Chronotherapy: Why Timing Drugs to Our Body Clocks May Work

Article Type
Changed
Mon, 06/10/2024 - 16:37

Do drugs work better if taken by the clock?

A new analysis published in The Lancet journal’s eClinicalMedicine suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.

The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is rarely considered in writing prescriptions.

“We are really just at the beginning of an exciting new way of looking at patient care,” said Kenneth A. Dyar, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.

“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”
 

The ‘Missing Piece’ in Chronotherapy Research

Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.

That healthy overnight dip can disappear in people with diabeteskidney disease, and obstructive sleep apnea. Some physicians have suggested a bed-time dose to restore that dip. But studies have had mixed results, so “take at bedtime” has become a less common recommendation in recent years.

But the debate continued. After a large 2019 Spanish study found that bedtime doses had benefits so big that the results drew questions, an even larger, 2022 randomized, controlled trial from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.

Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.

“We did this study thinking nocturnal blood pressure tablets might be better,” said Thomas MacDonald, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”

So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”

Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.

The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.

“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author Filippo Pigazzani, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”

The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.
 

 

 

Looking Beyond Blood Pressure

What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.

An estimated 50% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.

handful of US Food and Drug Administration–approved drugs already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.

Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the Society for Research on Biological Rhythms featured a day-long session aimed at bringing clinicians up to speed. An organization called the International Association of Circadian Health Clinics is trying to bring circadian medicine findings to clinicians and their patients and to support research.

Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.

In a Massachusetts Institute of Technology study published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers said.
 

Timing and the Immune System

Circadian rhythms are also seen in immune processes. In a 2023 study in The Journal of Clinical Investigation of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.

“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher Jeffrey Haspel, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.

In a multicenter, 2024 analysis of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.

“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”

Other research suggests or is investigating possible chronotherapy benefits for depressionglaucomarespiratory diseasesstroke treatmentepilepsy, and sedatives used in surgery. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.
 

 

 

Should You Use Chronotherapy Now?

Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:

Night owls whose blood pressure isn’t well controlled. Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.

In their study, the researchers determined participants’ chronotype with a few questions from the Munich Chronotype Questionnaire about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)

If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”

Children and older adults getting vaccines. Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Do drugs work better if taken by the clock?

A new analysis published in The Lancet journal’s eClinicalMedicine suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.

The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is rarely considered in writing prescriptions.

“We are really just at the beginning of an exciting new way of looking at patient care,” said Kenneth A. Dyar, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.

“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”
 

The ‘Missing Piece’ in Chronotherapy Research

Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.

That healthy overnight dip can disappear in people with diabeteskidney disease, and obstructive sleep apnea. Some physicians have suggested a bed-time dose to restore that dip. But studies have had mixed results, so “take at bedtime” has become a less common recommendation in recent years.

But the debate continued. After a large 2019 Spanish study found that bedtime doses had benefits so big that the results drew questions, an even larger, 2022 randomized, controlled trial from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.

Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.

“We did this study thinking nocturnal blood pressure tablets might be better,” said Thomas MacDonald, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”

So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”

Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.

The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.

“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author Filippo Pigazzani, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”

The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.
 

 

 

Looking Beyond Blood Pressure

What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.

An estimated 50% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.

handful of US Food and Drug Administration–approved drugs already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.

Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the Society for Research on Biological Rhythms featured a day-long session aimed at bringing clinicians up to speed. An organization called the International Association of Circadian Health Clinics is trying to bring circadian medicine findings to clinicians and their patients and to support research.

Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.

In a Massachusetts Institute of Technology study published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers said.
 

Timing and the Immune System

Circadian rhythms are also seen in immune processes. In a 2023 study in The Journal of Clinical Investigation of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.

“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher Jeffrey Haspel, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.

In a multicenter, 2024 analysis of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.

“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”

Other research suggests or is investigating possible chronotherapy benefits for depressionglaucomarespiratory diseasesstroke treatmentepilepsy, and sedatives used in surgery. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.
 

 

 

Should You Use Chronotherapy Now?

Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:

Night owls whose blood pressure isn’t well controlled. Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.

In their study, the researchers determined participants’ chronotype with a few questions from the Munich Chronotype Questionnaire about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)

If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”

Children and older adults getting vaccines. Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”
 

A version of this article appeared on Medscape.com.

Do drugs work better if taken by the clock?

A new analysis published in The Lancet journal’s eClinicalMedicine suggests: Yes, they do — if you consider the patient’s individual body clock. The study is the first to find that timing blood pressure drugs to a person’s personal “chronotype” — that is, whether they are a night owl or an early bird — may reduce the risk for a heart attack.

The findings represent a significant advance in the field of circadian medicine or “chronotherapy” — timing drug administration to circadian rhythms. A growing stack of research suggests this approach could reduce side effects and improve the effectiveness of a wide range of therapies, including vaccines, cancer treatments, and drugs for depression, glaucoma, pain, seizures, and other conditions. Still, despite decades of research, time of day is rarely considered in writing prescriptions.

“We are really just at the beginning of an exciting new way of looking at patient care,” said Kenneth A. Dyar, PhD, whose lab at Helmholtz Zentrum München’s Institute for Diabetes and Cancer focuses on metabolic physiology. Dr. Dyar is co-lead author of the new blood pressure analysis.

“Chronotherapy is a rapidly growing field,” he said, “and I suspect we are soon going to see more and more studies focused on ‘personalized chronotherapy,’ not only in hypertension but also potentially in other clinical areas.”
 

The ‘Missing Piece’ in Chronotherapy Research

Blood pressure drugs have long been chronotherapy’s battleground. After all, blood pressure follows a circadian rhythm, peaking in the morning and dropping at night.

That healthy overnight dip can disappear in people with diabeteskidney disease, and obstructive sleep apnea. Some physicians have suggested a bed-time dose to restore that dip. But studies have had mixed results, so “take at bedtime” has become a less common recommendation in recent years.

But the debate continued. After a large 2019 Spanish study found that bedtime doses had benefits so big that the results drew questions, an even larger, 2022 randomized, controlled trial from the University of Dundee in Dundee, Scotland — called the TIME study — aimed to settle the question.

Researchers assigned over 21,000 people to take morning or night hypertension drugs for several years and found no difference in cardiovascular outcomes.

“We did this study thinking nocturnal blood pressure tablets might be better,” said Thomas MacDonald, MD, professor emeritus of clinical pharmacology and pharmacoepidemiology at the University of Dundee and principal investigator for the TIME study and the recent chronotype analysis. “But there was no difference for heart attacks, strokes, or vascular death.”

So, the researchers then looked at participants’ chronotypes, sorting outcomes based on whether the participants were late-to-bed, late-to-rise “night owls” or early-to-bed, early-to-rise “morning larks.”

Their analysis of these 5358 TIME participants found the following results: Risk for hospitalization for a heart attack was at least 34% lower for “owls” who took their drugs at bedtime. By contrast, owls’ heart attack risk was at least 62% higher with morning doses. For “larks,” the opposite was true. Morning doses were associated with an 11% lower heart attack risk and night doses with an 11% higher risk, according to supplemental data.

The personalized approach could explain why some previous chronotherapy studies have failed to show a benefit. Those studies did not individualize drug timing as this one did. But personalization could be key to circadian medicine’s success.

“Our ‘internal personal time’ appears to be an important variable to consider when dosing antihypertensives,” said co-lead author Filippo Pigazzani, MD, PhD, clinical senior lecturer and honorary consultant cardiologist at the University of Dundee School of Medicine. “Chronotherapy research has been going on for decades. We knew there was something important with time of day. But researchers haven’t considered the internal time of individual people. I think that is the missing piece.”

The analysis has several important limitations, the researchers said. A total of 95% of participants were White. And it was an observational study, not a true randomized comparison. “We started it late in the original TIME study,” Dr. MacDonald said. “You could argue we were reporting on those who survived long enough to get into the analysis.” More research is needed, they concluded.
 

 

 

Looking Beyond Blood Pressure

What about the rest of the body? “Almost all the cells of our body contain ‘circadian clocks’ that are synchronized by daily environmental cues, including light-dark, activity-rest, and feeding-fasting cycles,” said Dr. Dyar.

An estimated 50% of prescription drugs hit targets in the body that have circadian patterns. So, experts suspect that syncing a drug with a person’s body clock might increase effectiveness of many drugs.

handful of US Food and Drug Administration–approved drugs already have time-of-day recommendations on the label for effectiveness or to limit side effects, including bedtime or evening for the insomnia drug Ambien, the HIV antiviral Atripla, and cholesterol-lowering Zocor. Others are intended to be taken with or after your last meal of the day, such as the long-acting insulin Levemir and the cardiovascular drug Xarelto. A morning recommendation comes with the proton pump inhibitor Nexium and the attention-deficit/hyperactivity disorder drug Ritalin.

Interest is expanding. About one third of the papers published about chronotherapy in the past 25 years have come out in the past 5 years. The May 2024 meeting of the Society for Research on Biological Rhythms featured a day-long session aimed at bringing clinicians up to speed. An organization called the International Association of Circadian Health Clinics is trying to bring circadian medicine findings to clinicians and their patients and to support research.

Moreover, while recent research suggests minding the clock could have benefits for a wide range of treatments, ignoring it could cause problems.

In a Massachusetts Institute of Technology study published in April in Science Advances, researchers looked at engineered livers made from human donor cells and found more than 300 genes that operate on a circadian schedule, many with roles in drug metabolism. They also found that circadian patterns affected the toxicity of acetaminophen and atorvastatin. Identifying the time of day to take these drugs could maximize effectiveness and minimize adverse effects, the researchers said.
 

Timing and the Immune System

Circadian rhythms are also seen in immune processes. In a 2023 study in The Journal of Clinical Investigation of vaccine data from 1.5 million people in Israel, researchers found that children and older adults who got their second dose of the Pfizer mRNA COVID vaccine earlier in the day were about 36% less likely to be hospitalized with SARS-CoV-2 infection than those who got an evening shot.

“The sweet spot in our data was somewhere around late morning to late afternoon,” said lead researcher Jeffrey Haspel, MD, PhD, associate professor of medicine in the division of pulmonary and critical care medicine at Washington University School of Medicine in St. Louis.

In a multicenter, 2024 analysis of 13 studies of immunotherapy for advanced cancers in 1663 people, researchers found treatment earlier in the day was associated with longer survival time and longer survival without cancer progression.

“Patients with selected metastatic cancers seemed to largely benefit from early [time of day] infusions, which is consistent with circadian mechanisms in immune-cell functions and trafficking,” the researchers noted. But “retrospective randomized trials are needed to establish recommendations for optimal circadian timing.”

Other research suggests or is investigating possible chronotherapy benefits for depressionglaucomarespiratory diseasesstroke treatmentepilepsy, and sedatives used in surgery. So why aren’t healthcare providers adding time of day to more prescriptions? “What’s missing is more reliable data,” Dr. Dyar said.
 

 

 

Should You Use Chronotherapy Now?

Experts emphasize that more research is needed before doctors use chronotherapy and before medical organizations include it in treatment recommendations. But for some patients, circadian dosing may be worth a try:

Night owls whose blood pressure isn’t well controlled. Dr. Dyar and Dr. Pigazzani said night-time blood pressure drugs may be helpful for people with a “late chronotype.” Of course, patients shouldn’t change their medication schedule on their own, they said. And doctors may want to consider other concerns, like more overnight bathroom visits with evening diuretics.

In their study, the researchers determined participants’ chronotype with a few questions from the Munich Chronotype Questionnaire about what time they fell asleep and woke up on workdays and days off and whether they considered themselves “morning types” or “evening types.” (The questions can be found in supplementary data for the study.)

If a physician thinks matching the timing of a dose with chronotype would help, they can consider it, Dr. Pigazzani said. “However, I must add that this was an observational study, so I would advise healthcare practitioners to wait for our data to be confirmed in new RCTs of personalized chronotherapy of hypertension.”

Children and older adults getting vaccines. Timing COVID shots and possibly other vaccines from late morning to mid-afternoon could have a small benefit for individuals and a bigger public-health benefit, Dr. Haspel said. But the most important thing is getting vaccinated. “If you can only get one in the evening, it’s still worthwhile. Timing may add oomph at a public-health level for more vulnerable groups.”
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Interictal Burden, Disability, Allodynia Linked to Increased Likelihood of Seeking Migraine Care

Article Type
Changed
Fri, 06/07/2024 - 12:33

There is a significant association between higher interictal burden, disability, and allodynia in patients who sought medical care for migraine, according to recent research published in the journal Headache.

“[T]he burden and impact of migraine on the individual both during and between attacks were identified through supervised machine learning models to be strongly associated with seeking care,” Sait Ashina, MD, of the department of neurology at Harvard Medical School in Boston, and colleagues wrote in their study.

Dr. Ashina and colleagues performed a cross-sectional study of 61,826 patients from the web-based ObserVational survey of the Epidemiology, tReatment and Care Of MigrainE (OVERCOME) study with migraine who visited a primary care, specialty care, or urgent care, or emergency setting for headache between 2018 and 2020.

The patients recruited for OBSERVE were a mean of 41.7 years old and had experienced migraines for an average of 19.0 years; 59.4% had between 0 and 3 average headache days per month, 74.5% were women, 78.8% were White, and 85.4% had health insurance; and they were demographically representative of the US population.

Researchers used a machine learning model, which consisted of random forest and least absolute shrinkage and selection operator (LASSO) algorithms, to identify the relationship between patients who sought care for migraine and 54 different clinical, sociodemographic, and migraine-associated factors, which included age, years with migraine, symptom scores, pain intensity scores, disability score, comorbidities, vomiting, presence and severity of allodynia, and other factors.

The results showed 31,529 patients (51.0%) had an in-person or e-visit encounter with a primary care, specialty care, or urgent care, or emergency care location within 12 months of the survey, and were mostly White (76.5%) women (73.3%) with health insurance (88.9%). Of the patients who sought care, 52.8% had severe interictal burden measured by Migraine Interictal Burden Scale-4 score, compared with 23.1% of patients who did not seek care. Compared with patients who did not seek care, those who did visit a health care setting for migraine had a higher percentage of severe migraine-related disability as measured by the Migraine Disability Assessment Scale (36.7% vs 14.6%) and severe ictal cutaneous allodynia as measured by the Allodynia Symptom Checklist (21.0% vs 7.4%).

In a multivariable logistic regression model analysis, Dr. Ashina and colleagues said the factors most associated with seeking care included severe interictal burden (odds ratio [OR], 2.64; 95% confidence interval [CI], 2.5-2.8), severe migraine-related disability (OR, 2.2; 95% CI, 2.0-2.3), and severe ictal allodynia (OR, 1.7; 95% CI, 1.6-1.8), compared with less severe factors.

The researchers said their results have “significant implications for public health and advocacy efforts.”

“As seen through three decades of epidemiological research in the United States, rates of care-seeking have not improved dramatically over time despite significant additions to scientific knowledge and the therapeutic armamentarium, leaving a significant unmet need. This is also important from a clinical perspective,” they explained. “Health care professionals in primary care and internal medicine most likely see patients with migraine who do not discuss it during visits. This underscores the importance of maintaining vigilance for migraine, especially among those who may experience greater disability, impact, and interictal burden.”
 

 

 

Asking the Right Questions

Asked to comment on the research, Robert P. Cowan, MD, a neurologist and professor in the Stanford University School of Medicine department of neurology and neurological sciences in Palo Alto, California, said in an interview that the value of the paper is in what it does not say about the main reasons patients seek care.

“Most clinicians readily acknowledge that the average number of migraine headache days per month is, at best, a weak predictor of which patients seek care and when,” he said.

Dr. Cowan said that most patients are referred to him by other providers, and when he asks them why they did not seek care for migraine sooner, the answer is usually because the migraine was not severe enough or because over-the-counter medication had previously worked for them. He noted that change in frequency is, in his experience, a primary reason why patients will seek care. “[F]or new (or increasing) headache, it is the concern that the headaches are something more ‘serious,’ and once that is ruled out, the conversation often stops,” he said. “For long-standing migraine sufferers, it is the perception that the headache is a ‘fact of life’ and does not rise to the bar of seeking medical advice.”

The questions a survey or a provider asks matters, Dr. Cowan said. “Often, when we ask a patient how many headache (or migraine) days per month, the answer is in single digits. But if we follow-up with a question about the number of headache-free days [per] month, the answer is ‘never’ or ‘hardly ever,’” he explained. “The point here is that what questions a survey (or a provider) asks introduces a clear bias. The use of machine learning instruments, especially when utilizing supervised learning, only reinforces and amplifies the bias of the designers of the categories.”

Epidemiologic studies are interesting but “often ask the wrong questions,” Dr. Cowan said. “I am less worried about the ... 49% of migraine or possible migraine patients who do not seek care and do [not] progress to more disabling ‘chronic’ migraine than I am with identifying the subpopulations of migraine patients who seek care from providers who do not have adequate tools to match patients to the best treatments.”

The authors reported personal and institutional relationships in the form of advisory board memberships, consultancies, employment, honoraria, research support, speakers bureau positions, stock ownership, and teaching services with AbbVie, Aeon, Alder, Allay Lamp, Allergan, Amgen, Axon, Biohaven Pharmaceuticals, Collegium, CoolTech, Currax, Dr. Reddy’s Laboratories (Promius), electroCore, GlaxoSmithKline, Impel NeuroPharma, Informa, Eli Lilly and Company, Lundbeck, Mainistee, Merck, National Headache Foundation, National Institutes of Health, Novartis, Pfizer, Satsuma, Supernus, Percept, Teva, Theranica, UpsherSmith, the US Food and Drug Administration, Vector, Vedanta Research, and Wolff’s Headache. The study was supported by Eli Lilly. Dr. Cowan reports no relevant conflicts of interest.

Publications
Topics
Sections

There is a significant association between higher interictal burden, disability, and allodynia in patients who sought medical care for migraine, according to recent research published in the journal Headache.

“[T]he burden and impact of migraine on the individual both during and between attacks were identified through supervised machine learning models to be strongly associated with seeking care,” Sait Ashina, MD, of the department of neurology at Harvard Medical School in Boston, and colleagues wrote in their study.

Dr. Ashina and colleagues performed a cross-sectional study of 61,826 patients from the web-based ObserVational survey of the Epidemiology, tReatment and Care Of MigrainE (OVERCOME) study with migraine who visited a primary care, specialty care, or urgent care, or emergency setting for headache between 2018 and 2020.

The patients recruited for OBSERVE were a mean of 41.7 years old and had experienced migraines for an average of 19.0 years; 59.4% had between 0 and 3 average headache days per month, 74.5% were women, 78.8% were White, and 85.4% had health insurance; and they were demographically representative of the US population.

Researchers used a machine learning model, which consisted of random forest and least absolute shrinkage and selection operator (LASSO) algorithms, to identify the relationship between patients who sought care for migraine and 54 different clinical, sociodemographic, and migraine-associated factors, which included age, years with migraine, symptom scores, pain intensity scores, disability score, comorbidities, vomiting, presence and severity of allodynia, and other factors.

The results showed 31,529 patients (51.0%) had an in-person or e-visit encounter with a primary care, specialty care, or urgent care, or emergency care location within 12 months of the survey, and were mostly White (76.5%) women (73.3%) with health insurance (88.9%). Of the patients who sought care, 52.8% had severe interictal burden measured by Migraine Interictal Burden Scale-4 score, compared with 23.1% of patients who did not seek care. Compared with patients who did not seek care, those who did visit a health care setting for migraine had a higher percentage of severe migraine-related disability as measured by the Migraine Disability Assessment Scale (36.7% vs 14.6%) and severe ictal cutaneous allodynia as measured by the Allodynia Symptom Checklist (21.0% vs 7.4%).

In a multivariable logistic regression model analysis, Dr. Ashina and colleagues said the factors most associated with seeking care included severe interictal burden (odds ratio [OR], 2.64; 95% confidence interval [CI], 2.5-2.8), severe migraine-related disability (OR, 2.2; 95% CI, 2.0-2.3), and severe ictal allodynia (OR, 1.7; 95% CI, 1.6-1.8), compared with less severe factors.

The researchers said their results have “significant implications for public health and advocacy efforts.”

“As seen through three decades of epidemiological research in the United States, rates of care-seeking have not improved dramatically over time despite significant additions to scientific knowledge and the therapeutic armamentarium, leaving a significant unmet need. This is also important from a clinical perspective,” they explained. “Health care professionals in primary care and internal medicine most likely see patients with migraine who do not discuss it during visits. This underscores the importance of maintaining vigilance for migraine, especially among those who may experience greater disability, impact, and interictal burden.”
 

 

 

Asking the Right Questions

Asked to comment on the research, Robert P. Cowan, MD, a neurologist and professor in the Stanford University School of Medicine department of neurology and neurological sciences in Palo Alto, California, said in an interview that the value of the paper is in what it does not say about the main reasons patients seek care.

“Most clinicians readily acknowledge that the average number of migraine headache days per month is, at best, a weak predictor of which patients seek care and when,” he said.

Dr. Cowan said that most patients are referred to him by other providers, and when he asks them why they did not seek care for migraine sooner, the answer is usually because the migraine was not severe enough or because over-the-counter medication had previously worked for them. He noted that change in frequency is, in his experience, a primary reason why patients will seek care. “[F]or new (or increasing) headache, it is the concern that the headaches are something more ‘serious,’ and once that is ruled out, the conversation often stops,” he said. “For long-standing migraine sufferers, it is the perception that the headache is a ‘fact of life’ and does not rise to the bar of seeking medical advice.”

The questions a survey or a provider asks matters, Dr. Cowan said. “Often, when we ask a patient how many headache (or migraine) days per month, the answer is in single digits. But if we follow-up with a question about the number of headache-free days [per] month, the answer is ‘never’ or ‘hardly ever,’” he explained. “The point here is that what questions a survey (or a provider) asks introduces a clear bias. The use of machine learning instruments, especially when utilizing supervised learning, only reinforces and amplifies the bias of the designers of the categories.”

Epidemiologic studies are interesting but “often ask the wrong questions,” Dr. Cowan said. “I am less worried about the ... 49% of migraine or possible migraine patients who do not seek care and do [not] progress to more disabling ‘chronic’ migraine than I am with identifying the subpopulations of migraine patients who seek care from providers who do not have adequate tools to match patients to the best treatments.”

The authors reported personal and institutional relationships in the form of advisory board memberships, consultancies, employment, honoraria, research support, speakers bureau positions, stock ownership, and teaching services with AbbVie, Aeon, Alder, Allay Lamp, Allergan, Amgen, Axon, Biohaven Pharmaceuticals, Collegium, CoolTech, Currax, Dr. Reddy’s Laboratories (Promius), electroCore, GlaxoSmithKline, Impel NeuroPharma, Informa, Eli Lilly and Company, Lundbeck, Mainistee, Merck, National Headache Foundation, National Institutes of Health, Novartis, Pfizer, Satsuma, Supernus, Percept, Teva, Theranica, UpsherSmith, the US Food and Drug Administration, Vector, Vedanta Research, and Wolff’s Headache. The study was supported by Eli Lilly. Dr. Cowan reports no relevant conflicts of interest.

There is a significant association between higher interictal burden, disability, and allodynia in patients who sought medical care for migraine, according to recent research published in the journal Headache.

“[T]he burden and impact of migraine on the individual both during and between attacks were identified through supervised machine learning models to be strongly associated with seeking care,” Sait Ashina, MD, of the department of neurology at Harvard Medical School in Boston, and colleagues wrote in their study.

Dr. Ashina and colleagues performed a cross-sectional study of 61,826 patients from the web-based ObserVational survey of the Epidemiology, tReatment and Care Of MigrainE (OVERCOME) study with migraine who visited a primary care, specialty care, or urgent care, or emergency setting for headache between 2018 and 2020.

The patients recruited for OBSERVE were a mean of 41.7 years old and had experienced migraines for an average of 19.0 years; 59.4% had between 0 and 3 average headache days per month, 74.5% were women, 78.8% were White, and 85.4% had health insurance; and they were demographically representative of the US population.

Researchers used a machine learning model, which consisted of random forest and least absolute shrinkage and selection operator (LASSO) algorithms, to identify the relationship between patients who sought care for migraine and 54 different clinical, sociodemographic, and migraine-associated factors, which included age, years with migraine, symptom scores, pain intensity scores, disability score, comorbidities, vomiting, presence and severity of allodynia, and other factors.

The results showed 31,529 patients (51.0%) had an in-person or e-visit encounter with a primary care, specialty care, or urgent care, or emergency care location within 12 months of the survey, and were mostly White (76.5%) women (73.3%) with health insurance (88.9%). Of the patients who sought care, 52.8% had severe interictal burden measured by Migraine Interictal Burden Scale-4 score, compared with 23.1% of patients who did not seek care. Compared with patients who did not seek care, those who did visit a health care setting for migraine had a higher percentage of severe migraine-related disability as measured by the Migraine Disability Assessment Scale (36.7% vs 14.6%) and severe ictal cutaneous allodynia as measured by the Allodynia Symptom Checklist (21.0% vs 7.4%).

In a multivariable logistic regression model analysis, Dr. Ashina and colleagues said the factors most associated with seeking care included severe interictal burden (odds ratio [OR], 2.64; 95% confidence interval [CI], 2.5-2.8), severe migraine-related disability (OR, 2.2; 95% CI, 2.0-2.3), and severe ictal allodynia (OR, 1.7; 95% CI, 1.6-1.8), compared with less severe factors.

The researchers said their results have “significant implications for public health and advocacy efforts.”

“As seen through three decades of epidemiological research in the United States, rates of care-seeking have not improved dramatically over time despite significant additions to scientific knowledge and the therapeutic armamentarium, leaving a significant unmet need. This is also important from a clinical perspective,” they explained. “Health care professionals in primary care and internal medicine most likely see patients with migraine who do not discuss it during visits. This underscores the importance of maintaining vigilance for migraine, especially among those who may experience greater disability, impact, and interictal burden.”
 

 

 

Asking the Right Questions

Asked to comment on the research, Robert P. Cowan, MD, a neurologist and professor in the Stanford University School of Medicine department of neurology and neurological sciences in Palo Alto, California, said in an interview that the value of the paper is in what it does not say about the main reasons patients seek care.

“Most clinicians readily acknowledge that the average number of migraine headache days per month is, at best, a weak predictor of which patients seek care and when,” he said.

Dr. Cowan said that most patients are referred to him by other providers, and when he asks them why they did not seek care for migraine sooner, the answer is usually because the migraine was not severe enough or because over-the-counter medication had previously worked for them. He noted that change in frequency is, in his experience, a primary reason why patients will seek care. “[F]or new (or increasing) headache, it is the concern that the headaches are something more ‘serious,’ and once that is ruled out, the conversation often stops,” he said. “For long-standing migraine sufferers, it is the perception that the headache is a ‘fact of life’ and does not rise to the bar of seeking medical advice.”

The questions a survey or a provider asks matters, Dr. Cowan said. “Often, when we ask a patient how many headache (or migraine) days per month, the answer is in single digits. But if we follow-up with a question about the number of headache-free days [per] month, the answer is ‘never’ or ‘hardly ever,’” he explained. “The point here is that what questions a survey (or a provider) asks introduces a clear bias. The use of machine learning instruments, especially when utilizing supervised learning, only reinforces and amplifies the bias of the designers of the categories.”

Epidemiologic studies are interesting but “often ask the wrong questions,” Dr. Cowan said. “I am less worried about the ... 49% of migraine or possible migraine patients who do not seek care and do [not] progress to more disabling ‘chronic’ migraine than I am with identifying the subpopulations of migraine patients who seek care from providers who do not have adequate tools to match patients to the best treatments.”

The authors reported personal and institutional relationships in the form of advisory board memberships, consultancies, employment, honoraria, research support, speakers bureau positions, stock ownership, and teaching services with AbbVie, Aeon, Alder, Allay Lamp, Allergan, Amgen, Axon, Biohaven Pharmaceuticals, Collegium, CoolTech, Currax, Dr. Reddy’s Laboratories (Promius), electroCore, GlaxoSmithKline, Impel NeuroPharma, Informa, Eli Lilly and Company, Lundbeck, Mainistee, Merck, National Headache Foundation, National Institutes of Health, Novartis, Pfizer, Satsuma, Supernus, Percept, Teva, Theranica, UpsherSmith, the US Food and Drug Administration, Vector, Vedanta Research, and Wolff’s Headache. The study was supported by Eli Lilly. Dr. Cowan reports no relevant conflicts of interest.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM HEADACHE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

No Increased Risk for Fractures Seen With Frequent Steroid Injections for Musculoskeletal Conditions

Article Type
Changed
Tue, 06/04/2024 - 13:16

 

TOPLINE:

The cumulative effect of frequent corticosteroid injections (CSIs), a common treatment for musculoskeletal pain, does not appear to increase the risk for fractures.

METHODOLOGY:

  • Researchers utilized an institutional electronic health record database to identify adults in Olmsted County, Minnesota, receiving corticosteroid injections from May 1, 2018, to July 1, 2022.
  • Corticosteroid equivalents were calculated for medications injected, including methylprednisolone, triamcinolone, betamethasone, and dexamethasone.
  • Patients were excluded if they had a prescription for oral prednisone equivalents greater than 2.5 mg/day for more than 30 days.
  • Fracture events were identified using ICD-9 and ICD-10 codes and were included only if they occurred after the first corticosteroid injection.

TAKEAWAY:

  • A total of 7197 patients were analyzed, with a mean age of 64.4 years, and of these patients, 346 (4.8%) had a new fracture in a mean time of 329 days from the first corticosteroid injection, including 149 (43.1%) in classic osteoporotic locations.
  • The study reported no increased fracture risk associated with corticosteroid injections and no significant difference in fracture rates across cumulative corticosteroid injection dose quartiles, regardless of osteoporosis status.
  • Factors such as previous fractures, age, and Charlson Comorbidity Index were associated with a higher risk for fractures, not corticosteroid injections.

IN PRACTICE:

“Clinicians should be reassured that frequent CSI is not associated with higher fracture risk and should not withhold these important pain treatments owing to concern for fracture,” wrote the authors of the study.

SOURCE:

The study was led by Terin T. Sytsma, MD, Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, Minnesota. It was published online in JAMA Network Open.

LIMITATIONS:

The study’s retrospective cohort design and its focus on a predominantly White population in a single community may limit the generalizability of the findings. Confounding variables such as smoking status, alcohol intake, and physical activity were acknowledged as potential contributors to fracture risk. Only clinically apparent fractures were considered, excluding silent vertebral fractures, and differences in corticosteroid formulation were not delineated.

DISCLOSURES:

The study was supported by a Mayo Clinic Catalyst Award to Dr. Sytsma. The authors had no conflicts of interest to report.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The cumulative effect of frequent corticosteroid injections (CSIs), a common treatment for musculoskeletal pain, does not appear to increase the risk for fractures.

METHODOLOGY:

  • Researchers utilized an institutional electronic health record database to identify adults in Olmsted County, Minnesota, receiving corticosteroid injections from May 1, 2018, to July 1, 2022.
  • Corticosteroid equivalents were calculated for medications injected, including methylprednisolone, triamcinolone, betamethasone, and dexamethasone.
  • Patients were excluded if they had a prescription for oral prednisone equivalents greater than 2.5 mg/day for more than 30 days.
  • Fracture events were identified using ICD-9 and ICD-10 codes and were included only if they occurred after the first corticosteroid injection.

TAKEAWAY:

  • A total of 7197 patients were analyzed, with a mean age of 64.4 years, and of these patients, 346 (4.8%) had a new fracture in a mean time of 329 days from the first corticosteroid injection, including 149 (43.1%) in classic osteoporotic locations.
  • The study reported no increased fracture risk associated with corticosteroid injections and no significant difference in fracture rates across cumulative corticosteroid injection dose quartiles, regardless of osteoporosis status.
  • Factors such as previous fractures, age, and Charlson Comorbidity Index were associated with a higher risk for fractures, not corticosteroid injections.

IN PRACTICE:

“Clinicians should be reassured that frequent CSI is not associated with higher fracture risk and should not withhold these important pain treatments owing to concern for fracture,” wrote the authors of the study.

SOURCE:

The study was led by Terin T. Sytsma, MD, Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, Minnesota. It was published online in JAMA Network Open.

LIMITATIONS:

The study’s retrospective cohort design and its focus on a predominantly White population in a single community may limit the generalizability of the findings. Confounding variables such as smoking status, alcohol intake, and physical activity were acknowledged as potential contributors to fracture risk. Only clinically apparent fractures were considered, excluding silent vertebral fractures, and differences in corticosteroid formulation were not delineated.

DISCLOSURES:

The study was supported by a Mayo Clinic Catalyst Award to Dr. Sytsma. The authors had no conflicts of interest to report.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

 

TOPLINE:

The cumulative effect of frequent corticosteroid injections (CSIs), a common treatment for musculoskeletal pain, does not appear to increase the risk for fractures.

METHODOLOGY:

  • Researchers utilized an institutional electronic health record database to identify adults in Olmsted County, Minnesota, receiving corticosteroid injections from May 1, 2018, to July 1, 2022.
  • Corticosteroid equivalents were calculated for medications injected, including methylprednisolone, triamcinolone, betamethasone, and dexamethasone.
  • Patients were excluded if they had a prescription for oral prednisone equivalents greater than 2.5 mg/day for more than 30 days.
  • Fracture events were identified using ICD-9 and ICD-10 codes and were included only if they occurred after the first corticosteroid injection.

TAKEAWAY:

  • A total of 7197 patients were analyzed, with a mean age of 64.4 years, and of these patients, 346 (4.8%) had a new fracture in a mean time of 329 days from the first corticosteroid injection, including 149 (43.1%) in classic osteoporotic locations.
  • The study reported no increased fracture risk associated with corticosteroid injections and no significant difference in fracture rates across cumulative corticosteroid injection dose quartiles, regardless of osteoporosis status.
  • Factors such as previous fractures, age, and Charlson Comorbidity Index were associated with a higher risk for fractures, not corticosteroid injections.

IN PRACTICE:

“Clinicians should be reassured that frequent CSI is not associated with higher fracture risk and should not withhold these important pain treatments owing to concern for fracture,” wrote the authors of the study.

SOURCE:

The study was led by Terin T. Sytsma, MD, Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, Minnesota. It was published online in JAMA Network Open.

LIMITATIONS:

The study’s retrospective cohort design and its focus on a predominantly White population in a single community may limit the generalizability of the findings. Confounding variables such as smoking status, alcohol intake, and physical activity were acknowledged as potential contributors to fracture risk. Only clinically apparent fractures were considered, excluding silent vertebral fractures, and differences in corticosteroid formulation were not delineated.

DISCLOSURES:

The study was supported by a Mayo Clinic Catalyst Award to Dr. Sytsma. The authors had no conflicts of interest to report.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ASTRO Releases New EBRT Guideline for Symptomatic Bone Mets

Article Type
Changed
Wed, 05/29/2024 - 16:28

A new clinical practice guideline by the American Society for Radiation Oncology (ASTRO) steers use of external beam radiation therapy (EBRT) for the palliation of symptomatic bone metastases, including recommendations concerning pain management and quality of life.

The guideline was needed to update previous recommendations and incorporate new high-quality evidence for the management of symptomatic bone metastases, Sara Alcorn, MD, PhD, of the University of Minnesota, Minneapolis, and colleagues wrote in Practical Radiation Oncology.

The focus was on the efficacy of EBRT in reducing pain, improving skeletal function, and enhancing quality of life, they wrote in the clinical practice guideline.

In developing their recommendations, the ASTRO task force reviewed evidence from 53 randomized controlled trials (RCTs) and 31 nonrandomized studies, and considered clinical experience.
 

Indications for Palliative Radiation

EBRT is strongly recommended for reducing pain from osseous metastasis and improving ambulatory status, sphincter function, and reducing pain in patients with spinal metastases causing compression of the spinal cord or cauda equina.

For patients with symptomatic bone metastases and an anticipated life expectancy of at least 4 weeks, EBRT is conditionally recommended to improve quality of life.

Implementation of other Treatments Alongside Palliative Radiation

Instead of RT alone, surgery with postoperative RT is conditionally recommended for patients with compression of the spinal cord or cauda equina.

Postoperative RT is strongly recommended for patients who have undergone surgery for non-spine bone metastases or spine metastases without involving spinal cord or cauda equina compression.

For patients with spinal bone metastases compressing the spinal cord or cauda equina, combining RT with dexamethasone is strongly recommended over RT alone.

Techniques, Dose-Fractionation, and Dose-Constraints for Initial Palliative Radiation

For patients with symptomatic bone metastases undergoing conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 3000 cGy in 10 fractions.

For patients with spinal bone metastases causing compression of the spinal cord or cauda equina who are not candidates for initial surgical decompression and are treated with conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 1600 cGy in 2 fractions, 2000 cGy in 5 fractions, or 3000 cGy in 10 fractions.

When selecting dose-fractionation, consider patient and disease factors such as prognosis and radiosensitivity, the authors wrote.

Highly conformal planning and delivery techniques, such as intensity-modulated radiation therapy, are conditionally recommended for patients with spinal bone metastases compressing the spinal cord or cauda equina who are receiving dose-escalated palliative RT.

The strongly recommended stereotactic body radiotherapy (SBRT) doses for patients with symptomatic bone metastases are 1200 to 1600 cGy in 1 fraction for non-spine metastases and 2400 cGy in 2 fractions for spine metastases. Other established SBRT dose and fractionation regimens with similar biologically effective doses may be considered based on patient tumor characteristics, normal tissue factors, and physician experience.

For patients with symptomatic bone metastases who have an ECOG PS of 0-2, are not undergoing surgical intervention, and have no neurological symptoms, SBRT is conditionally recommended over conventional palliative RT. Other factors to consider include life expectancy, tumor radiosensitivity, and metastatic disease burden, the guideline says.
 

 

 

Techniques, Dose-Fractionation, and Dose-Constraints for Palliative Reirradiation

For patients with spinal bone metastases requiring reirradiation to the same site, the strongly recommended conventional palliative RT regimens are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 2000 cGy in 8 fractions. When determining the RT dose-fractionation, consider the prior RT dose, time interval, and total spinal cord tolerance, the guideline says.

Treatment with SBRT is conditionally recommended for patients with spinal bone metastases needing reirradiation at the same site. When determining if SBRT is appropriate, consider patient factors such as urgency of treatment, prognosis, and radio-resistance. In addition, consider the prior RT dose, time interval, and total spinal cord tolerance when determining the RT dose-fractionation, the authors say.

The strongly recommended options for patients with symptomatic non-spine bone metastases needing reirradiation at the same site are single-fraction RT (800 cGy in 1 fraction) or multifraction conventional palliative RT (2000 cGy in 5 fractions or 2400 cGy in 6 fractions).
 

Impact of Techniques and Dose-fractionation on Quality of Life and Toxicity

For patients with bone metastases undergoing palliative radiation, it is strongly recommended to use a shared decision-making approach to determine the dose, fractionation, and supportive measures to optimize quality of life.

“Based on published data, the ASTRO task force’s recommendations inform best clinical practices on palliative RT for symptomatic bone metastases,” the guideline panelists said.

Limitations

While the guideline provides comprehensive recommendations, the panelists underscored the importance of individualized treatment approaches. Future research is needed to address gaps in evidence, particularly regarding advanced RT techniques and reirradiation strategies.

Guideline development was funded by ASTRO, with the systematic evidence review funded by the Patient-Centered Outcomes Research Institute. The panelists disclosed relationships with AstraZeneca, Elekta, Teladoc, and others.

Publications
Topics
Sections

A new clinical practice guideline by the American Society for Radiation Oncology (ASTRO) steers use of external beam radiation therapy (EBRT) for the palliation of symptomatic bone metastases, including recommendations concerning pain management and quality of life.

The guideline was needed to update previous recommendations and incorporate new high-quality evidence for the management of symptomatic bone metastases, Sara Alcorn, MD, PhD, of the University of Minnesota, Minneapolis, and colleagues wrote in Practical Radiation Oncology.

The focus was on the efficacy of EBRT in reducing pain, improving skeletal function, and enhancing quality of life, they wrote in the clinical practice guideline.

In developing their recommendations, the ASTRO task force reviewed evidence from 53 randomized controlled trials (RCTs) and 31 nonrandomized studies, and considered clinical experience.
 

Indications for Palliative Radiation

EBRT is strongly recommended for reducing pain from osseous metastasis and improving ambulatory status, sphincter function, and reducing pain in patients with spinal metastases causing compression of the spinal cord or cauda equina.

For patients with symptomatic bone metastases and an anticipated life expectancy of at least 4 weeks, EBRT is conditionally recommended to improve quality of life.

Implementation of other Treatments Alongside Palliative Radiation

Instead of RT alone, surgery with postoperative RT is conditionally recommended for patients with compression of the spinal cord or cauda equina.

Postoperative RT is strongly recommended for patients who have undergone surgery for non-spine bone metastases or spine metastases without involving spinal cord or cauda equina compression.

For patients with spinal bone metastases compressing the spinal cord or cauda equina, combining RT with dexamethasone is strongly recommended over RT alone.

Techniques, Dose-Fractionation, and Dose-Constraints for Initial Palliative Radiation

For patients with symptomatic bone metastases undergoing conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 3000 cGy in 10 fractions.

For patients with spinal bone metastases causing compression of the spinal cord or cauda equina who are not candidates for initial surgical decompression and are treated with conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 1600 cGy in 2 fractions, 2000 cGy in 5 fractions, or 3000 cGy in 10 fractions.

When selecting dose-fractionation, consider patient and disease factors such as prognosis and radiosensitivity, the authors wrote.

Highly conformal planning and delivery techniques, such as intensity-modulated radiation therapy, are conditionally recommended for patients with spinal bone metastases compressing the spinal cord or cauda equina who are receiving dose-escalated palliative RT.

The strongly recommended stereotactic body radiotherapy (SBRT) doses for patients with symptomatic bone metastases are 1200 to 1600 cGy in 1 fraction for non-spine metastases and 2400 cGy in 2 fractions for spine metastases. Other established SBRT dose and fractionation regimens with similar biologically effective doses may be considered based on patient tumor characteristics, normal tissue factors, and physician experience.

For patients with symptomatic bone metastases who have an ECOG PS of 0-2, are not undergoing surgical intervention, and have no neurological symptoms, SBRT is conditionally recommended over conventional palliative RT. Other factors to consider include life expectancy, tumor radiosensitivity, and metastatic disease burden, the guideline says.
 

 

 

Techniques, Dose-Fractionation, and Dose-Constraints for Palliative Reirradiation

For patients with spinal bone metastases requiring reirradiation to the same site, the strongly recommended conventional palliative RT regimens are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 2000 cGy in 8 fractions. When determining the RT dose-fractionation, consider the prior RT dose, time interval, and total spinal cord tolerance, the guideline says.

Treatment with SBRT is conditionally recommended for patients with spinal bone metastases needing reirradiation at the same site. When determining if SBRT is appropriate, consider patient factors such as urgency of treatment, prognosis, and radio-resistance. In addition, consider the prior RT dose, time interval, and total spinal cord tolerance when determining the RT dose-fractionation, the authors say.

The strongly recommended options for patients with symptomatic non-spine bone metastases needing reirradiation at the same site are single-fraction RT (800 cGy in 1 fraction) or multifraction conventional palliative RT (2000 cGy in 5 fractions or 2400 cGy in 6 fractions).
 

Impact of Techniques and Dose-fractionation on Quality of Life and Toxicity

For patients with bone metastases undergoing palliative radiation, it is strongly recommended to use a shared decision-making approach to determine the dose, fractionation, and supportive measures to optimize quality of life.

“Based on published data, the ASTRO task force’s recommendations inform best clinical practices on palliative RT for symptomatic bone metastases,” the guideline panelists said.

Limitations

While the guideline provides comprehensive recommendations, the panelists underscored the importance of individualized treatment approaches. Future research is needed to address gaps in evidence, particularly regarding advanced RT techniques and reirradiation strategies.

Guideline development was funded by ASTRO, with the systematic evidence review funded by the Patient-Centered Outcomes Research Institute. The panelists disclosed relationships with AstraZeneca, Elekta, Teladoc, and others.

A new clinical practice guideline by the American Society for Radiation Oncology (ASTRO) steers use of external beam radiation therapy (EBRT) for the palliation of symptomatic bone metastases, including recommendations concerning pain management and quality of life.

The guideline was needed to update previous recommendations and incorporate new high-quality evidence for the management of symptomatic bone metastases, Sara Alcorn, MD, PhD, of the University of Minnesota, Minneapolis, and colleagues wrote in Practical Radiation Oncology.

The focus was on the efficacy of EBRT in reducing pain, improving skeletal function, and enhancing quality of life, they wrote in the clinical practice guideline.

In developing their recommendations, the ASTRO task force reviewed evidence from 53 randomized controlled trials (RCTs) and 31 nonrandomized studies, and considered clinical experience.
 

Indications for Palliative Radiation

EBRT is strongly recommended for reducing pain from osseous metastasis and improving ambulatory status, sphincter function, and reducing pain in patients with spinal metastases causing compression of the spinal cord or cauda equina.

For patients with symptomatic bone metastases and an anticipated life expectancy of at least 4 weeks, EBRT is conditionally recommended to improve quality of life.

Implementation of other Treatments Alongside Palliative Radiation

Instead of RT alone, surgery with postoperative RT is conditionally recommended for patients with compression of the spinal cord or cauda equina.

Postoperative RT is strongly recommended for patients who have undergone surgery for non-spine bone metastases or spine metastases without involving spinal cord or cauda equina compression.

For patients with spinal bone metastases compressing the spinal cord or cauda equina, combining RT with dexamethasone is strongly recommended over RT alone.

Techniques, Dose-Fractionation, and Dose-Constraints for Initial Palliative Radiation

For patients with symptomatic bone metastases undergoing conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 3000 cGy in 10 fractions.

For patients with spinal bone metastases causing compression of the spinal cord or cauda equina who are not candidates for initial surgical decompression and are treated with conventional palliative RT, strongly recommended doses are 800 cGy in 1 fraction, 1600 cGy in 2 fractions, 2000 cGy in 5 fractions, or 3000 cGy in 10 fractions.

When selecting dose-fractionation, consider patient and disease factors such as prognosis and radiosensitivity, the authors wrote.

Highly conformal planning and delivery techniques, such as intensity-modulated radiation therapy, are conditionally recommended for patients with spinal bone metastases compressing the spinal cord or cauda equina who are receiving dose-escalated palliative RT.

The strongly recommended stereotactic body radiotherapy (SBRT) doses for patients with symptomatic bone metastases are 1200 to 1600 cGy in 1 fraction for non-spine metastases and 2400 cGy in 2 fractions for spine metastases. Other established SBRT dose and fractionation regimens with similar biologically effective doses may be considered based on patient tumor characteristics, normal tissue factors, and physician experience.

For patients with symptomatic bone metastases who have an ECOG PS of 0-2, are not undergoing surgical intervention, and have no neurological symptoms, SBRT is conditionally recommended over conventional palliative RT. Other factors to consider include life expectancy, tumor radiosensitivity, and metastatic disease burden, the guideline says.
 

 

 

Techniques, Dose-Fractionation, and Dose-Constraints for Palliative Reirradiation

For patients with spinal bone metastases requiring reirradiation to the same site, the strongly recommended conventional palliative RT regimens are 800 cGy in 1 fraction, 2000 cGy in 5 fractions, 2400 cGy in 6 fractions, or 2000 cGy in 8 fractions. When determining the RT dose-fractionation, consider the prior RT dose, time interval, and total spinal cord tolerance, the guideline says.

Treatment with SBRT is conditionally recommended for patients with spinal bone metastases needing reirradiation at the same site. When determining if SBRT is appropriate, consider patient factors such as urgency of treatment, prognosis, and radio-resistance. In addition, consider the prior RT dose, time interval, and total spinal cord tolerance when determining the RT dose-fractionation, the authors say.

The strongly recommended options for patients with symptomatic non-spine bone metastases needing reirradiation at the same site are single-fraction RT (800 cGy in 1 fraction) or multifraction conventional palliative RT (2000 cGy in 5 fractions or 2400 cGy in 6 fractions).
 

Impact of Techniques and Dose-fractionation on Quality of Life and Toxicity

For patients with bone metastases undergoing palliative radiation, it is strongly recommended to use a shared decision-making approach to determine the dose, fractionation, and supportive measures to optimize quality of life.

“Based on published data, the ASTRO task force’s recommendations inform best clinical practices on palliative RT for symptomatic bone metastases,” the guideline panelists said.

Limitations

While the guideline provides comprehensive recommendations, the panelists underscored the importance of individualized treatment approaches. Future research is needed to address gaps in evidence, particularly regarding advanced RT techniques and reirradiation strategies.

Guideline development was funded by ASTRO, with the systematic evidence review funded by the Patient-Centered Outcomes Research Institute. The panelists disclosed relationships with AstraZeneca, Elekta, Teladoc, and others.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM PRACTICAL RADIATION ONCOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Migraine Disability Nearly Doubled in US Between 2005 and 2018

Article Type
Changed
Fri, 05/24/2024 - 15:07

Although the prevalence of migraine in the United States has remained stable over the past three decades, migraine-related disability has nearly doubled during that time, a new systematic review showed.

“The disability trend could reflect changes in reporting, study methodology, social, and societal changes, or changes in exacerbating or remediating factors that make migraine more disabling,” wrote lead investigator Fred Cohen, MD, of Center for Headache and Facial Pain, Department of Neurology, Icahn School of Medicine, Mount Sinai, New York City, and colleagues.

The study was published online in Headache.

Researchers conducted a systematic review of population-based US epidemiologic studies focusing on the prevalence and/or burden of migraine, all published before February 2022. Studies on migraine, episodic migraine, and/or chronic migraine were included.

The primary measure of disease burden was the Migraine Disability Assessment Scale (MIDAS), which measures days lost to migraine over a 3-month period in three domains and defines groups with moderate or severe disability (grades III and IV, respectively), using cut-scores.

Of 1609 studies initially reviewed, the researchers included 26 publications from 11 US population-based studies.

For the past 30 years, the prevalence of migraine in the population has remained largely stable, ranging from 12% to 15% in the overall population, from 17% to 19% in women, and from 6% to 7% in men.

In adults overall, chronic migraine prevalence is 0.91% (1.3% in women and 0.5% in men), while in adolescents, the prevalence is 0.8%.

Although prevalence remained roughly the same during the 30 years, the proportion of people with migraine and moderate to severe MIDAS disability (grades III-IV) has trended upward across studies during part of the study period, increasing from 22% in 2005 to 42% in 2018.

Throughout the years studied, a consistently higher proportion of women versus men were assigned MIDAS grades III-IV.

Although researchers said the exact reason for the increase is unknown, possible explanations include changes in study methodology from mailed questionnaires to web surveys or the decline in participation rate in web surveys. It is also possible that people with migraine may be more willing to report disability than they used to be, authors wrote.

Increased MIDAS scores may be attributable to some environmental risk factor that exacerbates migraine without modifying its prevalence, such as worsening air quality, an increase in natural disasters, or increased opioid use for migraine, they added.

The reason for increased moderate to severe disability in women may be attributable to the fact that migraine is “most common in mid-life, a period characterized by familial and work responsibilities, which may engender a higher risk of burden for working women,” authors wrote. The link between migraine attacks and menstrual cycles may also explain observed gender differences in disability.

In general, the most frequently reported burdens associated with migraine included missed work and school and family and social functioning.

It is “surprising that improvements in treatment have not been associated with reductions in disability,” researchers noted.

No financial support was provided for this study. Dr. Cohen serves as an assistant editor for Headache. He has received honoraria from Springer Nature and MedLink Neurology. Other authors’ disclosures are listed on the original paper.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Although the prevalence of migraine in the United States has remained stable over the past three decades, migraine-related disability has nearly doubled during that time, a new systematic review showed.

“The disability trend could reflect changes in reporting, study methodology, social, and societal changes, or changes in exacerbating or remediating factors that make migraine more disabling,” wrote lead investigator Fred Cohen, MD, of Center for Headache and Facial Pain, Department of Neurology, Icahn School of Medicine, Mount Sinai, New York City, and colleagues.

The study was published online in Headache.

Researchers conducted a systematic review of population-based US epidemiologic studies focusing on the prevalence and/or burden of migraine, all published before February 2022. Studies on migraine, episodic migraine, and/or chronic migraine were included.

The primary measure of disease burden was the Migraine Disability Assessment Scale (MIDAS), which measures days lost to migraine over a 3-month period in three domains and defines groups with moderate or severe disability (grades III and IV, respectively), using cut-scores.

Of 1609 studies initially reviewed, the researchers included 26 publications from 11 US population-based studies.

For the past 30 years, the prevalence of migraine in the population has remained largely stable, ranging from 12% to 15% in the overall population, from 17% to 19% in women, and from 6% to 7% in men.

In adults overall, chronic migraine prevalence is 0.91% (1.3% in women and 0.5% in men), while in adolescents, the prevalence is 0.8%.

Although prevalence remained roughly the same during the 30 years, the proportion of people with migraine and moderate to severe MIDAS disability (grades III-IV) has trended upward across studies during part of the study period, increasing from 22% in 2005 to 42% in 2018.

Throughout the years studied, a consistently higher proportion of women versus men were assigned MIDAS grades III-IV.

Although researchers said the exact reason for the increase is unknown, possible explanations include changes in study methodology from mailed questionnaires to web surveys or the decline in participation rate in web surveys. It is also possible that people with migraine may be more willing to report disability than they used to be, authors wrote.

Increased MIDAS scores may be attributable to some environmental risk factor that exacerbates migraine without modifying its prevalence, such as worsening air quality, an increase in natural disasters, or increased opioid use for migraine, they added.

The reason for increased moderate to severe disability in women may be attributable to the fact that migraine is “most common in mid-life, a period characterized by familial and work responsibilities, which may engender a higher risk of burden for working women,” authors wrote. The link between migraine attacks and menstrual cycles may also explain observed gender differences in disability.

In general, the most frequently reported burdens associated with migraine included missed work and school and family and social functioning.

It is “surprising that improvements in treatment have not been associated with reductions in disability,” researchers noted.

No financial support was provided for this study. Dr. Cohen serves as an assistant editor for Headache. He has received honoraria from Springer Nature and MedLink Neurology. Other authors’ disclosures are listed on the original paper.
 

A version of this article appeared on Medscape.com.

Although the prevalence of migraine in the United States has remained stable over the past three decades, migraine-related disability has nearly doubled during that time, a new systematic review showed.

“The disability trend could reflect changes in reporting, study methodology, social, and societal changes, or changes in exacerbating or remediating factors that make migraine more disabling,” wrote lead investigator Fred Cohen, MD, of Center for Headache and Facial Pain, Department of Neurology, Icahn School of Medicine, Mount Sinai, New York City, and colleagues.

The study was published online in Headache.

Researchers conducted a systematic review of population-based US epidemiologic studies focusing on the prevalence and/or burden of migraine, all published before February 2022. Studies on migraine, episodic migraine, and/or chronic migraine were included.

The primary measure of disease burden was the Migraine Disability Assessment Scale (MIDAS), which measures days lost to migraine over a 3-month period in three domains and defines groups with moderate or severe disability (grades III and IV, respectively), using cut-scores.

Of 1609 studies initially reviewed, the researchers included 26 publications from 11 US population-based studies.

For the past 30 years, the prevalence of migraine in the population has remained largely stable, ranging from 12% to 15% in the overall population, from 17% to 19% in women, and from 6% to 7% in men.

In adults overall, chronic migraine prevalence is 0.91% (1.3% in women and 0.5% in men), while in adolescents, the prevalence is 0.8%.

Although prevalence remained roughly the same during the 30 years, the proportion of people with migraine and moderate to severe MIDAS disability (grades III-IV) has trended upward across studies during part of the study period, increasing from 22% in 2005 to 42% in 2018.

Throughout the years studied, a consistently higher proportion of women versus men were assigned MIDAS grades III-IV.

Although researchers said the exact reason for the increase is unknown, possible explanations include changes in study methodology from mailed questionnaires to web surveys or the decline in participation rate in web surveys. It is also possible that people with migraine may be more willing to report disability than they used to be, authors wrote.

Increased MIDAS scores may be attributable to some environmental risk factor that exacerbates migraine without modifying its prevalence, such as worsening air quality, an increase in natural disasters, or increased opioid use for migraine, they added.

The reason for increased moderate to severe disability in women may be attributable to the fact that migraine is “most common in mid-life, a period characterized by familial and work responsibilities, which may engender a higher risk of burden for working women,” authors wrote. The link between migraine attacks and menstrual cycles may also explain observed gender differences in disability.

In general, the most frequently reported burdens associated with migraine included missed work and school and family and social functioning.

It is “surprising that improvements in treatment have not been associated with reductions in disability,” researchers noted.

No financial support was provided for this study. Dr. Cohen serves as an assistant editor for Headache. He has received honoraria from Springer Nature and MedLink Neurology. Other authors’ disclosures are listed on the original paper.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM HEADACHE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Post–Mohs Surgery Opioid Prescribing More Common in Some Patient Groups

Article Type
Changed
Wed, 05/22/2024 - 11:53

Certain minority populations may be at a higher absolute risk of being prescribed opioids after undergoing dermatologic surgery, according to a new study. The study also found that patients who do receive opioids postoperatively are at an increased risk for chronic opioid use and complications.

This report represents the largest analysis to date of opioid prescribing after dermatologic surgery, said lead author Kyle C. Lauck, MD, a dermatology resident at Baylor University Medical Center, Dallas, Texas. “Females, African Americans, and Latino patients may be at a higher risk of opioid prescription after dermatologic surgery. Surgeons should be aware of these populations and the risks they face when determining candidacy for postsurgical opioid analgesia.”

He presented the results at the annual meeting of the American College of Mohs Surgery.

The opioid epidemic is a concern across all areas of medicine, and the majority of opioid prescriptions in dermatology are given following surgery. Dr. Lauck noted that even though guidelines delegate opioids as second line for pain control, the existing data on opioid prescribing in dermatologic surgery is mixed. For example, some reports have shown that up to 58% of patients receive opioids postoperatively. “No consensus exists when we should routinely give opioids to these patients,” he said.

Even though most surgeons prescribe short courses of opioids, even brief regimens are associated with increased risks for overuse and substance abuse. Population-level data are limited concerning opioid prescriptions in dermatologic surgery, and in particular, there is an absence of data on the risk for long-term complications associated with use.

Certain Populations at Risk

To evaluate opioid prescription rates in dermatologic surgery, focusing on disparities between demographic populations, as well as the risk for long-term complications of postoperative opioid prescriptions, Dr. Lauck and colleagues conducted a retrospective study that included 914,721 dermatologic surgery patients, with billing codes for Mohs micrographic surgery. Patient data were obtained from TriNetX, a federated health research network.

The mean age of patients in this cohort was 54 years, and 124,494 (13.6%) were prescribed postsurgical oral opioids. The most common was oxycodone, prescribed to 43% of patients. Dr. Lauck noted that, according to their data, certain groups appeared more likely to receive a prescription for opioids following surgery. These included Black or African American patients (23.75% vs 12.86% for White patients), females (13.73% vs 13.16% for males), and Latino or Hispanic patients (17.02% vs 13.61% non-Latino/Hispanic patients).

Patients with a history of prior oral opioid prescription, prior opioid abuse or dependence, and any type of substance abuse had a significant increase in absolute risk of being prescribed postsurgical opioids (P < .0001). 

The type of surgery also was associated with prescribed postop opioids. For a malignant excision, 18.29% of patients were prescribed postop opioids compared with 14.9% for a benign excision. About a third of patients (34.9%) undergoing a graft repair received opioids.

There was an elevated rate of postop opioid prescribing that was specific to the site of surgery, with the highest rates observed with eyelids, scalp and neck, trunk, and genital sites. The highest overall rates of opioid prescriptions were for patients who underwent excisions in the genital area (54.5%).
 

 

 

Long-Term Consequences

The authors also looked at the longer-term consequences of postop opioid use. “Nearly one in three patients who were prescribed opioids needed subsequent prescriptions down the line,” said Dr. Lauck. 

From 3 months to 5 years after surgery, patients who received postsurgical opioids were at significantly higher risk for not only subsequent oral opioid prescription but also opiate abuse, any substance abuse, overdose by opioid narcotics, constipation, and chronic pain. “An opioid prescription may confer further risks of longitudinal complications of chronic opioid use,” he concluded.

Commenting on the study, Jesse M. Lewin, MD, chief of Mohs micrographic and dermatologic surgery at Icahn School of Medicine at Mount Sinai, New York City, noted an important finding of this study was the long-term sequelae of patients who did receive postop opioids.

“This is striking given that postsurgical opiate prescriptions are for short durations and limited number of pills,” he told this news organization. “This study highlights the potential danger of even short course of opiates and should serve as a reminder to dermatologic surgeons to be judicious about opiate prescribing.”

Dr. Lauck and Dr. Lewin had no disclosures. 
 

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Certain minority populations may be at a higher absolute risk of being prescribed opioids after undergoing dermatologic surgery, according to a new study. The study also found that patients who do receive opioids postoperatively are at an increased risk for chronic opioid use and complications.

This report represents the largest analysis to date of opioid prescribing after dermatologic surgery, said lead author Kyle C. Lauck, MD, a dermatology resident at Baylor University Medical Center, Dallas, Texas. “Females, African Americans, and Latino patients may be at a higher risk of opioid prescription after dermatologic surgery. Surgeons should be aware of these populations and the risks they face when determining candidacy for postsurgical opioid analgesia.”

He presented the results at the annual meeting of the American College of Mohs Surgery.

The opioid epidemic is a concern across all areas of medicine, and the majority of opioid prescriptions in dermatology are given following surgery. Dr. Lauck noted that even though guidelines delegate opioids as second line for pain control, the existing data on opioid prescribing in dermatologic surgery is mixed. For example, some reports have shown that up to 58% of patients receive opioids postoperatively. “No consensus exists when we should routinely give opioids to these patients,” he said.

Even though most surgeons prescribe short courses of opioids, even brief regimens are associated with increased risks for overuse and substance abuse. Population-level data are limited concerning opioid prescriptions in dermatologic surgery, and in particular, there is an absence of data on the risk for long-term complications associated with use.

Certain Populations at Risk

To evaluate opioid prescription rates in dermatologic surgery, focusing on disparities between demographic populations, as well as the risk for long-term complications of postoperative opioid prescriptions, Dr. Lauck and colleagues conducted a retrospective study that included 914,721 dermatologic surgery patients, with billing codes for Mohs micrographic surgery. Patient data were obtained from TriNetX, a federated health research network.

The mean age of patients in this cohort was 54 years, and 124,494 (13.6%) were prescribed postsurgical oral opioids. The most common was oxycodone, prescribed to 43% of patients. Dr. Lauck noted that, according to their data, certain groups appeared more likely to receive a prescription for opioids following surgery. These included Black or African American patients (23.75% vs 12.86% for White patients), females (13.73% vs 13.16% for males), and Latino or Hispanic patients (17.02% vs 13.61% non-Latino/Hispanic patients).

Patients with a history of prior oral opioid prescription, prior opioid abuse or dependence, and any type of substance abuse had a significant increase in absolute risk of being prescribed postsurgical opioids (P < .0001). 

The type of surgery also was associated with prescribed postop opioids. For a malignant excision, 18.29% of patients were prescribed postop opioids compared with 14.9% for a benign excision. About a third of patients (34.9%) undergoing a graft repair received opioids.

There was an elevated rate of postop opioid prescribing that was specific to the site of surgery, with the highest rates observed with eyelids, scalp and neck, trunk, and genital sites. The highest overall rates of opioid prescriptions were for patients who underwent excisions in the genital area (54.5%).
 

 

 

Long-Term Consequences

The authors also looked at the longer-term consequences of postop opioid use. “Nearly one in three patients who were prescribed opioids needed subsequent prescriptions down the line,” said Dr. Lauck. 

From 3 months to 5 years after surgery, patients who received postsurgical opioids were at significantly higher risk for not only subsequent oral opioid prescription but also opiate abuse, any substance abuse, overdose by opioid narcotics, constipation, and chronic pain. “An opioid prescription may confer further risks of longitudinal complications of chronic opioid use,” he concluded.

Commenting on the study, Jesse M. Lewin, MD, chief of Mohs micrographic and dermatologic surgery at Icahn School of Medicine at Mount Sinai, New York City, noted an important finding of this study was the long-term sequelae of patients who did receive postop opioids.

“This is striking given that postsurgical opiate prescriptions are for short durations and limited number of pills,” he told this news organization. “This study highlights the potential danger of even short course of opiates and should serve as a reminder to dermatologic surgeons to be judicious about opiate prescribing.”

Dr. Lauck and Dr. Lewin had no disclosures. 
 

A version of this article appeared on Medscape.com.

Certain minority populations may be at a higher absolute risk of being prescribed opioids after undergoing dermatologic surgery, according to a new study. The study also found that patients who do receive opioids postoperatively are at an increased risk for chronic opioid use and complications.

This report represents the largest analysis to date of opioid prescribing after dermatologic surgery, said lead author Kyle C. Lauck, MD, a dermatology resident at Baylor University Medical Center, Dallas, Texas. “Females, African Americans, and Latino patients may be at a higher risk of opioid prescription after dermatologic surgery. Surgeons should be aware of these populations and the risks they face when determining candidacy for postsurgical opioid analgesia.”

He presented the results at the annual meeting of the American College of Mohs Surgery.

The opioid epidemic is a concern across all areas of medicine, and the majority of opioid prescriptions in dermatology are given following surgery. Dr. Lauck noted that even though guidelines delegate opioids as second line for pain control, the existing data on opioid prescribing in dermatologic surgery is mixed. For example, some reports have shown that up to 58% of patients receive opioids postoperatively. “No consensus exists when we should routinely give opioids to these patients,” he said.

Even though most surgeons prescribe short courses of opioids, even brief regimens are associated with increased risks for overuse and substance abuse. Population-level data are limited concerning opioid prescriptions in dermatologic surgery, and in particular, there is an absence of data on the risk for long-term complications associated with use.

Certain Populations at Risk

To evaluate opioid prescription rates in dermatologic surgery, focusing on disparities between demographic populations, as well as the risk for long-term complications of postoperative opioid prescriptions, Dr. Lauck and colleagues conducted a retrospective study that included 914,721 dermatologic surgery patients, with billing codes for Mohs micrographic surgery. Patient data were obtained from TriNetX, a federated health research network.

The mean age of patients in this cohort was 54 years, and 124,494 (13.6%) were prescribed postsurgical oral opioids. The most common was oxycodone, prescribed to 43% of patients. Dr. Lauck noted that, according to their data, certain groups appeared more likely to receive a prescription for opioids following surgery. These included Black or African American patients (23.75% vs 12.86% for White patients), females (13.73% vs 13.16% for males), and Latino or Hispanic patients (17.02% vs 13.61% non-Latino/Hispanic patients).

Patients with a history of prior oral opioid prescription, prior opioid abuse or dependence, and any type of substance abuse had a significant increase in absolute risk of being prescribed postsurgical opioids (P < .0001). 

The type of surgery also was associated with prescribed postop opioids. For a malignant excision, 18.29% of patients were prescribed postop opioids compared with 14.9% for a benign excision. About a third of patients (34.9%) undergoing a graft repair received opioids.

There was an elevated rate of postop opioid prescribing that was specific to the site of surgery, with the highest rates observed with eyelids, scalp and neck, trunk, and genital sites. The highest overall rates of opioid prescriptions were for patients who underwent excisions in the genital area (54.5%).
 

 

 

Long-Term Consequences

The authors also looked at the longer-term consequences of postop opioid use. “Nearly one in three patients who were prescribed opioids needed subsequent prescriptions down the line,” said Dr. Lauck. 

From 3 months to 5 years after surgery, patients who received postsurgical opioids were at significantly higher risk for not only subsequent oral opioid prescription but also opiate abuse, any substance abuse, overdose by opioid narcotics, constipation, and chronic pain. “An opioid prescription may confer further risks of longitudinal complications of chronic opioid use,” he concluded.

Commenting on the study, Jesse M. Lewin, MD, chief of Mohs micrographic and dermatologic surgery at Icahn School of Medicine at Mount Sinai, New York City, noted an important finding of this study was the long-term sequelae of patients who did receive postop opioids.

“This is striking given that postsurgical opiate prescriptions are for short durations and limited number of pills,” he told this news organization. “This study highlights the potential danger of even short course of opiates and should serve as a reminder to dermatologic surgeons to be judicious about opiate prescribing.”

Dr. Lauck and Dr. Lewin had no disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ACMS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Meningitis a Risk Factor for Trigeminal Neuralgia? New Data

Article Type
Changed
Tue, 05/28/2024 - 15:06

Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.

In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.

This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.

“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.

The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.
 

Strong Clinical Risk Factors

Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.

To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.

Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.

Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.

Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.

In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; P < .001).

Other strong risk factors were neurovascular compression disorders (OR, 39.82; P < .001) and multiple sclerosis (OR, 12.41; P < .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.

“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.

She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.
 

Ask About Meningitis, Fever

Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.

“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”

Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.

“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”

Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”

The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.

In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.

This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.

“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.

The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.
 

Strong Clinical Risk Factors

Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.

To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.

Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.

Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.

Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.

In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; P < .001).

Other strong risk factors were neurovascular compression disorders (OR, 39.82; P < .001) and multiple sclerosis (OR, 12.41; P < .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.

“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.

She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.
 

Ask About Meningitis, Fever

Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.

“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”

Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.

“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”

Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”

The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.

A version of this article appeared on Medscape.com.

Meningitis has been highlighted as a novel risk factor for trigeminal neuralgia in a nationwide, propensity-matched study of hospital admissions.

In multivariate analysis, the odds of meningitis were threefold higher in patients admitted with trigeminal neuralgia than in matched controls without trigeminal neuralgia.

This is the first nationwide population-based study of the rare, chronic pain disorder to identify the prevalence of trigeminal neuralgia admissions in the United States and risk factors contributing to trigeminal neuralgia development.

“Our results affirm known associations between trigeminal neuralgia and comorbidities like multiple sclerosis, and they also identify meningitis as a novel risk factor for trigeminal neuralgia,” said investigator Megan Tang, BS, a medical student at the Icahn School of Medicine at Mount Sinai, New York City.

The findings were presented at the American Association of Neurological Surgeons (AANS) 2024 annual meeting.
 

Strong Clinical Risk Factors

Trigeminal neuralgia is a rare pain disorder involving neurovascular compression of the trigeminal nerve. Its etiology and risk factors are poorly understood. Current literature is based on limited datasets and reports inconsistent risk factors across studies.

To better understand the disorder, researchers used International Classification of Diseases (ICD)-9 codes to identify trigeminal neuralgia admissions in the National Inpatient Sample from 2016 to 2019, and then propensity matched them 1:1 to non-trigeminal neuralgia admissions based on demographics, socioeconomic status, and Charlson comorbidity index scores.

Univariate analysis identified 136,345 trigeminal neuralgia admissions or an overall prevalence of 0.096%.

Trigeminal neuralgia admissions had lower morbidity than non-trigeminal neuralgia admissions and a higher prevalence of non-White patients, private insurance, and prolonged length of stay, Ms. Tang said.

Patients admitted for trigeminal neuralgia also had a higher prevalence of several chronic conditions, including hypertension, hyperlipidemia, and osteoarthritis; inflammatory conditions like lupus, meningitis, rheumatoid arthritis, and inflammatory bowel disease; and neurologic conditions including multiple sclerosis, epilepsy, stroke, and neurovascular compression disorders.

In multivariate analysis, investigators identified meningitis as a previously unknown risk factor for trigeminal neuralgia (odds ratio [OR], 3.1; P < .001).

Other strong risk factors were neurovascular compression disorders (OR, 39.82; P < .001) and multiple sclerosis (OR, 12.41; P < .001). Non-White race (Black; OR, 1.09; Hispanic; OR, 1.23; Other; OR, 1.24) and use of Medicaid (OR, 1.07) and other insurance (OR, 1.17) were demographic risk factors for trigeminal neuralgia.

“This finding points us toward future work exploring the potential mechanisms of predictors, most notably inflammatory conditions in trigeminal neuralgia development,” Ms. Tang concluded.

She declined to comment further on the findings, noting the investigators are still finalizing the results and interpretation.
 

Ask About Meningitis, Fever

Commenting on the findings, Michael D. Staudt, MD, MSc, University Hospitals Cleveland Medical Center, said that many patients who present with classical trigeminal neuralgia will have a blood vessel on MRI that is pressing on the trigeminal nerve.

“Obviously, the nerve is bathed in cerebrospinal fluid. So, if there’s an inflammatory marker, inflammation, or infection that could be injuring the nerve in a way that we don’t yet understand, that could be something that could cause trigeminal neuralgia without having to see a blood vessel,” said Dr. Staudt, who was not involved in the study. “It makes sense, theoretically. Something that’s inflammatory, something that’s irritating, that’s novel.”

Currently, predictive markers include clinical history, response to classical medications such as carbamazepine, and MRI findings, Dr. Staudt noted.

“Someone shows up with symptoms and MRI, and it’s basically do they have a blood vessel or not,” he said. “Treatments are generally within the same categories, but we don’t think it’s the same sort of success rate as seeing a blood vessel.”

Further research is needed, but, in the meantime, Dr. Staudt said, “We can ask patients who show up with facial pain if they’ve ever had meningitis or some sort of fever that preceded their onset of pain.”

The study had no specific funding. Ms. Tang and coauthor Jack Y. Zhang, MS, reported no relevant financial disclosures. Dr. Staudt reported serving as a consultant for Abbott and as a scientific adviser and consultant for Boston Scientific.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Green Whistle’ Provides Pain Relief -- But Not in the US

Article Type
Changed
Wed, 05/15/2024 - 10:48

 

This discussion was recorded on March 29, 2024. The transcript has been edited for clarity.

Robert D. Glatter, MD: Joining me today to discuss the use of methoxyflurane (Penthrox), an inhaled nonopioid analgesic for the relief of acute pain, is Dr. William Kenneth (Ken) Milne, an emergency physician at Strathroy Middlesex General Hospital in Ontario, Canada, and the founder of the well-known podcast The Skeptics’ Guide to Emergency Medicine (SGEM).

Also joining me is Dr. Sergey Motov, an emergency physician and research director at Maimonides Medical Center in Brooklyn, New York, and an expert in pain management. I want to welcome both of you and thank you for joining me.
 

RAMPED Trial: Evaluating the Efficacy of Methoxyflurane

Dr. Glatter: Ken, your recent post on Twitter [now X] regarding the utility of Penthrox in the RAMPED trial really caught my attention. While the trial was from 2021, it really is relevant regarding the prehospital management of pain in the practice of emergency medicine, and certainly in-hospital practice. I was hoping you could review the study design but also get into the rationale behind the use of this novel agent.

William Kenneth (Ken) Milne, MD, MSc: Sure. I’d be happy to kick this episode off with talking about a study that was published in 2020 in Academic Emergency Medicine. It was an Australian study by Brichko et al., and they were doing a randomized controlled trial looking at methoxyflurane vs standard care.

They selected out a population of adults, which they defined as 18-75 years of age. They were in the prehospital setting and they had a pain score of greater than 8. They gave the participants methoxyflurane, which is also called the “green whistle.” They had the subjects take that for their prehospital pain, and they compared that with whatever your standard analgesic in the prehospital setting would be.

Their primary outcome was how many patients had at least 50% reduction in their pain score within 30 minutes. They recruited about 120 people, and they found that there was no statistical difference in the primary outcome between methoxyflurane and standard care. Again, that primary outcome was a reduction in pain score by greater than 50% at 30 minutes, and there wasn’t a statistical difference between the two.

There are obviously limits to any study, and it was a convenience sample. This was an unmasked trial, so people knew if they were getting this green whistle, which is popular in Australia. People would be familiar with this device, and they didn’t compare it with a sham or placebo group.

Pharmacology of Penthrox: Its Role and Mechanism of Action

Dr. Glatter: The primary outcome wasn’t met, but certainly secondary outcomes were. There was, again, a relatively small number of patients in this trial. That said, there was significant pain relief. I think there are issues with the trial, as with any trial limitations.

Getting to the pharmacology of Penthrox, can you describe this inhaled anesthetic and how we use it, specifically its role at the subanesthetic doses?

Sergey M. Motov, MD: Methoxyflurane is embedded in the green whistle package, and that whole contraption is called Penthrox. It’s an inhaled volatile fluorinated hydrocarbon anesthetic that was predominantly used, I’d say 40, 50 years ago, for general anesthesia and slowly but surely fell out of favor due to the fact that, when used for prolonged duration or in supratherapeutic doses, there were cases of severe or even fatal nephrotoxicity and hepatotoxicity.

In the late ‘70s and early ‘80s, all the fluranes came on board that are slightly different as general anesthetics, and methoxyflurane started slowly falling out of favor. Because of this paucity and then a subsequent slightly greater number of cases of nephrotoxicity and hepatotoxicity, [the US Food and Drug Administration] FDA made a decision to pull the drug off the market in 2005. FDA successfully accomplished its mission and since then has pretty much banned the use of inhaled methoxyflurane in any shape, form, or color in the United States.

Going back to the green whistle, it has been used in Australia probably for about 50-60 years, and has been used in Europe for probably 10-20 years. Ken can attest that it has been used in Canada for at least a decade and the track record is phenomenal.

We are using subanesthetic, even supratherapeutic doses that, based on available literature, has no incidence of this fatal hepatotoxicity or nephrotoxicity. We’re talking about 10 million doses administered worldwide, except in the United States. There are 40-plus randomized clinical trials with over 30,000 patients enrolled that prove efficacy and safety.

That’s where we are right now, in a conundrum. We have a great deal of data all over the world, except in the United States, that push for the use of this noninvasive, patient-controlled nonopioid inhaled anesthetic. We just don’t have the access in North America, with the exception of Canada.

 

 

Regulatory Hurdles: Challenges in FDA Approval

Dr. Glatter: Absolutely. The FDA wants to be cautious, but if you look at the evidence base of data on this, it really indicates otherwise. Do you think that these roadblocks can be somehow overcome?

Dr. Milne: In the 2000s and 2010s, everybody was focused on opioids and all the dangers and potential adverse events. Opioids are great drugs like many other drugs; it depends on dose and duration. If used properly, it’s an excellent drug. Well, here’s another excellent drug if it’s used properly, and the adverse events are dependent on their dose and duration. Penthrox, or methoxyflurane, is a subtherapeutic, small dose and there have been no reported cases of addiction or abuse related to these inhalers.

Dr. Glatter: That argues for the point — and I’ll turn this over to you, Sergey — of how can this not, in my mind, be an issue that the FDA can overcome.

Dr. Motov: I agree with you. It’s very hard for me to speak on behalf of the FDA, to allude to their thinking processes, but we need to be up to speed with the evidence. The first thing is, why don’t you study the drug in the United States? I’m not asking you to lift the ban, which you put in 2005, but why don’t you honor what has been done over two decades and at least open the door a little bit and let us do what we do best? Why don’t you allow us to do the research in a controlled setting with a carefully, properly selected group of patients without underlying renal or hepatic insufficiency and see where we’re at?

Let’s compare it against placebo. If that’s not ethical, let’s compare it against active comparators — God knows we have 15-20 drugs we can use — and let’s see where we’re at. Ken has been nothing short of superb when it comes to evidence. Let us put the evidence together.

Dr. Milne: If there were concerns decades ago, those need to be addressed. As science is iterative and as other information becomes available, the scientific method would say, Let’s reexamine this and let’s reexamine our position, and do that with evidence. To do that, it has to have validity within the US system. Someone like you doing the research, you are a pain research guru; you should be doing this research to say, “Does it work or not? Does this nonapproval still stand today in 2024?”

Dr. Motov: Thank you for the shout-out, and I agree with you. All of us, those who are interested, on the frontiers of emergency care — as present clinicians — we should be doing this. There is nothing that will convince the FDA more than properly and rightly conducted research, time to reassess the evidence, and time to be less rigid. I understand that you placed a ban 20 years ago, but let’s go with the science. We cannot be behind it.

Exploring the Ecological Footprint of Methoxyflurane

Dr. Milne: There was an Austrian study in 2022 and a very interesting study out of the UK looking at life-cycle impact assessment on the environment. If we’re not just concerned about patient care —obviously, we want to provide patients with a safe and effective product, compared with other products that are available that might not have as good a safety profile — this looks at the impact on the environment.

Dr. Glatter: Ken, can you tell me about some of your recent research regarding the environmental effects related to use of Penthrox, but also its utility pharmacologically and its mechanism of action?

Dr. Milne: There was a really interesting study published this year by Martindale in the Emergency Medicine Journal. It took a different approach to this question about could we be using this drug, and why should we be using this drug? Sergey and I have already talked about the potential benefits and the potential harms. I mentioned opioids and some of the concerns about that. For this drug, if we’re using it in the prehospital setting in this little green whistle, the potential benefits look really good, and we haven’t seen any of the potential harms come through in the literature.

This was another line of evidence of why this might be a good drug, because of the environmental impact of this low-dose methoxyflurane. They compared it with nitrous oxide and said, “Well, what about the life-cycle impact on the environment of using this and the overall cradle-to-grave environmental impacts?”

Obviously, Sergey and I are interested in patient care, and we treat patients one at a time. But we have a larger responsibility to social determinants of health, like our environment. If you look at the overall cradle-to-grave environmental impact of this drug, it was better than for nitrous oxide when looking specifically at climate-change impact. That might be another reason, another line of argument, that could be put forward in the United States to say, “We want to have a healthy environment and a healthy option for patients.”

I’ll let Sergey speak to mechanisms of action and those types of things.

Dr. Motov: As a general anesthetic and hydrocarbonated volatile ones, I’m just going to say that it causes this generalized diffuse cortical depression, and there are no particular channels, receptors, or enzymes we need to worry much about. In short, it’s an inhaled gas used to put patients or people to sleep.

Over the past 30 or 40 years — and I’ll go back to the past decade — there have been numerous studies in different countries (outside of the United States, of course), and with the recent study that Ken just cited, there were comparisons for managing predominantly acute traumatic injuries in pediatric and adult populations presenting to EDs in various regions of the world that compared Penthrox, or the green whistle, with either placebo or active comparators, which included parenteral opioids, oral opioids, and NSAIDs.

The recent systematic review by Fabbri, out of Italy, showed that for ultra–short-term pain — we’re talking about 5, 10, or 15 minutes — inhaled methoxyflurane was found to be equal or even superior to standard of care, primarily related to parenteral opioids, and safety was off the hook. Interestingly, with respect to analgesia, they found that geriatric patients seemed to be responding more, with respect to changing pain score, than younger adults — we’re talking about ages 18-64 vs 65 or older. Again, we need to make sure that we carefully select those elderly people without underlying renal or hepatic insufficiency.

To wrap this up, there is evidence clearly supporting its analgesic efficacy and safety, even in comparison to commonly used and traditionally accepted analgesic modalities that we use for managing acute pain.

 

 

US Military Use and Implications for Civilian Practice

Dr. Glatter: Do you think that methoxyflurane’s use in the military will help propel its use in clinical settings in the US, and possibly convince the FDA to look at this closer? The military is currently using it in deployed combat veterans in an ongoing fashion.

Dr. Motov: I’m excited that the Department of Defense in the United States has taken the lead, and they’re being very progressive. There are data that we’ve adapted to the civilian environment by use of intranasal opioids and intranasal ketamine with more doctors who came out of the military. In the military, it’s a kingdom within a kingdom. I don’t know their relationship with the FDA, but I support the military’s pharmacologic initiative by honoring and disseminating their research once it becomes available.

For us nonmilitary folks, we still need to work with the FDA. We need to convince the FDA to let us study the drug, and then we need to pile the evidence within the United States so that the FDA will start looking at this favorably. It wouldn’t hurt and it wouldn’t harm. Any piece of evidence will add to the existing body of literature that we need to allow this medication to be available to us.

Safety Considerations and Aerosolization Concerns

Dr. Glatter: Its safety in children is well established in Australia and throughout the world. I think it deserves a careful look, and the evidence that you’ve both presented argues for the use of this prehospital but also in hospital. I guess there was concern in the hospital with underventilation and healthcare workers being exposed to the fumes, and then getting headaches, dizziness, and so forth. I don’t know if that’s borne out, Ken, in any of your experience in Canada at all.

Dr. Milne: We currently don’t have it in our shop. It’s being used in British Columbia right now in the prehospital setting, and I’m not aware of anybody using it in their department. It’s used prehospital as far as I know.

Dr. Motov: I can attest to it, if I may, because I had familiarized myself with the device. I actually was able to hold it in my hands. I have not used it yet but I had the prototype. The way it’s set up, there is an activated charcoal chamber that sits right on top of the device, which serves as the scavenger for exhaled air that contains particles of methoxyflurane. In theory, but I’m telling how it is in practicality, it significantly reduces occupational exposure, based on data that lacks specifics.

Although most of the researchers did not measure the concentration of methoxyflurane in ambient air within the treatment room in the EDs, I believe the additional data sources clearly stating that it’s within or even below the detectable level that would cause any harm. Once again, we need to honor pathology. We need to make sure that pregnant women will not be exposed to it.

Dr. Milne: In 2024, we also need to be concerned about aerosolizing procedures and aerosolizing treatments, and just take that into account because we should be considering all the potential benefits and all the potential harms. Going through the COVID-19 pandemic, there was concern about transmission and whether or not it was droplet or aerosolized.

There was an observational study published in 2022 in Austria by Trimmel in BMC Emergency Medicine showing similar results. It seemed to work well and potential harms didn’t get picked up. They had to stop the study early because of COVID-19.

We need to always focus in on the potential benefits, the potential harms; where does the science land? Where do the data lie? Then we move forward from that and make informed decisions.

 

 

Final Thoughts

Dr. Glatter: Are there any key takeaways you’d like to share with our audience?

Dr. Milne: One of the takeaways from this whole conversation is that science is iterative and science changes. When new evidence becomes available, and we’ve seen it accumulate around the world, we as scientists, as a researcher, as somebody committed to great patient care should revisit our positions on this. Since there is a prohibition against this medication, I think it’s time to reassess that stance and move forward to see if it still is accurate today.

Dr. Motov: I wholeheartedly agree with this. Thank you, Ken, for bringing this up. Good point.

Dr. Glatter: This has been a really informative discussion. I think our audience will certainly embrace this. Thank you very much for your time; it’s much appreciated.
 

Dr. Glatter is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. He is a medical adviser for Medscape and hosts the Hot Topics in EM series. Dr. Milne is an emergency physician at Strathroy Middlesex General Hospital in Ontario, Canada, and the founder of the well-known podcast The Skeptics’ Guide to Emergency Medicine (SGEM). Dr. Motov is professor of emergency medicine and director of research in the Department of Emergency Medicine at Maimonides Medical Center in Brooklyn, New York. He is passionate about safe and effective pain management in the emergency department, and has numerous publications on the subject of opioid alternatives in pain management. Dr. Glatter, Dr. Milne, and Dr. Motov had no conflicts of interest to disclose.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

This discussion was recorded on March 29, 2024. The transcript has been edited for clarity.

Robert D. Glatter, MD: Joining me today to discuss the use of methoxyflurane (Penthrox), an inhaled nonopioid analgesic for the relief of acute pain, is Dr. William Kenneth (Ken) Milne, an emergency physician at Strathroy Middlesex General Hospital in Ontario, Canada, and the founder of the well-known podcast The Skeptics’ Guide to Emergency Medicine (SGEM).

Also joining me is Dr. Sergey Motov, an emergency physician and research director at Maimonides Medical Center in Brooklyn, New York, and an expert in pain management. I want to welcome both of you and thank you for joining me.
 

RAMPED Trial: Evaluating the Efficacy of Methoxyflurane

Dr. Glatter: Ken, your recent post on Twitter [now X] regarding the utility of Penthrox in the RAMPED trial really caught my attention. While the trial was from 2021, it really is relevant regarding the prehospital management of pain in the practice of emergency medicine, and certainly in-hospital practice. I was hoping you could review the study design but also get into the rationale behind the use of this novel agent.

William Kenneth (Ken) Milne, MD, MSc: Sure. I’d be happy to kick this episode off with talking about a study that was published in 2020 in Academic Emergency Medicine. It was an Australian study by Brichko et al., and they were doing a randomized controlled trial looking at methoxyflurane vs standard care.

They selected out a population of adults, which they defined as 18-75 years of age. They were in the prehospital setting and they had a pain score of greater than 8. They gave the participants methoxyflurane, which is also called the “green whistle.” They had the subjects take that for their prehospital pain, and they compared that with whatever your standard analgesic in the prehospital setting would be.

Their primary outcome was how many patients had at least 50% reduction in their pain score within 30 minutes. They recruited about 120 people, and they found that there was no statistical difference in the primary outcome between methoxyflurane and standard care. Again, that primary outcome was a reduction in pain score by greater than 50% at 30 minutes, and there wasn’t a statistical difference between the two.

There are obviously limits to any study, and it was a convenience sample. This was an unmasked trial, so people knew if they were getting this green whistle, which is popular in Australia. People would be familiar with this device, and they didn’t compare it with a sham or placebo group.

Pharmacology of Penthrox: Its Role and Mechanism of Action

Dr. Glatter: The primary outcome wasn’t met, but certainly secondary outcomes were. There was, again, a relatively small number of patients in this trial. That said, there was significant pain relief. I think there are issues with the trial, as with any trial limitations.

Getting to the pharmacology of Penthrox, can you describe this inhaled anesthetic and how we use it, specifically its role at the subanesthetic doses?

Sergey M. Motov, MD: Methoxyflurane is embedded in the green whistle package, and that whole contraption is called Penthrox. It’s an inhaled volatile fluorinated hydrocarbon anesthetic that was predominantly used, I’d say 40, 50 years ago, for general anesthesia and slowly but surely fell out of favor due to the fact that, when used for prolonged duration or in supratherapeutic doses, there were cases of severe or even fatal nephrotoxicity and hepatotoxicity.

In the late ‘70s and early ‘80s, all the fluranes came on board that are slightly different as general anesthetics, and methoxyflurane started slowly falling out of favor. Because of this paucity and then a subsequent slightly greater number of cases of nephrotoxicity and hepatotoxicity, [the US Food and Drug Administration] FDA made a decision to pull the drug off the market in 2005. FDA successfully accomplished its mission and since then has pretty much banned the use of inhaled methoxyflurane in any shape, form, or color in the United States.

Going back to the green whistle, it has been used in Australia probably for about 50-60 years, and has been used in Europe for probably 10-20 years. Ken can attest that it has been used in Canada for at least a decade and the track record is phenomenal.

We are using subanesthetic, even supratherapeutic doses that, based on available literature, has no incidence of this fatal hepatotoxicity or nephrotoxicity. We’re talking about 10 million doses administered worldwide, except in the United States. There are 40-plus randomized clinical trials with over 30,000 patients enrolled that prove efficacy and safety.

That’s where we are right now, in a conundrum. We have a great deal of data all over the world, except in the United States, that push for the use of this noninvasive, patient-controlled nonopioid inhaled anesthetic. We just don’t have the access in North America, with the exception of Canada.

 

 

Regulatory Hurdles: Challenges in FDA Approval

Dr. Glatter: Absolutely. The FDA wants to be cautious, but if you look at the evidence base of data on this, it really indicates otherwise. Do you think that these roadblocks can be somehow overcome?

Dr. Milne: In the 2000s and 2010s, everybody was focused on opioids and all the dangers and potential adverse events. Opioids are great drugs like many other drugs; it depends on dose and duration. If used properly, it’s an excellent drug. Well, here’s another excellent drug if it’s used properly, and the adverse events are dependent on their dose and duration. Penthrox, or methoxyflurane, is a subtherapeutic, small dose and there have been no reported cases of addiction or abuse related to these inhalers.

Dr. Glatter: That argues for the point — and I’ll turn this over to you, Sergey — of how can this not, in my mind, be an issue that the FDA can overcome.

Dr. Motov: I agree with you. It’s very hard for me to speak on behalf of the FDA, to allude to their thinking processes, but we need to be up to speed with the evidence. The first thing is, why don’t you study the drug in the United States? I’m not asking you to lift the ban, which you put in 2005, but why don’t you honor what has been done over two decades and at least open the door a little bit and let us do what we do best? Why don’t you allow us to do the research in a controlled setting with a carefully, properly selected group of patients without underlying renal or hepatic insufficiency and see where we’re at?

Let’s compare it against placebo. If that’s not ethical, let’s compare it against active comparators — God knows we have 15-20 drugs we can use — and let’s see where we’re at. Ken has been nothing short of superb when it comes to evidence. Let us put the evidence together.

Dr. Milne: If there were concerns decades ago, those need to be addressed. As science is iterative and as other information becomes available, the scientific method would say, Let’s reexamine this and let’s reexamine our position, and do that with evidence. To do that, it has to have validity within the US system. Someone like you doing the research, you are a pain research guru; you should be doing this research to say, “Does it work or not? Does this nonapproval still stand today in 2024?”

Dr. Motov: Thank you for the shout-out, and I agree with you. All of us, those who are interested, on the frontiers of emergency care — as present clinicians — we should be doing this. There is nothing that will convince the FDA more than properly and rightly conducted research, time to reassess the evidence, and time to be less rigid. I understand that you placed a ban 20 years ago, but let’s go with the science. We cannot be behind it.

Exploring the Ecological Footprint of Methoxyflurane

Dr. Milne: There was an Austrian study in 2022 and a very interesting study out of the UK looking at life-cycle impact assessment on the environment. If we’re not just concerned about patient care —obviously, we want to provide patients with a safe and effective product, compared with other products that are available that might not have as good a safety profile — this looks at the impact on the environment.

Dr. Glatter: Ken, can you tell me about some of your recent research regarding the environmental effects related to use of Penthrox, but also its utility pharmacologically and its mechanism of action?

Dr. Milne: There was a really interesting study published this year by Martindale in the Emergency Medicine Journal. It took a different approach to this question about could we be using this drug, and why should we be using this drug? Sergey and I have already talked about the potential benefits and the potential harms. I mentioned opioids and some of the concerns about that. For this drug, if we’re using it in the prehospital setting in this little green whistle, the potential benefits look really good, and we haven’t seen any of the potential harms come through in the literature.

This was another line of evidence of why this might be a good drug, because of the environmental impact of this low-dose methoxyflurane. They compared it with nitrous oxide and said, “Well, what about the life-cycle impact on the environment of using this and the overall cradle-to-grave environmental impacts?”

Obviously, Sergey and I are interested in patient care, and we treat patients one at a time. But we have a larger responsibility to social determinants of health, like our environment. If you look at the overall cradle-to-grave environmental impact of this drug, it was better than for nitrous oxide when looking specifically at climate-change impact. That might be another reason, another line of argument, that could be put forward in the United States to say, “We want to have a healthy environment and a healthy option for patients.”

I’ll let Sergey speak to mechanisms of action and those types of things.

Dr. Motov: As a general anesthetic and hydrocarbonated volatile ones, I’m just going to say that it causes this generalized diffuse cortical depression, and there are no particular channels, receptors, or enzymes we need to worry much about. In short, it’s an inhaled gas used to put patients or people to sleep.

Over the past 30 or 40 years — and I’ll go back to the past decade — there have been numerous studies in different countries (outside of the United States, of course), and with the recent study that Ken just cited, there were comparisons for managing predominantly acute traumatic injuries in pediatric and adult populations presenting to EDs in various regions of the world that compared Penthrox, or the green whistle, with either placebo or active comparators, which included parenteral opioids, oral opioids, and NSAIDs.

The recent systematic review by Fabbri, out of Italy, showed that for ultra–short-term pain — we’re talking about 5, 10, or 15 minutes — inhaled methoxyflurane was found to be equal or even superior to standard of care, primarily related to parenteral opioids, and safety was off the hook. Interestingly, with respect to analgesia, they found that geriatric patients seemed to be responding more, with respect to changing pain score, than younger adults — we’re talking about ages 18-64 vs 65 or older. Again, we need to make sure that we carefully select those elderly people without underlying renal or hepatic insufficiency.

To wrap this up, there is evidence clearly supporting its analgesic efficacy and safety, even in comparison to commonly used and traditionally accepted analgesic modalities that we use for managing acute pain.

 

 

US Military Use and Implications for Civilian Practice

Dr. Glatter: Do you think that methoxyflurane’s use in the military will help propel its use in clinical settings in the US, and possibly convince the FDA to look at this closer? The military is currently using it in deployed combat veterans in an ongoing fashion.

Dr. Motov: I’m excited that the Department of Defense in the United States has taken the lead, and they’re being very progressive. There are data that we’ve adapted to the civilian environment by use of intranasal opioids and intranasal ketamine with more doctors who came out of the military. In the military, it’s a kingdom within a kingdom. I don’t know their relationship with the FDA, but I support the military’s pharmacologic initiative by honoring and disseminating their research once it becomes available.

For us nonmilitary folks, we still need to work with the FDA. We need to convince the FDA to let us study the drug, and then we need to pile the evidence within the United States so that the FDA will start looking at this favorably. It wouldn’t hurt and it wouldn’t harm. Any piece of evidence will add to the existing body of literature that we need to allow this medication to be available to us.

Safety Considerations and Aerosolization Concerns

Dr. Glatter: Its safety in children is well established in Australia and throughout the world. I think it deserves a careful look, and the evidence that you’ve both presented argues for the use of this prehospital but also in hospital. I guess there was concern in the hospital with underventilation and healthcare workers being exposed to the fumes, and then getting headaches, dizziness, and so forth. I don’t know if that’s borne out, Ken, in any of your experience in Canada at all.

Dr. Milne: We currently don’t have it in our shop. It’s being used in British Columbia right now in the prehospital setting, and I’m not aware of anybody using it in their department. It’s used prehospital as far as I know.

Dr. Motov: I can attest to it, if I may, because I had familiarized myself with the device. I actually was able to hold it in my hands. I have not used it yet but I had the prototype. The way it’s set up, there is an activated charcoal chamber that sits right on top of the device, which serves as the scavenger for exhaled air that contains particles of methoxyflurane. In theory, but I’m telling how it is in practicality, it significantly reduces occupational exposure, based on data that lacks specifics.

Although most of the researchers did not measure the concentration of methoxyflurane in ambient air within the treatment room in the EDs, I believe the additional data sources clearly stating that it’s within or even below the detectable level that would cause any harm. Once again, we need to honor pathology. We need to make sure that pregnant women will not be exposed to it.

Dr. Milne: In 2024, we also need to be concerned about aerosolizing procedures and aerosolizing treatments, and just take that into account because we should be considering all the potential benefits and all the potential harms. Going through the COVID-19 pandemic, there was concern about transmission and whether or not it was droplet or aerosolized.

There was an observational study published in 2022 in Austria by Trimmel in BMC Emergency Medicine showing similar results. It seemed to work well and potential harms didn’t get picked up. They had to stop the study early because of COVID-19.

We need to always focus in on the potential benefits, the potential harms; where does the science land? Where do the data lie? Then we move forward from that and make informed decisions.

 

 

Final Thoughts

Dr. Glatter: Are there any key takeaways you’d like to share with our audience?

Dr. Milne: One of the takeaways from this whole conversation is that science is iterative and science changes. When new evidence becomes available, and we’ve seen it accumulate around the world, we as scientists, as a researcher, as somebody committed to great patient care should revisit our positions on this. Since there is a prohibition against this medication, I think it’s time to reassess that stance and move forward to see if it still is accurate today.

Dr. Motov: I wholeheartedly agree with this. Thank you, Ken, for bringing this up. Good point.

Dr. Glatter: This has been a really informative discussion. I think our audience will certainly embrace this. Thank you very much for your time; it’s much appreciated.
 

Dr. Glatter is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. He is a medical adviser for Medscape and hosts the Hot Topics in EM series. Dr. Milne is an emergency physician at Strathroy Middlesex General Hospital in Ontario, Canada, and the founder of the well-known podcast The Skeptics’ Guide to Emergency Medicine (SGEM). Dr. Motov is professor of emergency medicine and director of research in the Department of Emergency Medicine at Maimonides Medical Center in Brooklyn, New York. He is passionate about safe and effective pain management in the emergency department, and has numerous publications on the subject of opioid alternatives in pain management. Dr. Glatter, Dr. Milne, and Dr. Motov had no conflicts of interest to disclose.

A version of this article appeared on Medscape.com.

 

This discussion was recorded on March 29, 2024. The transcript has been edited for clarity.

Robert D. Glatter, MD: Joining me today to discuss the use of methoxyflurane (Penthrox), an inhaled nonopioid analgesic for the relief of acute pain, is Dr. William Kenneth (Ken) Milne, an emergency physician at Strathroy Middlesex General Hospital in Ontario, Canada, and the founder of the well-known podcast The Skeptics’ Guide to Emergency Medicine (SGEM).

Also joining me is Dr. Sergey Motov, an emergency physician and research director at Maimonides Medical Center in Brooklyn, New York, and an expert in pain management. I want to welcome both of you and thank you for joining me.
 

RAMPED Trial: Evaluating the Efficacy of Methoxyflurane

Dr. Glatter: Ken, your recent post on Twitter [now X] regarding the utility of Penthrox in the RAMPED trial really caught my attention. While the trial was from 2021, it really is relevant regarding the prehospital management of pain in the practice of emergency medicine, and certainly in-hospital practice. I was hoping you could review the study design but also get into the rationale behind the use of this novel agent.

William Kenneth (Ken) Milne, MD, MSc: Sure. I’d be happy to kick this episode off with talking about a study that was published in 2020 in Academic Emergency Medicine. It was an Australian study by Brichko et al., and they were doing a randomized controlled trial looking at methoxyflurane vs standard care.

They selected out a population of adults, which they defined as 18-75 years of age. They were in the prehospital setting and they had a pain score of greater than 8. They gave the participants methoxyflurane, which is also called the “green whistle.” They had the subjects take that for their prehospital pain, and they compared that with whatever your standard analgesic in the prehospital setting would be.

Their primary outcome was how many patients had at least 50% reduction in their pain score within 30 minutes. They recruited about 120 people, and they found that there was no statistical difference in the primary outcome between methoxyflurane and standard care. Again, that primary outcome was a reduction in pain score by greater than 50% at 30 minutes, and there wasn’t a statistical difference between the two.

There are obviously limits to any study, and it was a convenience sample. This was an unmasked trial, so people knew if they were getting this green whistle, which is popular in Australia. People would be familiar with this device, and they didn’t compare it with a sham or placebo group.

Pharmacology of Penthrox: Its Role and Mechanism of Action

Dr. Glatter: The primary outcome wasn’t met, but certainly secondary outcomes were. There was, again, a relatively small number of patients in this trial. That said, there was significant pain relief. I think there are issues with the trial, as with any trial limitations.

Getting to the pharmacology of Penthrox, can you describe this inhaled anesthetic and how we use it, specifically its role at the subanesthetic doses?

Sergey M. Motov, MD: Methoxyflurane is embedded in the green whistle package, and that whole contraption is called Penthrox. It’s an inhaled volatile fluorinated hydrocarbon anesthetic that was predominantly used, I’d say 40, 50 years ago, for general anesthesia and slowly but surely fell out of favor due to the fact that, when used for prolonged duration or in supratherapeutic doses, there were cases of severe or even fatal nephrotoxicity and hepatotoxicity.

In the late ‘70s and early ‘80s, all the fluranes came on board that are slightly different as general anesthetics, and methoxyflurane started slowly falling out of favor. Because of this paucity and then a subsequent slightly greater number of cases of nephrotoxicity and hepatotoxicity, [the US Food and Drug Administration] FDA made a decision to pull the drug off the market in 2005. FDA successfully accomplished its mission and since then has pretty much banned the use of inhaled methoxyflurane in any shape, form, or color in the United States.

Going back to the green whistle, it has been used in Australia probably for about 50-60 years, and has been used in Europe for probably 10-20 years. Ken can attest that it has been used in Canada for at least a decade and the track record is phenomenal.

We are using subanesthetic, even supratherapeutic doses that, based on available literature, has no incidence of this fatal hepatotoxicity or nephrotoxicity. We’re talking about 10 million doses administered worldwide, except in the United States. There are 40-plus randomized clinical trials with over 30,000 patients enrolled that prove efficacy and safety.

That’s where we are right now, in a conundrum. We have a great deal of data all over the world, except in the United States, that push for the use of this noninvasive, patient-controlled nonopioid inhaled anesthetic. We just don’t have the access in North America, with the exception of Canada.

 

 

Regulatory Hurdles: Challenges in FDA Approval

Dr. Glatter: Absolutely. The FDA wants to be cautious, but if you look at the evidence base of data on this, it really indicates otherwise. Do you think that these roadblocks can be somehow overcome?

Dr. Milne: In the 2000s and 2010s, everybody was focused on opioids and all the dangers and potential adverse events. Opioids are great drugs like many other drugs; it depends on dose and duration. If used properly, it’s an excellent drug. Well, here’s another excellent drug if it’s used properly, and the adverse events are dependent on their dose and duration. Penthrox, or methoxyflurane, is a subtherapeutic, small dose and there have been no reported cases of addiction or abuse related to these inhalers.

Dr. Glatter: That argues for the point — and I’ll turn this over to you, Sergey — of how can this not, in my mind, be an issue that the FDA can overcome.

Dr. Motov: I agree with you. It’s very hard for me to speak on behalf of the FDA, to allude to their thinking processes, but we need to be up to speed with the evidence. The first thing is, why don’t you study the drug in the United States? I’m not asking you to lift the ban, which you put in 2005, but why don’t you honor what has been done over two decades and at least open the door a little bit and let us do what we do best? Why don’t you allow us to do the research in a controlled setting with a carefully, properly selected group of patients without underlying renal or hepatic insufficiency and see where we’re at?

Let’s compare it against placebo. If that’s not ethical, let’s compare it against active comparators — God knows we have 15-20 drugs we can use — and let’s see where we’re at. Ken has been nothing short of superb when it comes to evidence. Let us put the evidence together.

Dr. Milne: If there were concerns decades ago, those need to be addressed. As science is iterative and as other information becomes available, the scientific method would say, Let’s reexamine this and let’s reexamine our position, and do that with evidence. To do that, it has to have validity within the US system. Someone like you doing the research, you are a pain research guru; you should be doing this research to say, “Does it work or not? Does this nonapproval still stand today in 2024?”

Dr. Motov: Thank you for the shout-out, and I agree with you. All of us, those who are interested, on the frontiers of emergency care — as present clinicians — we should be doing this. There is nothing that will convince the FDA more than properly and rightly conducted research, time to reassess the evidence, and time to be less rigid. I understand that you placed a ban 20 years ago, but let’s go with the science. We cannot be behind it.

Exploring the Ecological Footprint of Methoxyflurane

Dr. Milne: There was an Austrian study in 2022 and a very interesting study out of the UK looking at life-cycle impact assessment on the environment. If we’re not just concerned about patient care —obviously, we want to provide patients with a safe and effective product, compared with other products that are available that might not have as good a safety profile — this looks at the impact on the environment.

Dr. Glatter: Ken, can you tell me about some of your recent research regarding the environmental effects related to use of Penthrox, but also its utility pharmacologically and its mechanism of action?

Dr. Milne: There was a really interesting study published this year by Martindale in the Emergency Medicine Journal. It took a different approach to this question about could we be using this drug, and why should we be using this drug? Sergey and I have already talked about the potential benefits and the potential harms. I mentioned opioids and some of the concerns about that. For this drug, if we’re using it in the prehospital setting in this little green whistle, the potential benefits look really good, and we haven’t seen any of the potential harms come through in the literature.

This was another line of evidence of why this might be a good drug, because of the environmental impact of this low-dose methoxyflurane. They compared it with nitrous oxide and said, “Well, what about the life-cycle impact on the environment of using this and the overall cradle-to-grave environmental impacts?”

Obviously, Sergey and I are interested in patient care, and we treat patients one at a time. But we have a larger responsibility to social determinants of health, like our environment. If you look at the overall cradle-to-grave environmental impact of this drug, it was better than for nitrous oxide when looking specifically at climate-change impact. That might be another reason, another line of argument, that could be put forward in the United States to say, “We want to have a healthy environment and a healthy option for patients.”

I’ll let Sergey speak to mechanisms of action and those types of things.

Dr. Motov: As a general anesthetic and hydrocarbonated volatile ones, I’m just going to say that it causes this generalized diffuse cortical depression, and there are no particular channels, receptors, or enzymes we need to worry much about. In short, it’s an inhaled gas used to put patients or people to sleep.

Over the past 30 or 40 years — and I’ll go back to the past decade — there have been numerous studies in different countries (outside of the United States, of course), and with the recent study that Ken just cited, there were comparisons for managing predominantly acute traumatic injuries in pediatric and adult populations presenting to EDs in various regions of the world that compared Penthrox, or the green whistle, with either placebo or active comparators, which included parenteral opioids, oral opioids, and NSAIDs.

The recent systematic review by Fabbri, out of Italy, showed that for ultra–short-term pain — we’re talking about 5, 10, or 15 minutes — inhaled methoxyflurane was found to be equal or even superior to standard of care, primarily related to parenteral opioids, and safety was off the hook. Interestingly, with respect to analgesia, they found that geriatric patients seemed to be responding more, with respect to changing pain score, than younger adults — we’re talking about ages 18-64 vs 65 or older. Again, we need to make sure that we carefully select those elderly people without underlying renal or hepatic insufficiency.

To wrap this up, there is evidence clearly supporting its analgesic efficacy and safety, even in comparison to commonly used and traditionally accepted analgesic modalities that we use for managing acute pain.

 

 

US Military Use and Implications for Civilian Practice

Dr. Glatter: Do you think that methoxyflurane’s use in the military will help propel its use in clinical settings in the US, and possibly convince the FDA to look at this closer? The military is currently using it in deployed combat veterans in an ongoing fashion.

Dr. Motov: I’m excited that the Department of Defense in the United States has taken the lead, and they’re being very progressive. There are data that we’ve adapted to the civilian environment by use of intranasal opioids and intranasal ketamine with more doctors who came out of the military. In the military, it’s a kingdom within a kingdom. I don’t know their relationship with the FDA, but I support the military’s pharmacologic initiative by honoring and disseminating their research once it becomes available.

For us nonmilitary folks, we still need to work with the FDA. We need to convince the FDA to let us study the drug, and then we need to pile the evidence within the United States so that the FDA will start looking at this favorably. It wouldn’t hurt and it wouldn’t harm. Any piece of evidence will add to the existing body of literature that we need to allow this medication to be available to us.

Safety Considerations and Aerosolization Concerns

Dr. Glatter: Its safety in children is well established in Australia and throughout the world. I think it deserves a careful look, and the evidence that you’ve both presented argues for the use of this prehospital but also in hospital. I guess there was concern in the hospital with underventilation and healthcare workers being exposed to the fumes, and then getting headaches, dizziness, and so forth. I don’t know if that’s borne out, Ken, in any of your experience in Canada at all.

Dr. Milne: We currently don’t have it in our shop. It’s being used in British Columbia right now in the prehospital setting, and I’m not aware of anybody using it in their department. It’s used prehospital as far as I know.

Dr. Motov: I can attest to it, if I may, because I had familiarized myself with the device. I actually was able to hold it in my hands. I have not used it yet but I had the prototype. The way it’s set up, there is an activated charcoal chamber that sits right on top of the device, which serves as the scavenger for exhaled air that contains particles of methoxyflurane. In theory, but I’m telling how it is in practicality, it significantly reduces occupational exposure, based on data that lacks specifics.

Although most of the researchers did not measure the concentration of methoxyflurane in ambient air within the treatment room in the EDs, I believe the additional data sources clearly stating that it’s within or even below the detectable level that would cause any harm. Once again, we need to honor pathology. We need to make sure that pregnant women will not be exposed to it.

Dr. Milne: In 2024, we also need to be concerned about aerosolizing procedures and aerosolizing treatments, and just take that into account because we should be considering all the potential benefits and all the potential harms. Going through the COVID-19 pandemic, there was concern about transmission and whether or not it was droplet or aerosolized.

There was an observational study published in 2022 in Austria by Trimmel in BMC Emergency Medicine showing similar results. It seemed to work well and potential harms didn’t get picked up. They had to stop the study early because of COVID-19.

We need to always focus in on the potential benefits, the potential harms; where does the science land? Where do the data lie? Then we move forward from that and make informed decisions.

 

 

Final Thoughts

Dr. Glatter: Are there any key takeaways you’d like to share with our audience?

Dr. Milne: One of the takeaways from this whole conversation is that science is iterative and science changes. When new evidence becomes available, and we’ve seen it accumulate around the world, we as scientists, as a researcher, as somebody committed to great patient care should revisit our positions on this. Since there is a prohibition against this medication, I think it’s time to reassess that stance and move forward to see if it still is accurate today.

Dr. Motov: I wholeheartedly agree with this. Thank you, Ken, for bringing this up. Good point.

Dr. Glatter: This has been a really informative discussion. I think our audience will certainly embrace this. Thank you very much for your time; it’s much appreciated.
 

Dr. Glatter is an assistant professor of emergency medicine at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. He is a medical adviser for Medscape and hosts the Hot Topics in EM series. Dr. Milne is an emergency physician at Strathroy Middlesex General Hospital in Ontario, Canada, and the founder of the well-known podcast The Skeptics’ Guide to Emergency Medicine (SGEM). Dr. Motov is professor of emergency medicine and director of research in the Department of Emergency Medicine at Maimonides Medical Center in Brooklyn, New York. He is passionate about safe and effective pain management in the emergency department, and has numerous publications on the subject of opioid alternatives in pain management. Dr. Glatter, Dr. Milne, and Dr. Motov had no conflicts of interest to disclose.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Robotic Pet Therapy in the Intensive Care Unit

Article Type
Changed
Mon, 05/13/2024 - 14:38

Critical illness is commonly associated with interrelated conditions including pain, agitation, delirium, immobility, and sleep disruption (PADIS). Managing PADIS is often complex and includes pharmacologic and nonpharmacologic interventions.1 Incorporating multifaceted practices to enhance PADIS management has been shown to improve several intensive care unit (ICU)-related outcomes.2

Many pharmacologic PADIS treatments are ineffective or associated with adverse effects. For example, antipsychotics used for treating ICU-related delirium have not shown improved outcomes.3,4 Commonly used medications for agitation, such as benzodiazepines, increase delirium risk.5,6 Because of these limitations, several nonpharmacologic interventions for PADIS have been evaluated.

Pet therapy has been implemented in some ICU settings, but is not widely adopted.7 Also referred to as animal-assisted activities, animal-assisted therapy, or animal-assisted interventions, pet therapy typically involves interaction between a patient and a live animal (most commonly a dog) under the direction of an animal handler, with the intention of providing therapeutic benefit. Interactions frequently include meet and greet activities such as petting, but also could include walking or other activities. Pet therapy has been reported to reduce pain, agitation, and stress among ICU patients.8 Introducing a pet therapy program with live animals in the ICU could be challenging because of factors such as identifying trained, accredited animals and handlers, and managing infection control and other risks.9 As an alternative to live pets, robotic pet therapy has been shown to be beneficial—mostly outside the ICU—in settings such as long-term care.10,11 Although uncommon, robotic pets have been used in the ICU and hospital settings for therapeutic purposes.12 Robotic pets reduce many concerns associated with live animals while mimicking the behaviors of live animals and potentially offering many of the same benefits.

 

OBSERVATIONS

figure

The North Florida/South Georgia Veterans Health System (NF/SGVHS) implemented a novel robotic pet therapy program for patients requiring ICU care to improve the treatment of PADIS. Funding was provided through a Veterans Health Administration Innovation Grant procured by a clinical pharmacy specialist as the program’s champion. Goals of the robotic pet therapy program include reductions in: distressing symptoms associated with PADIS, use of psychoactive drugs and physical restraints, and ICU length of stay. The ICU team developed standard operating procedures and an order menu, which were integrated into the ICU prescriber ordering menu. Patients were selected for pet therapy based on PADIS scores and potential for positive response to pet therapy as assessed by the ICU team.Patients in medical and surgical ICU settings were eligible for the program. The robotic pets used in the program were Joy for AllCompanion Pets (Ageless Innovation LLC). Robotic cats and dogs were available and pets were “adopted’ by each patient (Figure). As an infection control measure, pets were not reissued or shared amongpatients and pets could be cleaned with a disinfectant solution. Nurses were primarily responsible for monitoring and documenting responses to robotic pet therapy.

table

It was necessary to secure buy-in from several services to successfully implement the program. The critical care clinical pharmacy specialists were responsible for ordering, storing, and dispensing the robotic pets. The NF/SGVHS innovation specialist helped secure funding, procure the robotic pet, and promote the program. The standard operating procedures for the program were developed by a multidisciplinary team with input from critical care nurses, intensivists, pharmacists, patient safety, and infection control (Table 1). Success of the program also required buy-in from ICU team members.

 

 

Program Impact

A retrospective cohort study was conducted to assess for improvements in PADIS symptoms and medication use post-intervention. Patients were included if they received robotic pet therapy in the ICU from July 10, 2019, to February 1, 2021. Individuals aged < 18 years or > 89 years, were pregnant, or were not receiving ICU-level care were excluded. Outcomes assessed included improvement in pain scores, agitation scores, sleep quality, resolution of delirium, and use of pain or psychoactive medications during patients’ ICU stay.

table 2

Thirty patients were included in the study (Table 2). After receiving a robotic pet, 9 (30%) patients recorded decreased pain scores, 15 (50%) recorded decreased agitation scores, 8 (27%) had resolution of delirium, and 2 (7%) described improvement in sleep. Pain medication use decreased in 12 (40%) patients and psychoactive medication use was reduced in 7 (23%) patients.

Limitations

The robotic pet therapy program has shown promising results; however, some aspects merit discussion. Evaluation of this program is limited by factors such as the observational study design, single-center patient sample, and lack of comparator group. Although no known adverse effects of robotic pet therapy were seen, it is possible that some patients may not have a favorable response. Challenges of implementing a robotic pet therapy program include cost and additional operational activities (storage, ordering, dispensing) necessary to maintain the program. Additional research is needed to evaluate the impact of robotic pet therapy on other outcomes including cost, ICU length of stay, and patient satisfaction.

 

CONCLUSIONS

Robotic pet therapy can be successfully implemented in the ICU and appears to provide a simple, safe, beneficial, nonpharmacologic intervention for PADIS. This study showed that many patients had favorable response to robotic pet therapy, indicating that it may be a viable alternative to traditional pet therapy. Other health systems could benefit from implementing programs similar to the robotic pet therapy program at NF/SGVHS.

Acknowledgments

The author would like to acknowledge Simran Panesar, PharmD, and Theresa Faison, PharmD, for their contributions to this project.

References

1. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46:e825-e873. doi:10.1097/CCM.0000000000003299

2. Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for critically ill patients with the ABCDEF bundle: results of the ICU Liberation Collaborative in over 15,000 adults. Crit Care Med. 2019;47:3-14. doi:10.1097/CCM.0000000000003482

3. Andersen-Ranberg NC, Poulsen LM, Perner A, et al; AID-ICU Trial Group. Haloperidol for the treatment of delirium in ICU patients. N Engl J Med. 2022;387:2425-2435. doi:10.1056/NEJMoa2211868

4. Girard TD, Exline MC, Carson SS, et al; MIND-USA Investigators. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2018;379:2506-2516. doi:10.1056/NEJMoa1808217

5. Riker RR, Shehabi Y, Bokesch PM, et al; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489-499. doi:10.1001/jama.2009.56

6. Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21-26. doi:10.1097/00000542-200601000-00005

7. Society of Critical Care Medicine. ICU liberation bundle. Accessed February 27, 2024. https://www.sccm.org/ICULiberation/Home/ABCDEF-Bundles

8. Lovell T, Ranse K. Animal-assisted activities in the intensive care unit: a scoping review. Intensive Crit Care Nurs. 2022;73:103304. doi:10.1016/j.iccn.2022.103304

9. Hosey MM, Jaskulski J, Wegener ST, Chlan LL, Needham DM. Animal-assisted intervention in the ICU: a tool for humanization. Crit Care. 2018;22:22. doi:10.1186/s13054-018-1946-8

10. Jøranson N, Pedersen I, Rokstad AM, Ihlebæk C. Effects on symptoms of agitation and depression in persons with dementia participating in robot-assisted activity: a cluster-randomized controlled trial. J Am Med Dir Assoc. 2015;16:867-873. doi:10.1016/j.jamda.2015.05.002

11. Robinson H, Macdonald B, Kerse N, Broadbent E. The psychosocial effects of a companion robot: a randomized controlled trial. J Am Med Dir Assoc. 2013;14:661-667. doi:10.1016/j.jamda.2013.02.007

12. Schulman-Marcus J, Mookherjee S, Rice L, Lyubarova R. New approaches for the treatment of delirium: a case for robotic pets. Am J Med. 2019;132:781-782. doi:10.1016/j.amjmed.2018.12.039

Article PDF
Author and Disclosure Information

Andrew J. Franck, PharmDa

Correspondence:  Andrew Franck  (andrew.franck@va.gov)

aNorth Florida/South Georgia Veterans Health System, Gainesville

Author disclosures
The author reports no actual or potential conflicts of interest or outside sources of funding with regard to this article.

Disclaimer
The opinions expressed herein are those of the author and do not necessarily reflect those of Federal Practitioner, Frontline Medical Communications Inc., the US Government, or any of its agencies.

Issue
Federal Practitioner - 41(5)a
Publications
Topics
Page Number
150-153
Sections
Author and Disclosure Information

Andrew J. Franck, PharmDa

Correspondence:  Andrew Franck  (andrew.franck@va.gov)

aNorth Florida/South Georgia Veterans Health System, Gainesville

Author disclosures
The author reports no actual or potential conflicts of interest or outside sources of funding with regard to this article.

Disclaimer
The opinions expressed herein are those of the author and do not necessarily reflect those of Federal Practitioner, Frontline Medical Communications Inc., the US Government, or any of its agencies.

Author and Disclosure Information

Andrew J. Franck, PharmDa

Correspondence:  Andrew Franck  (andrew.franck@va.gov)

aNorth Florida/South Georgia Veterans Health System, Gainesville

Author disclosures
The author reports no actual or potential conflicts of interest or outside sources of funding with regard to this article.

Disclaimer
The opinions expressed herein are those of the author and do not necessarily reflect those of Federal Practitioner, Frontline Medical Communications Inc., the US Government, or any of its agencies.

Article PDF
Article PDF
Related Articles

Critical illness is commonly associated with interrelated conditions including pain, agitation, delirium, immobility, and sleep disruption (PADIS). Managing PADIS is often complex and includes pharmacologic and nonpharmacologic interventions.1 Incorporating multifaceted practices to enhance PADIS management has been shown to improve several intensive care unit (ICU)-related outcomes.2

Many pharmacologic PADIS treatments are ineffective or associated with adverse effects. For example, antipsychotics used for treating ICU-related delirium have not shown improved outcomes.3,4 Commonly used medications for agitation, such as benzodiazepines, increase delirium risk.5,6 Because of these limitations, several nonpharmacologic interventions for PADIS have been evaluated.

Pet therapy has been implemented in some ICU settings, but is not widely adopted.7 Also referred to as animal-assisted activities, animal-assisted therapy, or animal-assisted interventions, pet therapy typically involves interaction between a patient and a live animal (most commonly a dog) under the direction of an animal handler, with the intention of providing therapeutic benefit. Interactions frequently include meet and greet activities such as petting, but also could include walking or other activities. Pet therapy has been reported to reduce pain, agitation, and stress among ICU patients.8 Introducing a pet therapy program with live animals in the ICU could be challenging because of factors such as identifying trained, accredited animals and handlers, and managing infection control and other risks.9 As an alternative to live pets, robotic pet therapy has been shown to be beneficial—mostly outside the ICU—in settings such as long-term care.10,11 Although uncommon, robotic pets have been used in the ICU and hospital settings for therapeutic purposes.12 Robotic pets reduce many concerns associated with live animals while mimicking the behaviors of live animals and potentially offering many of the same benefits.

 

OBSERVATIONS

figure

The North Florida/South Georgia Veterans Health System (NF/SGVHS) implemented a novel robotic pet therapy program for patients requiring ICU care to improve the treatment of PADIS. Funding was provided through a Veterans Health Administration Innovation Grant procured by a clinical pharmacy specialist as the program’s champion. Goals of the robotic pet therapy program include reductions in: distressing symptoms associated with PADIS, use of psychoactive drugs and physical restraints, and ICU length of stay. The ICU team developed standard operating procedures and an order menu, which were integrated into the ICU prescriber ordering menu. Patients were selected for pet therapy based on PADIS scores and potential for positive response to pet therapy as assessed by the ICU team.Patients in medical and surgical ICU settings were eligible for the program. The robotic pets used in the program were Joy for AllCompanion Pets (Ageless Innovation LLC). Robotic cats and dogs were available and pets were “adopted’ by each patient (Figure). As an infection control measure, pets were not reissued or shared amongpatients and pets could be cleaned with a disinfectant solution. Nurses were primarily responsible for monitoring and documenting responses to robotic pet therapy.

table

It was necessary to secure buy-in from several services to successfully implement the program. The critical care clinical pharmacy specialists were responsible for ordering, storing, and dispensing the robotic pets. The NF/SGVHS innovation specialist helped secure funding, procure the robotic pet, and promote the program. The standard operating procedures for the program were developed by a multidisciplinary team with input from critical care nurses, intensivists, pharmacists, patient safety, and infection control (Table 1). Success of the program also required buy-in from ICU team members.

 

 

Program Impact

A retrospective cohort study was conducted to assess for improvements in PADIS symptoms and medication use post-intervention. Patients were included if they received robotic pet therapy in the ICU from July 10, 2019, to February 1, 2021. Individuals aged < 18 years or > 89 years, were pregnant, or were not receiving ICU-level care were excluded. Outcomes assessed included improvement in pain scores, agitation scores, sleep quality, resolution of delirium, and use of pain or psychoactive medications during patients’ ICU stay.

table 2

Thirty patients were included in the study (Table 2). After receiving a robotic pet, 9 (30%) patients recorded decreased pain scores, 15 (50%) recorded decreased agitation scores, 8 (27%) had resolution of delirium, and 2 (7%) described improvement in sleep. Pain medication use decreased in 12 (40%) patients and psychoactive medication use was reduced in 7 (23%) patients.

Limitations

The robotic pet therapy program has shown promising results; however, some aspects merit discussion. Evaluation of this program is limited by factors such as the observational study design, single-center patient sample, and lack of comparator group. Although no known adverse effects of robotic pet therapy were seen, it is possible that some patients may not have a favorable response. Challenges of implementing a robotic pet therapy program include cost and additional operational activities (storage, ordering, dispensing) necessary to maintain the program. Additional research is needed to evaluate the impact of robotic pet therapy on other outcomes including cost, ICU length of stay, and patient satisfaction.

 

CONCLUSIONS

Robotic pet therapy can be successfully implemented in the ICU and appears to provide a simple, safe, beneficial, nonpharmacologic intervention for PADIS. This study showed that many patients had favorable response to robotic pet therapy, indicating that it may be a viable alternative to traditional pet therapy. Other health systems could benefit from implementing programs similar to the robotic pet therapy program at NF/SGVHS.

Acknowledgments

The author would like to acknowledge Simran Panesar, PharmD, and Theresa Faison, PharmD, for their contributions to this project.

Critical illness is commonly associated with interrelated conditions including pain, agitation, delirium, immobility, and sleep disruption (PADIS). Managing PADIS is often complex and includes pharmacologic and nonpharmacologic interventions.1 Incorporating multifaceted practices to enhance PADIS management has been shown to improve several intensive care unit (ICU)-related outcomes.2

Many pharmacologic PADIS treatments are ineffective or associated with adverse effects. For example, antipsychotics used for treating ICU-related delirium have not shown improved outcomes.3,4 Commonly used medications for agitation, such as benzodiazepines, increase delirium risk.5,6 Because of these limitations, several nonpharmacologic interventions for PADIS have been evaluated.

Pet therapy has been implemented in some ICU settings, but is not widely adopted.7 Also referred to as animal-assisted activities, animal-assisted therapy, or animal-assisted interventions, pet therapy typically involves interaction between a patient and a live animal (most commonly a dog) under the direction of an animal handler, with the intention of providing therapeutic benefit. Interactions frequently include meet and greet activities such as petting, but also could include walking or other activities. Pet therapy has been reported to reduce pain, agitation, and stress among ICU patients.8 Introducing a pet therapy program with live animals in the ICU could be challenging because of factors such as identifying trained, accredited animals and handlers, and managing infection control and other risks.9 As an alternative to live pets, robotic pet therapy has been shown to be beneficial—mostly outside the ICU—in settings such as long-term care.10,11 Although uncommon, robotic pets have been used in the ICU and hospital settings for therapeutic purposes.12 Robotic pets reduce many concerns associated with live animals while mimicking the behaviors of live animals and potentially offering many of the same benefits.

 

OBSERVATIONS

figure

The North Florida/South Georgia Veterans Health System (NF/SGVHS) implemented a novel robotic pet therapy program for patients requiring ICU care to improve the treatment of PADIS. Funding was provided through a Veterans Health Administration Innovation Grant procured by a clinical pharmacy specialist as the program’s champion. Goals of the robotic pet therapy program include reductions in: distressing symptoms associated with PADIS, use of psychoactive drugs and physical restraints, and ICU length of stay. The ICU team developed standard operating procedures and an order menu, which were integrated into the ICU prescriber ordering menu. Patients were selected for pet therapy based on PADIS scores and potential for positive response to pet therapy as assessed by the ICU team.Patients in medical and surgical ICU settings were eligible for the program. The robotic pets used in the program were Joy for AllCompanion Pets (Ageless Innovation LLC). Robotic cats and dogs were available and pets were “adopted’ by each patient (Figure). As an infection control measure, pets were not reissued or shared amongpatients and pets could be cleaned with a disinfectant solution. Nurses were primarily responsible for monitoring and documenting responses to robotic pet therapy.

table

It was necessary to secure buy-in from several services to successfully implement the program. The critical care clinical pharmacy specialists were responsible for ordering, storing, and dispensing the robotic pets. The NF/SGVHS innovation specialist helped secure funding, procure the robotic pet, and promote the program. The standard operating procedures for the program were developed by a multidisciplinary team with input from critical care nurses, intensivists, pharmacists, patient safety, and infection control (Table 1). Success of the program also required buy-in from ICU team members.

 

 

Program Impact

A retrospective cohort study was conducted to assess for improvements in PADIS symptoms and medication use post-intervention. Patients were included if they received robotic pet therapy in the ICU from July 10, 2019, to February 1, 2021. Individuals aged < 18 years or > 89 years, were pregnant, or were not receiving ICU-level care were excluded. Outcomes assessed included improvement in pain scores, agitation scores, sleep quality, resolution of delirium, and use of pain or psychoactive medications during patients’ ICU stay.

table 2

Thirty patients were included in the study (Table 2). After receiving a robotic pet, 9 (30%) patients recorded decreased pain scores, 15 (50%) recorded decreased agitation scores, 8 (27%) had resolution of delirium, and 2 (7%) described improvement in sleep. Pain medication use decreased in 12 (40%) patients and psychoactive medication use was reduced in 7 (23%) patients.

Limitations

The robotic pet therapy program has shown promising results; however, some aspects merit discussion. Evaluation of this program is limited by factors such as the observational study design, single-center patient sample, and lack of comparator group. Although no known adverse effects of robotic pet therapy were seen, it is possible that some patients may not have a favorable response. Challenges of implementing a robotic pet therapy program include cost and additional operational activities (storage, ordering, dispensing) necessary to maintain the program. Additional research is needed to evaluate the impact of robotic pet therapy on other outcomes including cost, ICU length of stay, and patient satisfaction.

 

CONCLUSIONS

Robotic pet therapy can be successfully implemented in the ICU and appears to provide a simple, safe, beneficial, nonpharmacologic intervention for PADIS. This study showed that many patients had favorable response to robotic pet therapy, indicating that it may be a viable alternative to traditional pet therapy. Other health systems could benefit from implementing programs similar to the robotic pet therapy program at NF/SGVHS.

Acknowledgments

The author would like to acknowledge Simran Panesar, PharmD, and Theresa Faison, PharmD, for their contributions to this project.

References

1. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46:e825-e873. doi:10.1097/CCM.0000000000003299

2. Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for critically ill patients with the ABCDEF bundle: results of the ICU Liberation Collaborative in over 15,000 adults. Crit Care Med. 2019;47:3-14. doi:10.1097/CCM.0000000000003482

3. Andersen-Ranberg NC, Poulsen LM, Perner A, et al; AID-ICU Trial Group. Haloperidol for the treatment of delirium in ICU patients. N Engl J Med. 2022;387:2425-2435. doi:10.1056/NEJMoa2211868

4. Girard TD, Exline MC, Carson SS, et al; MIND-USA Investigators. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2018;379:2506-2516. doi:10.1056/NEJMoa1808217

5. Riker RR, Shehabi Y, Bokesch PM, et al; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489-499. doi:10.1001/jama.2009.56

6. Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21-26. doi:10.1097/00000542-200601000-00005

7. Society of Critical Care Medicine. ICU liberation bundle. Accessed February 27, 2024. https://www.sccm.org/ICULiberation/Home/ABCDEF-Bundles

8. Lovell T, Ranse K. Animal-assisted activities in the intensive care unit: a scoping review. Intensive Crit Care Nurs. 2022;73:103304. doi:10.1016/j.iccn.2022.103304

9. Hosey MM, Jaskulski J, Wegener ST, Chlan LL, Needham DM. Animal-assisted intervention in the ICU: a tool for humanization. Crit Care. 2018;22:22. doi:10.1186/s13054-018-1946-8

10. Jøranson N, Pedersen I, Rokstad AM, Ihlebæk C. Effects on symptoms of agitation and depression in persons with dementia participating in robot-assisted activity: a cluster-randomized controlled trial. J Am Med Dir Assoc. 2015;16:867-873. doi:10.1016/j.jamda.2015.05.002

11. Robinson H, Macdonald B, Kerse N, Broadbent E. The psychosocial effects of a companion robot: a randomized controlled trial. J Am Med Dir Assoc. 2013;14:661-667. doi:10.1016/j.jamda.2013.02.007

12. Schulman-Marcus J, Mookherjee S, Rice L, Lyubarova R. New approaches for the treatment of delirium: a case for robotic pets. Am J Med. 2019;132:781-782. doi:10.1016/j.amjmed.2018.12.039

References

1. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46:e825-e873. doi:10.1097/CCM.0000000000003299

2. Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for critically ill patients with the ABCDEF bundle: results of the ICU Liberation Collaborative in over 15,000 adults. Crit Care Med. 2019;47:3-14. doi:10.1097/CCM.0000000000003482

3. Andersen-Ranberg NC, Poulsen LM, Perner A, et al; AID-ICU Trial Group. Haloperidol for the treatment of delirium in ICU patients. N Engl J Med. 2022;387:2425-2435. doi:10.1056/NEJMoa2211868

4. Girard TD, Exline MC, Carson SS, et al; MIND-USA Investigators. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2018;379:2506-2516. doi:10.1056/NEJMoa1808217

5. Riker RR, Shehabi Y, Bokesch PM, et al; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489-499. doi:10.1001/jama.2009.56

6. Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21-26. doi:10.1097/00000542-200601000-00005

7. Society of Critical Care Medicine. ICU liberation bundle. Accessed February 27, 2024. https://www.sccm.org/ICULiberation/Home/ABCDEF-Bundles

8. Lovell T, Ranse K. Animal-assisted activities in the intensive care unit: a scoping review. Intensive Crit Care Nurs. 2022;73:103304. doi:10.1016/j.iccn.2022.103304

9. Hosey MM, Jaskulski J, Wegener ST, Chlan LL, Needham DM. Animal-assisted intervention in the ICU: a tool for humanization. Crit Care. 2018;22:22. doi:10.1186/s13054-018-1946-8

10. Jøranson N, Pedersen I, Rokstad AM, Ihlebæk C. Effects on symptoms of agitation and depression in persons with dementia participating in robot-assisted activity: a cluster-randomized controlled trial. J Am Med Dir Assoc. 2015;16:867-873. doi:10.1016/j.jamda.2015.05.002

11. Robinson H, Macdonald B, Kerse N, Broadbent E. The psychosocial effects of a companion robot: a randomized controlled trial. J Am Med Dir Assoc. 2013;14:661-667. doi:10.1016/j.jamda.2013.02.007

12. Schulman-Marcus J, Mookherjee S, Rice L, Lyubarova R. New approaches for the treatment of delirium: a case for robotic pets. Am J Med. 2019;132:781-782. doi:10.1016/j.amjmed.2018.12.039

Issue
Federal Practitioner - 41(5)a
Issue
Federal Practitioner - 41(5)a
Page Number
150-153
Page Number
150-153
Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
Article PDF Media

The DEA Plans to Reschedule Marijuana: What Happens Next?

Article Type
Changed
Mon, 05/06/2024 - 16:36

The US Drug Enforcement Agency (DEA) is moving forward with plans to move marijuana from a Schedule I to a Schedule III controlled substance under the Controlled Substance Act (CSA), the US Department of Justice officials announced this week. 

First reported by the Associated Press and since confirmed by this news organization through a US Department of Justice spokesperson, the news made international headlines. Despite the media splash, the final rule is still months away.

How did we get here? What happens next? What impact might rescheduling have on clinicians, patients, researchers, and the medical cannabis industry? 

Why Reschedule? Why Now? 

The DEA’s decision is based on a 2023 determination from the US Food and Drug Administration (FDA) that marijuana has a legitimate medical use and should be moved to Schedule III. 

DEA defines Schedule I drugs as those with no currently accepted medical use and a high potential for abuse. That class includes heroin, LSD, and ecstasy. Schedule III drugs have a moderate to low potential for physical and psychological dependence and have a currently accepted medical use. This class includes ketamine, acetaminophen with codeine, and buprenorphine. 

Even though the manufacturing, distribution, sale, and use of marijuana has long violated federal law, 38 states and Washington, DC, have legalized medical cannabis, and 24 states and DC have legalized its recreational use.

Congress has allowed states leeway for the distribution and use of medical marijuana, and current and previous presidential administrations have chosen not to aggressively pursue prosecution of state-allowed marijuana use, the Congressional Research Service (CRS) reports

Pressure to address the conflict between federal and state laws and an increasing interest in drug development of cannabis and cannabis-derived products probably contributed to the DEA’s decision, said Stephen Strakowski, MD, professor, and vice chair of psychiatry at Indiana University in Indianapolis, and professor and associate vice president at University of Texas in Austin.

“The trend toward legalization is everywhere and even though nationally the feds in this instance are lagging the states, the pressure to legalize has been intense for 50 years and it’s not surprising that the DEA is finally following that lead,” Dr. Strakowski told this news organization. 

How Does Rescheduling Work? What’s the Timeline?

The DEA will submit a formal rule proposing that marijuana be moved from Schedule I to Schedule III to the White House Office of Management and Budget. The timing of the submission is unclear. 

Once the proposed rule is posted to the Federal Register, there will be a public comment period, which usually lasts 30-60 days.

“This will likely generate a lot of public comment,” Robert Mikos, JD, LaRoche Family Chair in Law at Vanderbilt University Law School in Nashville, Tennessee, told this news organization. “Then the agency has to go back and wade through those comments and decide if they want to proceed with the rule as proposed or modify it.”

A final rule will probably be posted before the end of the current presidential term in January, Mr. Mikos said. While a lawsuit blocking its implementation is possible, there is a “low chance that a court would block this,” he added.

 

 

How Will Rescheduling Affect Medical Marijuana?

For medical marijuana, changing the drug to a Schedule III means that it can legally be prescribed but only in states that have legalized medical cannabis, Mr. Mikos said. 

“If you’re a patient in a state with a medical marijuana law and your physician gives you a prescription for medical marijuana and you possess it, you will no longer be guilty of a federal crime,” he said.

Rescheduling could also benefit patients who receive care through the Veterans Administration (VA), Mr. Mikos said. For several years, the VA has had a policy that blocked clinicians from prescribing medical marijuana because as a Schedule I drug, it was determined to have no accepted medical use. 

“It’s possible the VA may drop that policy once the drug gets rescheduled. If you’re in a medical marijuana state, if you’re a VA patient, and you don’t want to spend the extra money to go outside that system, this will have meaningful impact on their lives,” Mr. Mikos said.

But what about patients living in states that have not legalized medical cannabis? 

“You still wouldn’t be committing a federal crime, but you could be violating state law,” Mr. Mikos said. “That’s a much more salient consideration because if you look at who goes after individuals who possess small amounts of drugs, the state handles 99% of those cases.” 

The manufacture, distribution, and possession of recreational marijuana would remain illegal under federal law.

What Does It Mean for Medical Marijuana Dispensaries?

Though rescheduling makes it legal for clinicians to prescribe medical marijuana and for patients to use it, the actual sale of the drug will remain illegal under federal law because rescheduling only changes prescribing under the CSA, Mr. Mikos said.

“If you’re a dispensary and you sell it, even if it’s to somebody who’s got a prescription, you’re still probably violating the Food, Drug and Cosmetics Act. Rescheduling doesn’t change that,” he said. 

“Even assuming the DEA follows through with this and it doesn’t come undone at some future date, the industry is still going struggle to comply with the Controlled Substances Act post rescheduling because that statute is going to continue to impose a number of regulations on the industry,” Mr. Mikos added.

However, rescheduling would change the tax status of the estimated 12,000-15,000 state-licensed cannabis dispensaries in the United States, allowing access to certain tax deductions that are unavailable to sales involving Schedule I controlled substances, James Daily, JD, MS, with Center for Empirical Research in the Law at Washington University School of Law in St. Louis, told this news organization.

“Many cannabis businesses do in fact pay federal taxes, but the inability to take any federal tax credits or deductions means that their effective tax rate is much higher than it would otherwise be,” Mr. Daily said. 

Although new federal tax deductions would likely available to cannabis businesses if marijuana were rescheduled to Schedule III, “their business would still be in violation of federal law,” he said. 

“This creates a further tension between state and federal law, which could be resolved by further legalization or it could be resolved by extending the prohibition on tax deductions to include cannabis and not just Schedule I and II drugs,” he added.

 

 

Will Rescheduling Make It Easier to Conduct Cannabis-Related Research? 

Research on medical cannabis has been stymied by FDA and DEA regulations regarding the study of Schedule I controlled substances. Although rescheduling could lift that barrier, other challenges would remain.

“Schedule III drugs can be more easily researched, but it’s unclear if, for example, a clinical trial could lawfully obtain the cannabis from a dispensary or if they would still have to go through the one legal federal supplier of cannabis,” Daily said. 

The FDA reports having received more than 800 investigational new drug applications for and pre-investigational new drug applications related to cannabis and cannabis-derived products since the 1970s, the agency reports. To date, the FDA has not approved any marketing drug applications for cannabis for the treatment of any disease or condition. 

In January 2023, the agency published updated guidelines for researchers and sponsors interested in developing drugs containing cannabis or cannabis-derived compounds. 

It’s unclear whether those guidelines would be updated if the rescheduling moves forward. 

Does Rescheduling Marijuana Pose Any Risk? 

In its report to the DEA that marijuana be rescheduled, the FDA was careful to note that the agency’s recommendation is “not meant to imply that safety and effectiveness have been established for marijuana that would support FDA approval of a marijuana drug product for a particular indication.”

That’s a notation that clinicians and patients should take to heart, Dr. Strakowski said. 

“It’s important to remind people that Schedule III drugs, by definition, have addiction and other side effect risks,” he said. “The celebrity marketing that sits behind a lot of this is incompletely informed. It’s portrayed as fun and harmless in almost every movie and conversation you see, and we know that’s not true.”

Previous studies have linked cannabis to increased risk for maniaanxiety disorders, and schizophrenia

“It is increasingly clear that marijuana use is linked to poor outcomes in people who struggle with mental illness,” Dr. Strakowski said. “We have no evidence that it can help you but there is evidence that it can harm you.”

Dr. Strakowski likens cannabis use to alcohol, which is a known depressant that is associated with worse outcomes in people with mental illness. 

“I think with cannabis, we don’t know enough about it yet, but we do know that it does have some anxiety risks,” he said. “The risks in people with mental illness are simply different than in people who don’t have mental illness.”

Dr. Strakowski, Mr. Mikos, and Mr. Daily report no relevant disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Drug Enforcement Agency (DEA) is moving forward with plans to move marijuana from a Schedule I to a Schedule III controlled substance under the Controlled Substance Act (CSA), the US Department of Justice officials announced this week. 

First reported by the Associated Press and since confirmed by this news organization through a US Department of Justice spokesperson, the news made international headlines. Despite the media splash, the final rule is still months away.

How did we get here? What happens next? What impact might rescheduling have on clinicians, patients, researchers, and the medical cannabis industry? 

Why Reschedule? Why Now? 

The DEA’s decision is based on a 2023 determination from the US Food and Drug Administration (FDA) that marijuana has a legitimate medical use and should be moved to Schedule III. 

DEA defines Schedule I drugs as those with no currently accepted medical use and a high potential for abuse. That class includes heroin, LSD, and ecstasy. Schedule III drugs have a moderate to low potential for physical and psychological dependence and have a currently accepted medical use. This class includes ketamine, acetaminophen with codeine, and buprenorphine. 

Even though the manufacturing, distribution, sale, and use of marijuana has long violated federal law, 38 states and Washington, DC, have legalized medical cannabis, and 24 states and DC have legalized its recreational use.

Congress has allowed states leeway for the distribution and use of medical marijuana, and current and previous presidential administrations have chosen not to aggressively pursue prosecution of state-allowed marijuana use, the Congressional Research Service (CRS) reports

Pressure to address the conflict between federal and state laws and an increasing interest in drug development of cannabis and cannabis-derived products probably contributed to the DEA’s decision, said Stephen Strakowski, MD, professor, and vice chair of psychiatry at Indiana University in Indianapolis, and professor and associate vice president at University of Texas in Austin.

“The trend toward legalization is everywhere and even though nationally the feds in this instance are lagging the states, the pressure to legalize has been intense for 50 years and it’s not surprising that the DEA is finally following that lead,” Dr. Strakowski told this news organization. 

How Does Rescheduling Work? What’s the Timeline?

The DEA will submit a formal rule proposing that marijuana be moved from Schedule I to Schedule III to the White House Office of Management and Budget. The timing of the submission is unclear. 

Once the proposed rule is posted to the Federal Register, there will be a public comment period, which usually lasts 30-60 days.

“This will likely generate a lot of public comment,” Robert Mikos, JD, LaRoche Family Chair in Law at Vanderbilt University Law School in Nashville, Tennessee, told this news organization. “Then the agency has to go back and wade through those comments and decide if they want to proceed with the rule as proposed or modify it.”

A final rule will probably be posted before the end of the current presidential term in January, Mr. Mikos said. While a lawsuit blocking its implementation is possible, there is a “low chance that a court would block this,” he added.

 

 

How Will Rescheduling Affect Medical Marijuana?

For medical marijuana, changing the drug to a Schedule III means that it can legally be prescribed but only in states that have legalized medical cannabis, Mr. Mikos said. 

“If you’re a patient in a state with a medical marijuana law and your physician gives you a prescription for medical marijuana and you possess it, you will no longer be guilty of a federal crime,” he said.

Rescheduling could also benefit patients who receive care through the Veterans Administration (VA), Mr. Mikos said. For several years, the VA has had a policy that blocked clinicians from prescribing medical marijuana because as a Schedule I drug, it was determined to have no accepted medical use. 

“It’s possible the VA may drop that policy once the drug gets rescheduled. If you’re in a medical marijuana state, if you’re a VA patient, and you don’t want to spend the extra money to go outside that system, this will have meaningful impact on their lives,” Mr. Mikos said.

But what about patients living in states that have not legalized medical cannabis? 

“You still wouldn’t be committing a federal crime, but you could be violating state law,” Mr. Mikos said. “That’s a much more salient consideration because if you look at who goes after individuals who possess small amounts of drugs, the state handles 99% of those cases.” 

The manufacture, distribution, and possession of recreational marijuana would remain illegal under federal law.

What Does It Mean for Medical Marijuana Dispensaries?

Though rescheduling makes it legal for clinicians to prescribe medical marijuana and for patients to use it, the actual sale of the drug will remain illegal under federal law because rescheduling only changes prescribing under the CSA, Mr. Mikos said.

“If you’re a dispensary and you sell it, even if it’s to somebody who’s got a prescription, you’re still probably violating the Food, Drug and Cosmetics Act. Rescheduling doesn’t change that,” he said. 

“Even assuming the DEA follows through with this and it doesn’t come undone at some future date, the industry is still going struggle to comply with the Controlled Substances Act post rescheduling because that statute is going to continue to impose a number of regulations on the industry,” Mr. Mikos added.

However, rescheduling would change the tax status of the estimated 12,000-15,000 state-licensed cannabis dispensaries in the United States, allowing access to certain tax deductions that are unavailable to sales involving Schedule I controlled substances, James Daily, JD, MS, with Center for Empirical Research in the Law at Washington University School of Law in St. Louis, told this news organization.

“Many cannabis businesses do in fact pay federal taxes, but the inability to take any federal tax credits or deductions means that their effective tax rate is much higher than it would otherwise be,” Mr. Daily said. 

Although new federal tax deductions would likely available to cannabis businesses if marijuana were rescheduled to Schedule III, “their business would still be in violation of federal law,” he said. 

“This creates a further tension between state and federal law, which could be resolved by further legalization or it could be resolved by extending the prohibition on tax deductions to include cannabis and not just Schedule I and II drugs,” he added.

 

 

Will Rescheduling Make It Easier to Conduct Cannabis-Related Research? 

Research on medical cannabis has been stymied by FDA and DEA regulations regarding the study of Schedule I controlled substances. Although rescheduling could lift that barrier, other challenges would remain.

“Schedule III drugs can be more easily researched, but it’s unclear if, for example, a clinical trial could lawfully obtain the cannabis from a dispensary or if they would still have to go through the one legal federal supplier of cannabis,” Daily said. 

The FDA reports having received more than 800 investigational new drug applications for and pre-investigational new drug applications related to cannabis and cannabis-derived products since the 1970s, the agency reports. To date, the FDA has not approved any marketing drug applications for cannabis for the treatment of any disease or condition. 

In January 2023, the agency published updated guidelines for researchers and sponsors interested in developing drugs containing cannabis or cannabis-derived compounds. 

It’s unclear whether those guidelines would be updated if the rescheduling moves forward. 

Does Rescheduling Marijuana Pose Any Risk? 

In its report to the DEA that marijuana be rescheduled, the FDA was careful to note that the agency’s recommendation is “not meant to imply that safety and effectiveness have been established for marijuana that would support FDA approval of a marijuana drug product for a particular indication.”

That’s a notation that clinicians and patients should take to heart, Dr. Strakowski said. 

“It’s important to remind people that Schedule III drugs, by definition, have addiction and other side effect risks,” he said. “The celebrity marketing that sits behind a lot of this is incompletely informed. It’s portrayed as fun and harmless in almost every movie and conversation you see, and we know that’s not true.”

Previous studies have linked cannabis to increased risk for maniaanxiety disorders, and schizophrenia

“It is increasingly clear that marijuana use is linked to poor outcomes in people who struggle with mental illness,” Dr. Strakowski said. “We have no evidence that it can help you but there is evidence that it can harm you.”

Dr. Strakowski likens cannabis use to alcohol, which is a known depressant that is associated with worse outcomes in people with mental illness. 

“I think with cannabis, we don’t know enough about it yet, but we do know that it does have some anxiety risks,” he said. “The risks in people with mental illness are simply different than in people who don’t have mental illness.”

Dr. Strakowski, Mr. Mikos, and Mr. Daily report no relevant disclosures. 
 

A version of this article appeared on Medscape.com.

The US Drug Enforcement Agency (DEA) is moving forward with plans to move marijuana from a Schedule I to a Schedule III controlled substance under the Controlled Substance Act (CSA), the US Department of Justice officials announced this week. 

First reported by the Associated Press and since confirmed by this news organization through a US Department of Justice spokesperson, the news made international headlines. Despite the media splash, the final rule is still months away.

How did we get here? What happens next? What impact might rescheduling have on clinicians, patients, researchers, and the medical cannabis industry? 

Why Reschedule? Why Now? 

The DEA’s decision is based on a 2023 determination from the US Food and Drug Administration (FDA) that marijuana has a legitimate medical use and should be moved to Schedule III. 

DEA defines Schedule I drugs as those with no currently accepted medical use and a high potential for abuse. That class includes heroin, LSD, and ecstasy. Schedule III drugs have a moderate to low potential for physical and psychological dependence and have a currently accepted medical use. This class includes ketamine, acetaminophen with codeine, and buprenorphine. 

Even though the manufacturing, distribution, sale, and use of marijuana has long violated federal law, 38 states and Washington, DC, have legalized medical cannabis, and 24 states and DC have legalized its recreational use.

Congress has allowed states leeway for the distribution and use of medical marijuana, and current and previous presidential administrations have chosen not to aggressively pursue prosecution of state-allowed marijuana use, the Congressional Research Service (CRS) reports

Pressure to address the conflict between federal and state laws and an increasing interest in drug development of cannabis and cannabis-derived products probably contributed to the DEA’s decision, said Stephen Strakowski, MD, professor, and vice chair of psychiatry at Indiana University in Indianapolis, and professor and associate vice president at University of Texas in Austin.

“The trend toward legalization is everywhere and even though nationally the feds in this instance are lagging the states, the pressure to legalize has been intense for 50 years and it’s not surprising that the DEA is finally following that lead,” Dr. Strakowski told this news organization. 

How Does Rescheduling Work? What’s the Timeline?

The DEA will submit a formal rule proposing that marijuana be moved from Schedule I to Schedule III to the White House Office of Management and Budget. The timing of the submission is unclear. 

Once the proposed rule is posted to the Federal Register, there will be a public comment period, which usually lasts 30-60 days.

“This will likely generate a lot of public comment,” Robert Mikos, JD, LaRoche Family Chair in Law at Vanderbilt University Law School in Nashville, Tennessee, told this news organization. “Then the agency has to go back and wade through those comments and decide if they want to proceed with the rule as proposed or modify it.”

A final rule will probably be posted before the end of the current presidential term in January, Mr. Mikos said. While a lawsuit blocking its implementation is possible, there is a “low chance that a court would block this,” he added.

 

 

How Will Rescheduling Affect Medical Marijuana?

For medical marijuana, changing the drug to a Schedule III means that it can legally be prescribed but only in states that have legalized medical cannabis, Mr. Mikos said. 

“If you’re a patient in a state with a medical marijuana law and your physician gives you a prescription for medical marijuana and you possess it, you will no longer be guilty of a federal crime,” he said.

Rescheduling could also benefit patients who receive care through the Veterans Administration (VA), Mr. Mikos said. For several years, the VA has had a policy that blocked clinicians from prescribing medical marijuana because as a Schedule I drug, it was determined to have no accepted medical use. 

“It’s possible the VA may drop that policy once the drug gets rescheduled. If you’re in a medical marijuana state, if you’re a VA patient, and you don’t want to spend the extra money to go outside that system, this will have meaningful impact on their lives,” Mr. Mikos said.

But what about patients living in states that have not legalized medical cannabis? 

“You still wouldn’t be committing a federal crime, but you could be violating state law,” Mr. Mikos said. “That’s a much more salient consideration because if you look at who goes after individuals who possess small amounts of drugs, the state handles 99% of those cases.” 

The manufacture, distribution, and possession of recreational marijuana would remain illegal under federal law.

What Does It Mean for Medical Marijuana Dispensaries?

Though rescheduling makes it legal for clinicians to prescribe medical marijuana and for patients to use it, the actual sale of the drug will remain illegal under federal law because rescheduling only changes prescribing under the CSA, Mr. Mikos said.

“If you’re a dispensary and you sell it, even if it’s to somebody who’s got a prescription, you’re still probably violating the Food, Drug and Cosmetics Act. Rescheduling doesn’t change that,” he said. 

“Even assuming the DEA follows through with this and it doesn’t come undone at some future date, the industry is still going struggle to comply with the Controlled Substances Act post rescheduling because that statute is going to continue to impose a number of regulations on the industry,” Mr. Mikos added.

However, rescheduling would change the tax status of the estimated 12,000-15,000 state-licensed cannabis dispensaries in the United States, allowing access to certain tax deductions that are unavailable to sales involving Schedule I controlled substances, James Daily, JD, MS, with Center for Empirical Research in the Law at Washington University School of Law in St. Louis, told this news organization.

“Many cannabis businesses do in fact pay federal taxes, but the inability to take any federal tax credits or deductions means that their effective tax rate is much higher than it would otherwise be,” Mr. Daily said. 

Although new federal tax deductions would likely available to cannabis businesses if marijuana were rescheduled to Schedule III, “their business would still be in violation of federal law,” he said. 

“This creates a further tension between state and federal law, which could be resolved by further legalization or it could be resolved by extending the prohibition on tax deductions to include cannabis and not just Schedule I and II drugs,” he added.

 

 

Will Rescheduling Make It Easier to Conduct Cannabis-Related Research? 

Research on medical cannabis has been stymied by FDA and DEA regulations regarding the study of Schedule I controlled substances. Although rescheduling could lift that barrier, other challenges would remain.

“Schedule III drugs can be more easily researched, but it’s unclear if, for example, a clinical trial could lawfully obtain the cannabis from a dispensary or if they would still have to go through the one legal federal supplier of cannabis,” Daily said. 

The FDA reports having received more than 800 investigational new drug applications for and pre-investigational new drug applications related to cannabis and cannabis-derived products since the 1970s, the agency reports. To date, the FDA has not approved any marketing drug applications for cannabis for the treatment of any disease or condition. 

In January 2023, the agency published updated guidelines for researchers and sponsors interested in developing drugs containing cannabis or cannabis-derived compounds. 

It’s unclear whether those guidelines would be updated if the rescheduling moves forward. 

Does Rescheduling Marijuana Pose Any Risk? 

In its report to the DEA that marijuana be rescheduled, the FDA was careful to note that the agency’s recommendation is “not meant to imply that safety and effectiveness have been established for marijuana that would support FDA approval of a marijuana drug product for a particular indication.”

That’s a notation that clinicians and patients should take to heart, Dr. Strakowski said. 

“It’s important to remind people that Schedule III drugs, by definition, have addiction and other side effect risks,” he said. “The celebrity marketing that sits behind a lot of this is incompletely informed. It’s portrayed as fun and harmless in almost every movie and conversation you see, and we know that’s not true.”

Previous studies have linked cannabis to increased risk for maniaanxiety disorders, and schizophrenia

“It is increasingly clear that marijuana use is linked to poor outcomes in people who struggle with mental illness,” Dr. Strakowski said. “We have no evidence that it can help you but there is evidence that it can harm you.”

Dr. Strakowski likens cannabis use to alcohol, which is a known depressant that is associated with worse outcomes in people with mental illness. 

“I think with cannabis, we don’t know enough about it yet, but we do know that it does have some anxiety risks,” he said. “The risks in people with mental illness are simply different than in people who don’t have mental illness.”

Dr. Strakowski, Mr. Mikos, and Mr. Daily report no relevant disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article