Wider Waist Increases Risk for Asthma Attacks

Article Type
Changed
Thu, 05/09/2024 - 08:14

A recent study links waist size and a higher risk for asthma attack. After adjustments, the likelihood of asthma attacks was 1.06 times higher for every 5-cm increase in waist circumference in adults with asthma.

BMI Earlier Tied to Asthma

Previous research supports a link between increased body mass index (BMI) and asthma, but the association between abdominal obesity and asthma attacks has not been well studied.

The researchers in the current study reviewed data from the National Health and Nutrition Examination Survey for 5530 adults with asthma in the United States. Adults in the study were divided into groups based on whether they did or did not experience asthma attacks.

The median age of the study population was 43 years, the median waist circumference was 98.9 cm, and the median BMI was 28.50.
 

More Waist Inches = Asthma Attacks

Overall, patients who reported asthma attacks had a significantly higher waist circumference than those without asthma attacks (median, 102.6 cm vs 97.3 cm, P < .001).

The association between increased waist circumference and increased odds of asthma attack was significant across non-adjusted, minimally adjusted, and fully adjusted models (odds ratios, 1.7, 1.06, and 1.06, respectively). In fact, each 5-cm increase in waist circumference was associated with a 1.06 times higher likelihood of an asthma attack after full adjustment for BMI-defined obesity, age, gender, race/ethnicity, education, poverty income ratio, smoking status, and metabolic syndrome.

The relationship between increased likelihood of asthma attacks and increased waist circumference persisted in subgroup analyses based on gender, age, and smoking status.
 

Importance of Waist Size

“Our study underscores the critical role of waist circumference measurements in the routine health evaluations of individuals diagnosed with asthma, highlighting its inclusion as an essential aspect of comprehensive health assessments,” the researchers wrote.

Limited to Data Available

The study findings were limited by several factors including the use of existing database questions to evaluate asthma attacks, a lack of data on the specificity of triggers of asthma exacerbations, and an inability to distinguish the severity of asthma attacks.

The study was published online in BMC Public Health. The lead author was Xiang Liu, MD, of Qingdao Municipal Hospital, Qingdao, China.

The study received no outside funding. The researchers had no financial conflicts to disclose.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A recent study links waist size and a higher risk for asthma attack. After adjustments, the likelihood of asthma attacks was 1.06 times higher for every 5-cm increase in waist circumference in adults with asthma.

BMI Earlier Tied to Asthma

Previous research supports a link between increased body mass index (BMI) and asthma, but the association between abdominal obesity and asthma attacks has not been well studied.

The researchers in the current study reviewed data from the National Health and Nutrition Examination Survey for 5530 adults with asthma in the United States. Adults in the study were divided into groups based on whether they did or did not experience asthma attacks.

The median age of the study population was 43 years, the median waist circumference was 98.9 cm, and the median BMI was 28.50.
 

More Waist Inches = Asthma Attacks

Overall, patients who reported asthma attacks had a significantly higher waist circumference than those without asthma attacks (median, 102.6 cm vs 97.3 cm, P < .001).

The association between increased waist circumference and increased odds of asthma attack was significant across non-adjusted, minimally adjusted, and fully adjusted models (odds ratios, 1.7, 1.06, and 1.06, respectively). In fact, each 5-cm increase in waist circumference was associated with a 1.06 times higher likelihood of an asthma attack after full adjustment for BMI-defined obesity, age, gender, race/ethnicity, education, poverty income ratio, smoking status, and metabolic syndrome.

The relationship between increased likelihood of asthma attacks and increased waist circumference persisted in subgroup analyses based on gender, age, and smoking status.
 

Importance of Waist Size

“Our study underscores the critical role of waist circumference measurements in the routine health evaluations of individuals diagnosed with asthma, highlighting its inclusion as an essential aspect of comprehensive health assessments,” the researchers wrote.

Limited to Data Available

The study findings were limited by several factors including the use of existing database questions to evaluate asthma attacks, a lack of data on the specificity of triggers of asthma exacerbations, and an inability to distinguish the severity of asthma attacks.

The study was published online in BMC Public Health. The lead author was Xiang Liu, MD, of Qingdao Municipal Hospital, Qingdao, China.

The study received no outside funding. The researchers had no financial conflicts to disclose.

A version of this article appeared on Medscape.com.

A recent study links waist size and a higher risk for asthma attack. After adjustments, the likelihood of asthma attacks was 1.06 times higher for every 5-cm increase in waist circumference in adults with asthma.

BMI Earlier Tied to Asthma

Previous research supports a link between increased body mass index (BMI) and asthma, but the association between abdominal obesity and asthma attacks has not been well studied.

The researchers in the current study reviewed data from the National Health and Nutrition Examination Survey for 5530 adults with asthma in the United States. Adults in the study were divided into groups based on whether they did or did not experience asthma attacks.

The median age of the study population was 43 years, the median waist circumference was 98.9 cm, and the median BMI was 28.50.
 

More Waist Inches = Asthma Attacks

Overall, patients who reported asthma attacks had a significantly higher waist circumference than those without asthma attacks (median, 102.6 cm vs 97.3 cm, P < .001).

The association between increased waist circumference and increased odds of asthma attack was significant across non-adjusted, minimally adjusted, and fully adjusted models (odds ratios, 1.7, 1.06, and 1.06, respectively). In fact, each 5-cm increase in waist circumference was associated with a 1.06 times higher likelihood of an asthma attack after full adjustment for BMI-defined obesity, age, gender, race/ethnicity, education, poverty income ratio, smoking status, and metabolic syndrome.

The relationship between increased likelihood of asthma attacks and increased waist circumference persisted in subgroup analyses based on gender, age, and smoking status.
 

Importance of Waist Size

“Our study underscores the critical role of waist circumference measurements in the routine health evaluations of individuals diagnosed with asthma, highlighting its inclusion as an essential aspect of comprehensive health assessments,” the researchers wrote.

Limited to Data Available

The study findings were limited by several factors including the use of existing database questions to evaluate asthma attacks, a lack of data on the specificity of triggers of asthma exacerbations, and an inability to distinguish the severity of asthma attacks.

The study was published online in BMC Public Health. The lead author was Xiang Liu, MD, of Qingdao Municipal Hospital, Qingdao, China.

The study received no outside funding. The researchers had no financial conflicts to disclose.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Asthma, COPD inhaler price caps set for summer

Article Type
Changed
Mon, 05/06/2024 - 17:03

In addition to warmer weather, June will usher in changes in asthma and COPD inhaler costs for many patients, potentially reducing barriers to those seeing high prescription prices. Price ceilings have been set by some companies, likely following action earlier this year by a Senate Committee which pointed to higher costs of US inhalers compared with other countries.

Senator Sanders stated: “In my view, Americans who have asthma and COPD should not be forced to pay, in many cases, 10-70 times more for the same exact inhalers as patients in Europe and other parts of the world.”

Starting June 1, Boehringer Ingelheim will cap out-of-pocket costs for the company’s inhaler products for chronic lung disease and asthma at $35 per month, according to a March 7, 2024, press release from the German drugmaker’s US headquarters in Ridgefield, Conn. The reductions cover the full range of the company’s inhaler products for asthma and chronic obstructive pulmonary disease (COPD) including Atrovent, Combivent Respimat and Spiriva HandiHaler and Respimat, Stiolto Respimat and Striverdi Respimat. In the release, Boehringer Ingelheim USA Corporation’s President and CEO Jean-Michel Boers stated, “The US health care system is complex and often doesn’t work for patients, especially the most vulnerable. While we can’t fix the entire system alone, we are bringing forward a solution to make it fairer. We want to do our part to help patients living with COPD or asthma who struggle to pay for their medications.”

Similar announcements were made by AstraZeneca and GSK. GSK’s cap will go into effect on January 1, 2025, and includes Advair Diskus, Advair HFA, Anoro Ellipta, Arnuity Ellipta, Breo Ellipta, Incruse Ellipta, Serevent Diskus, Trelegy Ellipta, and Ventolin HFA. The AstraZeneca cap, which covers Airsupra, Bevespi Aerosphere, Breztri Aeroshpere, and Symbicort, goes into effect on June 1, 2024.
 

Senate statement on pricing

These companies plus Teva had received letters sent on January 8, 2024, by the members of the Senate Committee on Health, Education, Labor, and Pensions: senators Sanders, Baldwin, Luján and Markey. The letters cited enormous inhaler price discrepancies, for example $489 for Combivent Respimat in the United States but just $7 in France, and announced the conduct of an investigation into efforts by these companies to artificially inflate and manipulate prices of asthma inhalers that have been on the market for decades. A statement from Sen. Sanders’ office noted that AstraZeneca, GSK, and Teva made more than $25 billion in revenue from inhalers alone in the past 5 years (Boehringer Ingelheim does not provide public US inhaler revenue information).

 

Suit claims generic delay

A federal lawsuit filed in Boston on March 6, according to a Reuters brief from March 7, cited Boehringer for improperly submitting patents to the US Food and Drug Administration (FDA). The purpose of those patents, the suit charges, was to delay generic competition and inflate Combivent Respimat and Spiriva Respimat inhaler prices.

Inhaler prices soared in the United States, according to a March 10 U.S. News & World Report commentary by The Conversation, a nonprofit news organization, after the 2008 FDA ban on chlorofluorocarbon (CFC)-propellants led to the phase-out of CFC-containing inhalers and their replacement with hydrofluoroalkane-propellant inhalers. For the insured that meant an average out-of-pocket inhaler cost increase from $13.60 per prescription in 2004 to $25 in 2015. The current rate for the now nongeneric HFA-propelled but otherwise identical albuterol inhaler is $98. Competition from a more recently FDA-approved (2020) generic version has not been robust enough to effect meaningful price reductions, the report stated. While good insurance generally covers most of inhaler costs, the more than 25 million uninsured in 2023 faced steep market prices that put strain even on some insured, the CDC found, driving many in the United States to purchase from Mexican, Canadian, or other foreign pharmacies. The Teva QVAR REdiHaler corticosteroid inhaler, costing $9 in Germany, costs $286 in the US. Dosages, however, may not be identical. A first FDA-authorization of drug importing this past January applied only to agents for a limited number of disease states and pertained only to Florida, but may serve as a model for other states, according to the commentary.

“The announced price cap from Boehringer Ingelheim,” stated Kenneth Mendez, president and CEO of the Asthma and Allergy Foundation of America (AAFA) in a press release, “is a step toward improving access to essential asthma medicine and demonstrates that the voice of the asthma patient community is being heard.” The AAFA release noted further that asthma death rates, while declining overall, are triple in Blacks compared with Whites. Death rates, asthma rates, and rates of being uninsured or underinsured are much higher in Black and Puerto Rican populations than in Whites. The complex layers of the current US system, composed of pharmaceutical manufacturers, pharmacy benefit managers, insurance companies, employers, and federal policies often conspire against those people who need asthma drugs the most. AAFA research has shown that when drug prices become a barrier to treatment, people with asthma ration or simply discontinue their essential asthma medications. Beyond saved lives, access to asthma medications can reduce hospitalizations and lower the more than $82 billion in annual asthma costs to the US economy.

Sen. Sanders, on March 20, applauded the GSK announcement: “As Chairman of the Senate Health, Education, Labor, and Pensions Committee, I very much appreciate GlaxoSmithKline’s announcement today that Americans throughout the country with asthma and COPD will pay no more than $35 for the brand name inhalers they manufacture. I look forward to working with GSK to make sure that this decision reaches as many patients as possible.”

“Inhaled medications continue to be an essential part of the therapy for patients with asthma, COPD, and other respiratory conditions,” said Diego J. Maselli, professor and chief, Division of Pulmonary Diseases & Critical Care, UT Health at San Antonio, San Antonio, Texas, in an interview with CHEST Physician. He added, “Unfortunately, with increasing cost of these and other treatments, access has been challenging for many patients. Patients, families, and providers constantly experience frustration with the difficulties of obtaining these lifesaving medications, and cost is the main barrier. Even those with ample insurance coverage face difficult challenges, as the high prices of these medications motivate insurance carriers to constantly adjust what is the ‘preferred’ option among inhalers. Regrettably, noncompliance and nonadherence to inhaled therapies has been linked to poor patient outcomes and increased health care utilization in both asthma and COPD. Because of the high prevalence of these diseases in the US and worldwide, efforts to increase the access of these vital medications has been a priority. With the leveling of the prices of these medications across the world, we hope that there will be both improved access and, as a consequence, better patient outcomes.”

Publications
Topics
Sections

In addition to warmer weather, June will usher in changes in asthma and COPD inhaler costs for many patients, potentially reducing barriers to those seeing high prescription prices. Price ceilings have been set by some companies, likely following action earlier this year by a Senate Committee which pointed to higher costs of US inhalers compared with other countries.

Senator Sanders stated: “In my view, Americans who have asthma and COPD should not be forced to pay, in many cases, 10-70 times more for the same exact inhalers as patients in Europe and other parts of the world.”

Starting June 1, Boehringer Ingelheim will cap out-of-pocket costs for the company’s inhaler products for chronic lung disease and asthma at $35 per month, according to a March 7, 2024, press release from the German drugmaker’s US headquarters in Ridgefield, Conn. The reductions cover the full range of the company’s inhaler products for asthma and chronic obstructive pulmonary disease (COPD) including Atrovent, Combivent Respimat and Spiriva HandiHaler and Respimat, Stiolto Respimat and Striverdi Respimat. In the release, Boehringer Ingelheim USA Corporation’s President and CEO Jean-Michel Boers stated, “The US health care system is complex and often doesn’t work for patients, especially the most vulnerable. While we can’t fix the entire system alone, we are bringing forward a solution to make it fairer. We want to do our part to help patients living with COPD or asthma who struggle to pay for their medications.”

Similar announcements were made by AstraZeneca and GSK. GSK’s cap will go into effect on January 1, 2025, and includes Advair Diskus, Advair HFA, Anoro Ellipta, Arnuity Ellipta, Breo Ellipta, Incruse Ellipta, Serevent Diskus, Trelegy Ellipta, and Ventolin HFA. The AstraZeneca cap, which covers Airsupra, Bevespi Aerosphere, Breztri Aeroshpere, and Symbicort, goes into effect on June 1, 2024.
 

Senate statement on pricing

These companies plus Teva had received letters sent on January 8, 2024, by the members of the Senate Committee on Health, Education, Labor, and Pensions: senators Sanders, Baldwin, Luján and Markey. The letters cited enormous inhaler price discrepancies, for example $489 for Combivent Respimat in the United States but just $7 in France, and announced the conduct of an investigation into efforts by these companies to artificially inflate and manipulate prices of asthma inhalers that have been on the market for decades. A statement from Sen. Sanders’ office noted that AstraZeneca, GSK, and Teva made more than $25 billion in revenue from inhalers alone in the past 5 years (Boehringer Ingelheim does not provide public US inhaler revenue information).

 

Suit claims generic delay

A federal lawsuit filed in Boston on March 6, according to a Reuters brief from March 7, cited Boehringer for improperly submitting patents to the US Food and Drug Administration (FDA). The purpose of those patents, the suit charges, was to delay generic competition and inflate Combivent Respimat and Spiriva Respimat inhaler prices.

Inhaler prices soared in the United States, according to a March 10 U.S. News & World Report commentary by The Conversation, a nonprofit news organization, after the 2008 FDA ban on chlorofluorocarbon (CFC)-propellants led to the phase-out of CFC-containing inhalers and their replacement with hydrofluoroalkane-propellant inhalers. For the insured that meant an average out-of-pocket inhaler cost increase from $13.60 per prescription in 2004 to $25 in 2015. The current rate for the now nongeneric HFA-propelled but otherwise identical albuterol inhaler is $98. Competition from a more recently FDA-approved (2020) generic version has not been robust enough to effect meaningful price reductions, the report stated. While good insurance generally covers most of inhaler costs, the more than 25 million uninsured in 2023 faced steep market prices that put strain even on some insured, the CDC found, driving many in the United States to purchase from Mexican, Canadian, or other foreign pharmacies. The Teva QVAR REdiHaler corticosteroid inhaler, costing $9 in Germany, costs $286 in the US. Dosages, however, may not be identical. A first FDA-authorization of drug importing this past January applied only to agents for a limited number of disease states and pertained only to Florida, but may serve as a model for other states, according to the commentary.

“The announced price cap from Boehringer Ingelheim,” stated Kenneth Mendez, president and CEO of the Asthma and Allergy Foundation of America (AAFA) in a press release, “is a step toward improving access to essential asthma medicine and demonstrates that the voice of the asthma patient community is being heard.” The AAFA release noted further that asthma death rates, while declining overall, are triple in Blacks compared with Whites. Death rates, asthma rates, and rates of being uninsured or underinsured are much higher in Black and Puerto Rican populations than in Whites. The complex layers of the current US system, composed of pharmaceutical manufacturers, pharmacy benefit managers, insurance companies, employers, and federal policies often conspire against those people who need asthma drugs the most. AAFA research has shown that when drug prices become a barrier to treatment, people with asthma ration or simply discontinue their essential asthma medications. Beyond saved lives, access to asthma medications can reduce hospitalizations and lower the more than $82 billion in annual asthma costs to the US economy.

Sen. Sanders, on March 20, applauded the GSK announcement: “As Chairman of the Senate Health, Education, Labor, and Pensions Committee, I very much appreciate GlaxoSmithKline’s announcement today that Americans throughout the country with asthma and COPD will pay no more than $35 for the brand name inhalers they manufacture. I look forward to working with GSK to make sure that this decision reaches as many patients as possible.”

“Inhaled medications continue to be an essential part of the therapy for patients with asthma, COPD, and other respiratory conditions,” said Diego J. Maselli, professor and chief, Division of Pulmonary Diseases & Critical Care, UT Health at San Antonio, San Antonio, Texas, in an interview with CHEST Physician. He added, “Unfortunately, with increasing cost of these and other treatments, access has been challenging for many patients. Patients, families, and providers constantly experience frustration with the difficulties of obtaining these lifesaving medications, and cost is the main barrier. Even those with ample insurance coverage face difficult challenges, as the high prices of these medications motivate insurance carriers to constantly adjust what is the ‘preferred’ option among inhalers. Regrettably, noncompliance and nonadherence to inhaled therapies has been linked to poor patient outcomes and increased health care utilization in both asthma and COPD. Because of the high prevalence of these diseases in the US and worldwide, efforts to increase the access of these vital medications has been a priority. With the leveling of the prices of these medications across the world, we hope that there will be both improved access and, as a consequence, better patient outcomes.”

In addition to warmer weather, June will usher in changes in asthma and COPD inhaler costs for many patients, potentially reducing barriers to those seeing high prescription prices. Price ceilings have been set by some companies, likely following action earlier this year by a Senate Committee which pointed to higher costs of US inhalers compared with other countries.

Senator Sanders stated: “In my view, Americans who have asthma and COPD should not be forced to pay, in many cases, 10-70 times more for the same exact inhalers as patients in Europe and other parts of the world.”

Starting June 1, Boehringer Ingelheim will cap out-of-pocket costs for the company’s inhaler products for chronic lung disease and asthma at $35 per month, according to a March 7, 2024, press release from the German drugmaker’s US headquarters in Ridgefield, Conn. The reductions cover the full range of the company’s inhaler products for asthma and chronic obstructive pulmonary disease (COPD) including Atrovent, Combivent Respimat and Spiriva HandiHaler and Respimat, Stiolto Respimat and Striverdi Respimat. In the release, Boehringer Ingelheim USA Corporation’s President and CEO Jean-Michel Boers stated, “The US health care system is complex and often doesn’t work for patients, especially the most vulnerable. While we can’t fix the entire system alone, we are bringing forward a solution to make it fairer. We want to do our part to help patients living with COPD or asthma who struggle to pay for their medications.”

Similar announcements were made by AstraZeneca and GSK. GSK’s cap will go into effect on January 1, 2025, and includes Advair Diskus, Advair HFA, Anoro Ellipta, Arnuity Ellipta, Breo Ellipta, Incruse Ellipta, Serevent Diskus, Trelegy Ellipta, and Ventolin HFA. The AstraZeneca cap, which covers Airsupra, Bevespi Aerosphere, Breztri Aeroshpere, and Symbicort, goes into effect on June 1, 2024.
 

Senate statement on pricing

These companies plus Teva had received letters sent on January 8, 2024, by the members of the Senate Committee on Health, Education, Labor, and Pensions: senators Sanders, Baldwin, Luján and Markey. The letters cited enormous inhaler price discrepancies, for example $489 for Combivent Respimat in the United States but just $7 in France, and announced the conduct of an investigation into efforts by these companies to artificially inflate and manipulate prices of asthma inhalers that have been on the market for decades. A statement from Sen. Sanders’ office noted that AstraZeneca, GSK, and Teva made more than $25 billion in revenue from inhalers alone in the past 5 years (Boehringer Ingelheim does not provide public US inhaler revenue information).

 

Suit claims generic delay

A federal lawsuit filed in Boston on March 6, according to a Reuters brief from March 7, cited Boehringer for improperly submitting patents to the US Food and Drug Administration (FDA). The purpose of those patents, the suit charges, was to delay generic competition and inflate Combivent Respimat and Spiriva Respimat inhaler prices.

Inhaler prices soared in the United States, according to a March 10 U.S. News & World Report commentary by The Conversation, a nonprofit news organization, after the 2008 FDA ban on chlorofluorocarbon (CFC)-propellants led to the phase-out of CFC-containing inhalers and their replacement with hydrofluoroalkane-propellant inhalers. For the insured that meant an average out-of-pocket inhaler cost increase from $13.60 per prescription in 2004 to $25 in 2015. The current rate for the now nongeneric HFA-propelled but otherwise identical albuterol inhaler is $98. Competition from a more recently FDA-approved (2020) generic version has not been robust enough to effect meaningful price reductions, the report stated. While good insurance generally covers most of inhaler costs, the more than 25 million uninsured in 2023 faced steep market prices that put strain even on some insured, the CDC found, driving many in the United States to purchase from Mexican, Canadian, or other foreign pharmacies. The Teva QVAR REdiHaler corticosteroid inhaler, costing $9 in Germany, costs $286 in the US. Dosages, however, may not be identical. A first FDA-authorization of drug importing this past January applied only to agents for a limited number of disease states and pertained only to Florida, but may serve as a model for other states, according to the commentary.

“The announced price cap from Boehringer Ingelheim,” stated Kenneth Mendez, president and CEO of the Asthma and Allergy Foundation of America (AAFA) in a press release, “is a step toward improving access to essential asthma medicine and demonstrates that the voice of the asthma patient community is being heard.” The AAFA release noted further that asthma death rates, while declining overall, are triple in Blacks compared with Whites. Death rates, asthma rates, and rates of being uninsured or underinsured are much higher in Black and Puerto Rican populations than in Whites. The complex layers of the current US system, composed of pharmaceutical manufacturers, pharmacy benefit managers, insurance companies, employers, and federal policies often conspire against those people who need asthma drugs the most. AAFA research has shown that when drug prices become a barrier to treatment, people with asthma ration or simply discontinue their essential asthma medications. Beyond saved lives, access to asthma medications can reduce hospitalizations and lower the more than $82 billion in annual asthma costs to the US economy.

Sen. Sanders, on March 20, applauded the GSK announcement: “As Chairman of the Senate Health, Education, Labor, and Pensions Committee, I very much appreciate GlaxoSmithKline’s announcement today that Americans throughout the country with asthma and COPD will pay no more than $35 for the brand name inhalers they manufacture. I look forward to working with GSK to make sure that this decision reaches as many patients as possible.”

“Inhaled medications continue to be an essential part of the therapy for patients with asthma, COPD, and other respiratory conditions,” said Diego J. Maselli, professor and chief, Division of Pulmonary Diseases & Critical Care, UT Health at San Antonio, San Antonio, Texas, in an interview with CHEST Physician. He added, “Unfortunately, with increasing cost of these and other treatments, access has been challenging for many patients. Patients, families, and providers constantly experience frustration with the difficulties of obtaining these lifesaving medications, and cost is the main barrier. Even those with ample insurance coverage face difficult challenges, as the high prices of these medications motivate insurance carriers to constantly adjust what is the ‘preferred’ option among inhalers. Regrettably, noncompliance and nonadherence to inhaled therapies has been linked to poor patient outcomes and increased health care utilization in both asthma and COPD. Because of the high prevalence of these diseases in the US and worldwide, efforts to increase the access of these vital medications has been a priority. With the leveling of the prices of these medications across the world, we hope that there will be both improved access and, as a consequence, better patient outcomes.”

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Digital Inhaler Discontinuations: Not Enough Uptake of Device

Article Type
Changed
Wed, 06/19/2024 - 10:26

On the heels of the January 2024 announcement by GlaxoSmithKline that its Flovent inhalers are being discontinued, Teva’s recent announcement that it will discontinue U.S. distribution of its Digihaler® products is adding concern and complication to patients’ and physicians’ efforts to manage asthma symptoms.

“It is unfortunate to hear that more asthma inhalers are being discontinued,” Asthma and Allergy Foundation of America (AAFA) President and CEO Kenneth Mendez, said in an interview. The impact of Teva’s June 1 discontinuations of its Digihaler portfolio (ProAir Digihaler, AirDuo Digihaler, and ArmonAir Digihaler), he added, is only partially softened by Teva’s reassurance that its still-available RespiClick devices deliver the same drug formulations via the same devices as the ProAir and AirDuo products — because they lack the innovative digital component. “The Teva Digihaler portfolio had offered an innovative approach to encourage adherence to treatment by integrating a digital solution with an inhaler.”
 

Digital App Companion to Inhaler

The digital components of the AirDuo Digihaler (fluticasone propionate and salmeterol) inhalation powder and ArmonAir Digihaler (fluticasone propionate) inhalation powder, both maintenance inhalers for patients 12-years or older with asthma, include built-in Bluetooth® wireless technology that connects to a companion mobile app. Their triggers for recording data on inhaler use are either the opening of the inhaler cap or the patient’s inhalation. The devices detect, record, and store data on inhaler use and peak inspiratory flow.

Also, they can remind the patient as to how often the devices have been used, measure inspiratory flow rates, and indicate when inhalation technique may need improvement. Data are then directly sent to the Digihaler app via Bluetooth technology, giving discretion to patients as to whether or not their data will be shared with health care providers.

When patients share their digital inhaler device-recorded data, Teva sources state, providers can more objectively assess the patients’ inhaler use patterns and habits to determine if they are using them as prescribed, and through inspiratory flow rates, judge whether or not patients may need inhaler technique coaching.
 

Possibility for Objective Data

“I was excited about the Digihaler when it was first launched,” said Maureen George, RN, PhD, of Columbia University School of Nursing, New York, “because it gave very good objective feedback on patients’ inhaler technique through peak inspiratory flow. It showed whether they missed doses or if there were patterns of increased use with increased symptoms.

“Inhaled medications are the only therapy that — if you inaccurately administer them — you don’t actually get any drug, at all,” she said in an interview. “If you don’t get the drug into the target organ, the lungs, you don’t get symptom relief, nor disease remission. Actually, most patients use their devices incorrectly, and most healthcare professionals can’t demonstrate correct delivery technique. At the pharmacy, you’re unlikely to see a real pharmacist, and more likely to see just a cashier. No other product that I know of has offered that degree of sophistication in terms of the different steps of inhaler technique.”
 

CONNECT2: Better Asthma Control at 24 Weeks

Benefits in asthma control for the Digihaler System have been confirmed recently in clinical research. The CONNECT2 trial compared asthma control with the Digihaler System (DS) versus standard of care (SoC) in patients 13 years or older with uncontrolled asthma (Asthma Control Test [ACT] score < 19). Investigators randomized them open-label 4:3 to the DS (n = 210) or SoC (n = 181) for 24 weeks. Primary endpoint assessment of the proportion of patients achieving well-controlled asthma (ie, an ACT score ≥ 20 or increase from baseline of ≥ 3 units at week 24) revealed an 88.7% higher probability that DS patients would have greater odds of achieving asthma control improvement at week 24, with 35% higher odds of asthma control in the DS group. Also, clinician-participant interactions, mostly addressing poor inhaler technique, were more frequent in the DS group. Six-month adherence was good (68.6%, vs 79.2% at month 1), and reliever use at month 6 was decreased by 38.2% from baseline in the DS group.

Lack of Inhaler Uptake

“It made me sad to hear that it was going away. It’s a device that should have been useful,” Dr. George said, “but the wonderful features that could have come at an individual level or at a population health level just were never realized. I don’t think it was from lack of trying on the company’s part, but when it was launched, insurance companies wouldn’t pay the extra cost that comes with having an integrated electronic monitoring device. They weren’t convinced that the return on investment down the road from improved disease control and fewer very expensive acute hospitalizations was worth it. So the uptake was poor.”

Where does this leave patients? Mr. Mendez stated, “It is imperative that people using Teva’s Digihaler products to treat their asthma reach out to their provider now to determine the best alternative treatment options. Unfortunately, when GSK discontinued Flovent, some people using that inhaler were transitioned to the ArmonAir Digihaler. Also, some formularies do not cover the authorized generic of Flovent, forcing patients to change treatment.”

The AAFA press release of April 15 lists in detail available alternatives to Teva’s discontinued devices, naming quick-relief inhalers and inhaled corticosteroids, noting where dosing, devices, or active ingredients are at variance from the Teva products. The AAFA document also lists and describes inhaler device types (metered dose inhaler, breath actuated inhaler, dry powder inhaler and soft mist inhaler) and their differences in detail.

Publications
Topics
Sections

On the heels of the January 2024 announcement by GlaxoSmithKline that its Flovent inhalers are being discontinued, Teva’s recent announcement that it will discontinue U.S. distribution of its Digihaler® products is adding concern and complication to patients’ and physicians’ efforts to manage asthma symptoms.

“It is unfortunate to hear that more asthma inhalers are being discontinued,” Asthma and Allergy Foundation of America (AAFA) President and CEO Kenneth Mendez, said in an interview. The impact of Teva’s June 1 discontinuations of its Digihaler portfolio (ProAir Digihaler, AirDuo Digihaler, and ArmonAir Digihaler), he added, is only partially softened by Teva’s reassurance that its still-available RespiClick devices deliver the same drug formulations via the same devices as the ProAir and AirDuo products — because they lack the innovative digital component. “The Teva Digihaler portfolio had offered an innovative approach to encourage adherence to treatment by integrating a digital solution with an inhaler.”
 

Digital App Companion to Inhaler

The digital components of the AirDuo Digihaler (fluticasone propionate and salmeterol) inhalation powder and ArmonAir Digihaler (fluticasone propionate) inhalation powder, both maintenance inhalers for patients 12-years or older with asthma, include built-in Bluetooth® wireless technology that connects to a companion mobile app. Their triggers for recording data on inhaler use are either the opening of the inhaler cap or the patient’s inhalation. The devices detect, record, and store data on inhaler use and peak inspiratory flow.

Also, they can remind the patient as to how often the devices have been used, measure inspiratory flow rates, and indicate when inhalation technique may need improvement. Data are then directly sent to the Digihaler app via Bluetooth technology, giving discretion to patients as to whether or not their data will be shared with health care providers.

When patients share their digital inhaler device-recorded data, Teva sources state, providers can more objectively assess the patients’ inhaler use patterns and habits to determine if they are using them as prescribed, and through inspiratory flow rates, judge whether or not patients may need inhaler technique coaching.
 

Possibility for Objective Data

“I was excited about the Digihaler when it was first launched,” said Maureen George, RN, PhD, of Columbia University School of Nursing, New York, “because it gave very good objective feedback on patients’ inhaler technique through peak inspiratory flow. It showed whether they missed doses or if there were patterns of increased use with increased symptoms.

“Inhaled medications are the only therapy that — if you inaccurately administer them — you don’t actually get any drug, at all,” she said in an interview. “If you don’t get the drug into the target organ, the lungs, you don’t get symptom relief, nor disease remission. Actually, most patients use their devices incorrectly, and most healthcare professionals can’t demonstrate correct delivery technique. At the pharmacy, you’re unlikely to see a real pharmacist, and more likely to see just a cashier. No other product that I know of has offered that degree of sophistication in terms of the different steps of inhaler technique.”
 

CONNECT2: Better Asthma Control at 24 Weeks

Benefits in asthma control for the Digihaler System have been confirmed recently in clinical research. The CONNECT2 trial compared asthma control with the Digihaler System (DS) versus standard of care (SoC) in patients 13 years or older with uncontrolled asthma (Asthma Control Test [ACT] score < 19). Investigators randomized them open-label 4:3 to the DS (n = 210) or SoC (n = 181) for 24 weeks. Primary endpoint assessment of the proportion of patients achieving well-controlled asthma (ie, an ACT score ≥ 20 or increase from baseline of ≥ 3 units at week 24) revealed an 88.7% higher probability that DS patients would have greater odds of achieving asthma control improvement at week 24, with 35% higher odds of asthma control in the DS group. Also, clinician-participant interactions, mostly addressing poor inhaler technique, were more frequent in the DS group. Six-month adherence was good (68.6%, vs 79.2% at month 1), and reliever use at month 6 was decreased by 38.2% from baseline in the DS group.

Lack of Inhaler Uptake

“It made me sad to hear that it was going away. It’s a device that should have been useful,” Dr. George said, “but the wonderful features that could have come at an individual level or at a population health level just were never realized. I don’t think it was from lack of trying on the company’s part, but when it was launched, insurance companies wouldn’t pay the extra cost that comes with having an integrated electronic monitoring device. They weren’t convinced that the return on investment down the road from improved disease control and fewer very expensive acute hospitalizations was worth it. So the uptake was poor.”

Where does this leave patients? Mr. Mendez stated, “It is imperative that people using Teva’s Digihaler products to treat their asthma reach out to their provider now to determine the best alternative treatment options. Unfortunately, when GSK discontinued Flovent, some people using that inhaler were transitioned to the ArmonAir Digihaler. Also, some formularies do not cover the authorized generic of Flovent, forcing patients to change treatment.”

The AAFA press release of April 15 lists in detail available alternatives to Teva’s discontinued devices, naming quick-relief inhalers and inhaled corticosteroids, noting where dosing, devices, or active ingredients are at variance from the Teva products. The AAFA document also lists and describes inhaler device types (metered dose inhaler, breath actuated inhaler, dry powder inhaler and soft mist inhaler) and their differences in detail.

On the heels of the January 2024 announcement by GlaxoSmithKline that its Flovent inhalers are being discontinued, Teva’s recent announcement that it will discontinue U.S. distribution of its Digihaler® products is adding concern and complication to patients’ and physicians’ efforts to manage asthma symptoms.

“It is unfortunate to hear that more asthma inhalers are being discontinued,” Asthma and Allergy Foundation of America (AAFA) President and CEO Kenneth Mendez, said in an interview. The impact of Teva’s June 1 discontinuations of its Digihaler portfolio (ProAir Digihaler, AirDuo Digihaler, and ArmonAir Digihaler), he added, is only partially softened by Teva’s reassurance that its still-available RespiClick devices deliver the same drug formulations via the same devices as the ProAir and AirDuo products — because they lack the innovative digital component. “The Teva Digihaler portfolio had offered an innovative approach to encourage adherence to treatment by integrating a digital solution with an inhaler.”
 

Digital App Companion to Inhaler

The digital components of the AirDuo Digihaler (fluticasone propionate and salmeterol) inhalation powder and ArmonAir Digihaler (fluticasone propionate) inhalation powder, both maintenance inhalers for patients 12-years or older with asthma, include built-in Bluetooth® wireless technology that connects to a companion mobile app. Their triggers for recording data on inhaler use are either the opening of the inhaler cap or the patient’s inhalation. The devices detect, record, and store data on inhaler use and peak inspiratory flow.

Also, they can remind the patient as to how often the devices have been used, measure inspiratory flow rates, and indicate when inhalation technique may need improvement. Data are then directly sent to the Digihaler app via Bluetooth technology, giving discretion to patients as to whether or not their data will be shared with health care providers.

When patients share their digital inhaler device-recorded data, Teva sources state, providers can more objectively assess the patients’ inhaler use patterns and habits to determine if they are using them as prescribed, and through inspiratory flow rates, judge whether or not patients may need inhaler technique coaching.
 

Possibility for Objective Data

“I was excited about the Digihaler when it was first launched,” said Maureen George, RN, PhD, of Columbia University School of Nursing, New York, “because it gave very good objective feedback on patients’ inhaler technique through peak inspiratory flow. It showed whether they missed doses or if there were patterns of increased use with increased symptoms.

“Inhaled medications are the only therapy that — if you inaccurately administer them — you don’t actually get any drug, at all,” she said in an interview. “If you don’t get the drug into the target organ, the lungs, you don’t get symptom relief, nor disease remission. Actually, most patients use their devices incorrectly, and most healthcare professionals can’t demonstrate correct delivery technique. At the pharmacy, you’re unlikely to see a real pharmacist, and more likely to see just a cashier. No other product that I know of has offered that degree of sophistication in terms of the different steps of inhaler technique.”
 

CONNECT2: Better Asthma Control at 24 Weeks

Benefits in asthma control for the Digihaler System have been confirmed recently in clinical research. The CONNECT2 trial compared asthma control with the Digihaler System (DS) versus standard of care (SoC) in patients 13 years or older with uncontrolled asthma (Asthma Control Test [ACT] score < 19). Investigators randomized them open-label 4:3 to the DS (n = 210) or SoC (n = 181) for 24 weeks. Primary endpoint assessment of the proportion of patients achieving well-controlled asthma (ie, an ACT score ≥ 20 or increase from baseline of ≥ 3 units at week 24) revealed an 88.7% higher probability that DS patients would have greater odds of achieving asthma control improvement at week 24, with 35% higher odds of asthma control in the DS group. Also, clinician-participant interactions, mostly addressing poor inhaler technique, were more frequent in the DS group. Six-month adherence was good (68.6%, vs 79.2% at month 1), and reliever use at month 6 was decreased by 38.2% from baseline in the DS group.

Lack of Inhaler Uptake

“It made me sad to hear that it was going away. It’s a device that should have been useful,” Dr. George said, “but the wonderful features that could have come at an individual level or at a population health level just were never realized. I don’t think it was from lack of trying on the company’s part, but when it was launched, insurance companies wouldn’t pay the extra cost that comes with having an integrated electronic monitoring device. They weren’t convinced that the return on investment down the road from improved disease control and fewer very expensive acute hospitalizations was worth it. So the uptake was poor.”

Where does this leave patients? Mr. Mendez stated, “It is imperative that people using Teva’s Digihaler products to treat their asthma reach out to their provider now to determine the best alternative treatment options. Unfortunately, when GSK discontinued Flovent, some people using that inhaler were transitioned to the ArmonAir Digihaler. Also, some formularies do not cover the authorized generic of Flovent, forcing patients to change treatment.”

The AAFA press release of April 15 lists in detail available alternatives to Teva’s discontinued devices, naming quick-relief inhalers and inhaled corticosteroids, noting where dosing, devices, or active ingredients are at variance from the Teva products. The AAFA document also lists and describes inhaler device types (metered dose inhaler, breath actuated inhaler, dry powder inhaler and soft mist inhaler) and their differences in detail.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What Are Platanus Cough and Thunderstorm Asthma?

Article Type
Changed
Wed, 04/17/2024 - 16:26

Because of climate change, heat waves, storms, heavy rainfalls, and floods are now occurring in areas that seldom experienced these phenomena before. “Extreme weather events are rare, but in terms of their extent, duration, and scale, they are unusual. And they are increasing due to climate change,” said Andrea Elmer, MD, an internal medicine and pulmonology specialist at the DKD Helios Clinic in Wiesbaden, Germany. She spoke at the Congress of the German Society for Pneumology and Respiratory Medicine.

Dr. Elmer referred to the 2023 status report by the Robert Koch Institute and the 2023 Synthesis Report by the Intergovernmental Panel on Climate Change, in which the likelihood of extreme weather events was acknowledged to be significantly higher than previously recognized. “Knowing about such extreme weather events is important to assess the consequences for our patients and to identify possible medical care needs,” said Dr. Elmer. She focused on the effects of platanus (plane tree) cough and thunderstorm asthma.
 

Platanus Cough

The severe symptoms of 40 students at a comprehensive school in Wiesbaden, including shortness of breath, coughing, and irritated eyes, led to a major operation involving the fire brigade and police on May 11, 2022. The symptoms worsened when the children left the building and waited in the schoolyard. Initially, a chemical attack with irritant gas was suspected because the school is located near an industrial area. There were no indications of a pollen cloud.

Eventually, doctors and firefighters found that the symptoms were caused by platanus cough, which is induced by the fine star-shaped hair found on young platanus leaves, bark, young branches, and buds. If strong winds move the leaves after prolonged dryness, these trichomes can break off when touched, creating platanus dust.

At that time, there were unusual climatic conditions. The temperature was 29 °C, it was dry, and wind gusts reached 50 km/h. The schoolyard was enclosed and densely planted with tall, old plane trees. Initial symptoms occurred in classrooms with open windows.

Twenty-five children had to be admitted to the hospital. Treatment included lorazepam and salbutamol. All students had normal oxygen levels, and the symptoms were reversed.
 

Cough or Allergy?

The clinical differential diagnosis for an allergy is quite simple, said Dr. Elmer. Platanus cough mainly shows symptoms of irritation, a feeling of a foreign body, and scratching in the eyes, throat, and nose. Coughing can also occur. In an allergy, there is often a runny nose and itching in the eyes and nose. Such allergic symptoms do not occur with platanus cough.

It should also be noted that the sensitization rates for a platanus allergy in Germany range between 5% and 11%. “Having so many platanus allergy sufferers in one place was relatively unlikely,” said Dr. Elmer.

She expects an increase in cases of platanus cough, especially in cities with dense construction, such as in narrow schoolyards. High concentrations of platanus dust can occur, especially when it is warm, dry, and windy. “Platanus cough does not occur every time we walk under plane trees. It strongly depends on warmth, dryness, and wind,” said Dr. Elmer.

Patients can protect themselves by avoiding skin and mucous membrane contact under appropriate climatic conditions and by wearing protective glasses and masks. Leaves and branches should not be swept but vacuumed. “Under no circumstances should plane trees be cut down. We need trees, especially in cities,” said Dr. Elmer. Moreover, the trichomes act as biofilters for air pollutants. In critical environments such as schoolyards, seasonal spraying of plane trees with a mixture of apple pectin and water can prevent the star hair from breaking off.
 

 

 

Thunderstorm Asthma

For patients with asthma, wildfires, storms, heavy rainfall, and thunderstorms can lead to exacerbations. Emergency room visits and hospital admissions generally increase after extreme weather events.

A study examining the consequences of the fires in California from 2004 to 2009, for example, reported that hospital visits related to asthma increased by 10.3%. Those related to respiratory problems increased by 3.3%. Infants and children up to age 5 years were most affected.

Thunderstorms are increasing because of global warming. Thunderstorm asthma arises under specific meteorological conditions. It typically occurs in patients with aeroallergies (eg, to pollen and fungal spores) in combination with thunderstorms and lightning. Large pollen grains, which normally remain in the upper airways, ascend into higher atmospheric layers and break apart due to updrafts. These very small particles are pushed back to ground level by downdrafts, enter the lower airways, and cause acute asthma.

Worldwide, cases of thunderstorm asthma are rare. About 30 events have been documented. Thunderstorm asthma was first observed in 1983 in Birmingham, England. Fungal spores were the trigger.

The most significant incident so far was a severe thunderstorm on November 21, 2016, in Melbourne, Australia. Worldwide attention was drawn to the storm because of an unusually high number of asthma cases. Within 30 hours, 3365 patients were admitted to emergency rooms. “This is also a high burden for a city with 4.6 million inhabitants,” said Dr. Elmer. Of the patients in Melbourne, 35 were admitted to the intensive care unit and 5 patients died.

Dr. Elmer calculated the corresponding number of patients for Wiesbaden and Mainz. “Assuming a population of 500,000 in this region, that would be 400 patients in emergency rooms within 30 hours, which would be a significant number.”

Such events are mainly observed in Australia, where two events per decade are expected. However, due to climate change, the risk could also increase in Europe, leading to more cases of thunderstorm asthma.
 

Risk Factors

The following environmental factors increase the risk:

  • High pollen concentrations in the days before a thunderstorm
  • Precipitation and high humidity, thunderstorms, and lightning
  • Sudden temperature changes
  • Increases in aeroallergen biomass and extreme weather events because of climate change

In Australia, grass pollen was often the trigger for thunderstorm asthma. In the United Kingdom, it was fungal spores. In Italy, olive pollen has a similar potential.

Patients with preexisting asthma, uncontrolled asthma, and high serum-specific immunoglobulin E levels are at risk. The risk is also increased for patients with poor compliance with inhaled steroid (ICS) therapy and for patients who have previously been hospitalized because of their asthma.

Patients with hay fever (ie, seasonal allergic rhinitis) have a significantly higher risk. As Dr. Elmer observed, 88% of patients in the emergency room in Melbourne had seasonal allergic rhinitis. “Fifty-seven percent of the patients in the emergency room did not have previously known asthma, but more than half showed symptoms indicating latent asthma. These patients had latent asthma but had not yet been diagnosed.”

Dr. Elmer emphasized how important it is not to underestimate mild asthma, which should be treated. For patients with hay fever, hyposensitization should be considered.
 

 

 

Reducing Risk

Many factors must come together for thunderstorm asthma to develop, according to Dr. Elmer. Because this convergence is difficult to predict, however, preparation and risk reduction are important. They consist of individual precautions and public health strategies.

The following steps can be taken at the individual level:

  • Identify risk groups, including patients with allergic rhinitis and high serum-specific immunoglobulin E levels. Patients with hay fever benefit from hyposensitization.
  • Avoid outdoor activities on risky days.
  • Diagnose asthma, and do not underestimate mild asthma. Improve therapy compliance with ICS therapy and use maintenance and reliever therapy. This way, the patient automatically increases the steroid dose with increased symptoms and is better protected against exacerbations.
  • Improve health literacy and understanding of asthma.

Thunderstorm asthma also affects healthcare professionals, Dr. Elmer warned. In Melbourne, 25% of responders themselves showed symptoms. Therefore, expect that some of these clinicians will also be unavailable.

Other steps are appropriate at the public health level. In addition to monitoring local pollen concentrations, one must identify risk groups, especially people working outdoors. “It is very difficult to predict an epidemic of thunderstorm asthma,” said Dr. Elmer. Therefore, it is important to increase awareness of the phenomenon and to develop an early warning system with emergency plans for patients and the healthcare system.

“Allergen immunotherapy is protective,” she added. “This has been well studied, and for Melbourne, it has been demonstrated. Patients with allergic rhinitis who had received immunotherapy were protected. These patients did not have to visit the emergency room. This shows that we can do something, and we should hyposensitize,” Dr. Elmer concluded.
 

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Because of climate change, heat waves, storms, heavy rainfalls, and floods are now occurring in areas that seldom experienced these phenomena before. “Extreme weather events are rare, but in terms of their extent, duration, and scale, they are unusual. And they are increasing due to climate change,” said Andrea Elmer, MD, an internal medicine and pulmonology specialist at the DKD Helios Clinic in Wiesbaden, Germany. She spoke at the Congress of the German Society for Pneumology and Respiratory Medicine.

Dr. Elmer referred to the 2023 status report by the Robert Koch Institute and the 2023 Synthesis Report by the Intergovernmental Panel on Climate Change, in which the likelihood of extreme weather events was acknowledged to be significantly higher than previously recognized. “Knowing about such extreme weather events is important to assess the consequences for our patients and to identify possible medical care needs,” said Dr. Elmer. She focused on the effects of platanus (plane tree) cough and thunderstorm asthma.
 

Platanus Cough

The severe symptoms of 40 students at a comprehensive school in Wiesbaden, including shortness of breath, coughing, and irritated eyes, led to a major operation involving the fire brigade and police on May 11, 2022. The symptoms worsened when the children left the building and waited in the schoolyard. Initially, a chemical attack with irritant gas was suspected because the school is located near an industrial area. There were no indications of a pollen cloud.

Eventually, doctors and firefighters found that the symptoms were caused by platanus cough, which is induced by the fine star-shaped hair found on young platanus leaves, bark, young branches, and buds. If strong winds move the leaves after prolonged dryness, these trichomes can break off when touched, creating platanus dust.

At that time, there were unusual climatic conditions. The temperature was 29 °C, it was dry, and wind gusts reached 50 km/h. The schoolyard was enclosed and densely planted with tall, old plane trees. Initial symptoms occurred in classrooms with open windows.

Twenty-five children had to be admitted to the hospital. Treatment included lorazepam and salbutamol. All students had normal oxygen levels, and the symptoms were reversed.
 

Cough or Allergy?

The clinical differential diagnosis for an allergy is quite simple, said Dr. Elmer. Platanus cough mainly shows symptoms of irritation, a feeling of a foreign body, and scratching in the eyes, throat, and nose. Coughing can also occur. In an allergy, there is often a runny nose and itching in the eyes and nose. Such allergic symptoms do not occur with platanus cough.

It should also be noted that the sensitization rates for a platanus allergy in Germany range between 5% and 11%. “Having so many platanus allergy sufferers in one place was relatively unlikely,” said Dr. Elmer.

She expects an increase in cases of platanus cough, especially in cities with dense construction, such as in narrow schoolyards. High concentrations of platanus dust can occur, especially when it is warm, dry, and windy. “Platanus cough does not occur every time we walk under plane trees. It strongly depends on warmth, dryness, and wind,” said Dr. Elmer.

Patients can protect themselves by avoiding skin and mucous membrane contact under appropriate climatic conditions and by wearing protective glasses and masks. Leaves and branches should not be swept but vacuumed. “Under no circumstances should plane trees be cut down. We need trees, especially in cities,” said Dr. Elmer. Moreover, the trichomes act as biofilters for air pollutants. In critical environments such as schoolyards, seasonal spraying of plane trees with a mixture of apple pectin and water can prevent the star hair from breaking off.
 

 

 

Thunderstorm Asthma

For patients with asthma, wildfires, storms, heavy rainfall, and thunderstorms can lead to exacerbations. Emergency room visits and hospital admissions generally increase after extreme weather events.

A study examining the consequences of the fires in California from 2004 to 2009, for example, reported that hospital visits related to asthma increased by 10.3%. Those related to respiratory problems increased by 3.3%. Infants and children up to age 5 years were most affected.

Thunderstorms are increasing because of global warming. Thunderstorm asthma arises under specific meteorological conditions. It typically occurs in patients with aeroallergies (eg, to pollen and fungal spores) in combination with thunderstorms and lightning. Large pollen grains, which normally remain in the upper airways, ascend into higher atmospheric layers and break apart due to updrafts. These very small particles are pushed back to ground level by downdrafts, enter the lower airways, and cause acute asthma.

Worldwide, cases of thunderstorm asthma are rare. About 30 events have been documented. Thunderstorm asthma was first observed in 1983 in Birmingham, England. Fungal spores were the trigger.

The most significant incident so far was a severe thunderstorm on November 21, 2016, in Melbourne, Australia. Worldwide attention was drawn to the storm because of an unusually high number of asthma cases. Within 30 hours, 3365 patients were admitted to emergency rooms. “This is also a high burden for a city with 4.6 million inhabitants,” said Dr. Elmer. Of the patients in Melbourne, 35 were admitted to the intensive care unit and 5 patients died.

Dr. Elmer calculated the corresponding number of patients for Wiesbaden and Mainz. “Assuming a population of 500,000 in this region, that would be 400 patients in emergency rooms within 30 hours, which would be a significant number.”

Such events are mainly observed in Australia, where two events per decade are expected. However, due to climate change, the risk could also increase in Europe, leading to more cases of thunderstorm asthma.
 

Risk Factors

The following environmental factors increase the risk:

  • High pollen concentrations in the days before a thunderstorm
  • Precipitation and high humidity, thunderstorms, and lightning
  • Sudden temperature changes
  • Increases in aeroallergen biomass and extreme weather events because of climate change

In Australia, grass pollen was often the trigger for thunderstorm asthma. In the United Kingdom, it was fungal spores. In Italy, olive pollen has a similar potential.

Patients with preexisting asthma, uncontrolled asthma, and high serum-specific immunoglobulin E levels are at risk. The risk is also increased for patients with poor compliance with inhaled steroid (ICS) therapy and for patients who have previously been hospitalized because of their asthma.

Patients with hay fever (ie, seasonal allergic rhinitis) have a significantly higher risk. As Dr. Elmer observed, 88% of patients in the emergency room in Melbourne had seasonal allergic rhinitis. “Fifty-seven percent of the patients in the emergency room did not have previously known asthma, but more than half showed symptoms indicating latent asthma. These patients had latent asthma but had not yet been diagnosed.”

Dr. Elmer emphasized how important it is not to underestimate mild asthma, which should be treated. For patients with hay fever, hyposensitization should be considered.
 

 

 

Reducing Risk

Many factors must come together for thunderstorm asthma to develop, according to Dr. Elmer. Because this convergence is difficult to predict, however, preparation and risk reduction are important. They consist of individual precautions and public health strategies.

The following steps can be taken at the individual level:

  • Identify risk groups, including patients with allergic rhinitis and high serum-specific immunoglobulin E levels. Patients with hay fever benefit from hyposensitization.
  • Avoid outdoor activities on risky days.
  • Diagnose asthma, and do not underestimate mild asthma. Improve therapy compliance with ICS therapy and use maintenance and reliever therapy. This way, the patient automatically increases the steroid dose with increased symptoms and is better protected against exacerbations.
  • Improve health literacy and understanding of asthma.

Thunderstorm asthma also affects healthcare professionals, Dr. Elmer warned. In Melbourne, 25% of responders themselves showed symptoms. Therefore, expect that some of these clinicians will also be unavailable.

Other steps are appropriate at the public health level. In addition to monitoring local pollen concentrations, one must identify risk groups, especially people working outdoors. “It is very difficult to predict an epidemic of thunderstorm asthma,” said Dr. Elmer. Therefore, it is important to increase awareness of the phenomenon and to develop an early warning system with emergency plans for patients and the healthcare system.

“Allergen immunotherapy is protective,” she added. “This has been well studied, and for Melbourne, it has been demonstrated. Patients with allergic rhinitis who had received immunotherapy were protected. These patients did not have to visit the emergency room. This shows that we can do something, and we should hyposensitize,” Dr. Elmer concluded.
 

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Because of climate change, heat waves, storms, heavy rainfalls, and floods are now occurring in areas that seldom experienced these phenomena before. “Extreme weather events are rare, but in terms of their extent, duration, and scale, they are unusual. And they are increasing due to climate change,” said Andrea Elmer, MD, an internal medicine and pulmonology specialist at the DKD Helios Clinic in Wiesbaden, Germany. She spoke at the Congress of the German Society for Pneumology and Respiratory Medicine.

Dr. Elmer referred to the 2023 status report by the Robert Koch Institute and the 2023 Synthesis Report by the Intergovernmental Panel on Climate Change, in which the likelihood of extreme weather events was acknowledged to be significantly higher than previously recognized. “Knowing about such extreme weather events is important to assess the consequences for our patients and to identify possible medical care needs,” said Dr. Elmer. She focused on the effects of platanus (plane tree) cough and thunderstorm asthma.
 

Platanus Cough

The severe symptoms of 40 students at a comprehensive school in Wiesbaden, including shortness of breath, coughing, and irritated eyes, led to a major operation involving the fire brigade and police on May 11, 2022. The symptoms worsened when the children left the building and waited in the schoolyard. Initially, a chemical attack with irritant gas was suspected because the school is located near an industrial area. There were no indications of a pollen cloud.

Eventually, doctors and firefighters found that the symptoms were caused by platanus cough, which is induced by the fine star-shaped hair found on young platanus leaves, bark, young branches, and buds. If strong winds move the leaves after prolonged dryness, these trichomes can break off when touched, creating platanus dust.

At that time, there were unusual climatic conditions. The temperature was 29 °C, it was dry, and wind gusts reached 50 km/h. The schoolyard was enclosed and densely planted with tall, old plane trees. Initial symptoms occurred in classrooms with open windows.

Twenty-five children had to be admitted to the hospital. Treatment included lorazepam and salbutamol. All students had normal oxygen levels, and the symptoms were reversed.
 

Cough or Allergy?

The clinical differential diagnosis for an allergy is quite simple, said Dr. Elmer. Platanus cough mainly shows symptoms of irritation, a feeling of a foreign body, and scratching in the eyes, throat, and nose. Coughing can also occur. In an allergy, there is often a runny nose and itching in the eyes and nose. Such allergic symptoms do not occur with platanus cough.

It should also be noted that the sensitization rates for a platanus allergy in Germany range between 5% and 11%. “Having so many platanus allergy sufferers in one place was relatively unlikely,” said Dr. Elmer.

She expects an increase in cases of platanus cough, especially in cities with dense construction, such as in narrow schoolyards. High concentrations of platanus dust can occur, especially when it is warm, dry, and windy. “Platanus cough does not occur every time we walk under plane trees. It strongly depends on warmth, dryness, and wind,” said Dr. Elmer.

Patients can protect themselves by avoiding skin and mucous membrane contact under appropriate climatic conditions and by wearing protective glasses and masks. Leaves and branches should not be swept but vacuumed. “Under no circumstances should plane trees be cut down. We need trees, especially in cities,” said Dr. Elmer. Moreover, the trichomes act as biofilters for air pollutants. In critical environments such as schoolyards, seasonal spraying of plane trees with a mixture of apple pectin and water can prevent the star hair from breaking off.
 

 

 

Thunderstorm Asthma

For patients with asthma, wildfires, storms, heavy rainfall, and thunderstorms can lead to exacerbations. Emergency room visits and hospital admissions generally increase after extreme weather events.

A study examining the consequences of the fires in California from 2004 to 2009, for example, reported that hospital visits related to asthma increased by 10.3%. Those related to respiratory problems increased by 3.3%. Infants and children up to age 5 years were most affected.

Thunderstorms are increasing because of global warming. Thunderstorm asthma arises under specific meteorological conditions. It typically occurs in patients with aeroallergies (eg, to pollen and fungal spores) in combination with thunderstorms and lightning. Large pollen grains, which normally remain in the upper airways, ascend into higher atmospheric layers and break apart due to updrafts. These very small particles are pushed back to ground level by downdrafts, enter the lower airways, and cause acute asthma.

Worldwide, cases of thunderstorm asthma are rare. About 30 events have been documented. Thunderstorm asthma was first observed in 1983 in Birmingham, England. Fungal spores were the trigger.

The most significant incident so far was a severe thunderstorm on November 21, 2016, in Melbourne, Australia. Worldwide attention was drawn to the storm because of an unusually high number of asthma cases. Within 30 hours, 3365 patients were admitted to emergency rooms. “This is also a high burden for a city with 4.6 million inhabitants,” said Dr. Elmer. Of the patients in Melbourne, 35 were admitted to the intensive care unit and 5 patients died.

Dr. Elmer calculated the corresponding number of patients for Wiesbaden and Mainz. “Assuming a population of 500,000 in this region, that would be 400 patients in emergency rooms within 30 hours, which would be a significant number.”

Such events are mainly observed in Australia, where two events per decade are expected. However, due to climate change, the risk could also increase in Europe, leading to more cases of thunderstorm asthma.
 

Risk Factors

The following environmental factors increase the risk:

  • High pollen concentrations in the days before a thunderstorm
  • Precipitation and high humidity, thunderstorms, and lightning
  • Sudden temperature changes
  • Increases in aeroallergen biomass and extreme weather events because of climate change

In Australia, grass pollen was often the trigger for thunderstorm asthma. In the United Kingdom, it was fungal spores. In Italy, olive pollen has a similar potential.

Patients with preexisting asthma, uncontrolled asthma, and high serum-specific immunoglobulin E levels are at risk. The risk is also increased for patients with poor compliance with inhaled steroid (ICS) therapy and for patients who have previously been hospitalized because of their asthma.

Patients with hay fever (ie, seasonal allergic rhinitis) have a significantly higher risk. As Dr. Elmer observed, 88% of patients in the emergency room in Melbourne had seasonal allergic rhinitis. “Fifty-seven percent of the patients in the emergency room did not have previously known asthma, but more than half showed symptoms indicating latent asthma. These patients had latent asthma but had not yet been diagnosed.”

Dr. Elmer emphasized how important it is not to underestimate mild asthma, which should be treated. For patients with hay fever, hyposensitization should be considered.
 

 

 

Reducing Risk

Many factors must come together for thunderstorm asthma to develop, according to Dr. Elmer. Because this convergence is difficult to predict, however, preparation and risk reduction are important. They consist of individual precautions and public health strategies.

The following steps can be taken at the individual level:

  • Identify risk groups, including patients with allergic rhinitis and high serum-specific immunoglobulin E levels. Patients with hay fever benefit from hyposensitization.
  • Avoid outdoor activities on risky days.
  • Diagnose asthma, and do not underestimate mild asthma. Improve therapy compliance with ICS therapy and use maintenance and reliever therapy. This way, the patient automatically increases the steroid dose with increased symptoms and is better protected against exacerbations.
  • Improve health literacy and understanding of asthma.

Thunderstorm asthma also affects healthcare professionals, Dr. Elmer warned. In Melbourne, 25% of responders themselves showed symptoms. Therefore, expect that some of these clinicians will also be unavailable.

Other steps are appropriate at the public health level. In addition to monitoring local pollen concentrations, one must identify risk groups, especially people working outdoors. “It is very difficult to predict an epidemic of thunderstorm asthma,” said Dr. Elmer. Therefore, it is important to increase awareness of the phenomenon and to develop an early warning system with emergency plans for patients and the healthcare system.

“Allergen immunotherapy is protective,” she added. “This has been well studied, and for Melbourne, it has been demonstrated. Patients with allergic rhinitis who had received immunotherapy were protected. These patients did not have to visit the emergency room. This shows that we can do something, and we should hyposensitize,” Dr. Elmer concluded.
 

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA OKs Benralizumab for Asthma in Children as Young as 6 Years

Article Type
Changed
Fri, 04/12/2024 - 12:08

Benralizumab is now approved by the US Food and Drug Administration (FDA) for the treatment of asthma in children older than 6 years. 

Marketed as Fasenra, the medication first was approved in 2017 for patients aged 12 years or older. The drug is approved as a maintenance add-on for patients with severe eosinophilic asthma. 

AstraZeneca, which markets the drug, announced the approval for younger patients on April 11. 

The expanded indication was supported by a study that showed that the drug functions in the same way with younger children and their adolescent peers. The safety and tolerability were also consistent with the known profile of the medicine, the company said. 

For children who weigh ≥ 35 kg, the recommended dose is 30 mg. For patients aged 6-11 years who weigh < 35 kg, a new 10-mg dose will be available, according to the announcement. 

The drug, a monoclonal antibody that depletes eosinophils by binding to interleukin 5 receptor alpha on eosinophils, is administered by subcutaneous injection every 4 weeks for the first three doses and then every 8 weeks.

Benralizumab should not be used to treat acute asthma symptoms. Hypersensitivity reasons have occurred after administration of the drug. The most common adverse reactions include headache and pharyngitis.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Benralizumab is now approved by the US Food and Drug Administration (FDA) for the treatment of asthma in children older than 6 years. 

Marketed as Fasenra, the medication first was approved in 2017 for patients aged 12 years or older. The drug is approved as a maintenance add-on for patients with severe eosinophilic asthma. 

AstraZeneca, which markets the drug, announced the approval for younger patients on April 11. 

The expanded indication was supported by a study that showed that the drug functions in the same way with younger children and their adolescent peers. The safety and tolerability were also consistent with the known profile of the medicine, the company said. 

For children who weigh ≥ 35 kg, the recommended dose is 30 mg. For patients aged 6-11 years who weigh < 35 kg, a new 10-mg dose will be available, according to the announcement. 

The drug, a monoclonal antibody that depletes eosinophils by binding to interleukin 5 receptor alpha on eosinophils, is administered by subcutaneous injection every 4 weeks for the first three doses and then every 8 weeks.

Benralizumab should not be used to treat acute asthma symptoms. Hypersensitivity reasons have occurred after administration of the drug. The most common adverse reactions include headache and pharyngitis.
 

A version of this article appeared on Medscape.com.

Benralizumab is now approved by the US Food and Drug Administration (FDA) for the treatment of asthma in children older than 6 years. 

Marketed as Fasenra, the medication first was approved in 2017 for patients aged 12 years or older. The drug is approved as a maintenance add-on for patients with severe eosinophilic asthma. 

AstraZeneca, which markets the drug, announced the approval for younger patients on April 11. 

The expanded indication was supported by a study that showed that the drug functions in the same way with younger children and their adolescent peers. The safety and tolerability were also consistent with the known profile of the medicine, the company said. 

For children who weigh ≥ 35 kg, the recommended dose is 30 mg. For patients aged 6-11 years who weigh < 35 kg, a new 10-mg dose will be available, according to the announcement. 

The drug, a monoclonal antibody that depletes eosinophils by binding to interleukin 5 receptor alpha on eosinophils, is administered by subcutaneous injection every 4 weeks for the first three doses and then every 8 weeks.

Benralizumab should not be used to treat acute asthma symptoms. Hypersensitivity reasons have occurred after administration of the drug. The most common adverse reactions include headache and pharyngitis.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Erosive Esophagitis: 5 Things to Know

Article Type
Changed
Thu, 04/04/2024 - 14:39

 

Erosive esophagitis (EE) is erosion of the esophageal epithelium due to chronic irritation. It can be caused by a number of factors but is primarily a result of gastroesophageal reflux disease (GERD). The main symptoms of EE are heartburn and regurgitation; other symptoms can include epigastric pain, odynophagia, dysphagia, nausea, chronic cough, dental erosion, laryngitis, and asthma. Symptoms can be exacerbated by eating certain trigger foods or when lying down. Diagnosis requires testing to differentiate EE from other manifestations of GERD, including nonerosive esophagitis and Barrett esophagus (BE). EE occurs in approximately 30% of cases of GERD, and EE may evolve to BE in 1%-13% of cases.

Long-term management of EE focuses on relieving symptoms to allow the esophageal lining to heal, thereby reducing both acute symptoms and the risk for other complications. Management plans may incorporate lifestyle changes, such as dietary modifications and weight loss, alongside pharmacologic therapyIn extreme cases, surgery may be considered to repair a damaged esophagus and/or to prevent ongoing acid reflux. If left untreated, EE may progress, potentially leading to more serious conditions.

Here are five things to know about EE.

1. GERD is the main risk factor for EE, but not the only risk factor.

An estimated 1% of the population has EE. Risk factors other than GERD include:

Radiation therapy toxicity can cause acute or chronic EE. For individuals undergoing radiotherapy, radiation esophagitis is a relatively frequent complication. Acute esophagitis generally occurs in all patients taking radiation doses of 6000 cGy given in fractions of 1000 cGy per week. The risk is lower among patients on longer schedules and lower doses of radiotherapy.

Bacterial, viral, and fungal infections can cause EE. These include herpes, CMV, HIV, Helicobacter pylori, and Candida.

Food allergies, asthma, and eczema are associated with eosinophilic esophagitis, which disproportionately affects young men and has an estimated prevalence of 55 cases per 100,000 population.

Oral medication in pill form causes esophagitis at an estimated rate of 3.9 cases per 100,000 population per year. The mean age at diagnosis is 41.5 years. Oral bisphosphonates such as alendronate are the most common agents, along with antibiotics such as tetracycline, doxycycline, and clindamycin. There have also been reports of pill-induced esophagitis with NSAIDs, aspirin, ferrous sulfate, potassium chloride, and mexiletine.

Excessive vomiting can, in rare cases, cause esophagitis.

Certain autoimmune diseases can manifest as EE.

2. Proton pump inhibitors (PPIs) remain the preferred treatment for EE.

Several over-the-counter and prescription medications can be used to manage the symptoms of EE. PPIs are the preferred treatment both in the acute setting and for maintenance therapy. PPIs help to alleviate symptoms and promote healing of the esophageal lining by reducing the production of stomach acid. Options include omeprazolelansoprazole, pantoprazole, rabeprazole, and esomeprazole. Many patients with EE require a dose that exceeds the FDA-approved dose for GERD. For instance, a 40-mg/d dosage of omeprazole is recommended in the latest guidelines, although the FDA-approved dosage is 20 mg/d.

H2-receptor antagonists, including famotidinecimetidine, and nizatidine, may also be prescribed to reduce stomach acid production and promote healing in patients with EE due to GERD, but these agents are considered less efficacious than PPIs for either acute or maintenance therapy.

The potassium-competitive acid blocker (PCAB) vonoprazan is the latest agent to be indicated for EE and may provide more potent acid suppression for patients. A randomized comparative trial showed noninferiority compared with lansoprazole for healing and maintenance of healing of EE. In another randomized comparative study, the investigational PCAP fexuprazan was shown to be noninferior to the PPI esomeprazole in treating EE.

Mild GERD symptoms can be controlled by traditional antacids taken after each meal and at bedtime or with short-term use of prokinetic agents, which can help reduce acid reflux by improving esophageal and stomach motility and by increasing pressure to the lower esophageal sphincter. Gastric emptying is also accelerated by prokinetic agents. Long-term use is discouraged, as it may cause serious or life-threatening complications.

In patients who do not fully respond to PPI therapy, surgical therapy may be considered. Other candidates for surgery include younger patients, those who have difficulty adhering to treatment, postmenopausal women with osteoporosis, patients with cardiac conduction defects, and those for whom the cost of treatment is prohibitive. Surgery may also be warranted if there are extraesophageal manifestations of GERD, such as enamel erosion; respiratory issues (eg, coughing, wheezing, aspiration); or ear, nose, and throat manifestations (eg, hoarseness, sore throat, otitis media). For those who have progressed to BE, surgical intervention is also indicated.

The types of surgery for patients with EE have evolved to include both transthoracic and transabdominal fundoplication. Usually, a 360° transabdominal fundoplication is performed. General anesthesia is required for laparoscopic fundoplication, in which five small incisions are used to create a new valve at the level of the esophagogastric junction by wrapping the fundus of the stomach around the esophagus.

Laparoscopic insertion of a small band known as the LINX Reflux Management System is FDA approved to augment the lower esophageal sphincter. The system creates a natural barrier to reflux by placing a band consisting of titanium beads with magnetic cores around the esophagus just above the stomach. The magnetic bond is temporarily disrupted by swallowing, allowing food and liquid to pass.

Endoscopic therapies are another treatment option for certain patients who are not considered candidates for surgery or long-term therapy. Among the types of endoscopic procedures are radiofrequency therapy, suturing/plication, and mucosal ablation/resection techniques at the gastroesophageal junction. Full-thickness endoscopic suturing is an area of interest because this technique offers significant durability of the recreated lower esophageal sphincter.

 

 

3. PPI therapy for GERD should be stopped before endoscopy is performed to confirm a diagnosis of EE.

clinical diagnosis of GERD can be made if the presenting symptoms are heartburn and regurgitation, without chest pain or alarm symptoms such as dysphagia, weight loss, or gastrointestinal bleeding. In this setting, once-daily PPIs are generally prescribed for 8 weeks to see if symptoms resolve. If symptoms have not resolved, a twice-daily PPI regimen may be prescribed. In patients who do not respond to PPIs, or for whom GERD returns after stopping therapy, an upper endoscopy with biopsy is recommended after 2-4 weeks off therapy to rule out other causes. Endoscopy should be the first step in diagnosis for individuals experiencing chest pain without heartburn; those in whom heart disease has been ruled out; individuals experiencing dysphagia, weight loss, or gastrointestinal bleeding; or those who have multiple risk factors for BE.

4. The most serious complication of EE is BE, which can lead to esophageal cancer.

Several complications can arise from EE. The most serious of these is BE, which can lead to esophageal adenocarcinoma. BE is characterized by the conversion of normal distal squamous esophageal epithelium to columnar epithelium. It has the potential to become malignant if it exhibits intestinal-type metaplasia. In the industrialized world, adenocarcinoma currently represents more than half of all esophageal cancers. The most common symptom of esophageal cancer is dysphagia. Other signs and symptoms include weight loss, hoarseness, chronic or intractable cough, bleeding, epigastric or retrosternal pain, frequent pneumonia, and, if metastatic, bone pain.

5. Lifestyle modifications can help control the symptoms of EE.

Guidelines recommend a number of lifestyle modification strategies to help control the symptoms of EE. Smoking cessation and weight loss are two evidence-based strategies for relieving symptoms of GERD and, ultimately, lowering the risk for esophageal cancer. One large prospective Norwegian cohort study (N = 29,610) found that stopping smoking improved GERD symptoms, but only in those with normal body mass index. In a smaller Japanese study (N = 191) specifically surveying people attempting smoking cessation, individuals who successfully stopped smoking had a 44% improvement in GERD symptoms at 1 year, vs an 18% improvement in those who continued to smoke, with no statistical difference between the success and failure groups based on patient body mass index (P = .60).

Other recommended strategies for nonpharmacologic management of EE symptoms include elevation of the head when lying down in bed and avoidance of lying down after eating, cessation of alcohol consumption, avoidance of food close to bedtime, and avoidance of trigger foods that can incite or worsen symptoms of acid reflux. Such trigger foods vary among individuals, but they often include fatty foods, coffee, chocolate, carbonated beverages, spicy foods, citrus fruits, and tomatoes.

Dr. Puerta has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Erosive esophagitis (EE) is erosion of the esophageal epithelium due to chronic irritation. It can be caused by a number of factors but is primarily a result of gastroesophageal reflux disease (GERD). The main symptoms of EE are heartburn and regurgitation; other symptoms can include epigastric pain, odynophagia, dysphagia, nausea, chronic cough, dental erosion, laryngitis, and asthma. Symptoms can be exacerbated by eating certain trigger foods or when lying down. Diagnosis requires testing to differentiate EE from other manifestations of GERD, including nonerosive esophagitis and Barrett esophagus (BE). EE occurs in approximately 30% of cases of GERD, and EE may evolve to BE in 1%-13% of cases.

Long-term management of EE focuses on relieving symptoms to allow the esophageal lining to heal, thereby reducing both acute symptoms and the risk for other complications. Management plans may incorporate lifestyle changes, such as dietary modifications and weight loss, alongside pharmacologic therapyIn extreme cases, surgery may be considered to repair a damaged esophagus and/or to prevent ongoing acid reflux. If left untreated, EE may progress, potentially leading to more serious conditions.

Here are five things to know about EE.

1. GERD is the main risk factor for EE, but not the only risk factor.

An estimated 1% of the population has EE. Risk factors other than GERD include:

Radiation therapy toxicity can cause acute or chronic EE. For individuals undergoing radiotherapy, radiation esophagitis is a relatively frequent complication. Acute esophagitis generally occurs in all patients taking radiation doses of 6000 cGy given in fractions of 1000 cGy per week. The risk is lower among patients on longer schedules and lower doses of radiotherapy.

Bacterial, viral, and fungal infections can cause EE. These include herpes, CMV, HIV, Helicobacter pylori, and Candida.

Food allergies, asthma, and eczema are associated with eosinophilic esophagitis, which disproportionately affects young men and has an estimated prevalence of 55 cases per 100,000 population.

Oral medication in pill form causes esophagitis at an estimated rate of 3.9 cases per 100,000 population per year. The mean age at diagnosis is 41.5 years. Oral bisphosphonates such as alendronate are the most common agents, along with antibiotics such as tetracycline, doxycycline, and clindamycin. There have also been reports of pill-induced esophagitis with NSAIDs, aspirin, ferrous sulfate, potassium chloride, and mexiletine.

Excessive vomiting can, in rare cases, cause esophagitis.

Certain autoimmune diseases can manifest as EE.

2. Proton pump inhibitors (PPIs) remain the preferred treatment for EE.

Several over-the-counter and prescription medications can be used to manage the symptoms of EE. PPIs are the preferred treatment both in the acute setting and for maintenance therapy. PPIs help to alleviate symptoms and promote healing of the esophageal lining by reducing the production of stomach acid. Options include omeprazolelansoprazole, pantoprazole, rabeprazole, and esomeprazole. Many patients with EE require a dose that exceeds the FDA-approved dose for GERD. For instance, a 40-mg/d dosage of omeprazole is recommended in the latest guidelines, although the FDA-approved dosage is 20 mg/d.

H2-receptor antagonists, including famotidinecimetidine, and nizatidine, may also be prescribed to reduce stomach acid production and promote healing in patients with EE due to GERD, but these agents are considered less efficacious than PPIs for either acute or maintenance therapy.

The potassium-competitive acid blocker (PCAB) vonoprazan is the latest agent to be indicated for EE and may provide more potent acid suppression for patients. A randomized comparative trial showed noninferiority compared with lansoprazole for healing and maintenance of healing of EE. In another randomized comparative study, the investigational PCAP fexuprazan was shown to be noninferior to the PPI esomeprazole in treating EE.

Mild GERD symptoms can be controlled by traditional antacids taken after each meal and at bedtime or with short-term use of prokinetic agents, which can help reduce acid reflux by improving esophageal and stomach motility and by increasing pressure to the lower esophageal sphincter. Gastric emptying is also accelerated by prokinetic agents. Long-term use is discouraged, as it may cause serious or life-threatening complications.

In patients who do not fully respond to PPI therapy, surgical therapy may be considered. Other candidates for surgery include younger patients, those who have difficulty adhering to treatment, postmenopausal women with osteoporosis, patients with cardiac conduction defects, and those for whom the cost of treatment is prohibitive. Surgery may also be warranted if there are extraesophageal manifestations of GERD, such as enamel erosion; respiratory issues (eg, coughing, wheezing, aspiration); or ear, nose, and throat manifestations (eg, hoarseness, sore throat, otitis media). For those who have progressed to BE, surgical intervention is also indicated.

The types of surgery for patients with EE have evolved to include both transthoracic and transabdominal fundoplication. Usually, a 360° transabdominal fundoplication is performed. General anesthesia is required for laparoscopic fundoplication, in which five small incisions are used to create a new valve at the level of the esophagogastric junction by wrapping the fundus of the stomach around the esophagus.

Laparoscopic insertion of a small band known as the LINX Reflux Management System is FDA approved to augment the lower esophageal sphincter. The system creates a natural barrier to reflux by placing a band consisting of titanium beads with magnetic cores around the esophagus just above the stomach. The magnetic bond is temporarily disrupted by swallowing, allowing food and liquid to pass.

Endoscopic therapies are another treatment option for certain patients who are not considered candidates for surgery or long-term therapy. Among the types of endoscopic procedures are radiofrequency therapy, suturing/plication, and mucosal ablation/resection techniques at the gastroesophageal junction. Full-thickness endoscopic suturing is an area of interest because this technique offers significant durability of the recreated lower esophageal sphincter.

 

 

3. PPI therapy for GERD should be stopped before endoscopy is performed to confirm a diagnosis of EE.

clinical diagnosis of GERD can be made if the presenting symptoms are heartburn and regurgitation, without chest pain or alarm symptoms such as dysphagia, weight loss, or gastrointestinal bleeding. In this setting, once-daily PPIs are generally prescribed for 8 weeks to see if symptoms resolve. If symptoms have not resolved, a twice-daily PPI regimen may be prescribed. In patients who do not respond to PPIs, or for whom GERD returns after stopping therapy, an upper endoscopy with biopsy is recommended after 2-4 weeks off therapy to rule out other causes. Endoscopy should be the first step in diagnosis for individuals experiencing chest pain without heartburn; those in whom heart disease has been ruled out; individuals experiencing dysphagia, weight loss, or gastrointestinal bleeding; or those who have multiple risk factors for BE.

4. The most serious complication of EE is BE, which can lead to esophageal cancer.

Several complications can arise from EE. The most serious of these is BE, which can lead to esophageal adenocarcinoma. BE is characterized by the conversion of normal distal squamous esophageal epithelium to columnar epithelium. It has the potential to become malignant if it exhibits intestinal-type metaplasia. In the industrialized world, adenocarcinoma currently represents more than half of all esophageal cancers. The most common symptom of esophageal cancer is dysphagia. Other signs and symptoms include weight loss, hoarseness, chronic or intractable cough, bleeding, epigastric or retrosternal pain, frequent pneumonia, and, if metastatic, bone pain.

5. Lifestyle modifications can help control the symptoms of EE.

Guidelines recommend a number of lifestyle modification strategies to help control the symptoms of EE. Smoking cessation and weight loss are two evidence-based strategies for relieving symptoms of GERD and, ultimately, lowering the risk for esophageal cancer. One large prospective Norwegian cohort study (N = 29,610) found that stopping smoking improved GERD symptoms, but only in those with normal body mass index. In a smaller Japanese study (N = 191) specifically surveying people attempting smoking cessation, individuals who successfully stopped smoking had a 44% improvement in GERD symptoms at 1 year, vs an 18% improvement in those who continued to smoke, with no statistical difference between the success and failure groups based on patient body mass index (P = .60).

Other recommended strategies for nonpharmacologic management of EE symptoms include elevation of the head when lying down in bed and avoidance of lying down after eating, cessation of alcohol consumption, avoidance of food close to bedtime, and avoidance of trigger foods that can incite or worsen symptoms of acid reflux. Such trigger foods vary among individuals, but they often include fatty foods, coffee, chocolate, carbonated beverages, spicy foods, citrus fruits, and tomatoes.

Dr. Puerta has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

 

Erosive esophagitis (EE) is erosion of the esophageal epithelium due to chronic irritation. It can be caused by a number of factors but is primarily a result of gastroesophageal reflux disease (GERD). The main symptoms of EE are heartburn and regurgitation; other symptoms can include epigastric pain, odynophagia, dysphagia, nausea, chronic cough, dental erosion, laryngitis, and asthma. Symptoms can be exacerbated by eating certain trigger foods or when lying down. Diagnosis requires testing to differentiate EE from other manifestations of GERD, including nonerosive esophagitis and Barrett esophagus (BE). EE occurs in approximately 30% of cases of GERD, and EE may evolve to BE in 1%-13% of cases.

Long-term management of EE focuses on relieving symptoms to allow the esophageal lining to heal, thereby reducing both acute symptoms and the risk for other complications. Management plans may incorporate lifestyle changes, such as dietary modifications and weight loss, alongside pharmacologic therapyIn extreme cases, surgery may be considered to repair a damaged esophagus and/or to prevent ongoing acid reflux. If left untreated, EE may progress, potentially leading to more serious conditions.

Here are five things to know about EE.

1. GERD is the main risk factor for EE, but not the only risk factor.

An estimated 1% of the population has EE. Risk factors other than GERD include:

Radiation therapy toxicity can cause acute or chronic EE. For individuals undergoing radiotherapy, radiation esophagitis is a relatively frequent complication. Acute esophagitis generally occurs in all patients taking radiation doses of 6000 cGy given in fractions of 1000 cGy per week. The risk is lower among patients on longer schedules and lower doses of radiotherapy.

Bacterial, viral, and fungal infections can cause EE. These include herpes, CMV, HIV, Helicobacter pylori, and Candida.

Food allergies, asthma, and eczema are associated with eosinophilic esophagitis, which disproportionately affects young men and has an estimated prevalence of 55 cases per 100,000 population.

Oral medication in pill form causes esophagitis at an estimated rate of 3.9 cases per 100,000 population per year. The mean age at diagnosis is 41.5 years. Oral bisphosphonates such as alendronate are the most common agents, along with antibiotics such as tetracycline, doxycycline, and clindamycin. There have also been reports of pill-induced esophagitis with NSAIDs, aspirin, ferrous sulfate, potassium chloride, and mexiletine.

Excessive vomiting can, in rare cases, cause esophagitis.

Certain autoimmune diseases can manifest as EE.

2. Proton pump inhibitors (PPIs) remain the preferred treatment for EE.

Several over-the-counter and prescription medications can be used to manage the symptoms of EE. PPIs are the preferred treatment both in the acute setting and for maintenance therapy. PPIs help to alleviate symptoms and promote healing of the esophageal lining by reducing the production of stomach acid. Options include omeprazolelansoprazole, pantoprazole, rabeprazole, and esomeprazole. Many patients with EE require a dose that exceeds the FDA-approved dose for GERD. For instance, a 40-mg/d dosage of omeprazole is recommended in the latest guidelines, although the FDA-approved dosage is 20 mg/d.

H2-receptor antagonists, including famotidinecimetidine, and nizatidine, may also be prescribed to reduce stomach acid production and promote healing in patients with EE due to GERD, but these agents are considered less efficacious than PPIs for either acute or maintenance therapy.

The potassium-competitive acid blocker (PCAB) vonoprazan is the latest agent to be indicated for EE and may provide more potent acid suppression for patients. A randomized comparative trial showed noninferiority compared with lansoprazole for healing and maintenance of healing of EE. In another randomized comparative study, the investigational PCAP fexuprazan was shown to be noninferior to the PPI esomeprazole in treating EE.

Mild GERD symptoms can be controlled by traditional antacids taken after each meal and at bedtime or with short-term use of prokinetic agents, which can help reduce acid reflux by improving esophageal and stomach motility and by increasing pressure to the lower esophageal sphincter. Gastric emptying is also accelerated by prokinetic agents. Long-term use is discouraged, as it may cause serious or life-threatening complications.

In patients who do not fully respond to PPI therapy, surgical therapy may be considered. Other candidates for surgery include younger patients, those who have difficulty adhering to treatment, postmenopausal women with osteoporosis, patients with cardiac conduction defects, and those for whom the cost of treatment is prohibitive. Surgery may also be warranted if there are extraesophageal manifestations of GERD, such as enamel erosion; respiratory issues (eg, coughing, wheezing, aspiration); or ear, nose, and throat manifestations (eg, hoarseness, sore throat, otitis media). For those who have progressed to BE, surgical intervention is also indicated.

The types of surgery for patients with EE have evolved to include both transthoracic and transabdominal fundoplication. Usually, a 360° transabdominal fundoplication is performed. General anesthesia is required for laparoscopic fundoplication, in which five small incisions are used to create a new valve at the level of the esophagogastric junction by wrapping the fundus of the stomach around the esophagus.

Laparoscopic insertion of a small band known as the LINX Reflux Management System is FDA approved to augment the lower esophageal sphincter. The system creates a natural barrier to reflux by placing a band consisting of titanium beads with magnetic cores around the esophagus just above the stomach. The magnetic bond is temporarily disrupted by swallowing, allowing food and liquid to pass.

Endoscopic therapies are another treatment option for certain patients who are not considered candidates for surgery or long-term therapy. Among the types of endoscopic procedures are radiofrequency therapy, suturing/plication, and mucosal ablation/resection techniques at the gastroesophageal junction. Full-thickness endoscopic suturing is an area of interest because this technique offers significant durability of the recreated lower esophageal sphincter.

 

 

3. PPI therapy for GERD should be stopped before endoscopy is performed to confirm a diagnosis of EE.

clinical diagnosis of GERD can be made if the presenting symptoms are heartburn and regurgitation, without chest pain or alarm symptoms such as dysphagia, weight loss, or gastrointestinal bleeding. In this setting, once-daily PPIs are generally prescribed for 8 weeks to see if symptoms resolve. If symptoms have not resolved, a twice-daily PPI regimen may be prescribed. In patients who do not respond to PPIs, or for whom GERD returns after stopping therapy, an upper endoscopy with biopsy is recommended after 2-4 weeks off therapy to rule out other causes. Endoscopy should be the first step in diagnosis for individuals experiencing chest pain without heartburn; those in whom heart disease has been ruled out; individuals experiencing dysphagia, weight loss, or gastrointestinal bleeding; or those who have multiple risk factors for BE.

4. The most serious complication of EE is BE, which can lead to esophageal cancer.

Several complications can arise from EE. The most serious of these is BE, which can lead to esophageal adenocarcinoma. BE is characterized by the conversion of normal distal squamous esophageal epithelium to columnar epithelium. It has the potential to become malignant if it exhibits intestinal-type metaplasia. In the industrialized world, adenocarcinoma currently represents more than half of all esophageal cancers. The most common symptom of esophageal cancer is dysphagia. Other signs and symptoms include weight loss, hoarseness, chronic or intractable cough, bleeding, epigastric or retrosternal pain, frequent pneumonia, and, if metastatic, bone pain.

5. Lifestyle modifications can help control the symptoms of EE.

Guidelines recommend a number of lifestyle modification strategies to help control the symptoms of EE. Smoking cessation and weight loss are two evidence-based strategies for relieving symptoms of GERD and, ultimately, lowering the risk for esophageal cancer. One large prospective Norwegian cohort study (N = 29,610) found that stopping smoking improved GERD symptoms, but only in those with normal body mass index. In a smaller Japanese study (N = 191) specifically surveying people attempting smoking cessation, individuals who successfully stopped smoking had a 44% improvement in GERD symptoms at 1 year, vs an 18% improvement in those who continued to smoke, with no statistical difference between the success and failure groups based on patient body mass index (P = .60).

Other recommended strategies for nonpharmacologic management of EE symptoms include elevation of the head when lying down in bed and avoidance of lying down after eating, cessation of alcohol consumption, avoidance of food close to bedtime, and avoidance of trigger foods that can incite or worsen symptoms of acid reflux. Such trigger foods vary among individuals, but they often include fatty foods, coffee, chocolate, carbonated beverages, spicy foods, citrus fruits, and tomatoes.

Dr. Puerta has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Managing severe asthma exacerbations in the ED: We need answers beyond albuterol

Article Type
Changed
Thu, 04/04/2024 - 15:53

Dr. Nicholas E. Ghionni, MedStar Health, Baltimore
CHEST
Dr. Nicholas E. Ghionni

Evidence-based medicine (EBM) stems from making the best patient-centered decision from the highest-quality data available that comports with our understanding of pathophysiology. In some situations, clinicians are forced to draw conclusions from data that are imperfect and apply it to patients who are complex and dynamic. For most pathologies, available data provides some direction. There is, however, one pathophysiologic state that remains understudied, precarious, and common.

The Centers for Disease Control and Prevention (CDC) estimates that about 7.7% of the United States population has asthma. There were about 1 million ED visits in 2020, with asthma listed as the primary diagnosis, and only 94,000 required hospitalization.1 There are many tools we employ that have greatly decreased inpatient admissions for asthma. The uptake of inhaled corticosteroids (ICS) has significantly reduced asthma-related morbidity and mortality and reduced exacerbations that require admission to a hospital. This treatment strategy is supported by the Global Initiative for Asthma (GINA) and National Asthma Education and Prevention Program (NAEPP) guidelines.2,3 While we should celebrate the impact that EBM and ICS have had on asthma outcomes, we continue to struggle to control severe asthma.

Bronchodilator therapy in the hospital is ubiquitous. House staff and hospitalists click the bronchodilator order set early and often. However, the optimal frequency, dose, and duration of inhaled bronchodilator therapy for acute asthma exacerbation are unknown. Do frequency, dose, and duration change with exacerbation severity? Nothing gets ED, inpatient, or ICU physicians more jittery than the phrase “exacerbation of asthma on BiPap” or “intubated for asthma.” With its enormous clinical impact and notoriously difficult hospital and ICU course, the lack of evidence we have for managing these patients outside of the initial 24- to 48-hour visit is concerning. Neither NAEPP nor GINA provide management recommendations for the patient with severe asthma exacerbation that necessitates admission.

Albuterol is a commonly used medication for asthma and chronic obstructive airway disease. It is rapid acting and effective—few medications give patients (or clinicians) such instant satisfaction. As an internal medicine resident and pulmonary fellow, I ordered it countless times without ever looking at the dose. Sometimes, patients would come up from the emergency department after receiving a “continuous dose.” I would often wonder exactly what that meant. After some investigation, I found that in my hospital at the time, one dose of albuterol was 2.5 mg in 2 mL, and a continuous nebulization was four doses for a total of 10 mg.

Shrestha et al. found that high-dose albuterol (7.5 mg) administered continuously was superior to 2.5 mg albuterol delivered three times over 1.5 hours. There were demonstrable improvements in FEV1 and no ICU admissions.4 This study is one of many that compared intermittent to continuous and high-dose vs low-dose albuterol in the emergency department. Most are small and occur over the first 24 hours of presentation to the hospital. They often use short-term changes in spirometry as their primary outcome measure. Being a pulmonary and critical care doctor, I see patients who require advanced rescue maneuvers such as noninvasive positive pressure ventilation (NIPPV) or other pharmacologic adjuncts, for which the current evidence is limited.

Because studies of inhaled bronchodilators in acute asthma exacerbation use spirometry as their primary outcome, those with more severe disease and higher acuity are excluded. Patients on NIPPV can’t perform spirometry. There is essentially no literature to guide treatment for a patient with asthma in the adult ICU. In pediatric intensive care units, there are some data to support either continuous or intermittent inhaled bronchodilator that extends beyond the initial ED visit up to about 60 hours.5 Much of the pediatric data revolve about the amount of albuterol given, which can be as high as 75 mg/hr though is typically closer to 10-20 mg/hr.6 This rate is continued until respiratory improvement occurs.

With poor evidence to guide us and no specific direction from major guidelines, how should providers manage severe asthma exacerbation? The amount of drug deposited in the lung varies by the device used to deliver it. For nebulization, only about 10% of the nebulized amount reaches the lungs for effect; this is a smaller amount compared with all other devices one could use, such as MDI or DPI.7 Once a patient with asthma reaches the emergency department, that person is usually placed on some form of nebulizer treatment. But based on local hospital protocols, the amount and duration can vary widely. Sometimes, in patients with severe exacerbation, there is trepidation to continuing albuterol therapy due to ongoing tachycardia. This seems reasonable given increased albuterol administration could beget an ongoing cycle of dyspnea and anxiety. It could also lead to choosing therapies that are less evidence based.

In closing, this seemingly mundane topic takes on new meaning when a patient is in severe exacerbation. Fortunately, providers are not often faced with the decision to wade into the evidence-free territory of severe asthma exacerbation that is unresponsive to first-line treatments. This narrative should serve as a general alert that this pathophysiologic state is understudied. When encountered, thoughtful consideration of pathology, physiology, and pharmacology is required to reverse it.


References

1. Centers for Disease Control and Prevention. (2023, May 10). Most recent national asthma data. Centers for Disease Control and Prevention. https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm

2. Global Initiative for Asthma - GINA. (2023, August 15). 2023 GINA Main Report - Global Initiative for Asthma - GINA. https://ginasthma.org/2023-gina-main-report/

3. Kiley J, Mensah GA, Boyce CA, et al (A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group). 2020 Focused updates to the: Asthma Management Guidelines. US Department of Health and Human Services, NIH, NHLBI 2020.

4. Shrestha M, Bidadi K, Gourlay S, Hayes J. Continuous vs intermittent albuterol, at high and low doses, in the treatment of severe acute asthma in adults. Chest. 1996 Jul;110(1):42-7. doi: 10.1378/chest.110.1.42. PMID: 8681661.

5. Kulalert P, Phinyo P, Patumanond J, Smathakanee C, Chuenjit W, Nanthapisal S. Continuous versus intermittent short-acting β2-agonists nebulization as first-line therapy in hospitalized children with severe asthma exacerbation: a propensity score matching analysis. Asthma Res Pract. 2020 Jul 2;6:6. doi: 10.1186/s40733-020-00059-5. PMID: 32632352; PMCID: PMC7329360.

6. Phumeetham S, Bahk TJ, Abd-Allah S, Mathur M. Effect of high-dose continuous albuterol nebulization on clinical variables in children with status asthmaticus. Pediatr Crit Care Med. 2015 Feb;16(2):e41-6. doi: 10.1097/PCC.0000000000000314. PMID: 25560428.

7. Gardenhire DS, Burnett D, Strickland S, Myers, TR. A guide to aerosol delivery devices for respiratory therapists. American Association for Respiratory Care, Dallas, Texas 2017.

Publications
Topics
Sections

Dr. Nicholas E. Ghionni, MedStar Health, Baltimore
CHEST
Dr. Nicholas E. Ghionni

Evidence-based medicine (EBM) stems from making the best patient-centered decision from the highest-quality data available that comports with our understanding of pathophysiology. In some situations, clinicians are forced to draw conclusions from data that are imperfect and apply it to patients who are complex and dynamic. For most pathologies, available data provides some direction. There is, however, one pathophysiologic state that remains understudied, precarious, and common.

The Centers for Disease Control and Prevention (CDC) estimates that about 7.7% of the United States population has asthma. There were about 1 million ED visits in 2020, with asthma listed as the primary diagnosis, and only 94,000 required hospitalization.1 There are many tools we employ that have greatly decreased inpatient admissions for asthma. The uptake of inhaled corticosteroids (ICS) has significantly reduced asthma-related morbidity and mortality and reduced exacerbations that require admission to a hospital. This treatment strategy is supported by the Global Initiative for Asthma (GINA) and National Asthma Education and Prevention Program (NAEPP) guidelines.2,3 While we should celebrate the impact that EBM and ICS have had on asthma outcomes, we continue to struggle to control severe asthma.

Bronchodilator therapy in the hospital is ubiquitous. House staff and hospitalists click the bronchodilator order set early and often. However, the optimal frequency, dose, and duration of inhaled bronchodilator therapy for acute asthma exacerbation are unknown. Do frequency, dose, and duration change with exacerbation severity? Nothing gets ED, inpatient, or ICU physicians more jittery than the phrase “exacerbation of asthma on BiPap” or “intubated for asthma.” With its enormous clinical impact and notoriously difficult hospital and ICU course, the lack of evidence we have for managing these patients outside of the initial 24- to 48-hour visit is concerning. Neither NAEPP nor GINA provide management recommendations for the patient with severe asthma exacerbation that necessitates admission.

Albuterol is a commonly used medication for asthma and chronic obstructive airway disease. It is rapid acting and effective—few medications give patients (or clinicians) such instant satisfaction. As an internal medicine resident and pulmonary fellow, I ordered it countless times without ever looking at the dose. Sometimes, patients would come up from the emergency department after receiving a “continuous dose.” I would often wonder exactly what that meant. After some investigation, I found that in my hospital at the time, one dose of albuterol was 2.5 mg in 2 mL, and a continuous nebulization was four doses for a total of 10 mg.

Shrestha et al. found that high-dose albuterol (7.5 mg) administered continuously was superior to 2.5 mg albuterol delivered three times over 1.5 hours. There were demonstrable improvements in FEV1 and no ICU admissions.4 This study is one of many that compared intermittent to continuous and high-dose vs low-dose albuterol in the emergency department. Most are small and occur over the first 24 hours of presentation to the hospital. They often use short-term changes in spirometry as their primary outcome measure. Being a pulmonary and critical care doctor, I see patients who require advanced rescue maneuvers such as noninvasive positive pressure ventilation (NIPPV) or other pharmacologic adjuncts, for which the current evidence is limited.

Because studies of inhaled bronchodilators in acute asthma exacerbation use spirometry as their primary outcome, those with more severe disease and higher acuity are excluded. Patients on NIPPV can’t perform spirometry. There is essentially no literature to guide treatment for a patient with asthma in the adult ICU. In pediatric intensive care units, there are some data to support either continuous or intermittent inhaled bronchodilator that extends beyond the initial ED visit up to about 60 hours.5 Much of the pediatric data revolve about the amount of albuterol given, which can be as high as 75 mg/hr though is typically closer to 10-20 mg/hr.6 This rate is continued until respiratory improvement occurs.

With poor evidence to guide us and no specific direction from major guidelines, how should providers manage severe asthma exacerbation? The amount of drug deposited in the lung varies by the device used to deliver it. For nebulization, only about 10% of the nebulized amount reaches the lungs for effect; this is a smaller amount compared with all other devices one could use, such as MDI or DPI.7 Once a patient with asthma reaches the emergency department, that person is usually placed on some form of nebulizer treatment. But based on local hospital protocols, the amount and duration can vary widely. Sometimes, in patients with severe exacerbation, there is trepidation to continuing albuterol therapy due to ongoing tachycardia. This seems reasonable given increased albuterol administration could beget an ongoing cycle of dyspnea and anxiety. It could also lead to choosing therapies that are less evidence based.

In closing, this seemingly mundane topic takes on new meaning when a patient is in severe exacerbation. Fortunately, providers are not often faced with the decision to wade into the evidence-free territory of severe asthma exacerbation that is unresponsive to first-line treatments. This narrative should serve as a general alert that this pathophysiologic state is understudied. When encountered, thoughtful consideration of pathology, physiology, and pharmacology is required to reverse it.


References

1. Centers for Disease Control and Prevention. (2023, May 10). Most recent national asthma data. Centers for Disease Control and Prevention. https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm

2. Global Initiative for Asthma - GINA. (2023, August 15). 2023 GINA Main Report - Global Initiative for Asthma - GINA. https://ginasthma.org/2023-gina-main-report/

3. Kiley J, Mensah GA, Boyce CA, et al (A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group). 2020 Focused updates to the: Asthma Management Guidelines. US Department of Health and Human Services, NIH, NHLBI 2020.

4. Shrestha M, Bidadi K, Gourlay S, Hayes J. Continuous vs intermittent albuterol, at high and low doses, in the treatment of severe acute asthma in adults. Chest. 1996 Jul;110(1):42-7. doi: 10.1378/chest.110.1.42. PMID: 8681661.

5. Kulalert P, Phinyo P, Patumanond J, Smathakanee C, Chuenjit W, Nanthapisal S. Continuous versus intermittent short-acting β2-agonists nebulization as first-line therapy in hospitalized children with severe asthma exacerbation: a propensity score matching analysis. Asthma Res Pract. 2020 Jul 2;6:6. doi: 10.1186/s40733-020-00059-5. PMID: 32632352; PMCID: PMC7329360.

6. Phumeetham S, Bahk TJ, Abd-Allah S, Mathur M. Effect of high-dose continuous albuterol nebulization on clinical variables in children with status asthmaticus. Pediatr Crit Care Med. 2015 Feb;16(2):e41-6. doi: 10.1097/PCC.0000000000000314. PMID: 25560428.

7. Gardenhire DS, Burnett D, Strickland S, Myers, TR. A guide to aerosol delivery devices for respiratory therapists. American Association for Respiratory Care, Dallas, Texas 2017.

Dr. Nicholas E. Ghionni, MedStar Health, Baltimore
CHEST
Dr. Nicholas E. Ghionni

Evidence-based medicine (EBM) stems from making the best patient-centered decision from the highest-quality data available that comports with our understanding of pathophysiology. In some situations, clinicians are forced to draw conclusions from data that are imperfect and apply it to patients who are complex and dynamic. For most pathologies, available data provides some direction. There is, however, one pathophysiologic state that remains understudied, precarious, and common.

The Centers for Disease Control and Prevention (CDC) estimates that about 7.7% of the United States population has asthma. There were about 1 million ED visits in 2020, with asthma listed as the primary diagnosis, and only 94,000 required hospitalization.1 There are many tools we employ that have greatly decreased inpatient admissions for asthma. The uptake of inhaled corticosteroids (ICS) has significantly reduced asthma-related morbidity and mortality and reduced exacerbations that require admission to a hospital. This treatment strategy is supported by the Global Initiative for Asthma (GINA) and National Asthma Education and Prevention Program (NAEPP) guidelines.2,3 While we should celebrate the impact that EBM and ICS have had on asthma outcomes, we continue to struggle to control severe asthma.

Bronchodilator therapy in the hospital is ubiquitous. House staff and hospitalists click the bronchodilator order set early and often. However, the optimal frequency, dose, and duration of inhaled bronchodilator therapy for acute asthma exacerbation are unknown. Do frequency, dose, and duration change with exacerbation severity? Nothing gets ED, inpatient, or ICU physicians more jittery than the phrase “exacerbation of asthma on BiPap” or “intubated for asthma.” With its enormous clinical impact and notoriously difficult hospital and ICU course, the lack of evidence we have for managing these patients outside of the initial 24- to 48-hour visit is concerning. Neither NAEPP nor GINA provide management recommendations for the patient with severe asthma exacerbation that necessitates admission.

Albuterol is a commonly used medication for asthma and chronic obstructive airway disease. It is rapid acting and effective—few medications give patients (or clinicians) such instant satisfaction. As an internal medicine resident and pulmonary fellow, I ordered it countless times without ever looking at the dose. Sometimes, patients would come up from the emergency department after receiving a “continuous dose.” I would often wonder exactly what that meant. After some investigation, I found that in my hospital at the time, one dose of albuterol was 2.5 mg in 2 mL, and a continuous nebulization was four doses for a total of 10 mg.

Shrestha et al. found that high-dose albuterol (7.5 mg) administered continuously was superior to 2.5 mg albuterol delivered three times over 1.5 hours. There were demonstrable improvements in FEV1 and no ICU admissions.4 This study is one of many that compared intermittent to continuous and high-dose vs low-dose albuterol in the emergency department. Most are small and occur over the first 24 hours of presentation to the hospital. They often use short-term changes in spirometry as their primary outcome measure. Being a pulmonary and critical care doctor, I see patients who require advanced rescue maneuvers such as noninvasive positive pressure ventilation (NIPPV) or other pharmacologic adjuncts, for which the current evidence is limited.

Because studies of inhaled bronchodilators in acute asthma exacerbation use spirometry as their primary outcome, those with more severe disease and higher acuity are excluded. Patients on NIPPV can’t perform spirometry. There is essentially no literature to guide treatment for a patient with asthma in the adult ICU. In pediatric intensive care units, there are some data to support either continuous or intermittent inhaled bronchodilator that extends beyond the initial ED visit up to about 60 hours.5 Much of the pediatric data revolve about the amount of albuterol given, which can be as high as 75 mg/hr though is typically closer to 10-20 mg/hr.6 This rate is continued until respiratory improvement occurs.

With poor evidence to guide us and no specific direction from major guidelines, how should providers manage severe asthma exacerbation? The amount of drug deposited in the lung varies by the device used to deliver it. For nebulization, only about 10% of the nebulized amount reaches the lungs for effect; this is a smaller amount compared with all other devices one could use, such as MDI or DPI.7 Once a patient with asthma reaches the emergency department, that person is usually placed on some form of nebulizer treatment. But based on local hospital protocols, the amount and duration can vary widely. Sometimes, in patients with severe exacerbation, there is trepidation to continuing albuterol therapy due to ongoing tachycardia. This seems reasonable given increased albuterol administration could beget an ongoing cycle of dyspnea and anxiety. It could also lead to choosing therapies that are less evidence based.

In closing, this seemingly mundane topic takes on new meaning when a patient is in severe exacerbation. Fortunately, providers are not often faced with the decision to wade into the evidence-free territory of severe asthma exacerbation that is unresponsive to first-line treatments. This narrative should serve as a general alert that this pathophysiologic state is understudied. When encountered, thoughtful consideration of pathology, physiology, and pharmacology is required to reverse it.


References

1. Centers for Disease Control and Prevention. (2023, May 10). Most recent national asthma data. Centers for Disease Control and Prevention. https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm

2. Global Initiative for Asthma - GINA. (2023, August 15). 2023 GINA Main Report - Global Initiative for Asthma - GINA. https://ginasthma.org/2023-gina-main-report/

3. Kiley J, Mensah GA, Boyce CA, et al (A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group). 2020 Focused updates to the: Asthma Management Guidelines. US Department of Health and Human Services, NIH, NHLBI 2020.

4. Shrestha M, Bidadi K, Gourlay S, Hayes J. Continuous vs intermittent albuterol, at high and low doses, in the treatment of severe acute asthma in adults. Chest. 1996 Jul;110(1):42-7. doi: 10.1378/chest.110.1.42. PMID: 8681661.

5. Kulalert P, Phinyo P, Patumanond J, Smathakanee C, Chuenjit W, Nanthapisal S. Continuous versus intermittent short-acting β2-agonists nebulization as first-line therapy in hospitalized children with severe asthma exacerbation: a propensity score matching analysis. Asthma Res Pract. 2020 Jul 2;6:6. doi: 10.1186/s40733-020-00059-5. PMID: 32632352; PMCID: PMC7329360.

6. Phumeetham S, Bahk TJ, Abd-Allah S, Mathur M. Effect of high-dose continuous albuterol nebulization on clinical variables in children with status asthmaticus. Pediatr Crit Care Med. 2015 Feb;16(2):e41-6. doi: 10.1097/PCC.0000000000000314. PMID: 25560428.

7. Gardenhire DS, Burnett D, Strickland S, Myers, TR. A guide to aerosol delivery devices for respiratory therapists. American Association for Respiratory Care, Dallas, Texas 2017.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Sublingual Immunotherapy Safe, Effective for Older Kids

Article Type
Changed
Thu, 03/14/2024 - 07:39

Sublingual immunotherapy (SLIT) is as safe and effective for high-risk older children and adolescents as oral immunotherapy (OIT) is for infants and preschoolers, according to new research.

Preliminary data from a study of more than 180 pediatric patients with multiple food allergies showed that while most patients had mild symptoms, none experienced a severe grade 4 reaction during the buildup and maintenance phase of SLIT.

In addition, 70% of those tested at the end of the treatment protocol were able to tolerate 300 mg of their allergen, a success rate nearly as high as that for OIT.

The study was published in The Journal of Allergy and Clinical Immunology: In Practice.

SLIT has been used successfully in the treatment of environmental allergens such as grass and tree pollen and dust mites. In this study, researchers decided to test SLIT’s effectiveness and safety in the treatment of food allergies in older children.

“We knew that OIT is very effective and safe in infants and toddlers, but there was literature illustrating that for older, school-age kids and adolescents, OIT is not safe enough, as those older age groups tend to have higher risk of severe reaction during treatment,” senior author Edmond Chan, MD, clinical professor of allergy at the University of British Columbia and pediatric allergist at BC Children’s Hospital, both in Vancouver, British Columbia, Canada, told this news organization. “With that knowledge, we decided to explore SLIT as another first-phase therapy for the older kids.”

The investigators recruited 188 high-risk older children aged 4-18 years for multifood SLIT. Most (61.7%) participants had multiple food allergies. Approximately 68% were male, and the population’s median age was 11.3 years.

Nearly half (48.4%) of participants had atopic dermatitis, 45.2% had asthma, 58.0% had allergic rhinitis, and 2.66% had preexisting eosinophilic esophagitis.

Most (75.0%) of the children were classified as higher risk, and 23 had a history of a grade 3 or 4 reaction before beginning SLIT.

Of the 188 children who were initially enrolled in the study, 173 (92.0%) finished their SLIT buildup phase.

Because the study started when COVID-19 pandemic restrictions were in place, the SLIT protocol mandated that patients be seen virtually. The patients’ caregivers learned how to mix and administer the required doses at home using recipes specially developed by the research team that used products bought at the grocery store.

A wide variety of food allergens were treated, including peanut, other legumes, tree nuts, sesame, other seeds, egg, cow’s milk, fish, wheat, shrimp, and other allergens.

The children built up to 2-mg protein SLIT maintenance over the course of three to five visits under nurse supervision.

After 1-2 years of daily SLIT maintenance, patients were offered a low-dose oral food challenge (OFC; cumulative dose: 300 mg of protein) with the goal of bypassing OIT buildup.

Nearly all patients (93.1%) had symptoms during SLIT buildup, but most were mild grade 1 (52.1%) or 2 (40.4%) reactions. Only one patient had a grade 3 reaction. None of the patients experienced a severe grade 4 reaction.

The most common grade 1 reaction was oral itch, an expected symptom of SLIT, which occurred in 82.7% of the patients.

Four patients (2.10%) received epinephrine during buildup and went to the emergency department. All these patients returned to continue SLIT without further need for epinephrine.

To test the effectiveness of SLIT, the researchers performed 50 low-dose OFCs in 20 patients. Of these food challenges, 35 (70%) were successful, and patients were asked to start daily 300-mg OIT maintenance, thus bypassing OIT buildup.

An additional nine OFCs that were unsuccessful were counseled to self-escalate from 80 mg or higher to 300 mg at home with medical guidance as needed.

“Our preliminary data of 20 patients and 50 low-dose oral food challenges suggest that an initial phase of 1-2 years of 2-mg daily SLIT therapy may be a safe and effective way to bypass the OIT buildup phase without the need for dozens of in-person visits with an allergist,” said Dr. Chan.

“So now we have the best of both worlds. We harness the safety of SLIT for the first 1-2 years, with the effectiveness of OIT for the remainder of the treatment period,” he said.
 

 

 

Adds to Evidence

Commenting on the study for this news organization, Julia Upton, MD, associate professor of pediatrics at the University of Toronto, Toronto, Ontario, Canada, said, “This study adds to the evidence that consistent, low exposure to food drives meaningful desensitization far above the daily dose.” Upton did not participate in the research.

“Prior prospective studies in SLIT demonstrated that small single-digit-milligram doses and time greatly increased the threshold of reaction. This real-world report suggests that a way to utilize that threshold increase is by switching to a commonly used maintenance dose of OIT,” said Dr. Upton.

“Although few patients have been assessed for the 300-mg challenge, this study is notable for the age group of 4-18 years, and that many of the patients had reacted to low doses in the past. It also shows that many families are capable of diluting and mixing their own immunotherapy solutions with store-bought foods under the guidance of an experienced allergy clinic,” she added.

“Overall, evidence is building that by various routes, initial small amounts with minimal updoses, plus the tincture of time, may be preferred to multiple frequent updosing from multiple perspectives, including safety, feasibility, cost, and medical resources. It will also be important to understand the preferences and goals of the patient and family as various regimens become more available,” Dr. Upton concluded.

The study was funded by BC Children’s Hospital Foundation. Dr. Chan reported receiving research support from DVB Technologies; has been a member of advisory boards for Pfizer, Miravo, Medexus, Leo Pharma, Kaleo, DBV, AllerGenis, Sanofi, Genzyme, Bausch Health, Avir Pharma, AstraZeneca, ALK, and Alladapt; and was a colead of the CSACI OIT guidelines. Dr. Upton reported research support/grants from Novartis, Regeneron, Sanofi, ALK Abello, DBV Technologies, CIHR, and SickKids Food Allergy and Anaphylaxis Program and fees from Pfizer, ALK Abello, Bausch Health, Astra Zeneca, and Pharming. She serves as an associate editor for Allergy, Asthma & Clinical Immunology and is on the Board of Directors of Canadian Society of Allergy and Clinical Immunology and the Healthcare Advisory Board of Food Allergy Canada.

A version of this article appeared on Medscape.com .

Publications
Topics
Sections

Sublingual immunotherapy (SLIT) is as safe and effective for high-risk older children and adolescents as oral immunotherapy (OIT) is for infants and preschoolers, according to new research.

Preliminary data from a study of more than 180 pediatric patients with multiple food allergies showed that while most patients had mild symptoms, none experienced a severe grade 4 reaction during the buildup and maintenance phase of SLIT.

In addition, 70% of those tested at the end of the treatment protocol were able to tolerate 300 mg of their allergen, a success rate nearly as high as that for OIT.

The study was published in The Journal of Allergy and Clinical Immunology: In Practice.

SLIT has been used successfully in the treatment of environmental allergens such as grass and tree pollen and dust mites. In this study, researchers decided to test SLIT’s effectiveness and safety in the treatment of food allergies in older children.

“We knew that OIT is very effective and safe in infants and toddlers, but there was literature illustrating that for older, school-age kids and adolescents, OIT is not safe enough, as those older age groups tend to have higher risk of severe reaction during treatment,” senior author Edmond Chan, MD, clinical professor of allergy at the University of British Columbia and pediatric allergist at BC Children’s Hospital, both in Vancouver, British Columbia, Canada, told this news organization. “With that knowledge, we decided to explore SLIT as another first-phase therapy for the older kids.”

The investigators recruited 188 high-risk older children aged 4-18 years for multifood SLIT. Most (61.7%) participants had multiple food allergies. Approximately 68% were male, and the population’s median age was 11.3 years.

Nearly half (48.4%) of participants had atopic dermatitis, 45.2% had asthma, 58.0% had allergic rhinitis, and 2.66% had preexisting eosinophilic esophagitis.

Most (75.0%) of the children were classified as higher risk, and 23 had a history of a grade 3 or 4 reaction before beginning SLIT.

Of the 188 children who were initially enrolled in the study, 173 (92.0%) finished their SLIT buildup phase.

Because the study started when COVID-19 pandemic restrictions were in place, the SLIT protocol mandated that patients be seen virtually. The patients’ caregivers learned how to mix and administer the required doses at home using recipes specially developed by the research team that used products bought at the grocery store.

A wide variety of food allergens were treated, including peanut, other legumes, tree nuts, sesame, other seeds, egg, cow’s milk, fish, wheat, shrimp, and other allergens.

The children built up to 2-mg protein SLIT maintenance over the course of three to five visits under nurse supervision.

After 1-2 years of daily SLIT maintenance, patients were offered a low-dose oral food challenge (OFC; cumulative dose: 300 mg of protein) with the goal of bypassing OIT buildup.

Nearly all patients (93.1%) had symptoms during SLIT buildup, but most were mild grade 1 (52.1%) or 2 (40.4%) reactions. Only one patient had a grade 3 reaction. None of the patients experienced a severe grade 4 reaction.

The most common grade 1 reaction was oral itch, an expected symptom of SLIT, which occurred in 82.7% of the patients.

Four patients (2.10%) received epinephrine during buildup and went to the emergency department. All these patients returned to continue SLIT without further need for epinephrine.

To test the effectiveness of SLIT, the researchers performed 50 low-dose OFCs in 20 patients. Of these food challenges, 35 (70%) were successful, and patients were asked to start daily 300-mg OIT maintenance, thus bypassing OIT buildup.

An additional nine OFCs that were unsuccessful were counseled to self-escalate from 80 mg or higher to 300 mg at home with medical guidance as needed.

“Our preliminary data of 20 patients and 50 low-dose oral food challenges suggest that an initial phase of 1-2 years of 2-mg daily SLIT therapy may be a safe and effective way to bypass the OIT buildup phase without the need for dozens of in-person visits with an allergist,” said Dr. Chan.

“So now we have the best of both worlds. We harness the safety of SLIT for the first 1-2 years, with the effectiveness of OIT for the remainder of the treatment period,” he said.
 

 

 

Adds to Evidence

Commenting on the study for this news organization, Julia Upton, MD, associate professor of pediatrics at the University of Toronto, Toronto, Ontario, Canada, said, “This study adds to the evidence that consistent, low exposure to food drives meaningful desensitization far above the daily dose.” Upton did not participate in the research.

“Prior prospective studies in SLIT demonstrated that small single-digit-milligram doses and time greatly increased the threshold of reaction. This real-world report suggests that a way to utilize that threshold increase is by switching to a commonly used maintenance dose of OIT,” said Dr. Upton.

“Although few patients have been assessed for the 300-mg challenge, this study is notable for the age group of 4-18 years, and that many of the patients had reacted to low doses in the past. It also shows that many families are capable of diluting and mixing their own immunotherapy solutions with store-bought foods under the guidance of an experienced allergy clinic,” she added.

“Overall, evidence is building that by various routes, initial small amounts with minimal updoses, plus the tincture of time, may be preferred to multiple frequent updosing from multiple perspectives, including safety, feasibility, cost, and medical resources. It will also be important to understand the preferences and goals of the patient and family as various regimens become more available,” Dr. Upton concluded.

The study was funded by BC Children’s Hospital Foundation. Dr. Chan reported receiving research support from DVB Technologies; has been a member of advisory boards for Pfizer, Miravo, Medexus, Leo Pharma, Kaleo, DBV, AllerGenis, Sanofi, Genzyme, Bausch Health, Avir Pharma, AstraZeneca, ALK, and Alladapt; and was a colead of the CSACI OIT guidelines. Dr. Upton reported research support/grants from Novartis, Regeneron, Sanofi, ALK Abello, DBV Technologies, CIHR, and SickKids Food Allergy and Anaphylaxis Program and fees from Pfizer, ALK Abello, Bausch Health, Astra Zeneca, and Pharming. She serves as an associate editor for Allergy, Asthma & Clinical Immunology and is on the Board of Directors of Canadian Society of Allergy and Clinical Immunology and the Healthcare Advisory Board of Food Allergy Canada.

A version of this article appeared on Medscape.com .

Sublingual immunotherapy (SLIT) is as safe and effective for high-risk older children and adolescents as oral immunotherapy (OIT) is for infants and preschoolers, according to new research.

Preliminary data from a study of more than 180 pediatric patients with multiple food allergies showed that while most patients had mild symptoms, none experienced a severe grade 4 reaction during the buildup and maintenance phase of SLIT.

In addition, 70% of those tested at the end of the treatment protocol were able to tolerate 300 mg of their allergen, a success rate nearly as high as that for OIT.

The study was published in The Journal of Allergy and Clinical Immunology: In Practice.

SLIT has been used successfully in the treatment of environmental allergens such as grass and tree pollen and dust mites. In this study, researchers decided to test SLIT’s effectiveness and safety in the treatment of food allergies in older children.

“We knew that OIT is very effective and safe in infants and toddlers, but there was literature illustrating that for older, school-age kids and adolescents, OIT is not safe enough, as those older age groups tend to have higher risk of severe reaction during treatment,” senior author Edmond Chan, MD, clinical professor of allergy at the University of British Columbia and pediatric allergist at BC Children’s Hospital, both in Vancouver, British Columbia, Canada, told this news organization. “With that knowledge, we decided to explore SLIT as another first-phase therapy for the older kids.”

The investigators recruited 188 high-risk older children aged 4-18 years for multifood SLIT. Most (61.7%) participants had multiple food allergies. Approximately 68% were male, and the population’s median age was 11.3 years.

Nearly half (48.4%) of participants had atopic dermatitis, 45.2% had asthma, 58.0% had allergic rhinitis, and 2.66% had preexisting eosinophilic esophagitis.

Most (75.0%) of the children were classified as higher risk, and 23 had a history of a grade 3 or 4 reaction before beginning SLIT.

Of the 188 children who were initially enrolled in the study, 173 (92.0%) finished their SLIT buildup phase.

Because the study started when COVID-19 pandemic restrictions were in place, the SLIT protocol mandated that patients be seen virtually. The patients’ caregivers learned how to mix and administer the required doses at home using recipes specially developed by the research team that used products bought at the grocery store.

A wide variety of food allergens were treated, including peanut, other legumes, tree nuts, sesame, other seeds, egg, cow’s milk, fish, wheat, shrimp, and other allergens.

The children built up to 2-mg protein SLIT maintenance over the course of three to five visits under nurse supervision.

After 1-2 years of daily SLIT maintenance, patients were offered a low-dose oral food challenge (OFC; cumulative dose: 300 mg of protein) with the goal of bypassing OIT buildup.

Nearly all patients (93.1%) had symptoms during SLIT buildup, but most were mild grade 1 (52.1%) or 2 (40.4%) reactions. Only one patient had a grade 3 reaction. None of the patients experienced a severe grade 4 reaction.

The most common grade 1 reaction was oral itch, an expected symptom of SLIT, which occurred in 82.7% of the patients.

Four patients (2.10%) received epinephrine during buildup and went to the emergency department. All these patients returned to continue SLIT without further need for epinephrine.

To test the effectiveness of SLIT, the researchers performed 50 low-dose OFCs in 20 patients. Of these food challenges, 35 (70%) were successful, and patients were asked to start daily 300-mg OIT maintenance, thus bypassing OIT buildup.

An additional nine OFCs that were unsuccessful were counseled to self-escalate from 80 mg or higher to 300 mg at home with medical guidance as needed.

“Our preliminary data of 20 patients and 50 low-dose oral food challenges suggest that an initial phase of 1-2 years of 2-mg daily SLIT therapy may be a safe and effective way to bypass the OIT buildup phase without the need for dozens of in-person visits with an allergist,” said Dr. Chan.

“So now we have the best of both worlds. We harness the safety of SLIT for the first 1-2 years, with the effectiveness of OIT for the remainder of the treatment period,” he said.
 

 

 

Adds to Evidence

Commenting on the study for this news organization, Julia Upton, MD, associate professor of pediatrics at the University of Toronto, Toronto, Ontario, Canada, said, “This study adds to the evidence that consistent, low exposure to food drives meaningful desensitization far above the daily dose.” Upton did not participate in the research.

“Prior prospective studies in SLIT demonstrated that small single-digit-milligram doses and time greatly increased the threshold of reaction. This real-world report suggests that a way to utilize that threshold increase is by switching to a commonly used maintenance dose of OIT,” said Dr. Upton.

“Although few patients have been assessed for the 300-mg challenge, this study is notable for the age group of 4-18 years, and that many of the patients had reacted to low doses in the past. It also shows that many families are capable of diluting and mixing their own immunotherapy solutions with store-bought foods under the guidance of an experienced allergy clinic,” she added.

“Overall, evidence is building that by various routes, initial small amounts with minimal updoses, plus the tincture of time, may be preferred to multiple frequent updosing from multiple perspectives, including safety, feasibility, cost, and medical resources. It will also be important to understand the preferences and goals of the patient and family as various regimens become more available,” Dr. Upton concluded.

The study was funded by BC Children’s Hospital Foundation. Dr. Chan reported receiving research support from DVB Technologies; has been a member of advisory boards for Pfizer, Miravo, Medexus, Leo Pharma, Kaleo, DBV, AllerGenis, Sanofi, Genzyme, Bausch Health, Avir Pharma, AstraZeneca, ALK, and Alladapt; and was a colead of the CSACI OIT guidelines. Dr. Upton reported research support/grants from Novartis, Regeneron, Sanofi, ALK Abello, DBV Technologies, CIHR, and SickKids Food Allergy and Anaphylaxis Program and fees from Pfizer, ALK Abello, Bausch Health, Astra Zeneca, and Pharming. She serves as an associate editor for Allergy, Asthma & Clinical Immunology and is on the Board of Directors of Canadian Society of Allergy and Clinical Immunology and the Healthcare Advisory Board of Food Allergy Canada.

A version of this article appeared on Medscape.com .

Publications
Publications
Topics
Article Type
Sections
Article Source

THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: IN PRACTICE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Thunderstorm Asthma’ Could Strike More Often With Climate Change

Article Type
Changed
Fri, 03/08/2024 - 09:14

 

Thunderstorm asthma can strike with little warning, leaving people with the symptoms of an asthma attack during or after the dark clouds pass. 

If you’re unfamiliar, the risk for a thunderstorm asthma attack grows when heavy storms arrive on a day with very high pollen or spores. The storm uplifts these particles, adds water, and causes them to explode into smaller grains. The electrical activity in a storm can do the same. Next, strong winds sweep these particles down and across the ground. People in the path of the storm can experience shortness of breath, coughing, and wheezing.

If thunderstorms are predicted to become more frequent and more severe with climate change, will the same hold true for thunderstorm asthma?   

“Yes, if only because the amount of pollen appears to be increasing in many areas due to climate change,” said Frank S. Virant, MD, chief of the Allergy Division at Seattle Children’s Hospital in Washington.

Most cases of thunderstorm asthma occur in the spring and early summer, but that also could change. Pollen seasons “have been getting longer and more intense,” said Shaan M. Waqar, MD, an allergist at ENT and Allergy Associates in Plainview, NY. 

“Thunderstorm asthma events are rare, but our changing environment and the increase in the number of people with allergies may make such events more common and more severe into the future,” agreed Paul J. Beggs, PhD, associate professor in the School of Natural Sciences at Macquarie University in Sydney, Australia.

How to Minimize Your Risk

If your patients are sensitive to pollen, advise them to continue to monitor outdoor levels, particularly during tree, grass, and weed pollen season, Dr. Virant recommended. Also patients should pay attention to weather reports. Watch for thunderstorms that could “amplify exposure to the pollen with 40-plus mile per hour winds and often colder air downdrafts.” Cold is an additional asthma trigger, he noted. 

People with asthma should try to stay indoors with windows and doors closed during strong thunderstorms and for several hours afterward. Using air filters can also help reduce risk, said Deepti V. Manian, MD, an allergist and immunologist at Stormont Vail Health in Topeka, Kansas.

Patients should continue controller therapies -- such as longer-acting inhalers and allergy medications -- and use a rescue inhaler or nebulizer for prompt treatment of symptoms, recommended Donald J. Dvorin, MD, of The Allergy and Asthma Doctors in Mount Laurel, NJ. Ideally, people seeking shelter indoors during storms should be “accompanied by friends or family who can help them transport quickly to a hospital if needed.”

Asthma Diagnosis Not Required

Even peoples who would not consider themselves to have asthma can be seriously affected. For example, people with hay fever, or allergic rhinitis as it’s also known, are also at risk, said Ajay Kevat, MBBS, MPH, of the respiratory department at Queensland Children’s Hospital in Brisbane, Australia.

People with hay fever can also experience stronger symptoms during and after thunderstorms. Optimally treating allergic rhinitis during the pollen season with non-sedation antihistamines and nasal steroids can help, Dr. Virant said, instead of “chasing symptoms with medication after they are already severe.” 

Part of the challenge is connecting severe weather to worse asthma symptoms. “In my experience, there is a lack of awareness surrounding thunderstorm asthma,” Dr. Manian said. For example, people with non-allergic rhinitis, also known as vasomotor rhinitis, can also experience the effects. “It often surprises many of my patients when I introduce the concept of vasomotor rhinitis, which can be triggered by environmental fluctuations.”

 

 

Gathering Clouds, Gathering Evidence

Climate change could also change which Americans experience the most storms. Researchers in a June 2022 study predicted fewer storms in the Southern plains and more storms in the Midwest and the Southeastern United States in the future.

Dr. Dvorin practices in Southern New Jersey, and in this area, “we fortunate in this area not to experience thunderstorm-induced asthma exacerbations,” he said. 

But climate change means that in the future, thunderstorm asthma could strike in places it has never been seen before, said Dr. Kevat, who wrote a thunderstorm asthma review article published online June 2020 in the Journal of Asthma and Allergy.

And this is not just a concern in the United States. Major thunderstorm asthma events have been reported in Italy, the United Kingdom, the Middle East, Asia, and Australia. In  November 2016, for instance, a strong set of storms swept across Melbourne, Australia. Temperatures dropped 10C (about 18F), humidity rose above 70%, and particulate matter like pollen became more concentrated in the air. 

This event spurred a “thunderstorm asthma epidemic of unprecedented magnitude, tempo, and geographical range and severity,” Dr. Beggs and colleagues wrote in their June 2018 report in The Lancet Planetary Health

Large-scale events like this can affect entire communities and quickly overwhelm local health care resources. Within 30 hours of the Melbourne storms, 3,365 people more than usual came to local emergency departments with respiratory issues — and 476 with asthma were admitted to the hospital. Ten people died: five in the hospital and five who could not be resuscitated or died while waiting for emergency services.

More research is needed “so as to best prepare for this unpredictable, significant public health threat,” Dr. Kevat wrote.

People whose asthma is triggered by pollen or mold spores are particularly at risk for thunderstorm asthma, Dr. Waqar said. If you’re unsure, an allergist can help diagnose and treat your allergic risks.

More severe thunderstorms are just one asthma trigger associated with climate change. Last summer, Canadian wildfires sent smoke across the northern U.S. and triggered widespread asthma exacerbations.

A version of this article appeared on WebMD.com

Publications
Topics
Sections

 

Thunderstorm asthma can strike with little warning, leaving people with the symptoms of an asthma attack during or after the dark clouds pass. 

If you’re unfamiliar, the risk for a thunderstorm asthma attack grows when heavy storms arrive on a day with very high pollen or spores. The storm uplifts these particles, adds water, and causes them to explode into smaller grains. The electrical activity in a storm can do the same. Next, strong winds sweep these particles down and across the ground. People in the path of the storm can experience shortness of breath, coughing, and wheezing.

If thunderstorms are predicted to become more frequent and more severe with climate change, will the same hold true for thunderstorm asthma?   

“Yes, if only because the amount of pollen appears to be increasing in many areas due to climate change,” said Frank S. Virant, MD, chief of the Allergy Division at Seattle Children’s Hospital in Washington.

Most cases of thunderstorm asthma occur in the spring and early summer, but that also could change. Pollen seasons “have been getting longer and more intense,” said Shaan M. Waqar, MD, an allergist at ENT and Allergy Associates in Plainview, NY. 

“Thunderstorm asthma events are rare, but our changing environment and the increase in the number of people with allergies may make such events more common and more severe into the future,” agreed Paul J. Beggs, PhD, associate professor in the School of Natural Sciences at Macquarie University in Sydney, Australia.

How to Minimize Your Risk

If your patients are sensitive to pollen, advise them to continue to monitor outdoor levels, particularly during tree, grass, and weed pollen season, Dr. Virant recommended. Also patients should pay attention to weather reports. Watch for thunderstorms that could “amplify exposure to the pollen with 40-plus mile per hour winds and often colder air downdrafts.” Cold is an additional asthma trigger, he noted. 

People with asthma should try to stay indoors with windows and doors closed during strong thunderstorms and for several hours afterward. Using air filters can also help reduce risk, said Deepti V. Manian, MD, an allergist and immunologist at Stormont Vail Health in Topeka, Kansas.

Patients should continue controller therapies -- such as longer-acting inhalers and allergy medications -- and use a rescue inhaler or nebulizer for prompt treatment of symptoms, recommended Donald J. Dvorin, MD, of The Allergy and Asthma Doctors in Mount Laurel, NJ. Ideally, people seeking shelter indoors during storms should be “accompanied by friends or family who can help them transport quickly to a hospital if needed.”

Asthma Diagnosis Not Required

Even peoples who would not consider themselves to have asthma can be seriously affected. For example, people with hay fever, or allergic rhinitis as it’s also known, are also at risk, said Ajay Kevat, MBBS, MPH, of the respiratory department at Queensland Children’s Hospital in Brisbane, Australia.

People with hay fever can also experience stronger symptoms during and after thunderstorms. Optimally treating allergic rhinitis during the pollen season with non-sedation antihistamines and nasal steroids can help, Dr. Virant said, instead of “chasing symptoms with medication after they are already severe.” 

Part of the challenge is connecting severe weather to worse asthma symptoms. “In my experience, there is a lack of awareness surrounding thunderstorm asthma,” Dr. Manian said. For example, people with non-allergic rhinitis, also known as vasomotor rhinitis, can also experience the effects. “It often surprises many of my patients when I introduce the concept of vasomotor rhinitis, which can be triggered by environmental fluctuations.”

 

 

Gathering Clouds, Gathering Evidence

Climate change could also change which Americans experience the most storms. Researchers in a June 2022 study predicted fewer storms in the Southern plains and more storms in the Midwest and the Southeastern United States in the future.

Dr. Dvorin practices in Southern New Jersey, and in this area, “we fortunate in this area not to experience thunderstorm-induced asthma exacerbations,” he said. 

But climate change means that in the future, thunderstorm asthma could strike in places it has never been seen before, said Dr. Kevat, who wrote a thunderstorm asthma review article published online June 2020 in the Journal of Asthma and Allergy.

And this is not just a concern in the United States. Major thunderstorm asthma events have been reported in Italy, the United Kingdom, the Middle East, Asia, and Australia. In  November 2016, for instance, a strong set of storms swept across Melbourne, Australia. Temperatures dropped 10C (about 18F), humidity rose above 70%, and particulate matter like pollen became more concentrated in the air. 

This event spurred a “thunderstorm asthma epidemic of unprecedented magnitude, tempo, and geographical range and severity,” Dr. Beggs and colleagues wrote in their June 2018 report in The Lancet Planetary Health

Large-scale events like this can affect entire communities and quickly overwhelm local health care resources. Within 30 hours of the Melbourne storms, 3,365 people more than usual came to local emergency departments with respiratory issues — and 476 with asthma were admitted to the hospital. Ten people died: five in the hospital and five who could not be resuscitated or died while waiting for emergency services.

More research is needed “so as to best prepare for this unpredictable, significant public health threat,” Dr. Kevat wrote.

People whose asthma is triggered by pollen or mold spores are particularly at risk for thunderstorm asthma, Dr. Waqar said. If you’re unsure, an allergist can help diagnose and treat your allergic risks.

More severe thunderstorms are just one asthma trigger associated with climate change. Last summer, Canadian wildfires sent smoke across the northern U.S. and triggered widespread asthma exacerbations.

A version of this article appeared on WebMD.com

 

Thunderstorm asthma can strike with little warning, leaving people with the symptoms of an asthma attack during or after the dark clouds pass. 

If you’re unfamiliar, the risk for a thunderstorm asthma attack grows when heavy storms arrive on a day with very high pollen or spores. The storm uplifts these particles, adds water, and causes them to explode into smaller grains. The electrical activity in a storm can do the same. Next, strong winds sweep these particles down and across the ground. People in the path of the storm can experience shortness of breath, coughing, and wheezing.

If thunderstorms are predicted to become more frequent and more severe with climate change, will the same hold true for thunderstorm asthma?   

“Yes, if only because the amount of pollen appears to be increasing in many areas due to climate change,” said Frank S. Virant, MD, chief of the Allergy Division at Seattle Children’s Hospital in Washington.

Most cases of thunderstorm asthma occur in the spring and early summer, but that also could change. Pollen seasons “have been getting longer and more intense,” said Shaan M. Waqar, MD, an allergist at ENT and Allergy Associates in Plainview, NY. 

“Thunderstorm asthma events are rare, but our changing environment and the increase in the number of people with allergies may make such events more common and more severe into the future,” agreed Paul J. Beggs, PhD, associate professor in the School of Natural Sciences at Macquarie University in Sydney, Australia.

How to Minimize Your Risk

If your patients are sensitive to pollen, advise them to continue to monitor outdoor levels, particularly during tree, grass, and weed pollen season, Dr. Virant recommended. Also patients should pay attention to weather reports. Watch for thunderstorms that could “amplify exposure to the pollen with 40-plus mile per hour winds and often colder air downdrafts.” Cold is an additional asthma trigger, he noted. 

People with asthma should try to stay indoors with windows and doors closed during strong thunderstorms and for several hours afterward. Using air filters can also help reduce risk, said Deepti V. Manian, MD, an allergist and immunologist at Stormont Vail Health in Topeka, Kansas.

Patients should continue controller therapies -- such as longer-acting inhalers and allergy medications -- and use a rescue inhaler or nebulizer for prompt treatment of symptoms, recommended Donald J. Dvorin, MD, of The Allergy and Asthma Doctors in Mount Laurel, NJ. Ideally, people seeking shelter indoors during storms should be “accompanied by friends or family who can help them transport quickly to a hospital if needed.”

Asthma Diagnosis Not Required

Even peoples who would not consider themselves to have asthma can be seriously affected. For example, people with hay fever, or allergic rhinitis as it’s also known, are also at risk, said Ajay Kevat, MBBS, MPH, of the respiratory department at Queensland Children’s Hospital in Brisbane, Australia.

People with hay fever can also experience stronger symptoms during and after thunderstorms. Optimally treating allergic rhinitis during the pollen season with non-sedation antihistamines and nasal steroids can help, Dr. Virant said, instead of “chasing symptoms with medication after they are already severe.” 

Part of the challenge is connecting severe weather to worse asthma symptoms. “In my experience, there is a lack of awareness surrounding thunderstorm asthma,” Dr. Manian said. For example, people with non-allergic rhinitis, also known as vasomotor rhinitis, can also experience the effects. “It often surprises many of my patients when I introduce the concept of vasomotor rhinitis, which can be triggered by environmental fluctuations.”

 

 

Gathering Clouds, Gathering Evidence

Climate change could also change which Americans experience the most storms. Researchers in a June 2022 study predicted fewer storms in the Southern plains and more storms in the Midwest and the Southeastern United States in the future.

Dr. Dvorin practices in Southern New Jersey, and in this area, “we fortunate in this area not to experience thunderstorm-induced asthma exacerbations,” he said. 

But climate change means that in the future, thunderstorm asthma could strike in places it has never been seen before, said Dr. Kevat, who wrote a thunderstorm asthma review article published online June 2020 in the Journal of Asthma and Allergy.

And this is not just a concern in the United States. Major thunderstorm asthma events have been reported in Italy, the United Kingdom, the Middle East, Asia, and Australia. In  November 2016, for instance, a strong set of storms swept across Melbourne, Australia. Temperatures dropped 10C (about 18F), humidity rose above 70%, and particulate matter like pollen became more concentrated in the air. 

This event spurred a “thunderstorm asthma epidemic of unprecedented magnitude, tempo, and geographical range and severity,” Dr. Beggs and colleagues wrote in their June 2018 report in The Lancet Planetary Health

Large-scale events like this can affect entire communities and quickly overwhelm local health care resources. Within 30 hours of the Melbourne storms, 3,365 people more than usual came to local emergency departments with respiratory issues — and 476 with asthma were admitted to the hospital. Ten people died: five in the hospital and five who could not be resuscitated or died while waiting for emergency services.

More research is needed “so as to best prepare for this unpredictable, significant public health threat,” Dr. Kevat wrote.

People whose asthma is triggered by pollen or mold spores are particularly at risk for thunderstorm asthma, Dr. Waqar said. If you’re unsure, an allergist can help diagnose and treat your allergic risks.

More severe thunderstorms are just one asthma trigger associated with climate change. Last summer, Canadian wildfires sent smoke across the northern U.S. and triggered widespread asthma exacerbations.

A version of this article appeared on WebMD.com

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What’s Changed in Asthma Treatment? Quite a Bit

Article Type
Changed
Tue, 03/12/2024 - 17:24

This transcript has been edited for clarity.

I’m Dr. Neil Skolnik, and today I am going to talk about the 2023 update to the Global Strategy for Asthma Management and Prevention. We treat a lot of asthma, and there are some important changes, particularly around the use of albuterol. There are two main guidelines when it comes to asthma, the Global Initiative for Asthma (GINA) guideline and the US National Heart, Lung, and Blood Institute Guidelines. While I had the privilege of serving on the expert working group for the US guidelines, what I like about the GINA guidelines is that they are updated annually, and so they really help us keep up with rapid changes in the field.

Today, I’m going to focus on assessment and treatment.
 

Four Questions to Assess Asthma Control

Because over half of patients with asthma are not well controlled, it is important to assess control at every asthma visit. Asthma control has two domains: symptom control and the risk for future exacerbations. It is not enough to simply ask, “How is your asthma?” because many patients overrate their control and live with ongoing symptoms. There are many assessment tools; the Asthma Control Test (ACT) focuses on symptoms, and the new Asthma Impairment and Risk Questionnaire (AIRQ) assesses both symptoms and risk for exacerbations. The GINA assessment is probably the easiest to implement, with just four questions relevant to the past 4 weeks:

  • Have you had daytime symptoms more than twice in one week?
  • Have you had any night waking due to asthma?
  • Have you needed short-acting beta-agonist (SABA), such as albuterol, rescue more than twice in one week?
  • Have you had any activity limitation due to asthma?

Well-controlled asthma is defined as a negative response to all four of these questions, partly controlled asthma is one or two “yes” answers, and uncontrolled asthma is three to four positive responses. You can’t modify a patient’s therapy if you don’t know whether their asthma is well or poorly controlled. You’ll notice that these questions focus on symptom control. It is important also to ask about risk factors for exacerbations, particularly previous exacerbations.
 

Asthma Treatment Changes

The goals of treatment are control of symptoms and avoidance of exacerbations. The GINA guidelines emphasize that even patients with mild asthma can have severe or fatal exacerbations.

GINA recommends two management tracks. The preferred track uses inhaled corticosteroid (ICS)-formoterol as both maintenance and reliever therapy (MART). Track 2, without the use of ICS-formoterol for MART, is also offered, recognizing that the use of ICS-formoterol for MART is not approved by the US Food and Drug Administration. There is an easy-to-follow stepped-care diagram that is worth looking at; it’s on page 66 of the GINA guideline PDF.

For patients who have symptoms less than twice a month, begin with Step 1 therapy:

  • Track 1: as-needed low-dose ICS-formoterol.
  • Track 2: treatment with albuterol; also use ICS whenever albuterol is used.
 

 

For patients with symptoms more than twice a month (but not most days of the week) treatment can start with Step 2 therapy:

  • Track 1: as-needed low-dose ICS-formoterol
  • Track 2: daily low-dose ICS plus as-needed SABA

An option for rescue therapy for Track 2 across all steps of therapy is to use an ICS whenever a SABA is used for rescue to reduce the likelihood of exacerbation.

For patients with more severe asthma symptoms most days of the week, or whose asthma is waking them from sleep one or more times weekly, then you can start with Step 3 therapy as follows:

  • Track 1: low dose ICS-formoterol as MART
  • Track 2: low-dose ICS with long-acting beta-agonist (LABA) for maintenance, plus as needed SABA or as needed ICS-SABA

That’s going to cover most of our patients. As we see people back, if escalation of therapy is needed, then Step 4 therapy is:

  • Track 1: medium-dose ICS-formoterol as MART
  • Track 2: medium-dose ICS-LABA plus as needed SABA or as-needed ICS-SABA

For patients who remain uncontrolled, it’s important to realize that Step 5 gives you the option to add a long-acting muscarinic antagonist (LAMA). In my experience this can be very helpful. We can also consider going to high-dose ICS-LABS for maintenance. At this step, the patient usually has pretty severe, uncontrolled asthma and we can think about checking eosinophil counts, ordering pulmonary function tests, and referring to our specialist colleagues for consideration of biologic therapy.

It is important to see patients back regularly, and to assess asthma control. If a patient is not well controlled or has had exacerbations, consider stepping up therapy, or changing from albuterol alone as rescue to albuterol plus ICS for rescue. If they have been well controlled for a long time, consider de-escalation of therapy among patients on one of the higher therapy steps.

Dr. Skolnik has disclosed the following relevant financial relationships: Serve(d) on the advisory board for AstraZeneca, Teva, Eli Lilly and Company, Boehringer Ingelheim, Sanofi, Sanofi Pasteur, GlaxoSmithKline, Merck; and Bayer; serve(d) as a speaker or a member of a speakers bureau for AstraZeneca, Boehringer Ingelheim, Eli Lilly and Company, GlaxoSmithKline. Received research grant from Sanofi, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, and Bayer; and received income in an amount equal to or greater than $250 from AstraZeneca, Teva, Eli Lilly and Company, Boehringer Ingelheim, Sanofi, Sanofi Pasteur, GlaxoSmithKline, Merck, and Bayer.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity.

I’m Dr. Neil Skolnik, and today I am going to talk about the 2023 update to the Global Strategy for Asthma Management and Prevention. We treat a lot of asthma, and there are some important changes, particularly around the use of albuterol. There are two main guidelines when it comes to asthma, the Global Initiative for Asthma (GINA) guideline and the US National Heart, Lung, and Blood Institute Guidelines. While I had the privilege of serving on the expert working group for the US guidelines, what I like about the GINA guidelines is that they are updated annually, and so they really help us keep up with rapid changes in the field.

Today, I’m going to focus on assessment and treatment.
 

Four Questions to Assess Asthma Control

Because over half of patients with asthma are not well controlled, it is important to assess control at every asthma visit. Asthma control has two domains: symptom control and the risk for future exacerbations. It is not enough to simply ask, “How is your asthma?” because many patients overrate their control and live with ongoing symptoms. There are many assessment tools; the Asthma Control Test (ACT) focuses on symptoms, and the new Asthma Impairment and Risk Questionnaire (AIRQ) assesses both symptoms and risk for exacerbations. The GINA assessment is probably the easiest to implement, with just four questions relevant to the past 4 weeks:

  • Have you had daytime symptoms more than twice in one week?
  • Have you had any night waking due to asthma?
  • Have you needed short-acting beta-agonist (SABA), such as albuterol, rescue more than twice in one week?
  • Have you had any activity limitation due to asthma?

Well-controlled asthma is defined as a negative response to all four of these questions, partly controlled asthma is one or two “yes” answers, and uncontrolled asthma is three to four positive responses. You can’t modify a patient’s therapy if you don’t know whether their asthma is well or poorly controlled. You’ll notice that these questions focus on symptom control. It is important also to ask about risk factors for exacerbations, particularly previous exacerbations.
 

Asthma Treatment Changes

The goals of treatment are control of symptoms and avoidance of exacerbations. The GINA guidelines emphasize that even patients with mild asthma can have severe or fatal exacerbations.

GINA recommends two management tracks. The preferred track uses inhaled corticosteroid (ICS)-formoterol as both maintenance and reliever therapy (MART). Track 2, without the use of ICS-formoterol for MART, is also offered, recognizing that the use of ICS-formoterol for MART is not approved by the US Food and Drug Administration. There is an easy-to-follow stepped-care diagram that is worth looking at; it’s on page 66 of the GINA guideline PDF.

For patients who have symptoms less than twice a month, begin with Step 1 therapy:

  • Track 1: as-needed low-dose ICS-formoterol.
  • Track 2: treatment with albuterol; also use ICS whenever albuterol is used.
 

 

For patients with symptoms more than twice a month (but not most days of the week) treatment can start with Step 2 therapy:

  • Track 1: as-needed low-dose ICS-formoterol
  • Track 2: daily low-dose ICS plus as-needed SABA

An option for rescue therapy for Track 2 across all steps of therapy is to use an ICS whenever a SABA is used for rescue to reduce the likelihood of exacerbation.

For patients with more severe asthma symptoms most days of the week, or whose asthma is waking them from sleep one or more times weekly, then you can start with Step 3 therapy as follows:

  • Track 1: low dose ICS-formoterol as MART
  • Track 2: low-dose ICS with long-acting beta-agonist (LABA) for maintenance, plus as needed SABA or as needed ICS-SABA

That’s going to cover most of our patients. As we see people back, if escalation of therapy is needed, then Step 4 therapy is:

  • Track 1: medium-dose ICS-formoterol as MART
  • Track 2: medium-dose ICS-LABA plus as needed SABA or as-needed ICS-SABA

For patients who remain uncontrolled, it’s important to realize that Step 5 gives you the option to add a long-acting muscarinic antagonist (LAMA). In my experience this can be very helpful. We can also consider going to high-dose ICS-LABS for maintenance. At this step, the patient usually has pretty severe, uncontrolled asthma and we can think about checking eosinophil counts, ordering pulmonary function tests, and referring to our specialist colleagues for consideration of biologic therapy.

It is important to see patients back regularly, and to assess asthma control. If a patient is not well controlled or has had exacerbations, consider stepping up therapy, or changing from albuterol alone as rescue to albuterol plus ICS for rescue. If they have been well controlled for a long time, consider de-escalation of therapy among patients on one of the higher therapy steps.

Dr. Skolnik has disclosed the following relevant financial relationships: Serve(d) on the advisory board for AstraZeneca, Teva, Eli Lilly and Company, Boehringer Ingelheim, Sanofi, Sanofi Pasteur, GlaxoSmithKline, Merck; and Bayer; serve(d) as a speaker or a member of a speakers bureau for AstraZeneca, Boehringer Ingelheim, Eli Lilly and Company, GlaxoSmithKline. Received research grant from Sanofi, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, and Bayer; and received income in an amount equal to or greater than $250 from AstraZeneca, Teva, Eli Lilly and Company, Boehringer Ingelheim, Sanofi, Sanofi Pasteur, GlaxoSmithKline, Merck, and Bayer.

A version of this article appeared on Medscape.com.

This transcript has been edited for clarity.

I’m Dr. Neil Skolnik, and today I am going to talk about the 2023 update to the Global Strategy for Asthma Management and Prevention. We treat a lot of asthma, and there are some important changes, particularly around the use of albuterol. There are two main guidelines when it comes to asthma, the Global Initiative for Asthma (GINA) guideline and the US National Heart, Lung, and Blood Institute Guidelines. While I had the privilege of serving on the expert working group for the US guidelines, what I like about the GINA guidelines is that they are updated annually, and so they really help us keep up with rapid changes in the field.

Today, I’m going to focus on assessment and treatment.
 

Four Questions to Assess Asthma Control

Because over half of patients with asthma are not well controlled, it is important to assess control at every asthma visit. Asthma control has two domains: symptom control and the risk for future exacerbations. It is not enough to simply ask, “How is your asthma?” because many patients overrate their control and live with ongoing symptoms. There are many assessment tools; the Asthma Control Test (ACT) focuses on symptoms, and the new Asthma Impairment and Risk Questionnaire (AIRQ) assesses both symptoms and risk for exacerbations. The GINA assessment is probably the easiest to implement, with just four questions relevant to the past 4 weeks:

  • Have you had daytime symptoms more than twice in one week?
  • Have you had any night waking due to asthma?
  • Have you needed short-acting beta-agonist (SABA), such as albuterol, rescue more than twice in one week?
  • Have you had any activity limitation due to asthma?

Well-controlled asthma is defined as a negative response to all four of these questions, partly controlled asthma is one or two “yes” answers, and uncontrolled asthma is three to four positive responses. You can’t modify a patient’s therapy if you don’t know whether their asthma is well or poorly controlled. You’ll notice that these questions focus on symptom control. It is important also to ask about risk factors for exacerbations, particularly previous exacerbations.
 

Asthma Treatment Changes

The goals of treatment are control of symptoms and avoidance of exacerbations. The GINA guidelines emphasize that even patients with mild asthma can have severe or fatal exacerbations.

GINA recommends two management tracks. The preferred track uses inhaled corticosteroid (ICS)-formoterol as both maintenance and reliever therapy (MART). Track 2, without the use of ICS-formoterol for MART, is also offered, recognizing that the use of ICS-formoterol for MART is not approved by the US Food and Drug Administration. There is an easy-to-follow stepped-care diagram that is worth looking at; it’s on page 66 of the GINA guideline PDF.

For patients who have symptoms less than twice a month, begin with Step 1 therapy:

  • Track 1: as-needed low-dose ICS-formoterol.
  • Track 2: treatment with albuterol; also use ICS whenever albuterol is used.
 

 

For patients with symptoms more than twice a month (but not most days of the week) treatment can start with Step 2 therapy:

  • Track 1: as-needed low-dose ICS-formoterol
  • Track 2: daily low-dose ICS plus as-needed SABA

An option for rescue therapy for Track 2 across all steps of therapy is to use an ICS whenever a SABA is used for rescue to reduce the likelihood of exacerbation.

For patients with more severe asthma symptoms most days of the week, or whose asthma is waking them from sleep one or more times weekly, then you can start with Step 3 therapy as follows:

  • Track 1: low dose ICS-formoterol as MART
  • Track 2: low-dose ICS with long-acting beta-agonist (LABA) for maintenance, plus as needed SABA or as needed ICS-SABA

That’s going to cover most of our patients. As we see people back, if escalation of therapy is needed, then Step 4 therapy is:

  • Track 1: medium-dose ICS-formoterol as MART
  • Track 2: medium-dose ICS-LABA plus as needed SABA or as-needed ICS-SABA

For patients who remain uncontrolled, it’s important to realize that Step 5 gives you the option to add a long-acting muscarinic antagonist (LAMA). In my experience this can be very helpful. We can also consider going to high-dose ICS-LABS for maintenance. At this step, the patient usually has pretty severe, uncontrolled asthma and we can think about checking eosinophil counts, ordering pulmonary function tests, and referring to our specialist colleagues for consideration of biologic therapy.

It is important to see patients back regularly, and to assess asthma control. If a patient is not well controlled or has had exacerbations, consider stepping up therapy, or changing from albuterol alone as rescue to albuterol plus ICS for rescue. If they have been well controlled for a long time, consider de-escalation of therapy among patients on one of the higher therapy steps.

Dr. Skolnik has disclosed the following relevant financial relationships: Serve(d) on the advisory board for AstraZeneca, Teva, Eli Lilly and Company, Boehringer Ingelheim, Sanofi, Sanofi Pasteur, GlaxoSmithKline, Merck; and Bayer; serve(d) as a speaker or a member of a speakers bureau for AstraZeneca, Boehringer Ingelheim, Eli Lilly and Company, GlaxoSmithKline. Received research grant from Sanofi, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, and Bayer; and received income in an amount equal to or greater than $250 from AstraZeneca, Teva, Eli Lilly and Company, Boehringer Ingelheim, Sanofi, Sanofi Pasteur, GlaxoSmithKline, Merck, and Bayer.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article