient had a better answer: Super Bowl XXII. On Sunday, Jan. 31st, 1988, the Redskins played the Broncos in San Diego. John Elway and the Broncos lost, but it didn’t matter. “I was scrapin’ the ice off my windshield that Monday morning when I thought, that’s it. I’m done! I drove to the garage where I worked and quit on the spot. Then I drove home and packed my bags.”

In a paper on how to make life decisions, this guy would be Exhibit A: “Don’t overthink it.” That approach might not be suitable for everyone, or for every decision. It might actually be an example of how not to make life decisions (more on that later). But, is there a best way to go about making big life decisions?

The first treatise on this subject was a paper by one Franklin, Ben in 1772. Providing advice to a friend on how to make a career decision, Franklin argued: “My way is to divide half a sheet of paper by a line into two columns; writing over the one Pro and over the other Con.” This “moral algebra” as he called it was a framework to put rigor to a messy, organic problem.

Jeffrey Benabio, MD, MBA
Jeffrey Benabio, MD, MBA
Dr. Jeffrey Benabio

The flaw in this method is that in the end you have two lists. Then what? Do the length of the lists decide? What if some factors are more important? Well, let’s add tools to help. You could use a spreadsheet and assign weights to each variable. Then sum the values and choose based on that. So if “not scraping ice off your windshield” is twice as important as “doubling your rent,” then you’ve got your answer. But what if you aren’t good at estimating how important things are? Actually, most of us are pretty awful at assigning weights to life variables – having bags of money is the consummate example. Seems important, but because of habituation, it turns out to not be sustainable. Note Exhibit B, our wealthy neighbor who owns a Lambo and G-Wagen (AMG squared, of course), who just parked a Cybertruck in his driveway. Realizing the risk of depending on peoples’ flawed judgment, companies instead use statistical modeling called bootstrap aggregating to “vote” on the weights for variables in a prediction. If you aren’t sure how important a new Rivian or walking to the beach would be, a model can answer that for you! It’s a bit disconcerting, I know. I mean, how can a model know what we’d like? Wait, isn’t that how Netflix picks stuff for you? Exactly.

Ok, so why don’t we just ask our friendly personal AI? “OK, ChatGPT, given what you know about me, where can I have it all?” Alas, here we slam into a glass wall. It seems the answer is out there but even our life-changing magical AI tools fail us. Mathematically, it is impossible to have it all. An illustrative example of this is called the economic “impossible trinity problem.” Even the most sophisticated algorithm cannot find an optional solution to some trinities such as fixed foreign exchange rate, free capital movement, and an independent monetary policy. Economists have concluded you must trade off one to have the other two. Impossible trinities are common in economics and in life. Armistead Maupin in his “Tales of the City” codifies it as Mona’s Law, the essence of which is: You cannot have the perfect job, the perfect partner, and the perfect house at the same time. (See Exhibit C, one Tom Brady).



This brings me to my final point, hard decisions are matters of the heart and experiencing life is the best way to understand its beautiful chaos. If making rash judgments is ill-advised and using technology cannot solve all problems (try asking your AI buddy for the square root of 2 as a fraction) what tools can we use? Maybe try reading more novels. They allow us to experience multiple lifetimes in a short time, which is what we need to learn what matters. Reading Dorothea’s choice at the end of “Middlemarch is a nice example. Should she give up Lowick Manor and marry the penniless Ladislaw or keep it and use her wealth to help others? Seeing her struggle helps us understand how to answer questions like: Should I give up my academic practice or marry that guy or move to Texas? These cannot be reduced to arithmetic. The only way to know is to know as much of life as possible.

My last visit with my Queens patient was our last together. He’s divorced and moving from San Diego to Gallatin, Tennessee. “I’ve paid my last taxes to California, Doc. I decided that’s it, I’m done!” Perhaps he should have read “The Grapes of Wrath” before he set out for California in the first place.

Dr. Benabio is director of Healthcare Transformation and chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on Twitter. Write to him at dermnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Neurofilament Light Chain Detects Early Chemotherapy-Related Neurotoxicity

Article Type
Changed
Wed, 06/26/2024 - 13:09

MONTREAL – Levels of neurofilament light chain (Nfl) may be a biomarker of chemotherapy-induced peripheral neurotoxicity (CIPN), new research suggests.

Investigators found Nfl levels increased in cancer patients following a first infusion of the medication paclitaxel and corresponded to neuropathy severity 6-12 months post-treatment, suggesting the blood protein may provide an early CIPN biomarker.

“Nfl after a single cycle could detect axonal degeneration,” said lead investigator Masarra Joda, a researcher and PhD candidate at the University of Sydney in Australia. She added that “quantification of Nfl may provide a clinically useful marker of emerging neurotoxicity in patients vulnerable to CIPN.”

The findings were presented at the Peripheral Nerve Society (PNS) 2024 annual meeting.
 

Common, Burdensome Side Effect

A common side effect of chemotherapy, CIPN manifests as sensory neuropathy and causes degeneration of the peripheral axons. A protein biomarker of axonal degeneration, Nfl has previously been investigated as a way of identifying patients at risk of CIPN.

The goal of the current study was to identify the potential link between Nfl with neurophysiological markers of axon degeneration in patients receiving the neurotoxin chemotherapy paclitaxel.

The study included 93 cancer patients. All were assessed at the beginning, middle, and end of treatment. CIPN was assessed using blood samples of Nfl and the Total Neuropathy Score (TNS), the Common Terminology Criteria for Adverse Events (CTCAE) neuropathy scale, and patient-reported measures using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire–Chemotherapy-Induced Peripheral Neuropathy Module (EORTC-CIPN20).

Axonal degeneration was measured with neurophysiological tests including sural nerve compound sensory action potential (CSAP) for the lower limbs, and sensory median nerve CSAP, as well as stimulus threshold testing, for the upper limbs. 

Almost all of study participants (97%) were female. The majority (66%) had breast cancer and 30% had gynecological cancer. Most (73%) were receiving a weekly regimen of paclitaxel, and the remainder were treated with taxanes plus platinum once every 3 weeks. By the end of treatment, 82% of the patients had developed CIPN, which was mild in 44% and moderate/severe in 38%. 

Nfl levels increased significantly from baseline to after the first dose of chemotherapy (P < .001), “highlighting that nerve damage occurs from the very beginning of treatment,” senior investigator Susanna Park, PhD, told this news organization. 

In addition, “patients with higher Nfl levels after a single paclitaxel treatment had greater neuropathy at the end of treatment (higher EORTC scores [P ≤ .026], and higher TNS scores [P ≤ .00]),” added Dr. Park, who is associate professor at the University of Sydney.

“Importantly, we also looked at long-term outcomes beyond the end of chemotherapy, because chronic neuropathy produces a significant burden in cancer survivors,” said Dr. Park. 

“Among a total of 44 patients who completed the 6- to 12-month post-treatment follow-up, NfL levels after a single treatment were linked to severity of nerve damage quantified with neurophysiological tests, and greater Nfl levels at mid-treatment were correlated with worse patient and neurologically graded neuropathy at 6-12 months.”

Dr. Park said the results suggest that NfL may provide a biomarker of long-term axon damage and that Nfl assays “may enable clinicians to evaluate the risk of long-term toxicity early during paclitaxel treatment to hopefully provide clinically significant information to guide better treatment titration.” 

Currently, she said, CIPN is a prominent cause of dose reduction and early chemotherapy cessation. 

“For example, in early breast cancer around 25% of patients experience a dose reduction due to the severity of neuropathy symptoms.” But, she said, “there is no standardized way of identifying which patients are at risk of long-term neuropathy and therefore, may benefit more from dose reduction. In this setting, a biomarker such as Nfl could provide oncologists with more information about the risk of long-term toxicity and take that into account in dose decision-making.” 

For some cancers, she added, there are multiple potential therapy options.

“A biomarker such as NfL could assist in determining risk-benefit profile in terms of switching to alternate therapies. However, further studies will be needed to fully define the utility of NfL as a biomarker of paclitaxel neuropathy.” 
 

 

 

Promising Research

Commenting on the research for this news organization, Maryam Lustberg, MD, associate professor, director of the Center for Breast Cancer at Smilow Cancer Hospital and Yale Cancer Center, and chief of Breast Medical Oncology at Yale Cancer Center, in New Haven, Connecticut, said the study “builds on a body of work previously reported by others showing that neurofilament light chains as detected in the blood can be associated with early signs of neurotoxic injury.” 

She added that the research “is promising, since existing clinical and patient-reported measures tend to under-detect chemotherapy-induced neuropathy until more permanent injury might have occurred.” 

Dr. Lustberg, who is immediate past president of the Multinational Association of Supportive Care in Cancer, said future studies are needed before Nfl testing can be implemented in routine practice, but that “early detection will allow earlier initiation of supportive care strategies such as physical therapy and exercise, as well as dose modifications, which may be helpful for preventing permanent damage and improving quality of life.” 

The investigators and Dr. Lustberg report no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

MONTREAL – Levels of neurofilament light chain (Nfl) may be a biomarker of chemotherapy-induced peripheral neurotoxicity (CIPN), new research suggests.

Investigators found Nfl levels increased in cancer patients following a first infusion of the medication paclitaxel and corresponded to neuropathy severity 6-12 months post-treatment, suggesting the blood protein may provide an early CIPN biomarker.

“Nfl after a single cycle could detect axonal degeneration,” said lead investigator Masarra Joda, a researcher and PhD candidate at the University of Sydney in Australia. She added that “quantification of Nfl may provide a clinically useful marker of emerging neurotoxicity in patients vulnerable to CIPN.”

The findings were presented at the Peripheral Nerve Society (PNS) 2024 annual meeting.
 

Common, Burdensome Side Effect

A common side effect of chemotherapy, CIPN manifests as sensory neuropathy and causes degeneration of the peripheral axons. A protein biomarker of axonal degeneration, Nfl has previously been investigated as a way of identifying patients at risk of CIPN.

The goal of the current study was to identify the potential link between Nfl with neurophysiological markers of axon degeneration in patients receiving the neurotoxin chemotherapy paclitaxel.

The study included 93 cancer patients. All were assessed at the beginning, middle, and end of treatment. CIPN was assessed using blood samples of Nfl and the Total Neuropathy Score (TNS), the Common Terminology Criteria for Adverse Events (CTCAE) neuropathy scale, and patient-reported measures using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire–Chemotherapy-Induced Peripheral Neuropathy Module (EORTC-CIPN20).

Axonal degeneration was measured with neurophysiological tests including sural nerve compound sensory action potential (CSAP) for the lower limbs, and sensory median nerve CSAP, as well as stimulus threshold testing, for the upper limbs. 

Almost all of study participants (97%) were female. The majority (66%) had breast cancer and 30% had gynecological cancer. Most (73%) were receiving a weekly regimen of paclitaxel, and the remainder were treated with taxanes plus platinum once every 3 weeks. By the end of treatment, 82% of the patients had developed CIPN, which was mild in 44% and moderate/severe in 38%. 

Nfl levels increased significantly from baseline to after the first dose of chemotherapy (P < .001), “highlighting that nerve damage occurs from the very beginning of treatment,” senior investigator Susanna Park, PhD, told this news organization. 

In addition, “patients with higher Nfl levels after a single paclitaxel treatment had greater neuropathy at the end of treatment (higher EORTC scores [P ≤ .026], and higher TNS scores [P ≤ .00]),” added Dr. Park, who is associate professor at the University of Sydney.

“Importantly, we also looked at long-term outcomes beyond the end of chemotherapy, because chronic neuropathy produces a significant burden in cancer survivors,” said Dr. Park. 

“Among a total of 44 patients who completed the 6- to 12-month post-treatment follow-up, NfL levels after a single treatment were linked to severity of nerve damage quantified with neurophysiological tests, and greater Nfl levels at mid-treatment were correlated with worse patient and neurologically graded neuropathy at 6-12 months.”

Dr. Park said the results suggest that NfL may provide a biomarker of long-term axon damage and that Nfl assays “may enable clinicians to evaluate the risk of long-term toxicity early during paclitaxel treatment to hopefully provide clinically significant information to guide better treatment titration.” 

Currently, she said, CIPN is a prominent cause of dose reduction and early chemotherapy cessation. 

“For example, in early breast cancer around 25% of patients experience a dose reduction due to the severity of neuropathy symptoms.” But, she said, “there is no standardized way of identifying which patients are at risk of long-term neuropathy and therefore, may benefit more from dose reduction. In this setting, a biomarker such as Nfl could provide oncologists with more information about the risk of long-term toxicity and take that into account in dose decision-making.” 

For some cancers, she added, there are multiple potential therapy options.

“A biomarker such as NfL could assist in determining risk-benefit profile in terms of switching to alternate therapies. However, further studies will be needed to fully define the utility of NfL as a biomarker of paclitaxel neuropathy.” 
 

 

 

Promising Research

Commenting on the research for this news organization, Maryam Lustberg, MD, associate professor, director of the Center for Breast Cancer at Smilow Cancer Hospital and Yale Cancer Center, and chief of Breast Medical Oncology at Yale Cancer Center, in New Haven, Connecticut, said the study “builds on a body of work previously reported by others showing that neurofilament light chains as detected in the blood can be associated with early signs of neurotoxic injury.” 

She added that the research “is promising, since existing clinical and patient-reported measures tend to under-detect chemotherapy-induced neuropathy until more permanent injury might have occurred.” 

Dr. Lustberg, who is immediate past president of the Multinational Association of Supportive Care in Cancer, said future studies are needed before Nfl testing can be implemented in routine practice, but that “early detection will allow earlier initiation of supportive care strategies such as physical therapy and exercise, as well as dose modifications, which may be helpful for preventing permanent damage and improving quality of life.” 

The investigators and Dr. Lustberg report no relevant financial relationships.

A version of this article appeared on Medscape.com.

MONTREAL – Levels of neurofilament light chain (Nfl) may be a biomarker of chemotherapy-induced peripheral neurotoxicity (CIPN), new research suggests.

Investigators found Nfl levels increased in cancer patients following a first infusion of the medication paclitaxel and corresponded to neuropathy severity 6-12 months post-treatment, suggesting the blood protein may provide an early CIPN biomarker.

“Nfl after a single cycle could detect axonal degeneration,” said lead investigator Masarra Joda, a researcher and PhD candidate at the University of Sydney in Australia. She added that “quantification of Nfl may provide a clinically useful marker of emerging neurotoxicity in patients vulnerable to CIPN.”

The findings were presented at the Peripheral Nerve Society (PNS) 2024 annual meeting.
 

Common, Burdensome Side Effect

A common side effect of chemotherapy, CIPN manifests as sensory neuropathy and causes degeneration of the peripheral axons. A protein biomarker of axonal degeneration, Nfl has previously been investigated as a way of identifying patients at risk of CIPN.

The goal of the current study was to identify the potential link between Nfl with neurophysiological markers of axon degeneration in patients receiving the neurotoxin chemotherapy paclitaxel.

The study included 93 cancer patients. All were assessed at the beginning, middle, and end of treatment. CIPN was assessed using blood samples of Nfl and the Total Neuropathy Score (TNS), the Common Terminology Criteria for Adverse Events (CTCAE) neuropathy scale, and patient-reported measures using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire–Chemotherapy-Induced Peripheral Neuropathy Module (EORTC-CIPN20).

Axonal degeneration was measured with neurophysiological tests including sural nerve compound sensory action potential (CSAP) for the lower limbs, and sensory median nerve CSAP, as well as stimulus threshold testing, for the upper limbs. 

Almost all of study participants (97%) were female. The majority (66%) had breast cancer and 30% had gynecological cancer. Most (73%) were receiving a weekly regimen of paclitaxel, and the remainder were treated with taxanes plus platinum once every 3 weeks. By the end of treatment, 82% of the patients had developed CIPN, which was mild in 44% and moderate/severe in 38%. 

Nfl levels increased significantly from baseline to after the first dose of chemotherapy (P < .001), “highlighting that nerve damage occurs from the very beginning of treatment,” senior investigator Susanna Park, PhD, told this news organization. 

In addition, “patients with higher Nfl levels after a single paclitaxel treatment had greater neuropathy at the end of treatment (higher EORTC scores [P ≤ .026], and higher TNS scores [P ≤ .00]),” added Dr. Park, who is associate professor at the University of Sydney.

“Importantly, we also looked at long-term outcomes beyond the end of chemotherapy, because chronic neuropathy produces a significant burden in cancer survivors,” said Dr. Park. 

“Among a total of 44 patients who completed the 6- to 12-month post-treatment follow-up, NfL levels after a single treatment were linked to severity of nerve damage quantified with neurophysiological tests, and greater Nfl levels at mid-treatment were correlated with worse patient and neurologically graded neuropathy at 6-12 months.”

Dr. Park said the results suggest that NfL may provide a biomarker of long-term axon damage and that Nfl assays “may enable clinicians to evaluate the risk of long-term toxicity early during paclitaxel treatment to hopefully provide clinically significant information to guide better treatment titration.” 

Currently, she said, CIPN is a prominent cause of dose reduction and early chemotherapy cessation. 

“For example, in early breast cancer around 25% of patients experience a dose reduction due to the severity of neuropathy symptoms.” But, she said, “there is no standardized way of identifying which patients are at risk of long-term neuropathy and therefore, may benefit more from dose reduction. In this setting, a biomarker such as Nfl could provide oncologists with more information about the risk of long-term toxicity and take that into account in dose decision-making.” 

For some cancers, she added, there are multiple potential therapy options.

“A biomarker such as NfL could assist in determining risk-benefit profile in terms of switching to alternate therapies. However, further studies will be needed to fully define the utility of NfL as a biomarker of paclitaxel neuropathy.” 
 

 

 

Promising Research

Commenting on the research for this news organization, Maryam Lustberg, MD, associate professor, director of the Center for Breast Cancer at Smilow Cancer Hospital and Yale Cancer Center, and chief of Breast Medical Oncology at Yale Cancer Center, in New Haven, Connecticut, said the study “builds on a body of work previously reported by others showing that neurofilament light chains as detected in the blood can be associated with early signs of neurotoxic injury.” 

She added that the research “is promising, since existing clinical and patient-reported measures tend to under-detect chemotherapy-induced neuropathy until more permanent injury might have occurred.” 

Dr. Lustberg, who is immediate past president of the Multinational Association of Supportive Care in Cancer, said future studies are needed before Nfl testing can be implemented in routine practice, but that “early detection will allow earlier initiation of supportive care strategies such as physical therapy and exercise, as well as dose modifications, which may be helpful for preventing permanent damage and improving quality of life.” 

The investigators and Dr. Lustberg report no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

AT PNS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

BP Disorder in Pregnancy Tied to Young-Onset Dementia Risk

Article Type
Changed
Wed, 06/26/2024 - 12:34

 

TOPLINE:

A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.

METHODOLOGY:

  • Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.
  • Mothers were followed for an average of 9 years.

TAKEAWAY:

  • Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.
  • Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.
  • The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).
  • Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.

IN PRACTICE:

“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, wrote in a related commentary about the findings.

“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”

SOURCE:

Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter was published online in JAMA Network Open.

LIMITATIONS:

The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.

DISCLOSURES:

The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.

METHODOLOGY:

  • Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.
  • Mothers were followed for an average of 9 years.

TAKEAWAY:

  • Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.
  • Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.
  • The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).
  • Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.

IN PRACTICE:

“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, wrote in a related commentary about the findings.

“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”

SOURCE:

Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter was published online in JAMA Network Open.

LIMITATIONS:

The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.

DISCLOSURES:

The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

A new analysis showed that preeclampsia is associated with an increased risk for young-onset dementia.

METHODOLOGY:

  • Researchers analyzed data from the French Conception study, a nationwide prospective cohort study of more than 1.9 million pregnancies.
  • Mothers were followed for an average of 9 years.

TAKEAWAY:

  • Nearly 3% of the mothers had preeclampsia, and 128 developed young-onset dementia.
  • Preeclampsia was associated with a 2.65-fold increased risk for young-onset dementia after adjusting for obesity, diabetes, smoking, drug or alcohol addiction, and social deprivation.
  • The risk was greater when preeclampsia occurred before 34 weeks of gestation (hazard ratio [HR], 4.15) or was superimposed on chronic hypertension (HR, 4.76).
  • Prior research has found an association between preeclampsia and vascular dementia, but this analysis “is the first to show an increase in early-onset dementia risk,” the authors of the study wrote.

IN PRACTICE:

“Individuals who have had preeclampsia should be reassured that young-onset dementia remains a very rare condition. Their absolute risk increases only imperceptibly,” Stephen Tong, PhD, and Roxanne Hastie, PhD, both with the University of Melbourne, Melbourne, Australia, wrote in a related commentary about the findings.

“Individuals who have been affected by preeclampsia in a prior pregnancy might instead focus on reducing their risk of developing the many chronic health ailments that are far more common,” they added. “Although it is yet to be proven in clinical trials, it is plausible that after an episode of preeclampsia, adopting a healthy lifestyle may improve vascular health and reduce the risk of many serious cardiovascular conditions.”

SOURCE:

Valérie Olié, PhD, of the Santé Publique France in Saint-Maurice, France, was the corresponding author on the paper. The research letter was published online in JAMA Network Open.

LIMITATIONS:

The investigators relied on hospital records to identify cases of dementia, which may have led to underestimation of incidence of the disease.

DISCLOSURES:

The study was funded by the French Hypertension Society, the French Hypertension Research Foundation, and the French Cardiology Federation. A co-author disclosed personal fees from pharmaceutical companies.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Online Tool Predicts Real-World Driving Ability of Older Drivers

Article Type
Changed
Tue, 06/25/2024 - 15:08

An algorithm using two well-known tests has shown strong accuracy (91%) in predicting whether an older driver can pass an on-road driving evaluation according to a new study published in the Journal of the American Medical Directors Association .

The Fit2Drive algorithm combines the Mini-Mental State Exam (MMSE), a 30-point dementia screening tool that has been found in several studies to have an association with driving ability, and the Trails B test, which gauges cognitive flexibility and set-shifting (task switching), considered to be measures of executive functioning.
 

Algorithm Available for Providers

The algorithm is clinically available and providers can fill in patients’ information and results of the two tests at the Fit2Drive website. Results may help physicians with often-difficult conversations with older patients about driving when they present with cognitive concerns.

Families report it is one of the most difficult conversations they have with a loved one and doctors are often asked to be part of the conversation. This is particularly difficult when, often, little objective information is available. In the past, a clinical rule of thumb has been that people diagnosed with Alzheimer’s disease or related dementias (ADRD) will usually be able to drive for 3 years after diagnosis.

“[T]he anger, tears, and frustration on the part of the individual patient and the lack of objective data to guide provider recommendations are the driving forces behind our effort to develop a highly accurate, evidence-based predictor of the ability to pass an on-road driving test,” the authors write. They added that the goal of the study was to identify the smallest number of cognitive test results that could predict likelihood of passing an on-road driver evaluation.

A number of tests were evaluated for the algorithm, but the combination of Trails B in seconds and MMSE using the highest scores of the serial 7s (counting back from 100 by 7s) or WORLD spelled backward accounted for the highest correlation with passing the on-road driving test, according to the authors, led by Ruth Tappen, EdD, FN, with the Christine E. Lynn College of Nursing at Florida Atlantic University, in Boca Raton.

A receiver operator characteristic (ROC) analysis was conducted on the linear combination of the two assessments.

“Because an ROC of 0.70 is considered to be the minimal requirement [for predictive value], 0.80 is considered good, and higher than 0.90 is excellent, these findings [with 91% area under the curve] suggest excellent accuracy using these two cognitive tests in this population,” the authors write.

For this analysis, researchers included 412 older drivers (179 men and 233 women) with an average age of 80. T he study was conducted at the Florida Atlantic University’s Memory Center and Clinical Research Unit. Participants included those who received a driving evaluation at the Memory Center and agreed to have their results included in the Driving Repository, and community-based older drivers who volunteered to participate.
 

Limitations of the Study

There were marginal differences between sexes on the measures, but they were not significant. The sample was composed of relatively well-educated people, primarily of European American ethnic origin, which is a consideration in generalizing the results.

Among other limitations are that physical and sensory factors, in addition to cognitive issues, may affect an individual’s ability to drive safely and are not included in the algorithm. Sensory disabilities, including reduced visual acuity caused by binocular field vision loss, contrast sensitivity, glare sensitivity, and other conditions, may affect driving ability as well as the ability to fully rotate the head and neck. Medical conditions affecting the cardiovascular, neurological, and orthopedic systems can also influence driving ability.

“Future studies should involve more diverse samples and a greater variety of driving challenges, including school zones and multilane highways, which are not included in the study,” the authors write.

The study received grant support from the State of Florida Department of Health and the Ed and Ethel Moore Alzheimer’s Disease Research Program.

Publications
Topics
Sections

An algorithm using two well-known tests has shown strong accuracy (91%) in predicting whether an older driver can pass an on-road driving evaluation according to a new study published in the Journal of the American Medical Directors Association .

The Fit2Drive algorithm combines the Mini-Mental State Exam (MMSE), a 30-point dementia screening tool that has been found in several studies to have an association with driving ability, and the Trails B test, which gauges cognitive flexibility and set-shifting (task switching), considered to be measures of executive functioning.
 

Algorithm Available for Providers

The algorithm is clinically available and providers can fill in patients’ information and results of the two tests at the Fit2Drive website. Results may help physicians with often-difficult conversations with older patients about driving when they present with cognitive concerns.

Families report it is one of the most difficult conversations they have with a loved one and doctors are often asked to be part of the conversation. This is particularly difficult when, often, little objective information is available. In the past, a clinical rule of thumb has been that people diagnosed with Alzheimer’s disease or related dementias (ADRD) will usually be able to drive for 3 years after diagnosis.

“[T]he anger, tears, and frustration on the part of the individual patient and the lack of objective data to guide provider recommendations are the driving forces behind our effort to develop a highly accurate, evidence-based predictor of the ability to pass an on-road driving test,” the authors write. They added that the goal of the study was to identify the smallest number of cognitive test results that could predict likelihood of passing an on-road driver evaluation.

A number of tests were evaluated for the algorithm, but the combination of Trails B in seconds and MMSE using the highest scores of the serial 7s (counting back from 100 by 7s) or WORLD spelled backward accounted for the highest correlation with passing the on-road driving test, according to the authors, led by Ruth Tappen, EdD, FN, with the Christine E. Lynn College of Nursing at Florida Atlantic University, in Boca Raton.

A receiver operator characteristic (ROC) analysis was conducted on the linear combination of the two assessments.

“Because an ROC of 0.70 is considered to be the minimal requirement [for predictive value], 0.80 is considered good, and higher than 0.90 is excellent, these findings [with 91% area under the curve] suggest excellent accuracy using these two cognitive tests in this population,” the authors write.

For this analysis, researchers included 412 older drivers (179 men and 233 women) with an average age of 80. T he study was conducted at the Florida Atlantic University’s Memory Center and Clinical Research Unit. Participants included those who received a driving evaluation at the Memory Center and agreed to have their results included in the Driving Repository, and community-based older drivers who volunteered to participate.
 

Limitations of the Study

There were marginal differences between sexes on the measures, but they were not significant. The sample was composed of relatively well-educated people, primarily of European American ethnic origin, which is a consideration in generalizing the results.

Among other limitations are that physical and sensory factors, in addition to cognitive issues, may affect an individual’s ability to drive safely and are not included in the algorithm. Sensory disabilities, including reduced visual acuity caused by binocular field vision loss, contrast sensitivity, glare sensitivity, and other conditions, may affect driving ability as well as the ability to fully rotate the head and neck. Medical conditions affecting the cardiovascular, neurological, and orthopedic systems can also influence driving ability.

“Future studies should involve more diverse samples and a greater variety of driving challenges, including school zones and multilane highways, which are not included in the study,” the authors write.

The study received grant support from the State of Florida Department of Health and the Ed and Ethel Moore Alzheimer’s Disease Research Program.

An algorithm using two well-known tests has shown strong accuracy (91%) in predicting whether an older driver can pass an on-road driving evaluation according to a new study published in the Journal of the American Medical Directors Association .

The Fit2Drive algorithm combines the Mini-Mental State Exam (MMSE), a 30-point dementia screening tool that has been found in several studies to have an association with driving ability, and the Trails B test, which gauges cognitive flexibility and set-shifting (task switching), considered to be measures of executive functioning.
 

Algorithm Available for Providers

The algorithm is clinically available and providers can fill in patients’ information and results of the two tests at the Fit2Drive website. Results may help physicians with often-difficult conversations with older patients about driving when they present with cognitive concerns.

Families report it is one of the most difficult conversations they have with a loved one and doctors are often asked to be part of the conversation. This is particularly difficult when, often, little objective information is available. In the past, a clinical rule of thumb has been that people diagnosed with Alzheimer’s disease or related dementias (ADRD) will usually be able to drive for 3 years after diagnosis.

“[T]he anger, tears, and frustration on the part of the individual patient and the lack of objective data to guide provider recommendations are the driving forces behind our effort to develop a highly accurate, evidence-based predictor of the ability to pass an on-road driving test,” the authors write. They added that the goal of the study was to identify the smallest number of cognitive test results that could predict likelihood of passing an on-road driver evaluation.

A number of tests were evaluated for the algorithm, but the combination of Trails B in seconds and MMSE using the highest scores of the serial 7s (counting back from 100 by 7s) or WORLD spelled backward accounted for the highest correlation with passing the on-road driving test, according to the authors, led by Ruth Tappen, EdD, FN, with the Christine E. Lynn College of Nursing at Florida Atlantic University, in Boca Raton.

A receiver operator characteristic (ROC) analysis was conducted on the linear combination of the two assessments.

“Because an ROC of 0.70 is considered to be the minimal requirement [for predictive value], 0.80 is considered good, and higher than 0.90 is excellent, these findings [with 91% area under the curve] suggest excellent accuracy using these two cognitive tests in this population,” the authors write.

For this analysis, researchers included 412 older drivers (179 men and 233 women) with an average age of 80. T he study was conducted at the Florida Atlantic University’s Memory Center and Clinical Research Unit. Participants included those who received a driving evaluation at the Memory Center and agreed to have their results included in the Driving Repository, and community-based older drivers who volunteered to participate.
 

Limitations of the Study

There were marginal differences between sexes on the measures, but they were not significant. The sample was composed of relatively well-educated people, primarily of European American ethnic origin, which is a consideration in generalizing the results.

Among other limitations are that physical and sensory factors, in addition to cognitive issues, may affect an individual’s ability to drive safely and are not included in the algorithm. Sensory disabilities, including reduced visual acuity caused by binocular field vision loss, contrast sensitivity, glare sensitivity, and other conditions, may affect driving ability as well as the ability to fully rotate the head and neck. Medical conditions affecting the cardiovascular, neurological, and orthopedic systems can also influence driving ability.

“Future studies should involve more diverse samples and a greater variety of driving challenges, including school zones and multilane highways, which are not included in the study,” the authors write.

The study received grant support from the State of Florida Department of Health and the Ed and Ethel Moore Alzheimer’s Disease Research Program.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMDA

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is This Journal Legit? Predatory Publishers

Article Type
Changed
Tue, 07/02/2024 - 13:33

 

This transcript has been edited for clarity

Andrew N. Wilner, MD: My guest today is Dr. Jose Merino, editor in chief of the Neurology family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.

Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. 

Jose G. Merino, MD, MPhil: Thank you for having me here. It’s a pleasure.
 

Open Access Defined

Dr. Wilner: I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? 

Dr. Merino: Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. 

The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.

This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. 

Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. 

Dr. Wilner: I remember that when a journal article was published, say, in Neurology, if you didn’t have a subscription to Neurology, you went to the library that hopefully had a subscription.

If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? 

Dr. Merino: It depends on how the paper is published. For example, in Neurology, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.

That’s the case for papers published in our wholly open-access journals in the Neurology family like Neurology Neuroimmunology & Neuroinflammation, Neurology Genetics, or Neurology Education

For other papers that are published in Neurology, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. 

In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.
 

 

 

Is Pay to Publish a Red Flag?

Dr. Wilner: I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, Neurology, you don’t get paid as an author for the publication. Your reward is the honor of it being published. 

Neurology supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. 

With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. 

Dr. Merino: This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. 

Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. 

That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. 

Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. 

Dr. Wilner: This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? 
 

Predatory Journals

Dr. Merino: That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. 

The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. 

Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. 

There are certain checklists. Dr. David Moher at the University of Toronto has produced some work trying to help us identify predatory journals

One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?

If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. 

I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. 

I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like BMC or PLOS, that are completely open-access and legitimate journals. 
 

 

 

Impact Factor

Dr. Wilner: What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. 

Dr. Merino: Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. 

It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. 

Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. 

This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. 

I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” 

There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. 

If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. 

I think it’s important to look more at the audience and the journal scope when you submit your papers. 

Dr. Wilner: One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? 

Dr. Merino: I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. 

That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.

Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. 

Dr. Wilner: I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. 

There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? 

Dr. Merino: Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. 

Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that we need less research, but we need better research. 

We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. 

Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. 

The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. 

Dr. Wilner: Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? 

Dr. Merino: I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in Neurology and most serious medical journals.
 

Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity

Andrew N. Wilner, MD: My guest today is Dr. Jose Merino, editor in chief of the Neurology family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.

Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. 

Jose G. Merino, MD, MPhil: Thank you for having me here. It’s a pleasure.
 

Open Access Defined

Dr. Wilner: I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? 

Dr. Merino: Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. 

The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.

This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. 

Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. 

Dr. Wilner: I remember that when a journal article was published, say, in Neurology, if you didn’t have a subscription to Neurology, you went to the library that hopefully had a subscription.

If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? 

Dr. Merino: It depends on how the paper is published. For example, in Neurology, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.

That’s the case for papers published in our wholly open-access journals in the Neurology family like Neurology Neuroimmunology & Neuroinflammation, Neurology Genetics, or Neurology Education

For other papers that are published in Neurology, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. 

In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.
 

 

 

Is Pay to Publish a Red Flag?

Dr. Wilner: I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, Neurology, you don’t get paid as an author for the publication. Your reward is the honor of it being published. 

Neurology supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. 

With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. 

Dr. Merino: This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. 

Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. 

That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. 

Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. 

Dr. Wilner: This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? 
 

Predatory Journals

Dr. Merino: That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. 

The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. 

Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. 

There are certain checklists. Dr. David Moher at the University of Toronto has produced some work trying to help us identify predatory journals

One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?

If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. 

I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. 

I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like BMC or PLOS, that are completely open-access and legitimate journals. 
 

 

 

Impact Factor

Dr. Wilner: What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. 

Dr. Merino: Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. 

It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. 

Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. 

This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. 

I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” 

There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. 

If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. 

I think it’s important to look more at the audience and the journal scope when you submit your papers. 

Dr. Wilner: One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? 

Dr. Merino: I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. 

That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.

Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. 

Dr. Wilner: I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. 

There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? 

Dr. Merino: Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. 

Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that we need less research, but we need better research. 

We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. 

Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. 

The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. 

Dr. Wilner: Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? 

Dr. Merino: I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in Neurology and most serious medical journals.
 

Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity

Andrew N. Wilner, MD: My guest today is Dr. Jose Merino, editor in chief of the Neurology family of journals and professor of neurology and co-vice chair of education at Georgetown University in Washington, DC.

Our program today is a follow-up of Dr. Merino’s presentation at the recent American Academy of Neurology meeting in Denver, Colorado. Along with two other panelists, Dr. Merino discussed the role of open-access publication and the dangers of predatory journals. 

Jose G. Merino, MD, MPhil: Thank you for having me here. It’s a pleasure.
 

Open Access Defined

Dr. Wilner: I remember when publication in neurology was pretty straightforward. It was either the green journal or the blue journal, but things have certainly changed. I think one topic that is not clear to everyone is this concept of open access. Could you define that for us? 

Dr. Merino: Sure. Open access is a mode of publication that fosters more open or accessible science. The idea of open access is that it combines two main elements. One is that the papers that are published become immediately available to anybody with an internet connection anywhere in the world without any restrictions. 

The second important element from open access, which makes it different from other models we can talk about, is the fact that the authors retain the copyright of their work, but they give the journal and readers a license to use, reproduce, and modify the content.

This is different, for example, from instances where we have funder mandates. For example, NIH papers have to become available 6 months after publication, so they’re available to everybody but not immediately. 

Then copyright is retained, in the case of NIH employees, for example, by the government or by the journals themselves. The two elements of open access, I think, are immediate access to the material and the fact that it’s published with a Creative Commons license. 

Dr. Wilner: I remember that when a journal article was published, say, in Neurology, if you didn’t have a subscription to Neurology, you went to the library that hopefully had a subscription.

If they didn’t have it, you would write to the author and say, “Hey, I heard you have this great paper because the abstract was out there. Could you send me a reprint?” Has that whole universe evaporated? 

Dr. Merino: It depends on how the paper is published. For example, in Neurology, some of the research we publish is open access. Basically, if you have an internet connection, you can access the paper.

That’s the case for papers published in our wholly open-access journals in the Neurology family like Neurology Neuroimmunology & Neuroinflammation, Neurology Genetics, or Neurology Education

For other papers that are published in Neurology, not under open access, there is a paywall. For some of them, the paywall comes down after a few months based on funder mandates and so on. As I was mentioning, the NIH-funded papers are available 6 months later. 

In the first 6 months, you may have to go to your library, and if your library has a subscription, you can download it directly. [This is also true for] those that always stay behind the paywall, where you have to have a subscription or your library has to have a subscription.
 

 

 

Is Pay to Publish a Red Flag?

Dr. Wilner: I’m a professional writer. With any luck, when I write something, I get paid to write it. There’s been a long tradition in academic medicine that when you submit an article to, say, Neurology, you don’t get paid as an author for the publication. Your reward is the honor of it being published. 

Neurology supports itself in various ways, including advertising and so on. That’s been the contract: free publication for work that merits it, and the journal survives on its own. 

With open access, one of the things that’s happened is that — and I’ve published open access myself — is that I get a notification that I need to pay to have my article that I’ve slaved over published. Explain that, please. 

Dr. Merino: This is the issue with open access. As I mentioned, the paper gets published. You’re giving the journal a license to publish it. You’re retaining the copyright of your work. That means that the journal cannot make money or support itself by just publishing open access because they belong to you. 

Typically, open-access journals are not in print and don’t have much in terms of advertising. The contract is you’re giving me a license to publish it, but it’s your journal, so you’re paying a fee for the journal expenses to basically produce your paper. That’s what’s happening with open access. 

That’s been recognized with many funders, for example, with NIH funding or many of the European funders, they’re including open-access fees as part of their funding for research. Now, of course, this doesn’t help if you’re not a funded researcher or if you’re a fellow who’s doing work and so on. 

Typically, most journals will have waived fees or lower fees for these situations. The reason for the open-access fee is the fact that you’re retaining the copyright. You’re not giving it to the journal who can then use it to generate its revenue for supporting itself, the editorial staff, and so on. 

Dr. Wilner: This idea of charging for publication has created a satellite business of what are called predatory journals. How does one know if the open-access journal that I’m submitting to is really just in the business of wanting my $300 or my $900 to get published? How do I know if that’s a reasonable place to publish? 
 

Predatory Journals

Dr. Merino: That’s a big challenge that has come with this whole idea of open access and the fact that now, many journals are online only, so you’re no longer seeing a physical copy. That has given rise to the predatory journals. 

The predatory journal, by definition, is a journal that claims to be open access. They’ll take your paper and publish it, but they don’t provide all the other services that you would typically expect from the fact that you’re paying an open-access fee. This includes getting appropriate peer review, production of the manuscript, and long-term curation and storage of the manuscript. 

Many predatory journals will take your open-access fee, accept any paper that you submit, regardless of the quality, because they’re charging the fees for that. They don’t send it to real peer review, and then in a few months, the journal disappears so there’s no way for anybody to actually find your paper anymore. 

There are certain checklists. Dr. David Moher at the University of Toronto has produced some work trying to help us identify predatory journals

One thing I typically suggest to people who ask me this question is: Have you ever heard of this journal before? Does the journal have a track record? How far back does the story of the journal go? Is it supported by a publisher that you know? Do you know anybody who has published there? Is it something you can easily access?

If in doubt, always ask your friendly medical librarian. There used to be lists that were kept in terms of predatory journals that were being constantly updated, but those had to be shut down. As far as I understand, there were legal issues in terms of how things got on that list. 

I think that overall, if you’ve heard of it, if it’s relevant, if it’s known in your field, and if your librarian knows it, it’s probably a good legitimate open-access journal. There are many very good legitimate open-access journals. 

I mentioned the two that we have in our family, but all the other major journals have their own open-access journal within their family. There are some, like BMC or PLOS, that are completely open-access and legitimate journals. 
 

 

 

Impact Factor

Dr. Wilner: What about impact factor? Many journals boast about their impact factor. I’m not sure how to interpret that number. 

Dr. Merino: Impact factor is very interesting. The impact factor was developed by medical librarians to try to identify the journals they should be subscribing to. It’s a measure of the average citations to an average paper in the journal. 

It doesn’t tell you about specific papers. It tells you, on average, how many of the papers in this journal get cited so many times. It’s calculated by the number of articles that were cited divided by the number of articles that were published. Journals that publish many papers, like Neurology, have a hard time bringing up their impact factor beyond a certain level. 

Similarly, very small journals with one or two very highly cited papers have a very high impact factor. It’s being used as a measure, perhaps inappropriately, of how good or how reputable a journal is. We all say we don’t care about journal impact factors, but we all know our journal impact factor and we used to know it to three decimals. Now, they changed the system, and there’s only one decimal point, which makes more sense. 

This is more important, for example, for authors when deciding where to submit papers. I know that in some countries, particularly in Europe, the impact factor of the journal where you publish has an impact on your promotion decisions. 

I would say what’s even more important than the impact factor, is to say, “Well, is this the journal that fits the scope of my paper? Is this the journal that reaches the audience that I want to reach when I write my paper?” 

There are some papers, for example, that are very influential. The impact factor just captures citations. There are some papers that are very influential that may not get cited very often. There may be papers that change clinical practice. 

If you read a paper that tells you that you should be changing how you treat your patients with myasthenia based on this paper, that may not get cited. It’s a very clinically focused paper, but it’s probably more impactful than one that gets cited very much in some respect, or they make it to public policy decisions, and so on. 

I think it’s important to look more at the audience and the journal scope when you submit your papers. 

Dr. Wilner: One other technical question. The journals also say they’re indexed in PubMed or Google Scholar. If I want to publish my paper and I want it indexed where the right people are going to find it, where does it need to be indexed? 

Dr. Merino: I grew up using Index Medicus, MedlinePlus, and the Library of Science. I still do. If I need to find something, I go to PubMed. Ideally, papers are listed in MedlinePlus or can be found in PubMed. They’re not the same thing, but you can find them through them. 

That would be an important thing. Nowadays, a lot more people are using Google Scholar or Google just to identify papers. It may be a little bit less relevant, but it’s still a measure of the quality of the journal before they get indexed in some of these. For example, if you get listed in MedlinePlus, it has gone through certain quality checks by the index itself to see whether they would accept the journal or not. That’s something you want to check.

Typically, most of the large journals or the journals you and I know about are listed in more than one place, right? They’re listed in Scopus and Web of Science. They’re listed in MedlinePlus and so on. Again, if you’re submitting your paper, go somewhere where you know the journal and you’ve heard about it. 

Dr. Wilner: I’m not going to ask you about artificial intelligence. We can do that another time. I want to ask something closer to me, which is this question of publish or perish. 

There seems to be, in academics, more emphasis on the number of papers that one has published rather than their quality. How does a younger academician or one who really needs to publish cope with that? 

Dr. Merino: Many people are writing up research that may not be relevant or that may not be high quality just because you need to have a long list of papers to get promoted, for example, if you’re an academician. 

Doug Altman, who was a very influential person in the field quality of not only medical statistics but also medical publishing, had the idea that we need less research, but we need better research. 

We often receive papers where you say, well, what’s the rationale behind the question in this paper? It’s like they had a large amount of data and were trying to squeeze as much as they could out of that. I think, as a young academician, the important thing to think about is whether it is an important question that matters to you and to the field, from whatever perspective, whether it’s going to advance research, advance clinical care, or have public policy implications. 

Is this one where the answer will be important no matter what the answer is? If you’re thinking of that, your work will be well recognized, people will know you, and you’ll get invited to collaborate. I think that’s the most important thing rather than just churning out a large number of papers. 

The productivity will come from the fact that you start by saying, let me ask something that’s really meaningful to me and to the field, with a good question and using strong research methodology. 

Dr. Wilner: Thanks for that, Dr. Merino. I think that’s very valuable for all of us. This has been a great discussion. Do you have any final comments before we wrap up? 

Dr. Merino: I want to encourage people to continue reading medical journals all the time and submitting to us, again, good research and important questions with robust methodology. That’s what we’re looking for in Neurology and most serious medical journals.
 

Dr. Wilner is an associate professor of neurology at the University of Tennessee Health Science Center, Memphis. Dr. Merino is a professor in the department of neurology at Georgetown University Medical Center, Washington, DC. Dr. Wilner reported conflicts of interest with Accordant Health Services and Lulu Publishing. Dr. Merino reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article